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ABSTRACT In recent years, autonomous mobile robots have significantly increased in prevalence due to
their ability to augment and diversify the workforce. One critical aspect of their operation is effective local
path planning, which considers dynamic constraints. In this context, the DynamicWindowApproach (DWA)
has been widely recognized as a robust local path planning. DWA produces a set of path candidates derived
from velocity space subject to dynamic constraints. An optimal path is selected from path candidates through
an evaluation function guided by fixed weight coefficients. However, fixed weight coefficients are typically
designed for a specific environmental context. Consequently, changes in environmental conditions such as
congestion levels, road width, and obstacle density could potentially lead the evaluation function to select
inefficient paths or even result in collisions. To overcome this challenge, this paper proposes the dynamic
weight coefficients based on Q-learning for DWA (DQDWA). The proposed method uses a pre-learned
Q-table that comprises robot states, environmental conditions, and actions of weight coefficients. DQDWA
can use the pre-learned Q-table to dynamically select optimal paths and weight coefficients that better
adapt to varying environmental conditions. The performance of DQDWA was validated through extensive
simulations and real experiments to confirm its ability to enhance the effectiveness of local path planning.

INDEX TERMS Path planning, motion planning, collision avoidance, mobile robot, dynamic window
approach.

I. INTRODUCTION
As the world grapples with declining birthrates and an aging
population, these demographic shifts are increasingly viewed
as serious issues [1], [2]. To mitigate the resultant strain
on the workforce, there has been a growing emphasis on
implementing autonomous mobile robots in various contexts
such as warehouses [3] and factories [4]. These robots need
to navigate different environments autonomously. Therefore,
the robot requires the integration of a diverse set of technolo-
gies, including localization [5], mapping [6], perception [7],
and path planning [8].

The associate editor coordinating the review of this manuscript and

approving it for publication was Zheng Chen .

This paper primarily explores the realm of path planning.
The path planning technology is divided into global and local
path planning [9]. Global path planning generates a path from
the starting point to the destination based on a pre-existing
map [10], [11]. However, it fails to account for unknown or
unexpected obstacles in real-world environments. Therefore,
in dynamic human workspaces, robots should reach their
destinations and avoid obstacles autonomously and adap-
tively [12], [13]. Consequently, the focus has shifted towards
local path planning, which factors in the dynamic obstacles
not accounted for on the pre-established maps.

With this research, we delve into local path planning
considering those obstacles not included on pre-built maps
[14], [15], [16], [17], [18], [19]. While dynamic obstacles
are certainly a consideration [20], [21], [22], [23], this paper
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focuses on static environments like factories and warehouses.
The DynamicWindow Approach (DWA), which accounts for
dynamic constraints, has emerged as a prevalent local path
planning method [24]. Despite numerous reported improve-
ments to DWA [15], [25], [26], its limitations persist. In par-
ticular, DWA’s fixed weight coefficients, which determine
the optimal path based on factors such as goal position,
obstacle distance, and robot velocity, fail to adapt to changes
in environmental situations. This can lead to the selection of
inefficient paths or even collisions, especially in confined or
crowded spaces like factories and warehouses.

To address these issues, researches on dynamic weight
coefficients for DWA have been carried out. Abubakr et al.
and Hong et al. adjusted weight coefficients with fuzzy
logic [28], [29]. These approaches dynamically adjusted
weight coefficients using fuzzy logic to analyze goal posi-
tions and obstacles. Chang et al. proposed using Q-learning
to dynamically adjust the weight coefficients of DWA [30].
Q-learning is a method of reinforcement learning. It doesn’t
require prior knowledge of the environment, making it suit-
able for robot path planning. Additionally, it offers a low cost
for learning.

Considering these advantages, this paper focuses on the
Q-learning method for adjusting weight coefficients of DWA.
While the conventional method [30] adjusts weight coeffi-
cients based on goal information, velocities, and obstacles,
it doesn’t account for the spatial area and congestion rates
of the environment. The conventional method leads to the
selection of inefficient paths or even collisions, depending
on the specific situation. To remedy the issue, this paper
proposes a dynamic weight coefficient adjustment approach
based on Q-learning for DWA that accounts for environmen-
tal situations (DQDWA). DQDWA considers environmental
conditions such as goal distance, goal direction, velocity,
visible area, and congestion. DQDWAcan dynamically adjust
the weight coefficients of the evaluation function based on
these environmental conditions. Extensive simulations and
experiments have been carried out to demonstrate the effec-
tiveness and advantages of DQDWA in real-world scenarios.

