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Abstract

In this paper, we introduce the global load balancer integrated
into our distributed collections library for APGAS for Java model.
Inspired by the lifeline Global Load Balancer scheme, our load bal-
ancer makes it possible for programmers to perform actions on the
objects recorded into a distributed collection while allowing the
library to relocate some entries between hosts if load imbalances
occur. The programming model we adopt introduces minimal im-
pact on the legibility of programs, with the regions of the program
where entries of a distributed collection may be relocated at the
library’s initiative are clearly identified. Internally, our integrated
global load balancer implements an hybrid scheme which balancer
the load both between the threads on a host and between the hosts
participating in the computation. It allows for multiple concurrent
computations on multiple collections with individual termination
detection. We evaluate the performance of our integrated Global
Load Balancer and its ability to handle various situations on a
many-core supercomputer.

CCS Concepts: « Computing methodologies — Shared mem-
ory algorithms; Concurrent algorithms; Distributed algorithms.

Keywords: distributed collection, load balancing, distributed com-
putation
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1 Introduction

Creating parallel and distributed programs is difficult, with much
research on programming models and libraries to ease the burden
of programmers.

In previous work, we created a distributed collections library to
supplement the APGAS for Java [12] library. This made it possible
to write complex distributed and parallel programs and to leverage
the parallelism available on recent many-core processors with new
and dynamic schedules.

However, this poses a challenge for programmers as the perfor-
mance and computing resources available on each host will vary
over the course of an execution. Although manually monitoring
the (distributed) situation over the course of an execution can allow
programmers to take measures themselves to redistributed the load
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between processes, this comes as a significant burden and can sig-
nificantly obfuscate the program. Instead, we believe such analysis
and load-balancing measures should be taken by the library itself.

What we would like to achieve is to detect such cases where load
imbalance appears during the distributed computation and take
measures so that entries are dynamically relocated from overloaded
processes to under-loaded ones.

In this article, we claim the implementation of an Global Load Bal-
ancer integrated into our distributed collection library. Inspired by
the lifeline-based Global Load Balancer scheme first implemented
in X10 [11], our integrated load-balancer is capable of automatically
relocating work along with the entries of distributed collection to
maintain performance in an environment where the performance
of hosts evolves over time. The programming model we propose
makes it easy for users to recognize which parts of the distributed
program are conducted under this load balancer

The remainder of this article is organized in the following sec-
tions. We start by recalling some useful background in Section 2. In
Section 3, we present the main contribution of this article, detailing
the abstractions provided to the programmer and how load bal-
anced parts integrate in a distributed program written with the help
of our library. In Section 4, we discuss the internal implementation,
the termination detection scheme, as well as the progress tracking
system we developed. We present the results of our evaluation in
Section 5 and open a broader discussion in Section 6. We discuss
related work in Section 7 before concluding in Section 8.

2 Background

In this section, we recall some work useful for the good compre-
hension of our contribution.

2.1 Distributed Collection Library for APGAS

We focus on the Asynchronous Partitioned Global Address Space
(APGAS) model introduced in X10 [13]. In this model, a process
running on a host is called a Place. We use both “process” and
“place” interchangeably in this article. Asynchronous activities
can be launched on a remote host with the dedicated keywords
async and at. Termination detection is implemented through an
elegant construct called finish which waits until all transitively
spawned asynchronous activities have completed. This model was
later ported to Java [12], with the X10 keywords being converted
to static methods taking lambda-expressions as parameter.

To further ease the burden of programmers, we created a Java
distributed collection library for APGAS. While the details of this
library and the features is supports fall outside the scope of this
paper, we recall here its main characteristics with the help of a
short example.
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TeamedPlaceGroup world = TeamedPlaceGroup.getWorld () ;
DistMap <String , String> dMap = new DistMap <>(world);
dMap. put("main", "running");
world. broadcastFlat (() ->{

dMap. put(here (), "says hello");

CollectiveMoveManager mm = new CollectiveMoveManager (

world) ;
if (here() == place(0)) {
dMap . moveAtSync ("main", place (1), mm);

}

mm. sync () ;

P

Listing 1. Distributed map creation and record insertion

In this library, we provide a number of distributed collections
(distributed map DistMap, distributed array DistChunkedList) for
the APGAS programming model. Each distributed collection is
implemented as a group of local handles located on each process
and linked together by a globally unique id. Programmers can record
and read entries into the local handle of a distributed collection by
using the usual AGPAS asynchronous activities. As per the usual
APGAS semantics, asynchronous activities interact only with the
contents of the collection held by the handle they are operating on.

The most significant innovation of our distributed collections
library is that it allows programmers to relocate entries of a collec-
tion between its local handles. This is done at the user’s initiative,
with entries to relocate being described by their keys in the case
of a distributed map, or by ranges in the case of our distributed
array DistChunkedList and its derivatives.

The program presented in Listing 1 and Figure 1 illustrate these
characteristics. The TeamedPlaceGroup object obtained on the first
line of Listing 1 represents the group of all APGAS places. It is used
on the second line to create the distributed map dMap, specifying
that this distributed collection will have a handle on every process
participating in the execution. One line 3, a first entry is recorded
into the map by the main thread, resulting in the main:running
mapping to be recorded on the first process.

