
Kobe University Repository : Kernel

PDF issue: 2025-07-06

Distributed Cell Set : A Library for Space-
Dependent Communication/Computation Overlap on
Manycore Cluster

(Citation)
PMAM'23: Proceedings of the 14th International Workshop on Programming Models and
Applications for Multicores and Manycores:11-19

(Issue Date)
2023-02-25

(Resource Type)
conference proceedings

(Version)
Accepted Manuscript

(Rights)
© 2023 ACM

(URL)
https://hdl.handle.net/20.500.14094/0100483437

Kawanishi, Yoshiki
Finnerty, Patrick
Kamada, Tomio
Ohta, Chikara

Distributed Cell Set : A Library for Space-Dependent
Communication/Computation Overlap on Many Core Cluster

Yoshiki Kawanishi

kawanishi@fine.cs.kobe-u.ac.jp

Graduate School of System Informatics

Kobe University

Kobe, Japan

Patrick Finnerty

finnerty.patrick@fine.cs.kobe-u.ac.jp

Graduate School of System Informatics

Kobe University

Kobe, Japan

Tomio Kamada

t_kamada@konan-u.ac.jp

Department of Intelligence and Informatics

Konan University

Kobe, Japan

Chikara Ohta

ohta@port.kobe-u.ac.jp

Graduate School of System Informatics

Kobe University

Kobe, Japan

ABSTRACT
The increase in the number of cores available in modern proces-

sors makes it important for implementations to maximize their

use of cores within a node by overlapping communication and

computation. However, when the dependency between communi-

cation and computation are complex and evolve over the course

of the execution, their implementation becomes tedious and may

lead to bugs. In this paper, focusing on spatial simulation, we pro-

pose a Distributed Cell Set Library that manages the distribution

of elements positioned in the space into divided area units (cell
units). We make it possible to manage the granularity of cells with

which communication may overlap with computation and for mul-

tithreaded computation. In addition, we make it possible to describe

the relationships between inter-node communication and the pend-

ing computation in cell units. For evaluation, we introduce the

implementation of a two-dimensional molecular dynamics simula-

tion using our library. We show that using our computation and

communication overlapping method, the delays to reach global

synchronization that are necessary in the original implementation

can be avoided.

CCS CONCEPTS
• Computing methodologies→ Parallel computing method-
ologies; Distributed computing methodologies; Parallel pro-
gramming languages.

KEYWORDS
distributed data structure, communication/computation overlap,

many core cluster

1 INTRODUCTION
Parallel & distributed programs require implementations that take

advantage of the large number of cores available in modern pro-

cessors. One such method consists in overlapping communication

and calculation that do not depend on each other to eliminate bot-

tlenecks due to communication. So far, this has generally been

implemented by combining a library for inter-node communication

with a library for thread parallelism.

However, implementing overlap is still a challenge for program-

mers due to the complex dependency relationships between the

computation and its necessary data. The computation should be

defined with respect to each piece of data with a certain degree

of granularity, defining whether it can overlap with communica-

tion and how it can be processed through intra-host parallelism.

Moreover, those dependencies should be able to adapt to support

flexible distributions. This can become a considerable burden for

programmers who risk obfuscating their program. We believe such

challenges should be handled by libraries instead.

In this paper, we present a distributed cell set library, which is

introduced in our distributed collections library [4]. The distributed

collections library provided distributed array management in index

range units (chunk units). The distributed cell set library we present

here focuses on spatial simulation. It manages the distribution of

elements with respect to their position in the space divided into

unit areas (cell units). The library manages the element migration

between cells by checking the positions of elements. In addition, the

library provides asynchronous inter-node communication functions

to enable inter-node element migration and remote cell caching.

Our most significant contribution is that these communication func-

tions make it possible to easily and briefly describe the relationship

between inter-node communication and their dependent computa-

tion in cell units. The CompletableFuture paradigm implemented

in Java allows programmers to describe their dependencies with

great flexibility.

The remainder of this article is organized in the following sec-

tions. We start by introducing the motivation case for our library in

Section 2. In Section 3, we introduce some necessary background.

In Section 4, we discuss the design of our library before discussing

its implementation in Section 5. We present the results of our eval-

uation in Section 6. In Section 7, we discuss related work. We then

conclude and discuss future work in Section 8.

2 MOTIVATION CASE: MOLDYN
In this article, we use the Molecular Dynamics (MolDyn) simu-

lation from the Java Grande benchmark suite [11] as a running

example of how to use our distributed cell set library. This section

describes MolDyn’s parallelization method and dependencies for

communication-computation overlap.

https://orcid.org/0000-0002-1233-7773
https://orcid.org/0000-0002-9037-967X
https://orcid.org/0000-0002-1646-1683
https://orcid.org/0000-0002-4143-9429

Yoshiki Kawanishi, Patrick Finnerty, Tomio Kamada, and Chikara Ohta

Figure 1: MolDyn area classification and dependencies on
each processing

Figure 2: MolDyn overlap example with multiple threads

MolDyn simulates the evolution of a system of particles by calcu-

lating the interaction forces between the particles in the simulation

space. After deriving the interactions forces, the position of each

particle is updated and the cycle is repeated.

Parallel/distributed computation of MolDyn is generally imple-

mented by decomposing the simulation space into into cells and

distributing these cells to the compute nodes. The particles con-

tained in each cell performs the interaction calculations with the

particles contained in other cells. Each node needs the information

of the cells involved in the interaction. If these cells are handled by

a remote node, the node collects the necessary information from

the remote cell. Furthermore, if a cut-off distance is considered in

the interaction calculation, the cells to be collected are restricted

the surrounding area (remote "Halo" area) of the cells owned by

the node. Each particle updates its position after deriving the force

exerted on itself by other particles. Particles “migrate” between

cells according to the updated positions, involving communication

when particles migrating to a remote cell. Following this method,

processing for cells in each node consists in three steps: Particle
Migration, Halo Cache and Interaction computation.