The main contributions of this paper are threefold:
• This paper proposes DQDWA. DQDWA can dynam-
ically adjust the weight coefficients of the evaluation
function based on these environmental conditions.

• DQDWA incorporates the concept of context-awareness,
where weight coefficients are not static but dynamically
adjusted according to the area of spaces and congestion
levels. This approach enhances the adaptability and
performance of autonomous robots in varied situations.

• The effectiveness of DQDWA has been validated
through extensive simulations and real-world exper-
iments. The results demonstrate that the proposed
method outperforms traditional DWA in terms of effi-
ciency and safety.

This paper is organized into eight sections including the
current section. Sections II, III, and IV provide a comprehen-
sive overview of the coordinate system, the DynamicWindow

FIGURE 1. Modeling of robot.

Approach (DWA), and Q-learning, respectively. Section V
proposes Dynamic Weight Coefficients based on Q-learning
for DWA (DQDWA). Sections VI and VII show the results
from our simulations and real-world experiments to highlight
the effectiveness and utility of DQDWA. Finally, section VIII
provides conclusions.

II. COORDINATE SYSTEM
Fig. 1 illustrates the coordinate system for the robot utilized
in this study. This paper defines two coordinate systems:
the local coordinate system 6LC , and the global coordinate
system6GB. The quantitiesmeasured in the global coordinate
system are expressed with the superscript GB⃝. Variables
belonging to the local coordinate system do not carry a super-
script. The origin in the global coordinate system is situated at
the initial position of the robot. The origin in local coordinate
system is positioned at the midpoint between the robot’s
wheels. As shown in Fig. 1, (GBx, GBy) and GBθ represent
the position and angle of the robot in the global coordinate
system, respectively. Lrob denotes the radius of the robot.

III. DYNAMIC WINDOW APPROACH (DWA)
A. OVERVIEW OF DWA
The DynamicWindowApproach (DWA) is a commonly used
method in local path planning [24]. Initially, the velocity
space with dynamic constraints (VSD) is determined based
on the robot’s current velocities. Subsequently, at each time
step, an optimal path is selected from the VSD using an
evaluation function. This optimal path selection is dependent
on the weight coefficients of the evaluation function. Details
about the velocity space and the optimal path selection are
further elaborated in Sections III-B and III-C, respectively.

B. VELOCITY SPACE
DWA generates a velocity space with dynamic constraint,
denoted as Dvsd , using translational and angular velocities as
illustrated in Fig. 2 (a). The velocity space Dvsd is defined as
follows.

Dvsd = Dall ∩ Ddw ∩ Dobs (1)

where Dall represents the range of maximum and mini-
mum velocities determined by the robot’s specifications.
Ddw known as the dynamic window, defines the range of
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FIGURE 2. Dynamic window aprroach.

velocities that the robot can achieve at the next time step.
Dobs consists of velocities that enable the robot to stop before
colliding with an obstacle.

C. OPTICAL PATH
The velocity spaceDvsd is discretized by equally dividing the
range of the translational and angular velocities. This results
in pairs of translational and angular velocities within the
velocity space Dvsd , which serve as the velocity candidates.
As shown in Fig. 2 (b), DWA generates predicted paths for
each velocity candidate under the assumption of constant
velocity motion.

Path candidates are evaluated using the following evalua-
tion function J .

J = W gol
· cgol +W vel

· cvel +W obs
· cobs (2)

whereW gol ,W vel , andW obs represent the weight coefficients
associated with the goal, velocity, and obstacles, respectively.
cgol indicates the distance between the predicted robot posi-
tion and the goal position. cvel corresponds to the current
translational velocity. cobs represents the shortest distance
from the predicted robot position on the path to the obsta-
cle. The optimal path is then determined by maximizing the
evaluation function J . More details on DWA can be found
in [27].