From lines 4 to 11, the short-hand broadcastFlat(Runnable)
is used to spawn the same asynchronous activity on all hosts partici-
pating in the computation. The broadcastFlat method will return
when the asynchronous activity running on each host has com-
pleted. This short-hand replaces the otherwise explicit finish and
for loop needed to spawn the same activity on all places, enhancing
the clarity of the program.

The asynchronous activity given as parameter to broadcastFlat
makes every place add a new entry into their local handle of the
distributed map dMap on line 5. Then, a collective relocator is cre-
ated on line 6. This object is used to register various elements of
distributed collections to be transferred from a handle to another. In
this case, only the first place decides to relocate its main: running
entry to place 1. The transfer is actually performed on line 10 when
the mm. sync method is called by all the places participating in the
computation.

The final state of the distributed map dmap is shown on Figure 1.
Notice in particular the main: running entry has been deleted from
the handle on Place 0 and inserted into the handle of Place 1.

Programmers can also invoke methods on every element recorded
in the collection, irrespective of the process on which they are lo-
cated through a specific member, i.e.

myDistCol.GLOBAL.forEach(e->{/*action on ex/});
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dMap.moveAtSync(“main”, place(1), mm);

“place(1)” : “says hello”
“main” : “running”

Place 1

‘ u::‘s‘:u,u: ::‘.:‘3” _T

“place(0)” : “says hello”

Place 0

[ “place(2)” : “says hello” ] [ “place(3)” : “says hello” ]

Place 2 Place 3

Figure 1. State of the distributed map dMap after the Listing 1
program has run with 4 processes

with the action to perform on each element of the collection speci-
fied as a lambda expression (e->{/*action on ex/}). Our library
applies this lambda expression on each element “e” contained in
the distributed collection. The method forEach returns when the
provided lambda expression has been applied on every element
located of every Place on which the collection is defined. Parallel
variants of such GLOBAL methods are also provided by our library,
i.e. parallelForEach, in which case the provided lambda expres-
sion is applied by multiple threads on each process participating in
the computation.

In addition to GLOBAL methods, some computation patterns re-
quire some communication between hosts. We call such methods
“teamed”. This is the case for instance of reduction computation.
Our library provides the facilities for programmers to implement
user-defined reductions on objects contained by our distributed
collections. In the case of a “teamed” reduction, the computation
will take place in two phases: (1) the “local” reduction is computed
on each handle, and (2) the general result of the reduction computed
by merging the local results of each handle. One such example is
later detailed in Section 3.2. Internally, specific communication pat-
terns involving multiple processes are supported by MPI through
the MPJ-Express library [2] while matters related to termination
detection are handled by the APGAS async/finish constructs.

2.2 Lifeline-based Global Load Balancer

The lifeline-based Global Load Balancer is a work-stealing scheme
first implemented in X10 [11, 16]. The key innovation of this scheme
is that it introduced preferential channels for work-stealing, the
so-called lifelines.

The computation to perform is contained into user-implemented
tasks queues. The main worker process consists in processing a
certain number of these tasks and then answering received steal
requests by giving away some (generally half) of its tasks to the
thief.

When a node runs out of work and fails to steal some from a
randomly selected host, it signals itself as “dormant” to its lifeline
neighbors and remains idle until one of its lifeline neighbors sends
him some work using an asynchronous activity.

This scheme elegantly resolves the problem of termination detec-
tion as all asynchronous activities that carry work are transitively
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spawned from the same finish. When all the activities on all the
hosts terminate, the enclosing finish returns, guaranteeing that
global termination was achieved.

In a later extension, this scheme was modified to support multiple
workers per process [7, 15]. In this variant, each process maintains
two work queues on each host to implement work-sharing between
the workers with one queue, and work-stealing between the host
other hosts. The workers collectively attempt to keep some work
available for stealing in both of the queues so long as their local
task queues allows them to give some away.

3 Programming Model

The main contribution of this article consists in the introduction of
anew scheme which operates on all the elements of the distributed
collection. These functionalities are accessible to programmers
through a specific GLB member of the distributed collection. Con-
trary to previously introduced GLBOAL methods, this allows the
library to relocate entries of the underlying distributed collection
from a handle to another as it detects load imbalances.

In this section, we introduce main contribution of this article in
Section 3.1. We then detail how these new features are used in our
applications in Sections 3.2 and 3.3. Implementation-related topics
are discussed in Section 4.

All the source code of our distributed collections library! and
our applications are publicly available?.

3.1 GLB semantics

Load-balanced computations on our distributed collections are ac-
cessible through a special GLB handle. Analogous to the GLOBAL
member which provides control over the entirety of a distributed
collection from a single place, the methods proposed through this
special handle act on the entire distributed collection. It also allows
the library to relocate entries between handles if it notices some
load imbalance during the computation.

Currently, only our distributed array collection DistChunkedList
and its derivatives are fitted with this feature. A summary of the
computations supported is shown in Table 1.