In MolDyn, the higher the number of nodes, the shorter the inter-

action computation time. As the time for communication time does

not decrease significantly, its proportion increases. As a countermea-

sure, it is possible to overlap the computation and communication

to hide the communication time.

In order to overlap computation and communication, the pro-

grammer must classify the processing of each step for each cell,

organize the dependencies correctly, and implement it. Interaction

dependencies are classified for each cell as shown in Figure 1. With

respect to the node responsible for the cells in the top left corner,

Area (a) shows cells without concern for particles migrating from

other nodes, area (b) are the cells where migrated particles may

come from other nodes, and area (c) shows cells owned by other

nodes that need to be cached.

Figure 2 represents the dependencies on Migration, Cache Halo,

and Interaction for each area. The timing at which each region

interaction calculation becomes possible is as follows:

• area(a): possible after local migration is completed

• area(b): possible after migration communication with re-

mote nodes

• area(c): possible after caching

In the example presented in Figure 2, realizing overlaps between

communication and calculation is performed by entrusting the main

thread to perform the migration and cache communications while

the interactions calculation is executed by workers extracted from

the worker pool.

That dependencies are complicated. In addition to the above (a),

(b), and (c) area decomposition, the (b) and (c) areas can be further

decomposed. For instance, “as soon as the communication from the

lower area ends,” or “as soon as the communication from the right

area ends,” and so on. While it is possible to express every indi-

vidual cell-to-cell dependency, this makes the program more com-

plicated. There are other kinds of dependencies, communication-

to-communication ones. In this example, cache communication is

executed after inter-node migration become completed.

This implementation becomes complicated. These communica-

tion tasks may be scheduled in sequence, but each communica-

tion task must be connected to the corresponding cell and trigger

dependent computations. For interactions between two cells, the

calculation can only be triggered when both cells are ready for

calculation. Managing such dependencies can become troublesome.

3 BACKGROUND
3.1 Distributed Collections Library
In this section, we recall the elements concerning our distributed

collections library on which this work is based. More details con-

cerning this work can be found in [4].

Our library complements the Asynchronous Partitioned Global

Address Space (APGAS) model as introduced in X10 [13] and later

ported to Java [12]. Under this model, a process running on a com-

pute node is called a Place. In this article, we assume that a single

process executes per compute node. The terms “process,” “place,”

and “node” can therefore be used interchangeably in this context.

Asynchronous activities can be launched on a remote place with

method asyncAt. Termination detection is implemented through

an elegant method called finish, which only returns when all

transitively spawned asynchronous activities complete.

Distributed Cell Set : A Library for Space-Dependent Communication/Computation Overlap on Many Core Cluster

1 TeamedPlaceGroup world =

2 TeamedPlaceGroup . getWorld () ;

3 DistMap < S t r i n g , S t r i n g > dMap =

4 new DistMap < >(world) ;

5 dMap . put (" main " , " running ") ;

6 world . b r o a d c a s t F l a t (() −>{

7 dMap . put (here () , " s a y s ␣ h e l l o ") ;

8 Co l l ec t iveMoveManager mm =

9 new Col lec t iveMoveManager (world) ;

10 i f (here () == p l a c e (0)) {

11 dMap . moveAtSync (" main " , p l a c e (1) , mm) ;

12 }

13 mm. sync () ;

14 }) ;

Listing 1: Distributed map creation and record insertion

In our library, we provide a number of distributed collections

(distributed map, distributed array). Each distributed collection is

implemented as a group of local handles located on each process and

linked together by a globally unique ID. Programmers can record

and read entries into the local handle of a distributed collection by

using the usual APGAS asynchronous activities. It is also possible

to relocate entries between local handles at the programmer’s ini-

tiative, with entries to relocate described by their keys in the case

of a distributed maps, or by ranges in the case of distributed arrays.

The sample program presented in Listing 1 illustrate these char-

acteristics. The TeamedPlaceGroup object obtained on the first line

of Listing 1 represents the group of all APGAS places. It is used

on line 3 to create the distributed map dMap, meaning that every

process participating in the execution will have a handle for this

distributed collection. On line 5, a first entry is recorded into the

map by the main thread, resulting in the main:running mapping

to be recorded on the first process.

From lines 6 to 14, the broadcastFlat method is used to spawn

the same asynchronous activity on all hosts participating in the com-

putation. This short-hand replaces the otherwise explicit finish
and for loop needed to spawn the same activity on all places, en-

hancing the clarity of the program. The asynchronous activity given

as parameter to method broadcastFlat makes every place add a

new entry into their local handle of the distributed map dMap on

line 7. Then, a collective relocator is created on line 8. This object

is used to register various elements of distributed collections to

be transferred from a handle to another. In this case, only the first

place relocates its main:running entry to Place 1. The transfer is

performed on line 13 when the mm.sync method is called by all

the places participating in the computation. The final state of the

distributed map dmap is shown on Figure 3. Notice in particular

that the main:running entry has been removed from the handle

on Place 0 and inserted into the handle of Place 1.

A number of computation patterns that require communication

and computation are also supported, such as reductions. We call

such patterns that involve the participation all the local handles of

a distributed collection “teamed.” Internally, these communication

patterns are supported by MPI through OpenMPI Java bindings [15].