IV. Q-LEARNING
To dynamically adjust the weight coefficients of the
evaluation function in DWA, this study incorporates
Q-learning [31], a type of reinforcement learning method.
Fig. 3 outlines the concept of Q-learning, which updates a
Q-table that stores the Q-values for each action in each state.
The Q-table is a m× n matrix, where m and n correspond to
the numbers of states and actions, respectively. The formula
to update the Q-value is defined as follows.

Q(s, a) = (1 − α)Q(s, a) + α[R(s, a) + γQ(s′, a)] (3)

where α and γ represent the learning rate and discount rate,
respectively. R(s, a) and Q(s′, a) denote the reward for the
agent and the maximum Q-value in the next state, respec-
tively. The training process for Q-learning involves four steps,
as outlined in Fig. 3:

Train1:In the current state s, the agent chooses action a
using the ϵ-greedy method with the Q-table.

FIGURE 3. Q-learning.

Train2:The agent receives the next state and reward R from
the environment.

Train3:The Q-value in the Q-table is updated using (3).

Train1-Train3 are repeated until the Q-table converges to a
threshold value.

The ϵ-greedy method [32] is utilized for action selection.
With probability ϵ, the action is chosen randomly, while with
probability 1−ϵ, the action with the highest expected reward
is chosen.More details about Q-learning can be found in [31].

V. PROPOSED METHOD (DQDWA)
A. OVERVIEW OF DQDWA
This section proposes Dynamic Weight Coefficients based
on Q-learning for DWA approach considering environmental
situations (DQDWA). While the conventional method [30]
adjusts weight coefficients based on certain parameters,
it does not consider visible area and congestion rate as envi-
ronmental factors. Therefore, the conventional method may
lead to inefficient path selection or even collisions depending
on the circumstances. To address this limitation, the proposed
method includes visible area and congestion as key factors in
defining environmental situations. Fig. 4 provides a overview
of DQDWA which consists of four steps:

Step1: Determine the robot state s1-s5 based on envi-
ronmental information measured by the distance
sensor. The definitions of s1-s5 are detailed in
Section V-B.

Step2: The trained Q-table chooses the appropriate com-
bination of weight coefficients for the given state.
The definition of the action dimension and the
Q-learning process are detailed in Sections IV,
V-C, and V-D.

Step3: The chosen weight coefficients are applied to the
evaluation function of DWA. DWA is elaborated on
in Section III.

Step4: The robot moves according to the translational
and angular velocity that maximizes the evaluation
function.

B. DEFINITION OF STATE DIMENSION
Fig. 5 provides a visual representation of state dimensions s1-
s5. s1-s5 indicate states related to the goal distance, goal direc-
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FIGURE 4. Overview of DQDWA.

FIGURE 5. Image of state in proposed method.

tion, traveled distance, visible area, and congestion. The state
vector s is defined as follows.

s =
[
s1 s2 s3 s4 s5

]T (4)

where s1, s2, s3, and s4 has two possible patterns, while s5 has
four. Thus, the total size of the state dimension is 64. The
detailed descriptions of s1-s5 are presented below.

1) DEFINITION OF STATE DIMENSION s1 (GOAL DISTANCE)
s1 represents the state associated with the distance between
the robot’s position and the goal position. s1 is defined as
follows.

s1 =

{
1 if lrg < W disLrob

2 otherwise
(5)

whereW dis is the weight coefficient for the goal distance and
lrg is the distance between the robot and the goal.

2) DEFINITION OF STATE DIMENSION s2 (GOAL DIRECTION)
s2 represents the state indicating the angular difference
between the robot’s direction and the goal’s direction. s2 is
defined as follows.

s2 =

 1 if θ rg ∈ [−
π

2
,
π

2
)

2 otherwise
(6)

where θ rg is the angle between the robot and the goal.

3) DEFINITION OF STATE DIMENSION s3 (TRAVELLED
DISTANCE)
s3 is the state related to the distance that the robot will
travel from its current position after one second. The travelled

distance η is calculated as follows.