Inside an APGAS program written with our library, GLB-type
methods can only be called inside a specifically designed underGLB
method which takes a closure as parameter as shown in Figure 2.
This choice of a static method taking a closure as parameter was
made to minimize the impact on program legibility while allowing
for some necessary internal preparations. This block has the added
benefit of defining a clear boundary for the programmer within
which entries of the distributed collections manipulated inside this
block may be relocated freely by the library.

Inside the underGLB block, the computation does not start im-
mediately but is internally staged, with an instance of DistFuture
returned to the user. This allows for multiple computations to be
“staged” before they start together. Our mechanism supports mul-
tiple computations on a single collection, and multiple collection
being computed at the same time. The load-balanced computation
will start when one of three following cases is encountered:

1. the result of a GLB computation is called through method
DistFuture.result()
2. the static method GloballLoadBalancer.start() is called

!https://github.com/handist/collections
Zhttps://github.com/plham/plham]
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Table 1. GLB operations currently implemented for class
DistChunkedList<T>

Op
forEach

Parameter
Consumer<T>

Description

Applies the provided con-
sumer on each T element in
the collection

Creates a new DistCol
which contains the result
of the function given as
parameter applied on this
collection at the matching
index

Makes a global reduction,
applying the reduction on
each element and merg-
ing the various reducer in-
stances created in the pro-
cess back into a single in-

map | Function<T,U>

reduce | Reducer<T>

stance

Produces in parallel U in-
stances from every T in-
stance in the collection and
collects them into a parallel
receiver given as parameter

toBag | Function<T,U>

import static handist.collections.glb.GlobalLoadBalancer

public static void main(String[] args) {
DistCol<Ele> eleCol = new DistCol <>();
// Population and distribution omitted
underGLB (() ->{
DistFuture <DistCol <Integer >> futl =
e->{return e.makelnt()});
DistCol <Integer > intCol = futl.result();

eleCol.GLB.map (
// Case 1
eleCol .GLB. forEach (e->e.update());

intCol .GLB.reduce (new Average());
static import, Case 2

DistFuture fut2 =
DistFuture fut3 =
start (); // available through

DistFuture <DistCol <Integer >> fut4 =
e->{return e.makelnt()});
// End of block, Case 3

P

eleCol .GLB. toBag (

}

Listing 2. Program with a part operating under dynamic load
balance

3. the end of the underGLB block is reached

In all cases, every GLB computation “staged” up until that point is
started. A short example illustrating each of these cases is presented
in Listing 2.

The first case presents itself on line 9. Up until that point, only the
map operation on collection eleCol was staged inside the GLB block.
This single GLB computation is started. The call to fut1.result()
of line 9 blocks until this computation completes and a newly
created DistCol<Integer> collection resulting of the computation
is returned.

On line 13, we encounter the second case. Here, both the forEach
and the reduce operations staged on lines 12 and 13 are started.
Method start is non-blocking and progress inside the GLB block
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init omitted
// chosen at random

DistChunkedList <Point> points;
double [][] initialClusterCenter;

world. broadcastFlat (() -> {
double [][] clusterCentroids = initialClusterCenter;
for (int iter = 0; iter < repetitions; iter++) {
final double[][] centroids = clusterCentroids;
// Assign each point to a cluster
points. parallelForEach(p -> p.assignCluster (centroids

))s

// Calculate the average position of each cluster
final AveragePosition avgClusterPosition = points.
team () . parallelReduce (new AveragePosition (K,
DIMENSION) ) ;

// Calculate the new centroid of each cluster
final ClosestPoint closestPoint = points.team().
parallelReduce (new ClosestPoint (K, DIMENSION,
avgClusterPosition. clusterCenters));

clusterCentroids = closestPoint.
closestPointCoordinates ;

Listing 3. K-Means non-GLB implementation

continues. This allows programmers to perform some other com-
putation while the GLB operations are ongoing. If it is later needed
to wait on the completion of a launched GLB computation, this can
be done by calling fut2.result() or fut3.result().

Finally, in the third and last case consisting of reaching the end
of the GLB block, the toBag operation staged at line 15 is launched.
In this case, the start of this last operation will be triggered on the
library side. The underGLB method will return when all ongoing
operations have completed. In the example shown in Listing 2,
the potentially ongoing GLB computations are the forEach, the
reduce, and the toBag computations of lines 11, 12, and 15. The map
operation of line 7 has already completed due to the fut1.result()
call on line 9.

3.2 K-Means

In this section we detail an actual program written with the GLB
features of our distributed collections library in the form of the
K-Means program.

K-Means is an iterative clustering algorithm which separates
points into a pre-defined “k” number of clusters. An iteration of
K-Means consists in three steps. Starting from randomly selected
cluster centroids, each point considered is assigned to a cluster
based on which is closest to him. Secondly, with the points each as-
signed to a cluster, the average position of each cluster is computed.
Lastly, the point closest to the average position of each cluster is
chosen as the new centroid for the next iteration. The algorithm can
either be run for a set number of iterations or until the centroids
stop moving.