Place 0 Place 1

Place 2 Place 3

“main” : “running”
“place(0)” : “says hello”

“place(1)” : “says hello”
“main” : “running”

“place(2)” : “says hello” “place(3)” : “says hello”

dMap:DistMap<String,String>

dMap.moveAtSync(“main”, place(1), mm);

Figure 3: State of the distributedmap dMap after the Listing 1
program has run with 4 processes

1 E x e c u t o r S e r v i c e e x e c u t o r = new F o r k J o i n P o o l () ;

2 / / submi t t a s k and c r e a t e F u t u r e
3 Comple tab l eFu ture < I n t e g e r > c F u t u r e 1 =

4 C o m p l e t a b l e F u t u r e . supplyAsync (() −> {

5 return someFunc1 () ;

6 } , e x e c u t o r) ;

7 / / c ha i n a s yn ch r onou s t a s k and c r e a t e F u t u r e
8 Comple tab l eFu ture < S t r i n g > c F u t u r e 2 =

9 c F u t u r e 1 . thenApplyAsync ((I n t e g e r r e s u l t 1) −> {

10 return someFunc2 (r e s u l t 1) ;

11 } , e x e c u t o r) ;

Listing 2: Sample program for CompletableFuture

3.2 Completable Future
In this section, we summarize the usage of the CompletableFuture
class in Java. Our distributed cell set relies on the features of this

class and the user of the library should be familiar with it to use

the asynchronous feature of our library.

CompletableFuture was introduced to Java as part of the Java 8

Concurrency API improvement. It is an extension of Future,

which allows explicit completion of asynchronous operations and

flexible description of processing dependencies using method-

chaining. An illustrative program is shown in Listing 2. The

supplyAsync method (lines 3-6) submits an asynchronous task

doing someFunc1() and returns future cFuture1 to the caller. The

user can specify the ExecutorService executor (line 1) that

executes the asynchronous task. If the executor is omitted, the

ForkJoinPool.commonPool() will be used by default.

Then the thenApplyAsync method (lines 8-11) creates a new fu-

ture that executes someFunc2(result)with the result of cFuture1
as the argument result1. Unlike normal Futures, this method in-

stantly returns a CompletableFuture instance without waiting for

the result of cFuture1.

Many utility functions are also provided. thenApplyBothAsync
waits for the results of two futures. Methods allOf(futures..)
and anyOf(futures..) return a future that respectively waits for

all or one of the given futures. Programmers can therefore describe

complex dependencies of asynchronous processing in an easy-to-

understand API.

Yoshiki Kawanishi, Patrick Finnerty, Tomio Kamada, and Chikara Ohta

Figure 4: Object layout in a distributed cell set

4 DESIGN
In this section, we present the design of our distributed cell set

library. We show how programmers can describe space-dependent

communication and computation overlap using the molecular dy-

namics program presented in in Section 4.1 as a running example.

We then describe the detailed specification of our library in Sec-

tion 4.2.

4.1 General implementation in MolDyn
While the original MolDyn version adopts a 3D model, we present

here a 2D version of the simulation as, currently, our library only

supports 2D cells. Figure 4 presents a sample object layout in the

distributed cell set. Cell2D<T> represents a determined 2D area

containing some elements, the type of which is specified by param-

eter T. Cell2DList<T> and DistCell2DList<T> are the local and

distributed versions of Cell2D<T> sets. They both receive a 2D area

and split this area into cells gathered in a set. The split cells are iden-

tified through an integer id. In addition, class DistCell2DList<T>
can distribute the cells over compute nodes.

The elements contained in the cells must implement a

position() method returning a Position2D object. When the

migration method is called, our library checks the elements’

position and migrates those that have moved to different cell.

When elements move to cells assigned to other compute nodes,

DistCell2DList<T> gathers such elements and performs the trans-

fer.

The DistCell2DList<T> class provides two kinds of meth-

ods for communication: migrate() for element migration,

and cacheHalo() for caching elements. To enable asynchro-

nous communication between compute nodes, both have

CompletableFuture variants. These methods receive future ob-

jects on which they have to wait for completion to perform

the communication, and return future objects to notify of the

completion of their communicating tasks. In the case of method

thenMigrateAsync(), this receives a function that changes ele-

ments’ position. The method first applies the function to all the

local elements, gathering the elements that move to different cells,

and then proceeds to perform element migration within the lo-

cal cells. The method returns a collection of future objects, each

representing the status of migration acceptance to a cell, before com-

pleting its own communication process. Its communication starts

only after confirming the completion of the dependent communi-

cation tasks as specified by the arguments. Our library manages

the migration process in each cell and notifies the completion of

the acceptance by cells. Method thenCacheHaloAsync() instantly

returns a collection of future objects, each representing the status

of cache acceptance in each cell. The communication process is

started after confirming the completion of the dependent tasks.

Using these abstractions, we can describe the communication and

computation dependencies described in Section 2. The molecular

dynamics program has two main operations, interact() which

consists in calculating the force interactions between the particles,

and domove() which is used to update the velocity and positions of

the particles. The former processes parallel read access to particles

and the latter is executed in an owner-compute pattern on the

particles. In addition, the forces calculated for each cell pair must

be summed up for each cell. We use an “accumulator” mechanism

to handle this pattern which we will discuss further in the next

subsection.

