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Abstract

We build a successive Bertrand model with a homogenous good. We show that increasing the

production efficiency of an industry can reduce firms’ profits. We also show that this result holds

in the successive Cournot model. Hence, an industrial policy aimed at improving production

efficiency may be undesirable for firms.
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1 Introduction

Salinger’s (1988) model is famous in the analysis of vertically related markets and it assumes

quantity competition in both the upstream and downstream markets.1 Although Salinger’s

(1988)-type model is frequently used because of tractability, price competition tends to be over-

looked.

In practice, it is sometimes observed an industry with price competition. Winston et al.

(2011) stated that the railroad industry (coal transportation) in the US tends to engage in price

competition. Furthermore, Roy et al. (2006) empirically reported that in the microprocessor,

facial tissue, and automobile industries, the strategic variable of firms is price. Therefore, we

believe that identifying the characteristics of price competition remains valuable.

We aim to consider the implications of price competition in vertically related markets. To

this end, we incorporate Dastidar (1995)-type Bertrand competition2 into a Salinger-type (1988)

vertical structure model.3 We show that when upstream and downstream production is efficient,

increasing upstream and downstream production efficiency reduces firms’ upstream and down-

stream profits, respectively. We also consider the case of successive Cournot competitions and

show that a similar result of Bertrand case holds. As improving efficiency in a vertical structure

does not necessarily increase firms’ profits, our results imply that aiming to improve efficiency

is a problematic issue in industrial policy.

2 Model

We consider a market with m upstream and n downstream firms. Each upstream and down-

stream firm produces a homogenous input and final product, respectively. Upstream firms have

a convex cost function γx2k where xk is the output of the upstream firm k (= 1, . . . ,m). Convex

1See, for example, Ghosh and Morita (2007) and Matsushima (2006).
2Dastidar (1995) examined homogenous Bertrand competition with a convex cost.
3Dastidar’s model is applied in various scenarios; see, for example, Cabon-Dhersin and Drouhin (2014) and

Mizuno and Takauchi (2020).
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cost is a popular setting in oligopoly (e.g., Von Weizsacker, 1980). Upstream firm k’s input

price is denoted by wk. Upstream firm k’s profit is πu
k ≡ wkxk − γx2k. Under upstream price

competition, each upstream firm chooses its price wk, and under upstream quantity competition,

each upstream firm faces a derived inverse demand w(
∑m

l=1 xl) and chooses its output xk.

Each downstream firm purchases inputs from upstream firms at price w. Note that, under

upstream price competition, the input price is determined as w ≡ min{w1, . . . , wm}. If multiple

upstream firms choose w, the downstream firms purchase an equal quantity of inputs from the

upstream firms. We assume that each downstream firm uses one unit of input to produce one

unit of output. When the downstream firm i (= 1, . . . , n) produces qi output, its production

cost is λq2i .

The downstream market demand function is Q ≡ (a − p)/b. Under downstream price com-

petition, each downstream firm chooses its price pi. Hence, the total demand is determined

as p ≡ min{p1, . . . , pn}. Each downstream firm’s demand is determined by qi = Q if for any

j (= 1, . . . , n) and i ̸= j, pi < pj ; qi = Q/s if pi is the lowest price and s downstream firms

choose it; and qi = 0 if pi is not the lowest price. Under downstream quantity competition, each

downstream firm faces the same inverse demand pi = a − b
∑n

j=1 qj and chooses its output qi.

The downstream firm i’s profit is Πd
i ≡ (pi − w)qi − λq2i . The consumer surplus is CS = bQ2/2

and the total surplus is TS = CS +
∑m

k=1 π
u
k +

∑n
j=1Π

d
j .

We consider two cases: all firms compete in price; all firms compete in quantity. The timing

of the game is as follows. In the first stage, each upstream firm chooses its strategic variable

(wk or xk). In the second stage, each downstream firm chooses its strategic variable (pi or qi).