With our implementation of the K-Means algorithm, each point
is recorded into an instance of a Point class. The cluster assignment
step is implemented using a parallel “for each” method while the
average cluster location and the new centroid location are imple-
mented using a user-defined reduction.

The main program loop for both variants of the program are
shown in Listings 3 and 4.

N U W =
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init omitted
chosen at random

DistChunkedList <Point> points; /1!
double [][] initialClusterCenter; /

GlobalLoadBalancer .underGLB (()
double [][] clusterCentroids = initialClusterCenter;
for (int iter = 0; iter < repetitions; iter++) {

final double[][] centroids = clusterCentroids;

/ Assign each point to a cluster
points .GLB. forEach(p -> p.assignCluster (centroids)).
result () ;

- {

Calculate the average
final AveragePosition avgClusterPosition =
.reduce (new AveragePosition(k, dimension))
.result();

position of each cluster
points .GLB

Calculate the new centroid of each cluster
final ClosestPoint closestPoint = points.GLB.reduce (
new ClosestPoint(k, dimension, avgClusterPosition.
clusterCenters)).result();
clusterCentroids = closestPoint.
closestPointCoordinates ;

Listing 4. K-Means GLB implementation

You can notice that the program is sensibly the same for both
implementations. The only technicality lies in the non-GLB pro-
gram where the reduction methods are called through the team()
handle of the points distributed collection. This handle of the
DistChunkedList class is used to distinguish between reductions
that are computed using only the entries of the local handle (i.e.
points.reduce(...), not used here) and reductions taking place
between all places in the cluster (i.e. points. team() .reduce(...))
as is used in lines 11 and 15 of Listing 4. The instances of classes
AveragePosition and ClosestPoint given as parameter to the
reduce methods are user-defined classes which extend a reduction
abstraction provided by our library.

In this application, we need to make sure that the previous step in
the iteration has completed before starting the next step. Therefore,
we use the blocking result() method immediately after staging
the computation with methods points.GLB. forEach on line 8 and
points.GLB.reduce on lines 11 and 15.

3.3 Plham]

Plham7 is the Java version of the Plham financial market simulator
first written in X10 [14]. Simulations are given to the simulator in
the form of a JSON configuration file which lists the markets, agents,
and events that will occur over the course of the simulation. The
length of the simulation is determined by the number of iterations
specified in the configuration. The library then runs the simulation
and provides deterministic results following a given seed.

Internally, there are multiple “runners” that can run the simula-
tion. In this study, we focus on two distributed runner implemen-
tations: a manually load-balanced version, referred to as “manual”
thereinafter, and the GLB version. We first quickly describe how
simulations are run in general before outlining the differences be-
tween these two runner implementations.

A Plham simulation iteration consists of the following basic
steps:

1. market update: the latest state of the markets is broadcast to

the agents in the simulation
2. order submission: the agent place their orders on the markets
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DistCol <Agent> agents; init omitted
world. broadcastFalt (() ->{
/ [...] details of previous steps omitted
agents.parallelToBag (( Agent agent,
Consumer<List <Order>> orderCollector) -> {
List <Order> orders = agent.submitOrders(markets);
// -- some output-related part omitted --
if (orders != null & !orders.isEmpty()) {

orderCollector.accept(orders);
}

}, orderBag);

/ [...] details of following steps omitted
P
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DistCol <Agent> agents; // init omitted
GlobalLoadBalancer.underGLB (() ->{
// [...] details of previous steps omitted
agents .GLB.toBag (( Agent agent,
Consumer<List <Order>> orderCollector) -> {
List <Order> orders = agent.submitOrders(markets);
// -- some output-related part omitted --
if (orders != null &% !orders.isEmpty()) {
orderCollector.accept(orders);
}
}, orderBag);
// [...] details omitted

of following steps

Listing 5. Order submission of non-GLB program

3. order handling: the buy and sell orders of agents are matched,
resulting in trades being contracted

4. agent update: the agents that made trades during the order-
handling step are informed

In both the “manual” and “glb” distributed runners, one process
(called the master) is dedicated to order-handling while the other
processes are dedicated to computing the agents’ orders during the
order submission step. Our distributed collection library allows for
the transfer (relocation) of updated Market information, Orders,
and the Trades contracted information, the details of which fall
outside the scope of this article.

The difference between the “manual” and the “glb” runner lies in
the order submission step shown in Listings 5 and 6. This step is an
example of a “parallel producer/receiver” pattern where each Agent
returns the orders it wants to submit in a List containing from 0 to
several orders. If orders are returned by the Agent’s submitOrders
method, they are recorded in the orderBag distributed collection.
This is an instance of class DistBag<T> which is specifically de-
signed to accept many “T” objects coming from multiple threads
concurrently. It does so by supplying a dedicated Consumer<T> han-
dle to each thread. In this present case, the generic type T resolves
to a List<Order>, hence the rather lengthy type of parameter
orderCollector which appears on line 5 in both Listing 5 and 6.