Listing 3, presents the main procedure of the MolDyn pro-

gram written with our library and Figure 5 represents the de-

pendency between communication and computation in the pro-

gram. The program first performs the update operation and

then proceeds with the force calculation. cells (line 8) is an in-

stance of DistCell2DList and contains all the cells, distributed

across nodes. The migrateAsync() method is a variation of the

thenMigrateAsync() method that does not wait for any future

and returns a future linked to the created asynchronous task. In the

migrateAsync() method, cells applies the domove() method on

the particles, processes the intra-node particle migrations, and then

returns the future objects cellsStage2 that represent the comple-

tion of the migration process of for its respective cells, triggering

the inter-node element migration. These cellsStage2 are accessed

by two operations: the cache operation (lines 16-19) and the force

calculation (lines 24-39).

For the cache operation, the cellsStage2 are reduced to

a single future object allOfStage2 (lines 11-14), and given

to thenCacheHaloAsync() method. Thus, the cache operation

is scheduled after all the migration processes are completed.

The thenCacheHaloAsync() method returns the future objects

cachedCells that represents the completion of the cache accep-

tance for remote cells.

In the case of the force calculation, the elements of cellsStage2
(future0 on line 24 and cellsStage2.get(cellId1)
on line 29), and the elements of cachedCells
(cachedCells.get(cellId1) on line 34) are given to the

interactFuture() method defined by the programmer. The

method interactFuture(f0, f1, executor) (line 28, 33)

receives two CompletableFuture<Cell2D<Particle» f0, f1
and an executor for task execution. Here, f0 and f1 represent the

completion of particle migration of local cellular spaces or the

completion of cache acceptance of the remote cellular spaces. The

interactFuture() instantly returns a future object representing

the completion of the force calculation (interact()) for each pair

of cells.

Distributed Cell Set : A Library for Space-Dependent Communication/Computation Overlap on Many Core Cluster

1 C o l l e c t i o n < Future <Void >> a l l F u t u r e s

2 = new A r r a y L i s t < >() ;

3 E x e c u t o r S e r v i c e e x e c u t o r =

4 F o r k J o i n P o o l . commonPool () ;

5 / / m i g r a t e a sync
6 Map< I n t e g e r , Comple tab l eFu ture < Cel l2D < P a r t i c l e >>>

7 c e l l s S t a g e 2 = c e l l s . migra teAsync (

8 domove , MAX_MGN_DISTANCE , EDGE_TYPE ,

9 commType , e x e c u t o r) ;

10 / / r e d u c e c e l l s S t a g e 2 t o one
11 Comple tab l eFu ture <Void >

12 a l l O f S t a g e 2 = C o m p l e t a b l e F u t u r e . a l l O f (

13 c e l l s S t a g e 2 . v a l u e s () . t oArray (

14 new C o m p l e t a b l e F u t u r e [c e l l s S t a g e 2 . s i z e ()])) ;

15 / / c a ch e a sync
16 Map< I n t e g e r , Comple tab l eFu ture < Cel l2D < P a r t i c l e >>>

17 c a c h e d C e l l s = c e l l s . thenCacheHaloAsync (

18 a l l O f S t a g e 2 , CUTOFF , EDGE_TYPE ,

19 commType , e x e c u t o r) ;

20 / / c r e a t e a c cumu l a t o r
21 a c c u m u l a t o r = new Cel l2DAccumulator < >(c e l l s ,

22 (p) −> new P a r t i c l e A c c u m u l a t o r (p)) ;

23 / / do f o r c e c a l c u l a t i o n
24 c e l l s S t a g e 2 . f o r E a c h ((c e l l I d 0 , f u t u r e 0) −> {

25 c e l l s . f o r E a c h N e i g h b o r s I d (c e l l I d 0 , CUTOFF ,

26 EDGE_TYPE , (c e l l I d 1) −> {

27 i f (c e l l s S t a g e 2 . c o n t a i n s K e y (c e l l I d 1)) {

28 Future <Void > f = i n t e r a c t F u t u r e (

29 f u t u r e 0 , c e l l s S t a g e 2 . g e t (c e l l I d 1) ,

30 e x e c u t o r) ;

31 a l l F u t u r e s . add (f) ;

32 } e l se {

33 Future <Void > f = i n t e r a c t F u t u r e (

34 f u t u r e 0 , c a c h e d C e l l s . g e t (c e l l I d 1) ,

35 e x e c u t o r) ;

36 a l l F u t u r e s . add (f) ;

37 }

38 }) ;

39 }) ;

40 / / s ync
41 for (f : a l l F u t u r e s) {

42 f . g e t () ;

43 }

Listing 3: Sample Application (MolDyn)

Figure 5: Dependency Representation (MolDyn)

4.2 Library Specification
In this section, we present a more formal specification of our library.

Creation: When initializing a distributed collection managing the

cellular spaces, the programmer provides the range of the target 2D

area and the numbers of splits in each dimension. The distributed

collection object is initially created on the node where the construc-

tor is called and exported to other nodes when the handle to this

distributed collection is used in a remote node as part of an APGAS

activity. The allocation of the local handle in the remote node is

made as part of the deserialization process of the asynchronous

activity. The Programmer can initially create all the cellular spaces

on the creation node and then arbitrarily distribute these spaces

over nodes using collective communication.

Migration: The migration functions receive four arguments: a

function that changes the position of elements, an upper bound to

the distance that any individual element may travel, whether the 2D

area is organized as a torus, and the communication method used for

the relocation. Currently, we have two communication implementa-

tions, either relying on MPI allToAllV collective communication or

sendRecv one-to-one communication. The thenMigrateAsync()
methods returns the list of futures that represent the completion of

the migration process for each cell, including the acceptance of ele-

ments on the remote nodes. Cells that have no inter-node element

migration will see their corresponding future already completed

when the thenMigrateAsync() method returns.

