神戸大学附属図書館デジタルアーカイブ
入力補助
English
カテゴリ
学内刊行物
ランキング
アクセスランキング
ダウンロードランキング
https://hdl.handle.net/20.500.14094/0100483751
このアイテムのアクセス数:
136
件
(
2025-08-11
13:46 集計
)
閲覧可能ファイル
ファイル
フォーマット
サイズ
閲覧回数
説明
0100483751 (fulltext)
pdf
3.60 MB
608
メタデータ
ファイル出力
メタデータID
0100483751
アクセス権
open access
出版タイプ
Version of Record
タイトル
Local Path Planning: Dynamic Window Approach With Q-Learning Considering Congestion Environments for Mobile Robot
著者
Kobayashi, Masato ; Zushi, Hiroka ; Nakamura, Tomoaki ; Motoi, Naoki
著者ID
A3276
研究者ID
1000010979868
ORCID
0000-0001-9703-2858
著者名
Kobayashi, Masato
小林, 聖人
コバヤシ, マサト
著者名
Zushi, Hiroka
著者名
Nakamura, Tomoaki
著者ID
A0334
研究者ID
1000010611270
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail?systemId=50cd846a365bf8c5520e17560c007669
著者名
Motoi, Naoki
元井, 直樹
モトイ, ナオキ
所属機関名
海事科学研究科
言語
English (英語)
収録物名
IEEE Access
巻(号)
11
ページ
96733-96742
出版者
Institute of Electrical and Electronics Engineers (IEEE)
刊行日
2023-09-01
公開日
2023-10-30
抄録
In recent years, autonomous mobile robots have significantly increased in prevalence due to their ability to augment and diversify the workforce. One critical aspect of their operation is effective local path planning, which considers dynamic constraints. In this context, the Dynamic Window Approach (DWA) has been widely recognized as a robust local path planning. DWA produces a set of path candidates derived from velocity space subject to dynamic constraints. An optimal path is selected from path candidates through an evaluation function guided by fixed weight coefficients. However, fixed weight coefficients are typically designed for a specific environmental context. Consequently, changes in environmental conditions such as congestion levels, road width, and obstacle density could potentially lead the evaluation function to select inefficient paths or even result in collisions. To overcome this challenge, this paper proposes the dynamic weight coefficients based on Q-learning for DWA (DQDWA). The proposed method uses a pre-learned Q-table that comprises robot states, environmental conditions, and actions of weight coefficients. DQDWA can use the pre-learned Q-table to dynamically select optimal paths and weight coefficients that better adapt to varying environmental conditions. The performance of DQDWA was validated through extensive simulations and real experiments to confirm its ability to enhance the effectiveness of local path planning.
キーワード
Path planning
motion planning
collision avoidance
mobile robot
dynamic window approach
カテゴリ
海事科学研究科
学術雑誌論文
権利
This work is licensed under a Creative Commons Attribution 4.0 License
関連情報
DOI
https://doi.org/10.1109/ACCESS.2023.3311023
詳細を表示
資源タイプ
journal article
eISSN
2169-3536
OPACで所蔵を検索
CiNiiで学外所蔵を検索
ホームへ戻る