The “manual” runner uses a parallel construct shown in Listing 5.
Internally, this allocates an even number of Agents to each thread
available on the host. This version measures the computation time
needed to perform this step on each process. If disparities appear,
agents are relocated between processes. We call this version because
this form of load-balancing requires “manual” intervention in the
program.

By opposition, the “glb” version relies on the integrated GLB
toBag operation, as shown in Listing6. This allows agents to be
relocated while the agent order submission takes place. No explicit
load-balancing measures are taken from within the Plham] GLB
runner, it is entirely left to the library.

4 Implementation

The load-balancing scheme we have currently implemented is in-
spired by the lifeline-based global load balancer of X10 whose key
principled we recalled in Section 2.2. While some key concepts are
re-used as is, there are a number of key differences between the
original implementation and what we use for our specific context.

We rely on the same general global termination detection mech-
anism in our integrated global load balancer, with one enclosing
finish per operation submitted. However this brings about some

Listing 6. Order-submission of GLB program

modification of the original scheme and some extensions of the
APGAS for Java library.

In this section, we discuss into further details select implemen-
tation topics.

4.1 Progress tracking with Assignment

As laid out in Section 1, we need to accurately track the progress
of each operation so that when relocating work is necessary, in-
stances with some computation left in them are transferred from
busy nodes to idle nodes. This is done through what we call an
“Assignment”. An assignment represents a part of the underlying
distributed collection and the progress of the various operation
being performed on that subset of the collection.

Currently, we have only implemented the Assignment class for
the distributed array collection. In this case, the part of the collec-
tion are designated using a pair of long integers that designate a
range [a, b) of indices in the array. The progress of each operation
is tracked using a long integer whose value evolves from a to b
as the operation progresses through the range designated by the
assignment.

Without an assignment, a worker is not allowed to access any
distributed collection. Only with an assignment is a worker autho-
rized to access the underlying collection, and even then, restricted
to only the entries targeted by the assignment it holds. This guar-
antees that no concurrent accesses are made to individual objects
in the collection.

The number of assignments dedicated to a collection located
on each process is tracked throughout the computation using an
atomic counter. The number of assignments left to complete for
each operation is also tracked using an atomic counter. When a
worker completes an operation for an assignment, it decrements
the corresponding operation counter. When the counter reaches 0
(meaning the worker completed the last remaining assignment for
this computation), it unblocks the witness activity which marking
the presence of work for, allowing it to terminate. The nature of
this “witness thread” and its purpose are discussed in Section 4.3.

4.2 Intra-host load-balancing

As part of the initialization process of the integrated load balancer,
an initial assignment is prepared for each range of the distributed
array held by the local handle. These assignments are kept in a
single reserve of assignments on each host (as opposed to 2 in the
multithreaded GLB [15]), and sorted into three queues depending
on their status:
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e available, i.e. containing work and available for a worker to
take it

e in computation, i.e. containing work and currently given to
a worker

e completed

In the original GLB scheme, completed tasks can generally be
discarded. In our integrated load balancer this is not the case as
assignments are re-used when successive computations are staged
and launched on the same underlying distributed collection. We
therefore need to keep an exact record of every assignment in the
system.

As part of their main routine, worker threads start by obtain-
ing an assignment from the “available” queue. They progress the
computation contained within this assignment by a fixed number
of objects, the so-called “grain”. When a worker completes the
assignment it received, it is placed back into the “completed” queue.

When the “available” queue gets depleted (either by a worker or
through a lifeline steal), all the workers are asked to place some
work back into it. In this case, workers that have enough compu-
tation left (determined by a minimum assignment size) will split
the assignment they hold into 2 instances targeting contiguous
ranges. In the process, they update the number of assignments for
the underlying collection and the number of assignments left to
complete for each operation tracked by the assignment.

4.3 De-coupling of worker threads and computation

In the original lifeline-based scheme, all the workers are asynchro-
nous activities managed by the same enclosed finish. In our case,
since we may have multiple operations on possibly multiple col-
lections ongoing at the same time, we decided to de-couple the
worker threads from the termination detection. This allows us to
spawn independent workers that can process any and all available
assignments on the host regardless of the computation undertaken.

Termination detection of each ongoing computation is still achieved
using the original scheme by using what we call a witness activity.
In our load-balancing scheme, there is one such “witness” activity
on each process for each ongoing computation on the host. This ac-
tivity does not perform any computation and remains blocked on a
semaphore throughout. When the last assignment of its correspond-
ing computation has been completed by a worker, it gets unblocked
and initiate the inter-host work stealing before returning.

When work is received from a remote host, a new witness activ-
ity will be created and remain present until all the newly received
assignments complete. When all witness activities of a given compu-
tation have terminated, the finish under which they were spawned
returns, marking the completion of the corresponding computation.

4.4 Inter-host load balancing and termination detection

In the original lifeline-based global load balancer scheme, the com-
putation at hand is self-contained into asynchronous activities. In
the context of our distributed collections library, the assignments
contain the information about the computation to perform, but they
are not self-contained anymore. When inter-host load-balancing
is performed, the entries of the distributed collection targeted by
the assignments also need to be relocated. This is done using the
relocation features of our distributed collection library.