Cache Halo: The cache method receives three arguments: the

width of the halo area, whether the 2D area is organized as a torus,

and the communication method used for the relocation. The last two

parameters are identical to the migration method described above.

The thenCacheHaloAsync() method return the list of futures that

represent the completion of the cache acceptance for each cell

residing on remote nodes. When a node receives cache data for

a cell and deserializes it, the node notifies the completion of this

acceptance via the corresponding future, releasing the depending

tasks.

Accumulator for reduction operation: Our distributed collec-

tion library offers accumulators to reduce the results from mul-

tiple threads. The accumulators are used to hold intermediate

results generated by threads with respect to a particular en-

try in a collection. We provide accumulators for class Cell2D,

which is used to reduce forces in the MolDyn program. Listing 4

shows the use of the accumulator mechanism in the MolDyn
program. Cell2DAccumulator<P,A> has two type parameters: P
for the targeted elements and A for the intermediate values. The

constructor of Cell2DAccumulator receives two arguments, the

Cell2DList<P> instance containing the elements targeted by the

accumulator, and a function to create a A instances from a P instance.

Each thread obtains its dedicated accumulator instance by calling

acc.createAndGet(cell). The instance is created on demand if

the thread has not previously called this method.

5 IMPLEMENTATION
In this section, we present some implementation topics of our li-

brary.

Yoshiki Kawanishi, Patrick Finnerty, Tomio Kamada, and Chikara Ohta

1 / / Accumula to r D e f i n i t i o n
2 Cel l2DAccumulator < P a r t i c l e , P a r t i c l e A c c u m u l a t o r >

3 acc = new Patch2DAccumulator < >(c e l l L i s t ,

4 (p) −> new P a r t i c l e A c c u m u l a t o r (p)) ;

5

6 / / Accumula to r Usage
7 void i n t e r a c t (Cel l2D < P a r t i c l e > c e l l 0 ,

8 Cel l2D < P a r t i c l e > c e l l 1) {

9 acc . c rea teAndGet (c e l l 0) . f o r E a c h ((p0) −> {

10 c e l l 1 . f o r E a c h ((p1) −> {

11 i n t e r a c t (p0 , p1) ;

12 }) ;

13 }) ;

14 }

Listing 4: Accumulator for Cell2D

Multithreading: In our prototype implementation of

DistCell2DList, we mainly rely on Java’s CompletableFuture
and Executor for the multithreaded features. DistCell2DList
splits their tasks by cell and executes their tasks using the asynchro-

nous methods of CompletableFuture, specifying their executor. In

the molecular dynamics program, ForkJoinPool.commonPool()
is used as the executor. As other classes of our distributed collec-

tions also rely on the multithread features of the APGAS library,

we will check the compatibility between these implementations.

Data dependency management between cells: Cell2DList and

DistCell2DList manages their cells using a list, mapping a 2D

position to an integer index. Thus, they can find the adequate cell for

an elements within𝑂 (1) time. DistCell2DList can check the latest

assignment of cells to compute nodes using the distributed tracking

feature of our distributed collection library, including in cases where

cells are relocated between nodes. Data dependencies between cells

are determined by the distance between them. For halo caching,

each node finds out the remote cells that exist in the halo region of

local cells and sends copies of the concerned cells to the owner of

the remote cells. In the case of element migration, each node first

gathers the elements that need to transfer to remote cells and sends

them to the owner of the corresponding remote cells. To enable

fast complete confirmation of migration acceptance, our library

checks the number of compute nodes susceptible to send migration

elements to each cell. When each cell receives the expected number

of migration messages from all such nodes, it notifies the completion

of the migration acceptance to the depending tasks.

Communication with multiple nodes: As mentioned in section 4,

we currently provide two communication patterns using MPI

sendRecv and allToAllV. We used the sendRecv version in

the performance evaluation in Section 6, both for communica-

tion overlap and no overlap. In this implementation, our sys-

tem builds a binary tree with the compute nodes as leaves. Af-

ter determining the communication counterparts, each node sorts

its counterparts using the distance in the graph and performs

sendRecv operations in that order. As the communication order

might change by communication methods, the common inter-

face of the communication method offers a method that returns a

Table 1: Program parameters used for MolDyn

,

Property Value

cell size x:1.0 / y:1.0

nb particles / cell 19 to 20

cut-off distance 1.0

time per 1 cycle 0.005

CompletableFuture<ByteArrayInputStream> for each node. Us-

ing this future mechanism, our library can cope with any arbitrary

scheduling order of communication.

Notification of communication completion: In the future version

of element migration and halo caching, these methods first prepare

the list of future objects for local and cached cells, respectively.

Using the underlying communication layer, it conducts communi-

cation with multiple nodes asynchronously. Each communication

is followed by its deserialization process and the future objects will

be notified of the communication completion immediately.

Class Hierarchy: DistCell2DList is a subclass of Cell2DList
and implements interface DistCell2DCollection, which brings

various default methods, including element migration and halo

caching. This will be helpful for future extensions to various data

structures other than Cell2DList. We hope to add more data struc-

tures such as hierarchical cell data structures.

6 EVALUATION
In the following sections, we evaluate the strong scaling and weak

scaling behavior of MolDyn over 50 iterations and compare the per-

formance with and without computation/communication overlap.

We analyze the time taken for each step within an iteration. Finally,

future issues identified from the experimental results are presented.

In the non-overlap implementation, Migration and Cache Halo

are executed only in the main thread whereas in the overlap version,

these steps are performed by one thread belonging to the executor.