η =


2v

ω
if |ω| > π

v else if ω = 0
2v

ω
sin(

ω

2
) otherwise

(7)

s3 is defined as follows.

s3 =

 1 if |η| ≤
Vmax

2
2 otherwise

(8)

where Vmax is the maximum translational velocity of the
robot.

4) DEFINITIONOF STATE DIMENSION s4 (VISIBLE AREA)
s4 is the state that quantifies the visible area around the robot.
The divided area fi for the state s4 is defined as follows.

fi =
1

2
didi+1 sin(

2π

N
) (9)

where di is the i-th distance data measured by the distance
sensor, and N is the total number of distance data points.

Distance data is obtained in
2π

N
radian increments in a

counter-clockwise direction. The total divided area f all is
calculated as follows.

f all =

N∑
i=1

fi (10)

s4 is defined as follows.

s4 =

{
1 if f all ≤ W areFmax

2 otherwise
(11)
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whereW are is the weight coefficient of the area, and Fmax is
the maximum possible sum of the divided areas.

5) DEFINITION OF STATE DIMENSION s5 (CONGESTION)
s5 is the state associated with congestion. s5 is defined based
on the number of obstacles surrounding the robot.

s5 =



1 if nfwd >
N

4

2 else if nbwd >
N

4

3 else if nall >
N

4
4 otherwise

(12)

where nfwd and nbwd are the number of sensor data points
within a threshold distance Dthr in the front and rear halves
of the robot, respectively. nall is defined as follows.

nall = nfwd + nbwd (13)

C. DEFINITION OF REWARD
To adjust the weight coefficients of the evaluation function
with Q-learning, the reward R is defined as follows.

R = R1 + R2 + R3 (14)

Note that the initial value ofR is set to 0.R1 is a reward related
to the result; goal or collision.

R1 =


5000 if reach goal
−200 else if collide obstacle
−2 otherwise

(15)

R2 is a reward related to distance from the goal position.

R2 =


0 if reach goal or collide obstacle
10 if get close to goal position
−10 else if farther from goal position

(16)

R3 is a reward related to distance from the obstacle.

R3 =


0 if reach goal or collide obstacle
−5 if approach obstacle
5 else if go away from obstacle

(17)

D. DEFINITION OF ACTION DIMENSION
The weight coefficients for position, velocity, and obstacles
are each selected from the set {1,2,3}. We omit the sets
{2,2,2} and {3,3,3} as they are equivalent to the set {1,1,1}.
As a result, 25 unique combinations are obtained, which form
the action dimension.

The Q-table comprises the actions and the states of the
robot in various environmental situations. By utilizing the
learned Q-table, DQDWA selects the optimal path using
dynamic weight coefficients considering these environmental
situations.

TABLE 1. Control parameters.

TABLE 2. Goal positions in each environment of learning phase.

VI. SIMULATION
A. SIMULATION SETUP
The simulation system was implemented using the Robot
Operating System (ROS) and Gazebo. In this simulation,
we evaluated five patterns of DWA weight coefficients:
DWA I, DWA II, DWA III, Conventional DWA with
Q-learning (CDQ) [30], and DQDWA. The constant weight
coefficients W gol,W vel,W obs for DWA I, DWA II, and
DWA III were set as {1,1,2}, {1,2,1}, and {2,1,1}, respec-
tively. Table 1 displays the simulation parameters.

B. PRE-TRAIN OF Q-TABLE
Fig. 6 (a)-(e) depict the environments utilized during the
learning process. Env. and goal positions were randomly
selected at the start of each trial as outlined in Table2. GBxgol

and GBygol denote the X and Y coordinates of the goal posi-
tions, respectively. The notation ([−1.2, 1.2], [−1.2, 1.2])
means that GBxgol and GBygol are randomly selected from
the range of [−1.2, 1.2]. As illustrated in Fig. 6 (a)-(c),
Env. 1-3 were designed to examine the differences in robot
behavior due to crowding within restricted spaces. Fig. 6 (d)
shows Env. 4, which was established to investigate robot
behavior in a spacious area filled with numerous obstacles.
In Fig. 6 (e), Env. 5 was designed to evaluate robot behavior
amidst obstacles and humans. All of these environments were
thoughtfully designed with real-world scenarios in mind,
specifically warehouse and factory settings. The learning
process was continued until the Q-table had been updated
30,000 times.