One difference between our scheme and the original lifeline-
based load balancer is that we chose not to implement the random
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victim selection. This was initially done to ease the already complex
implementation of the scheme and could now be implemented. One
consequence of not using any random steals gives us a new perspec-
tive on lifelines in the context of our integrated load balancer. In
the original load-balancing scheme, use of non-connected lifeline
graphs is discouraged as it prevents work from trickling down the
lifelines to would-be idle hosts. In our situation where work is ini-
tially present on all hosts where entries of the distributed collection
are present, this is not a concern anymore. Using a non-connected
lifeline network will guarantee that the entries of the distributed
collection remain located with the subset of hosts connected by
lifelines. In the Plham] “GLB runner” discussed in Section 3.3, we
rely on this property to ensure that no agents are relocated on the
master host.

Another subtle difference lies in the lifelines’ nature. While the
network of lifelines remains configurable as was the case for the
original scheme, lifelines are established on a “per-collection” basis
rather than a per-computation basis. The reason for this is detailed
in the following paragraphs.

To preserve the integrity of the global termination detection,
the asynchronous activity used to answer the steal request needs
to spawn a new “witness” activity on the thief, as mentioned in
the preceding section. However it is possible that the transferred
assignments contain work from multiple ongoing operations. In
this case, the activity transferring the assignments will have to
spawn multiple “witness” activities registered into different “fin-
ish” constructs, something which is not possible under the normal
APGAS implementation.

To resolve this issue, we extended the APGAS for Java [12]
library to allow any thread to spawn an activity registered into
multiple arbitrary finish. Let us detail under which conditions
this is agreeable and why it is possible in our particular situation.

Arbitrarily registering an asynchronous activity into multiple
“finish” does not compromise the finish/async termination detec-
tion of APGAS if for every finish into which the answer activity
is registered, there exists an other running activity on the host. In
our case, if work coming from multiple computation is transferred
as part of an answer, then there necessarily exists a corresponding
“witness” activity for each computation. It was therefore “possible”
that this an asynchronous activity was spawned by this witness
activity. A problematic case would consist in registering an asyn-
chronous activity into a finish which does not contain any ongoing
activity on the local host. But this case does not present itself in
our situation.

This extension of the APGAS library allows us to somewhat
simplify the load balancing scheme compared as worker threads
(which are not registered into any finish) can now directly answer
thieves as part of their main routine by spawning the appropriate
asynchronous activity using our extended APGAS construct.

4.5 Restrictions imposed by the integrated load balancer

There are a number of conditions that need to be observed for pro-
grams to run successfully with our integrated global load balancer.
First, every range contained in the distributed array can only be
recorded into a single place. In other words, no two handles of a
distributed collection can contain ranges that overlap. While this is
in general possible, it is not compatible with our integrated load
balancer as ranges relocated as part of inter-host load balancing
may clash.
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Table 2. Hardware and Software environment on the OakForest-
PACS supercomputer

Property Value

Processor Intel Xeon Phi 7250 (68 cores)

RAM 96GB DDR4

Java version | Open JDK 1.8.0_222

MPI version | Intel MPI with MPJ-Express v0_44 Java native
bindings

Table 3. Program parameters used for K-Means

parameter value
k 2000
nb points 10m per host (weak scaling)
point dimension | 5

Secondly, no new entries can be recorded or removed from the
distributed array while a computation is ongoing. More specifically,
any new range added into a local handle of the distributed array
would be ignored by any ongoing computation as it will miss corre-
sponding assignment. Removing ranges from the collection while
the computation is ongoing would result in unpredictable behavior
as the assignments on which the removed ranges may or may not
have been processed.

If entries need to be added or removed from the collection be-
tween parts run under GLB, it should be done outside of underGLB
blocks. Subsequent underGLB methods will take into account the
changes and re-generate the assignments based on the contents of
the collection at that time.

5 Preliminary Evaluation

To evaluate the capabilities of our integrated global load balancer,
we evaluate its performance on 2 distributed and parallel applica-
tions, K-Means and Plham].

For both of these applications, we prepared two versions using
our distributed collections library: one which relies on the inte-
grated GLB presented in this article, and one which does not. In
the non-glb version of our programs, the entries of the distributed
collection contained on each host are split into even amounts and
given to each available thread on the process in the form of an
iterator. Each thread processes the entries it was assigned with
no load-balance taking place either between processes or between
threads within a process.

We perform our evaluation on the OakForest-PACS supercom-
puter. The details of the hardware and software environment used
is summarized in Table 2. Evaluation with the K-Means program
are conducted in weak scaling following the parameters outlined
in Table 3. For Plham, we prepared a special simulation in which
agents are assigned a certain amount of artificial load when sub-
mitting their orders. More detail about the configuration is given
in Table 4. The large number of executions necessary for this study
were managed using OACIS [8].