The interaction calculation uses futures in both implementations,

forking asynchronous tasks for each interaction pair, allowing this

computation to be performed in parallel.

The MolDyn settings used in the experiments are shown in Ta-

ble 1. By initially placing the same number of particles in each

cell, the particles are distributed evenly throughout the space. In

weak scaling, the space size is set so that the density of particles

remains constant. In MolDyn with fixed density and cut-off, the

total interaction calculation is 𝑂 (𝑛) (where 𝑛 is the number of par-

ticles) and the computational complexity for each node is 𝑂 (𝑛/𝑝)
(where 𝑝 is the number of nodes). Cell distribution is done with a

simplistic strategy consisting of separating the 2D space in as many

horizontal strips as there are nodes in the computation.

Experiments in both strong scaling and weak scaling are per-

formed on the Fugaku Supercomputer. The details of the hardware

and software environment used are summarized in Table 2. Com-

putation is performed with a maximum of 48 threads per node. The

large number of executions necessary for this study was managed

using OACIS [5].

Distributed Cell Set : A Library for Space-Dependent Communication/Computation Overlap on Many Core Cluster

Table 2: Hardware and Software environment on the Fugaku
supercomputer

Property Value

Processor FUJITSU Processor A64FX (48 cores)

Memory HBM2 32 GiB, 1024 GB/s

Java version OpenJDK 11.0.2

MPI Fujitsu MPI (based on Open MPI) Java Binding

6.1 Strong Scaling
Figure 6 compares the performance of the overlap and no-overlap

versions of MolDyn on up to 16 compute nodes for 50 iteration.

The ideal line shows the theoretical perfect scaling where the com-

putation time gets exactly 𝑛 times shorter as a result of using 𝑛

nodes compared to the reference 1 node execution. The solid lines

represent the execution times and the dotted lines represent the

efficiency compared to ideal. The execution time of overlap is up to

34.1% shorter than no overlap (8 nodes: overlap 14682 ms / no over-

lap 22271 ms). Looking at the efficiency, the version without overlap

drops to under 40% for 16 nodes executions. The version with over-

lap consistently maintains a higher efficiency, only dropping to

53.9% on 16 nodes executions.

However, this performance improvement is not due solely to

communication time concealment. Figure 7 shows the average time

required for each part of the iteration. The migration is the time

including both intra-node and inter-node migration. In overlap,

fork includes the time spent in the main thread in migrateAsync
and thenCacheHaloAsync, as well as the interaction computation

fork and the intra-node migrations. The sync before migration cor-

responds to the time taken for synchronization between nodes be-

fore performing inter-node migration. Since this part is performed

asynchronously in the overlap version, this time is hidden and the

iteration time is shortened for this version of the program as a

result.

We tried to identify what causes the synchronization time to

be longer than anticipated. We measured the number of particle

interactions at each node in an 8-node MolDyn execution. The dif-

ference between the maximum and minimum interaction numbers

was up to 53274 for the maximum interaction number of 2480188.

This means that the particles are evenly distributed between nodes

and that particle unbalance is not the cause of this issue.

We are unsure as to what causes the hosts to reach the syn-

chronization point in slightly shifted timing, delaying the whole

program. We suspect external factors such as garbage collection,

but further investigation is needed.

6.2 Weak Scaling
The Table 3 shows the execution time of 50 MolDyn iterations

for both the overlap and no-overlap versions in weak scaling. The

percentages in the table represent the efficiency of the 8 node exe-

cution compared to the 2 node execution. In the case of no overlap,

only 64.1% of the performance is preserved even though the com-

putation amount of each node does not change significantly. On

the other hand, using the overlapping version, 80.6% of the 2-node

Figure 6: Performance scaling with 320,000 particles 50 cycle
with and without overlap

Figure 7: Each step execution time with 320,000 particles 1
cycle with and without overlap

Table 3: Execution time of MolDyn 50 cycle : particles and
parallelism scaling

nb of nodes 2 8

particles 80000 320000

no overlap 14285 ms 22271 ms (64.1%)

overlap 11836 ms 14682 ms (80.6%)

performance is kept. The overlapping version scales better than the

no overlap version.

6.3 Future Issues
We witnessed cases where cache halos and interaction calculations

were not overlapped depending for some nodes. We are investigat-

ing the possibility that worker threads are occupied by computa-

tion, causing communication to be delayed until the computation

is completed. Some applications may require some sort of priority

mechanism to favor some operations over others.

When running the MolDyn program using yet larger number of

particles, we experienced unexplained crashes. We suspect issues

Yoshiki Kawanishi, Patrick Finnerty, Tomio Kamada, and Chikara Ohta

in the buffer allocations for the MPI communications. This issue is

currently under investigation.

7 RELATEDWORK
The communication and computation scheduling has generally

been implemented by HPC programmers explicitly managing inter-

process communication and thread parallelism. On the other hand,

some libraries were developed to implicitly manage communication

and computation schedules. Our library fits in the latter category

and aims at easing the programming cost of explicit management of

the cell-based computation decomposition and the space-dependent

communication/computation overlap.

Charm++ [1] proposes a unified programming model for paral-

lel and distributed computation. Charm++ features its dynamic

load-balancing, using chare as the relocatable computing unit.

The system profiles the communication graph between chares

and automatically finds out the adequate assignment of chares

to processing units. Programmers are encouraged to conduct over-

decomposition of problems and rely on the dynamic load-balancing

feature. NAMD [7] is a molecular dynamics program designed for

HPC environments and a very successful application sample for

Charm++. The simulation space is divided into small boxes called

patches and the computation is represented as a set of computes
objects. The data are delivered by message passing between these

objects. To enable its sophisticated data flow in NAMD, the pro-

gram explicitly describes the particle management using patches

and defines the data flow between patches and compute objects in

an event-driven manner.