As we consider homogenous price competition with a convex cost, the Nash equilibria of each

stage game are given by a closed interval. To choose a unique equilibrium, we use the payoff-

dominance criterion as the equilibrium refinement. Note that an equilibrium point is payoff

dominant if there is no other equilibrium point with a higher payoff for all players. Because
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the payoff-dominance equilibrium is supported by economic experiments (e.g., Rankin et al.,

2000) and is often used (e.g., Cabon-Dhersin and Drouhin, 2014; Mizuno and Takauchi, 2020),

we employ this criterion. Hence, the equilibrium concept is a subgame-perfect equilibrium with

the payoff-dominance criterion. For simplicity, we assume λ < bn/(n − 1) ≡ λ̂. Under this

assumption, the equilibrium downstream price does not coincide with the price that maximizes

the downstream firms’ profits.

3 Equilibrium calculation

3.1 Successive Bertrand competition

We consider the cases of upstream and downstream price competition. Because the downstream

firms are symmetric, they choose a symmetric price p(w). We define the aggregate and each

downstream firm’s outputs at p(w) as Q(w) = [a − p(w)]/b and q(w) = Q(w)/n, respectively.

As downstream firms never deviate from p(w), the following inequalities must be satisfied:

[p(w)− w]q(w)− λq(w)2 ≥ [p(w)− w]Q(w)− λQ(w)2, [p(w)− w]q(w)− λq(w)2 ≥ 0.

The first inequality represents the condition under which each downstream firm does not under-

cut its price, and the second inequality indicates that each downstream firm has no incentive to

increase its price.

Solving the above inequalities for p(w), we obtain the Nash equilibria as the interval p(w) ∈

[p(w), p̄(w)], where:

p(w) =
bnw + aλ

bn+ λ
, p̄(w) =

bnw + a(1 + n)λ

bn+ (1 + n)λ
. (1)

As we use the payoff-dominance criterion, we derive the price at which the downstream firms

earn the highest profit. Hence, we define the symmetric collusive price pcol(w) that maximizes
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the downstream firm’s profit as follows:

pcol(w) =
a(bn+ 2λ) + bnw

2(bn+ λ)
. (2)

When λ < λ̂, we obtain p̄(w) < pcol(w). Hence, for p(w) ∈ [p(w), p̄(w)], the downstream profit

increases with p. Therefore, p̄(w) is a unique price that satisfies the payoff-dominance criterion.

We consider the first stage. Because the upstream firms are symmetric, they choose a

symmetric input price w∗ and obtain symmetric demand Q(w∗)/m. In the second stage, the

conditions under which upstream firms do not undercut or raise prices are expressed by the

following inequalities:

w∗Q(w∗)

m
− γ

[
Q(w∗)

m

]2
≥ w∗Q(w∗)− γQ(w∗)2, w∗Q(w∗)

m
− γ

[
Q(w∗)

m

]2
≥ 0.

Then, the input prices in the Nash equilibria are given by the interval w∗ ∈ [w, w̄], where:

w =
aγn

bmn+ λm+ λmn+ γn
, w̄ =

aγ(m+ 1)n

bmn+ λm+ n(γ + γm+ λm)
.

To find the equilibrium input price that satisfies the payoff-dominance criterion, we calculate

the collusive input price that maximizes each upstream firm’s profit.

wcol =
a(bmn+ λm+ λmn+ 2γn)

2[bmn+ λm+ n(γ + λm)]
.

The input prices above yield Lemma 1:

Lemma 1. (i) w̄ > w. (ii) wcol > w̄ iff γ < m[bn+(1+n)λ]
n(m−1) ≡ γ̂.

From this lemma, for w∗ ∈ [w, w̄], the upstream firm’s profit is maximized at w̄ and wcol if

γ < γ̂ and γ ≥ γ̂, respectively. Therefore, the equilibrium input price is w̄ if γ < γ̂, then it is

wcol if γ ≥ γ̂.

For γ < γ̂, we obtain the following equilibrium outcomes:

π̄u =
a2γmn2

[bmn+ λm+ n(γ + γm+ λm)]2
, Π̄d =

a2λm2n

[bmn+ λm+ n(γ + γm+ λm)]2
. (3)

CS =
a2bm2n2

2[bmn+ λm+ n(γ + γm+ λm)]2
, TS =

a2m2n2[b+ 2(γ + λ)]

2[bmn+ λm+ n(γ + γm+ λm)]2
. (4)
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For γ ≥ γ̂, equilibrium outcomes are as follows.