5.1 Overhead

First, we want to estimate the amount of overhead created by our
load-balancing scheme in situations where no load-balance mea-
sures are necessary. We do this in both of our applications by using
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Table 4. Program parameters used for the Plham] program

parameter value
number of agents | 20 thousand
artificial load 7500
number of iterations | 300
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Figure 2. Weak Scaling evaluation of the distributed K-Means on
up to 64 nodes of the OakForest-PACS supercomputer
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Figure 3. Strong scaling evaluation of the Plham]J simulator on up
to 9 nodes of the OakForest-PACS supercomputer

an uniform distribution and comparing the glb version of our pro-
gram against the non-glb version and the glb version stripped of its
inter-process load balancing. In this situation there is a priori no
need for inter-host load balance measures. This experiment allows
us to evaluate how much overhead the lifeline scheme contributes
to the system. The results are presented in Figure 2 and 3.

There are a number of unexpected results here. First, it appears
that the “non-glb” version of our K-Means program is slower due
to its implementation relying on iterators. Compared to the “glb”
version of the program, it delivers execution times up to 50% longer
depending on the number of hosts used. We also obtain a similar
situation on Plham]J when running on 3 hosts. The “manual” version
of the program which relies on the same iterators shows execution
times about 8% longer than the “glb” versions. But on executions
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that use 5 and 9 hosts, this is no longer the case. Part of this perfor-
mance gap may be linked to the number of chunks and the size of
individual chunks the distributed array is split into on each host.
Another cause could be the more heavy use of lambda-expressions
in the “non-glb” version. Further investigation is needed.

If we focus on the two “glb” and “glb without inter-host” pro-
grams, the overhead attributable to the inter-host load balancing
mechanism appears to induce execution times between 10 and 15%
longer on K-Means. With Plham], the difference in overall exe-
cution time is much smaller, only about 3%. However part of the
relative difference is absorbed by the other computation steps of the
program. When accounting for the other parts of the program, the
overhead due to the inter-host load-balancing meansures accounts
for an increase in computation time on the agent submission part
of about 5%.

These results are encouraging, but they need to be taken with
some precautions as we were unable to successfully execute the
“glb” version of the K-Means program with larger number of nodes.
It appears that our implementation suffers from a programming
error which tends to manifest itself on larger clusters.

5.2 With a competing computation

In this second experiment we want to check how our integrated
GLB reacts to dynamic changes in performance on the hosts on
which it is running. We use the same programs as in the previous
section, but introduce a second process which steals some com-
puting power away from the K-Means or Plham] program. This is
meant to replicate a second computation taking place at the same
time as the GLB program. In these conditions we want to verify
that the GLB program is able to run despite the presence of the
competing computation and if it is capable of relocating work away
from the hosts being disturbed.

We do this by introducing a deterministic “parasite” program
called Disturb. This program randomly chooses a victim hosts and
spawns a number of threads which perform hash computations in
a loop. This effectively steals some computation resources from the
main program. After a set amount of time has elapsed, a new victim
is chosen and the program spawns threads there. The sequence of
disturbed hosts is deterministic following a an initial seed to be
able to replicate the same disturbance across multiple executions.

We use two levels of disturbance: 20 and 40 threads, which cor-
respond to about 30 and 60% of the available parallelism on a node
of the OakForest-PACS supercomputer. The results are presented
in Figures 4 and 5 for K-Means and Plham] respectively.

On K-Means, the performance issue of our “no-glb” implementa-
tion that we noted in the previous section is present again. With
20 disturb threads, the performance gap between the “glb” and the
“glb w/o inter-host load balancing” is reduced, but not enough for
the “glb” version to show better performance. With 40 disturbing
thread however, this is the case, with our “glb” program showing
execution times between 2 to 5 We are not certain why the “glb”
version suddenly shows much better performance on 32 hosts. It
could be that the larger number of hosts increases the number of
thieves capable offloading the process being disturbed.

On Plham] the results are substantially the same with both 20
and 40 disturbing threads. When running with 3 hosts, the “glb”
version of the program shows the better performance. With larger
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Figure 4. Execution time of the K-Means program with a competing
Disturb program

clusters, the “glb” still shows better performance than the glb ver-
sion deprived from its inter-host load balancing capabilities. How-
ever, the best-performing implementation on 5 and 9-hosts clusters
is the manually load-balanced version. We think that this is due to
our GLB mechanism being too gradual in its changes in distribution
whereas the manually load-balanced version will relocate as many
instances as it deems necessary based on computation time of each
host over the last 5 iterations.

In all experiments up until that point, we have been using the
“hypercube”[11] lifeline strategy for our “glb” programs. However,
the present results suggests that a lifeline graph with a higher
degree may yield better results.

6 Discussion

Performance evaluation. We made a number of arbitrary deci-
sions in the design of our integrated distributed collection library.
One of those was only relocate data that still has some work inside
of it. Being that the applications we presented are iterative, it would
still make sense to relocate entries that have already being com-
puted in prevision of the next iteration. This may allow our GLB
mechanism to react more quickly to load imbalances. We could
also chose to initiate inter-host work-stealing before all the work
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Figure 5. Execution time of the Plham] simulation with a competing
Disturb program

from a host has disappeared. This raises the question on the victim
host of whether or not to answer these “early” steal requests, but
can be resolved. Both of these ideas could be implemented without
modifying the termination detection scheme.