C. SIMULATION ENVIRONMENT
In this simulation, the following two types of simulations
were conducted.

VOLUME 11, 2023 96737



M. Kobayashi et al.: Local Path Planning: DWA With Q-Learning Considering Congestion Environments

FIGURE 6. Image of Learning Environment. Blue area means the visible sensor area.

FIGURE 7. Image of Non-Learning Environment. Blue area means the
visible sensor area.

• Case S1: Conducted a single simulation in each environ-
ment (Env. 1-5).

• Case S2: Performed 30 simulations in unfamiliar envi-
ronments (Env. 6,7).

The starting positions in Cases S1 and S2 were set to
(GBxsta,GB ysta) = (0.0, 0.0). In Case S1, the goal positions
of Env. 1-5, denoted as (GBxgol,GB ygol), were established
as (−1.2,−1.2), (−1.2,−1.2), (−1.3, 1.5), (0.0, 4.0), and
(0.0, 8.0), respectively. For Case S2, goal positions were
randomly selected from the red-filled areas as shown in Fig. 7.

Env. 6 was designed with a higher density of obstacles
compared to Env. 4. This was intended to test the robot’s abil-
ity to deal with unforeseen obstacles that were not encoun-
tered during the learning phase. Env. 7 was designed to
simulate amanufacturing plant. In this environment, the robot
had to recognize and avoid not only static obstacles but also
dynamic obstacles, such as humans, while navigating toward
its goal.

D. SIMULATION RESULTS
1) CASE S1
Tables 3 - 4 present the results for Case S1. The abbreviations
TL and PD denote the trajectory length and the movement
posture displacement, respectively. Table 4 indicates the num-
ber of collisions, along with the average time, trajectory
length (TL), and posture displacement (PD). Figs. 8-12 depict
the trajectories in each environment.

For DWA I-III, while they delivered satisfactory results
in some environments, there were instances where the robot
collided with obstacles. Moreover, the robot often required

TABLE 3. Simulation results in case S1 (1time in each environment).

TABLE 4. Simulation results in case S1 (average in each Env. ).

a long duration to reach the goal position. The simulation
results for DWA I-III varied depending on the environmental
situation, as these methods utilize fixed weight coefficients.

In the case of CDQ, the simulation results for Env. 1-3
were better than those for DWA I-III, since CDQ selects
weight coefficients considering the environmental situation.
However, the results for Env. 4 and 5 were nearly identical
to those for DWA I-III. This is because CDQ does not define
environmental situations based on visible space size or obsta-
cle count. Therefore, optimal weight coefficients were not
chosen in narrow or crowded spaces.

In DQDWA, the robot successfully reached the goal posi-
tion in the shortest time and with the smallest TL and PD.
This is because DQDWA takes into account both space size
and congestion, enabling the selection of optimal weight
coefficients tailored to each environment. DQDWAallows for
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FIGURE 8. Trajectories of DWA I ({W gol , W vel , W obs} ={1,1,2}).

FIGURE 9. Trajectories of DWA II ({W gol , W vel , W obs} ={1,2,1}).

FIGURE 10. Trajectories of DWA III ({W gol , W vel , W obs} ={2,1,1}).

FIGURE 11. Trajectories of the conventional method (CDQ).

FIGURE 12. Trajectories of the proposed method (DQDWA).

more efficient routing while ensuring safety and preventing
the robot from circling in one place.

2) CASE S2
Table 5 presents the results for Case S2, while
Figs. 8-12 (f)-(g) illustrate the corresponding trajectories.
In this simulation, the goal position was randomly selected
at the start of each trial. For Env. 6, the goal posi-
tion was selected from four points with (GBxgol,GB ygol)
being (2.0,−3.0), (3.0, 2.0), (−2.0,−3.0), and (−3.0, 2.0).

In Env. 7, the goal position was selected from two points, with
(GBxgol,GB ygol) being (8.5, 2.0) and (8.5,−2.0).