πu
col =

a2n

4[bmn+ λm+ n(γ + λm)]
, Πd

col =
a2λm2n

4[bmn+ λm+ n(γ + λm)]2
. (5)

CScol =
a2bm2n2

8[bmn+ λm+ n(γ + λm)]2
, TScol =

a2mn(3bmn+ 2nγ + 2mγ4mnγ)

8[bmn+ λm+ n(γ + λm)]2
. (6)

3.2 Successive Cournot competition

In the second stage, the profit of downstream firm i is Πd
i ≡ (a − b

∑n
j=1 qj − w)qi − λq2i . The

first-order condition yields each firm’s output: qi(w) = (a− w)/(b+ bn+ 2λ).

Substituting qi(w) into the input market-clearing condition
∑n

j=1 qj(w) =
∑m

l=1 xl, we obtain

the derived inverse demand for input.

w

(
m∑
l=1

xl

)
= a− (b+ bn+ 2λ)

n

m∑
l=1

xl.

Substituting the derived inverse demand into the upstream profit, we obtain πu
k = w(

∑m
l=1 xl)xk−

γx2k. The first-order condition yields the following output:

xCk =
an

b(1 +m)(1 + n) + 2(nγ + λ+mλ)
,

where the variable ‘C’ denotes Cournot competition.

Using the above outcomes, we obtain the upstream and downstream profits, consumer sur-

plus, and total surplus:

πu
C =

a2n(b+ bn+ nγ + 2λ)

[b(1 +m)(1 + n) + 2(nγ + λ+mλ)]2
, Πd

C =
a2m2(b+ λ)

[b(1 +m)(1 + n) + 2(nγ + λ+mλ)]2
, (7)

CSC = a2bm2n2

2[b(1+m)(1+n)+2(nγ+λ+mλ)]2
, TSC = a2mn[2b(1+n)+bm(2+n)+2nγ+2(2+m)λ]

2[b(1+m)(1+n)+2(nγ+λ+mλ)]2
. (8)

4 Comparative statics

4.1 Successive Bertrand competition with upper bound pricing

We consider the case where γ < γ̂ under successive Bertrand competition. Differentiating (3)

and (4) with respect to γ or λ, Proposition 1 is established.
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Proposition 1. We assume that γ < γ̂. (i) Each upstream firm’s profit is a single-peaked

function of γ and takes its maximum value at γ = m[bn + (1 + n)λ]/[n(m + 1)] ≡ γ̄; the profit

of each upstream firm decreases with λ. (ii) Each downstream firm’s profit is a single-peaked

function of λ and takes its maximum value at λ = n[bm+ (1 +m)γ]/[m(n+ 1)] ≡ λ̄; the profit

of each downstream firm decreases with γ. (iii) The consumer and total surpluses decrease with

γ and λ.

1.0 1.2 1.4 1.6 1.8 2.0
γ

0.0315

0.0320

0.0325

0.0330

0.0335

πu γ at a = b = 1, n = m = 2, and λ = 1

Profit of upstream firm
1.0 1.2 1.4 1.6 1.8 2.0

λ

0.0315
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0.0330
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Π
d
λ at a = b = 1, n = m = 2, and γ = 1

Profit of downstream firm

Figure 1: The inverse U-shape curves of profits

The main results of Proposition 1 are shown in Figure 1. The intuition behind this result is as

follows. First, we consider the effects of production efficiency in the upstream and downstream

markets on upstream firms’ profits. Inefficient upstream technology has two effects: production

inefficiency and competition mitigation effects. A large γ leads to inefficient upstream pro-

duction. In addition, upstream firms are less likely to undercut the input price because the

undercutting firm must supply the entire market. Thus, an increase in γ relaxes competition.