One setting which has a consequential influence on the perfor-
mance of the GLB mechanism is the granularity, i.e. the number
of entries of the collection that are computed by a worker thread
before the runtime is checked. The results presented here corre-
spond to the “best-case” scenario for both K-Means and Plham],
with vastly different values for each one: 5 and 500 respectively.
Choosing other values yielded significantly poorer results. It would
make the integrated GLB significantly easier to use if it could be
fitted with a tuning mechanism to automatically adjust this setting,
similar to what we did in previous work [6, 7].

Finally, it is clear from this preliminary evaluation that the
iterator-based implementation our “non-glb” K-Means program
“manually” load-balanced Plham] runner rely on is not efficient.
This has no effect on the performance of the integrated GLB we
presented in this article but we will work to resolve this clear per-
formance issue.

Future enhancements. Currently, only the variants of our ar-
bitrary index array distributed collection features supports load-
balanced operations. The challenge in porting the same features to
our other distributed collection lies in the progress tracking. In the
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case of our distributed arrays, we can easily track the progress of op-
erations with pairs of long integers that describe a range of indices
in the array. For distributed maps that may use any user-specified
object as key, there is no such trivial progress description. Even if a
total order exists between the keys contained in the map, describing
sets of entries with a pair of keys is not be sufficient, as when work
is received from remote host, inserted keys may land inside the
range of an existing assignment. For these reasons, it appears to us
that a hypothetical implementation of the Assignment class for a
distributed map would have to rely on the internal representation
of the map, a topic we have not explored yet.

The Plham] schedule we presented in Section 3.3 is not opti-
mal for distributed computation. We are currently working on a
pipelined schedule in which the order processing takes place while
the agents are computing their orders for the next iteration based
on slightly older market information (an acceptable compromise ).
This would make the program more efficient by avoiding to keep
the “agent processes” idle while the order-handling is taking place.

7 Related Work

There are several runtimes and languages that aim at handling the
distributed nature of program. Chapel is a PGAS programming
language developed as part of the DARPA’s high productivity com-
puting systems program [4]. It allows distribution of arrays through
a number of library-supplied Block, Cyclic, and Cyclic Block distri-
butions. However, dynamic relocation of some arbitrary ranges in
an array is not supported.

Our closest competitor is Charm++ [1]. In terms of load-balancing
capabilities, Charm++ relies on problem over-decomposition into
many “Chares” and is capable of dynamically relocating them on
processing elements based on information obtained through profil-
ing and selectable policies. However, this surrenders all the distri-
bution control to the Charm++ runtime. In applications with more
intractable communication patterns and completion dependencies
such as Plham] where computation and relocation of some objects
may overlap, the completion and quiescence detection provided by
Charm++ would make it possible to implement but with greater ef-
fort than the programming model we propose. The advantage of our
system over Charm++ is that the completion of certain asynchro-
nous activities can be elegantly controlled through the finish/async
model. This is important for simulations where a very high level of
control over the completion of asynchronous tasks is necessary.

The K-Means benchmark we used to demonstrate the perfor-
mance of our dynamic load balancer could be programmed using
the Map-Reduce model of Hadoop. As its core, Hadoop involves
over-decomposing a problem in a set of independent tasks which
can then be scheduled on a computation cluster. Some work has
shown that Habanero-Java combined with Hadoop can be more
efficient both in terms of memory consumption and execution time
by taking advantage of multithreading [17]. However, the target for
our parallel & distributed collection with integrated load balance is
different. We focus on a more fine-grained level of parallelism than
Hadoop, with programs that present more intractable communica-
tion patterns.

A variety of works aiming at simplifying the design of paral-
lel and distributed programs exist, either in the from of libraries
of supplementary compiler directives [3, 5, 9]. However, most of
them revolve around support large numerical computations on
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distributed arrays without topics related The target of our work is
different in that we adopt an object-oriented programming model,
with instances of various classes contained within the same collec-
tion (i.e. various Agent implementations in the case of Plham.)

Recent work by Posner and Fohry with the APGAS runtime [10]
made it possible to dynamically start and stop processes of an
APGAS runtime. This is of particular interest to us as the “pipelined”
schedule for Plham] we mentioned in Section 6 could greatly benefit
from the capability to shrink and grow the number of processes it is
running on as the workload of the simulation dynamically evolves
over time.

8 Conclusion

In this article we presented the global load balancer integrated into
our Java-APGAS Distributed Collection Library. The programming
interface we propose is simple to use and allows programmers to
clearly identify the parts of their program that operate under this
regime. We re-visited the global load balancer scheme of X10 and
gained new insights into the “lifelines” used to implement this work-
stealing scheme. While our current scheme allowed us to gain an
advantage against statically distributed programs in some dynamic
situations, further analysis is needed to further comprehend the
conditions that need to be met to implement an efficient scheme
both when load-balance measure are and are not needed.
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