In XscalableMP (XMP) [6], compiler directives for C and Fortran

allows programs to be distributed and parallelized automatically.

XMP support distributed arrays and the notion of “shadowing.”

Given a distributed array assigned to nodes with a block-cyclic

distribution, this mechanism allows parts of the arrays located at

the edge of a node to be “reflected” on the compute nodes that own

the neighboring indices. Given a nested for loop, if the computation

needs to access data hosted by a different process, the compiler

directives of XMP are capable of generating the code to access data

points which may be located on remote hosts automatically. In our

library, the caching system allows programmers to obtain similar

effects. The main difference with XMP lies in the fact that the data

dependencies are expressed through futures rather than compiler

directives.

Our library splits the space into cells and allows programmers to

write dependencies between their communication and computation

tasks. The task splitting itself is widely used for load-balancing, espe-

cially on shared-memory parallel computers. For instance, the Java

Stream API supports parallel streams through which programmers

can easily split a stream and leave each computation to respective

threads. Cilk [2] is a successful programming language designed for

shared-memory computers. The tasks themselves do not have any

explicitly defined data structures, and programmers can spawn child

tasks like function calls. Charm++, X10 GLB [9, 17], RDMA-based

continuation stealing [10] are designed for distributed systems.

RDMA-based continuation stealing adopts Cilk-style programming

based on the uni-address scheme, but it does not support distributed

data structures yet. In the original GLB, programmers define bags

of self-contained tasks and thus do not support computation made

on persistent data structures such as distributed collections. We

have worked on integrating our distributed collection library with

the GLB scheme [3] and hope this distributed cell set library can

be combined with these load balancing features using cells as units

of computation in the future.

For large-scale data analysis, theMapReduce programming model

is often used, which is designed for large datasets distributed over

a number of nodes. Hadoop [14] or Spark [16] adopt this model. It

consists of map operations, which are executed under the owner-

compute rule, and reduce operations, which involve the shuffling

of computed results of map operations. The data distribution and

communication are generally managed by the system automati-

cally, and programmers only write the data dependencies and the

computation to perform using the programming model.

Our library used CompletableFutures to describe dependencies

between communication and computations tasks. It is often used

to implement the observer pattern, in which the subject maintain

its observers and notify their state changes to the observers. This

pattern resembles to the publish-subscribe message pattern. The

observer pattern is often used to implement asynchronous stream

processing. ReactiveX [8] is an API for asynchronous stream pro-

cessing using Observer pattern and is widely used for GUI event

handling or asynchronous server-client cooperation.

8 CONCLUSION AND FUTUREWORK
In this article we presented the distributed cell set library inte-

grated into our distributed collection library. This library makes is

easier for programmers to explicitly manage cell-based computa-

tion decomposition and the space-dependent communication and

computation overlap. We re-implemented MolDyn from the Java

Grande benchmark suite and evaluated it on a many-core cluster.

We showed a maximum performance improvement of 34.1% by over-

lapping communication and computation compared to the version

of our program which does not rely on communication/compu-

tation overlap. This is thanks to the circumvention of a globally

synchronizing operation which causes performance issues.

In future work, we are planning to evaluate MolDyn with flexible

distributions and extend it to 3D by developing 3D cells. Moreover,

we would like to develop and evaluate other applications. We would

also like to combine this approach with dynamic load balancing.

ACKNOWLEDGMENTS
This work was supported by JSPS KAKENHI Grant Numbers

JP20K11841 and JP22H03585. This work used computational re-

sources of supercomputer Fugaku provided by the RIKEN Center

for Computational Science through the HPCI System Research

Project (Project ID: hp220190 and hp220334).

REFERENCES
[1] Bilge Acun et al. 2014. Parallel programming with migratable objects: charm++

in practice. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’14). IEEE Press, New Orleans,

Louisana, 647–658. isbn: 9781479955008. doi: 10.1109/SC.2014.58.

[2] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.

Leiserson, Keith H. Randall, and Yuli Zhou. 1995. Cilk: an efficient multithreaded

runtime system. SIGPLAN Not., 30, 8, (Aug. 1995), 207–216. doi: 10.1145/20993

7.209958.

https://doi.org/10.1109/SC.2014.58
https://doi.org/10.1145/209937.209958
https://doi.org/10.1145/209937.209958

Distributed Cell Set : A Library for Space-Dependent Communication/Computation Overlap on Many Core Cluster

[3] Patrick Finnerty, Tomio Kamada, and Chikara Ohta. 2022. Integrating a global

load balancer to an apgas distributed collections library. In Proceedings of the
Thirteenth International Workshop on Programming Models and Applications for
Multicores and Manycores (PMAM ’22). Association for Computing Machinery,

Seoul, Republic of Korea, 55–64. isbn: 9781450393393. doi: 10.1145/3528425.35

29102.

[4] Patrick Finnerty, Yoshiki Kawanishi, Tomio Kamada, and Chikara Ohta. 2022.

Supercharging the apgas programming model with relocatable distributed

collections. Scientific Programming, 2022, 1058-9244. doi: 10.1155/2022/509242

2.

[5] Y. Murase, T. Uchitane, and N. Ito. 2017. An open-source job management frame-

work for parameter-space exploration: OACIS. Journal of Physics: Conference
Series, 921, (Nov. 2017), 012001. doi: 10.1088/1742-6596/921/1/012001.