In the case of DWA I, while the success rate was high,
the robot took a significantly longer time to reach the goal
position. DWA II and DWA III achieved smaller values for
time, trajectory length (TL), and posture displacement (PD),
but their success rates were comparatively lower. This is
because these approaches prioritized high translational veloc-
ity and goal distance over obstacle avoidance, leading tomore
collisions.
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FIGURE 13. Experimental Set-up.

FIGURE 14. Trajectories in Case E1.

FIGURE 15. Trajectories in Case E2.

FIGURE 16. Snapshots in DQDWA.

TABLE 5. Case S2 results (30 times in each environment).

CDQ yielded a lower success rate than DQDWA. Addi-
tionally, the averages of time, TL, and PD were the largest
in Env. 6 and the second largest in Env. 7. This indicates that
CDQ didn’t select efficient paths in environments that were
not encountered during the learning phase.

In contrast, DQDWA achieved the highest success rate.
Furthermore, it reached the goal position in a time span com-
parable to DWA II, which prioritizes translational velocity,
and with TL and PD as small as DWA III, which prioritizes
the goal distance. Therefore, DQDWA selected efficient paths
while maintaining safety in unlearned environments.

The effectiveness of the proposed method, DQDWA,
was thus confirmed through the simulation results for both
Case S1 and Case S2.

VII. EXPERIMENT
A. EXPERIMENT SETUP
The experiment was carried out with ROS and Turtlebot3.
Fig. 13 (a) shows an overview of Turtlebot3. Turtlebot3
is equipped with a distance sensor (LDS-01). The distance
sensor measured environmental information. Fig. 13 (b)-(c)
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TABLE 6. Experiment results.

show the experiment environments. Fig. 13 (d)-(e) show their
images. For the experiments, we have two scenarios defined
as follows.

• Case E1: This represents a simple environment with four
obstacles.

• Case E2: This represents a crowded environment with
seven obstacles.

The start position was (GBxsta,GB ysta) = (0.0, 0.0), and the
goal position was (GBxgol,GB ygol) = (4.0, 0.0). The models
and parameters used in the experiment were the same as the
simulation; DWA I, DWA II, DWA III, CDQ, and DQDWA.

B. EXPERIMENT RESULTS
Table 6 presents the experimental results. Figs.14-15 illus-
trate the trajectories for each case, and Fig. 16 shows snap-
shots from DQDWA run.

In DWA I-III, collisions sometimes occurred. Even in cases
where the goal was reached, these methods resulted in longer
times, larger trajectory lengths (TL), and greater posture
displacements (PD) compared to DQDWA. Their inability to
adjust weight coefficients dynamically led to collisions and
the selection of inefficient paths.

CDQ also resulted in a collision in Case E2. Moreover,
its time, TL, and PD in Case E1 were larger than those of
DWA II and DQDWA. These results suggest that CDQ was
not able to select appropriate weight coefficients based on the
environmental situations.

Conversely, DQDWA successfully reached the goal posi-
tion and registered the shortest time, smallest TL, and least
PD in both cases. DQDWA was capable of adjusting weight
coefficients effectively in real-time. The effectiveness of the
proposed method, therefore, was confirmed by the experi-
mental results.

VIII. CONCLUSION
This paper introduced DQDWA, the dynamic weight coef-
ficients based on Q-learning for DWA considering envi-
ronmental situations. We focused on defining the state for
Q-learning and included definitions for the area of space,
taking into account congested areas.With DQDWA, the robot
could select optimal paths by dynamic adjustments of weight
coefficients. The effectiveness of the proposed method was
validated through simulations and real-world experiments.

In the future, we aim to refine and improve DQDWA as
follows.

• Incorporating Moving Obstacles: The current evalua-
tions of DQDWA have been conducted in static envi-
ronments. Future work will look into accommodating
moving obstacles in the learning and experiment
environments.

• Experiments in Diverse Environments: Our experiments
have been performed with a single type of robot and sen-
sor. We plan to evaluate DQDWA’s performance across
various environments and using different types of robots
and sensors.

• Exploring Alternative Learning Methods: Presently,
we utilize Q-learning as the sole learning method to
adjust weight coefficients. Future efforts will investigate
other learning methods for dynamic adjustment of these
coefficients.
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