Next, we consider a scenario in which each effect dominates. As γ converges to zero, upstream

competition approaches Bertrand competition with a constant marginal cost. Then, upstream

firms’ profits converge to zero. Additionally, when γ diverges infinitely, the upstream firms’

profits converge to zero. Thus, when γ is small, the competition-mitigation effect dominates,

and when γ is large, the production-inefficiency effect dominates. Therefore, the profit of each

upstream firm has an inverted-U shape for γ.
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When downstream production becomes less efficient, upstream firms have less efficient trad-

ing partners. Hence, an increase in λ decreases the upstream firms’ profits.

Second, we consider the effects of production efficiency in the upstream and downstream

markets on downstream firms’ profits. These effects are similar to those of the upstream firms’

profits. An increase in λ results in production inefficiency and competition-mitigation effects.

Hence, the profit of each downstream firm has an inverted-U shape for λ. Additionally, for

large γ, downstream firms face inefficient input suppliers. Hence, the downstream firms’ profits

decrease with γ.

The effects of γ and λ on consumers and total surpluses are simple. An increase in γ or λ

reduces the efficiency of the upstream and downstream firms. Hence, the total output decreases

with γ or λ, which reduces consumer and total surpluses.

Proposition 1 leads to the following:

Corollary 1. The upstream and downstream efficiency levels that maximize upstream and down-

stream profits increase with λ and γ, respectively.

As explained in the intuition behind Proposition 1, an increase in γ has a production in-

efficiency effect and a competition mitigation effect in the upstream market. These effects are

balanced at γ = γ̄, where upstream firms’ profits are maximized. When the downstream market

becomes inefficient, upstream firms can increase their profits by choosing a higher price that

achieves less output; that is, the competition-mitigation effect is strengthened. Thus, at a larger

γ, upstream firms’ profits are maximized, which means that γ̄ increases with λ.

The reason why λ̄ increases with γ can be explained in the same manner. Consider the case

in which λ increases at γ = γ̄, where downstream firms’ profits are maximized. Then, γ that

maximizes downstream firms’ profits increases because the effect of increasing γ on mitigating

competition is strengthened.
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4.2 Successive Bertrand competition with upstream collusive pricing

We consider the case with γ ≥ γ̂ under successive Bertrand competition. Differentiating (5) and

(6) with respect to γ and λ yields the following proposition:

Proposition 2. We assume that γ ≥ γ̂. (i) Each upstream firm’s profit decreases with γ and

λ. (ii) The profit of each downstream firm is a single-peaked function of λ, and decreases with

γ. (iii) The consumer and total surplus decrease with γ and λ.

In this case, only the conditions that determine the equilibrium input price differ from upper-

bound pricing. When the equilibrium input price is collusive, the competition-mitigation effect

of increased production inefficiency in the upstream market disappears. Hence, upstream firms’

profits decrease with γ. The other results are similar to Proposition 1, as are their intuitions.

4.3 Successive Cournot competition

We consider the case with successive Cournot competition. Differentiating (7) and (8), we obtain

the following proposition:

Proposition 3. (i) Each upstream firm’s profit is a single-peaked function of γ, takes its maxi-

mum value at γ = (m−3)(b+ bn+2λ)/(2n), and decreases with λ. (ii) Each downstream firm’s

profit is a single-peaked function of λ, takes its maximum value at λ = [2nγ + b(1 + m)(n −

3)]/[2(1+m)], and decreases with γ. (iii) The consumer and total surpluses decrease with γ and

λ.

The intuition behind this result is as follows. An increase in γ or λ causes an inefficient

effect of the upstream or downstream technology. This effect has a negative impact on both

upstream and downstream profits, similar to Proposition 1. In addition, an increase in γ or λ

also has an input price effect. However, an increase in γ reduces total upstream output. Because
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of the input market-clearing condition, the input price rises, which is profitable for upstream

firms. On the contrary, an increase in λ reduces the total downstream output, which lowers the

input price and increases downstream profit. In our model, the input price effect dominates the

inefficiency effect if γ or λ are small. Hence, the first and second results hold true. Finally, the

effect of changing γ or λ on the consumer and total surplus is the same as in Propositions 1 and

2.
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