[6] Masahiro Nakao, Jinpil Lee, Taisuke Boku, and Mitsuhisa Sato. 2010. Xcal-

ablemp implementation and performance of nas parallel benchmarks. In Pro-
ceedings of the Fourth Conference on Partitioned Global Address Space Program-
ming Model (PGAS ’10) Article 11. Association for Computing Machinery, New

York, New York, USA, 10 pages. isbn: 9781450304610. doi: 10.1145/2020373.202

0384.

[7] James C. Phillips, Gengbin Zheng, Sameer Kumar, and Laxmikant V. Kalé. 2002.

Namd: biomolecular simulation on thousands of processors. In Proceedings of
the 2002 ACM/IEEE Conference on Supercomputing (SC ’02). IEEE Computer

Society Press, Baltimore, Maryland, 1–18. isbn: 076951524X.

[8] 2022. Reactivex, an api for asynchronous programming with observable streams.

Retrieved Dec. 14, 2022 from https://reactivex.io/.

[9] Vijay A. Saraswat, Prabhanjan Kambadur, Sreedhar Kodali, David Grove, and

Sriram Krishnamoorthy. 2011. Lifeline-based global load balancing. In Pro-
ceedings of the 16th ACM Symposium on Principles and Practice of Parallel
Programming (PPoPP ’11). Association for Computing Machinery, San Antonio,

TX, USA, 201–212. isbn: 9781450301190. doi: 10.1145/1941553.1941582.

[10] Shumpei Shiina and Kenjiro Taura. 2022. Distributed continuation stealing is

more scalable than you might think. In 2022 IEEE International Conference on

Cluster Computing (CLUSTER), 129–141. doi: 10.1109/CLUSTER51413.2022.000

27.

[11] L. A. Smith, J. M. Bull, and J. Obdrzálek. 2001. A parallel java grande bench-

mark suite. In Proceedings of the 2001 ACM/IEEE Conference on Supercomputing
(SC ’01). Association for Computing Machinery, Denver, Colorado, 8. isbn:

158113293X. doi: 10.1145/582034.582042.

[12] Olivier Tardieu. 2015. The apgas library: resilient parallel and distributed pro-

gramming in java 8. In Proceedings of the ACM SIGPLAN Workshop on X10
(X10 2015). ACM, Portland, OR, USA, 25–26. isbn: 978-1-4503-3586-7. doi:

10.1145/2771774.2771780.

[13] Olivier Tardieu, Benjamin Herta, David Cunningham, David Grove, Prabhanjan

Kambadur, Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, and Mandana

Vaziri. 2014. X10 and apgas at petascale. In Proceedings of the 19th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP ’14). ACM,

Orlando, Florida, USA, 53–66. isbn: 978-1-4503-2656-8. doi: 10.1145/2555243.2

555245.

[14] Vinod Kumar Vavilapalli et al. 2013. Apache hadoop yarn: yet another resource

negotiator. In Proceedings of the 4th Annual Symposium on Cloud Computing
(SOCC ’13) Article 5. Association for Computing Machinery, Santa Clara,

California, 16 pages. isbn: 9781450324281. doi: 10.1145/2523616.2523633.

[15] Oscar Vega-Gisbert, Jose E. Roman, and Jeffrey M. Squyres. 2016. Design and

implementation of java bindings in open mpi. Parallel Computing, 59, 1–20.

Theory and Practice of Irregular Applications. doi: 10.1016/j.parco.2016.08.004.

[16] Matei Zaharia et al. 2016. Apache spark: a unified engine for big data processing.

Commun. ACM, 59, 11, (Oct. 2016), 56–65. doi: 10.1145/2934664.

[17] Wei Zhang, Olivier Tardieu, David Grove, Benjamin Herta, Tomio Kamada,

Vijay Saraswat, and Mikio Takeuchi. 2014. Glb: lifeline-based global load balanc-

ing library in x10. In Proceedings of the First Workshop on Parallel Programming
for Analytics Applications (PPAA ’14). Association for Computing Machinery,

Orlando, Florida, USA, 31–40. isbn: 9781450326544. doi: 10.1145/2567634.2567

639.

https://doi.org/10.1145/3528425.3529102
https://doi.org/10.1145/3528425.3529102
https://doi.org/10.1155/2022/5092422
https://doi.org/10.1155/2022/5092422
https://doi.org/10.1088/1742-6596/921/1/012001
https://doi.org/10.1145/2020373.2020384
https://doi.org/10.1145/2020373.2020384
https://reactivex.io/
https://doi.org/10.1145/1941553.1941582
https://doi.org/10.1109/CLUSTER51413.2022.00027
https://doi.org/10.1109/CLUSTER51413.2022.00027
https://doi.org/10.1145/582034.582042
https://doi.org/10.1145/2771774.2771780
https://doi.org/10.1145/2555243.2555245
https://doi.org/10.1145/2555243.2555245
https://doi.org/10.1145/2523616.2523633
https://doi.org/10.1016/j.parco.2016.08.004
https://doi.org/10.1145/2934664
https://doi.org/10.1145/2567634.2567639
https://doi.org/10.1145/2567634.2567639

	Abstract
	1 Introduction
	2 Motivation Case: MolDyn
	3 Background
	3.1 Distributed Collections Library
	3.2 Completable Future

	4 Design
	4.1 General implementation in MolDyn
	4.2 Library Specification

	5 Implementation
	6 Evaluation
	6.1 Strong Scaling
	6.2 Weak Scaling
	6.3 Future Issues

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments

