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Graphical Abstract

Nonlinear Reduced-Order Modeling for Three-Dimensional Turbu-
lent Flow by Large-Scale Machine Learning

Kazuto Ando, Keiji Onishi, Rahul Bale, Akiyoshi Kuroda, Makoto Tsub-
okura
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Distributed machine learning for flow field mode 
decomposition
l Reduced-order modeling using 64 nonlinear modes obtained 

by the neural network reproduce three dimensional 
turbulent flow with Re=1000

l Implemented scalable distributed learning environment for 
the mode decomposition up to 25,250 CPUs (1.2M cores) 
on Fugaku

l Training loop indicates 7.8 PFLOPS and convolution kernel 
indicates 100 PFLOPS

Neural network-based nonlinear reduced-order model 
l Predict time-variation of latent vector using LSTM
l Neural network-based method shows higher reproduction 

accuracy than the method of combination of the proper 
orthogonal decomposition and Galerkin projection

l Reduced-order model reduces the number of calculation by 
4 or 5 orders of magnitude relative to full-order model 
without significant precision loss

Implementation of distributed learning Reduced-order simulation results
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• ROM using 64 nonlinear modes reproduce three dimensional turbulent
flow with Re=1000

• Proposed method shows higher reproduction accuracy than combina-
tion of POD and GP

• Implemented distributed learning framework scales up to 25,250 CPUs
on Fugaku

• ROM reduces the number of calculations by 4 or 5 orders of magnitude
relative to FOM
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Abstract

A large-scale machine learning-based nonlinear reduced-order modeling method
was developed for a three-dimensional turbulent flow field (Re = 1000) us-
ing a neural-network with unsupervised learning. First, a mode decom-
position method was applied to three-dimensional flow field data using a
convolutional-autoencoder-like neural network. Then, a reduced-order model
(ROM) was constructed using long short-term memory neural networks.
Consequently, it was demonstrated that the time evolution of the turbu-
lent three-dimensional flow field can be simulated at a significantly lower
cost (approximately three orders of magnitude) without a major loss in ac-
curacy. However, neural-network-based mode decomposition for the three-
dimensional flow field requires a huge computational cost in terms of calcu-
lation and memory usage. Therefore, a distributed machine-learning method
was implemented using a hybrid parallelism scheme tailored to the network
structure. Thus, it was possible to decompose 1.7 million cells of the three-
dimensional flow field data into 64 modes and reproduce those with sufficient
accuracy. In this study, a uniform flow around a circular cylinder model was
used as a test case. To validate the method, the reduction performance of
the proposed mode decomposition method was compared with the proper or-
thogonal decomposition (POD) method. Furthermore, the target flow field
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was reproduced using ROM, and the reconstruction accuracy was evaluated
in terms of various criteria compared with the accuracy based on POD in
conjunction with Galerkin projection method.

Keywords: reduced-order model, turbulence, three-dimensional flow field,
distributed machine learning, convolutional autoencoder (CAE), long
short-term memory (LSTM) networks

1. Introduction

Numerical simulation, required in industrial applications, such as design
optimization of automobile shapes and optimal control, must be executed
repeatedly by changing the conditions, including the model shape and in-flow
velocity. The cost of such a simulation is a major obstacle for industrial users
considering the feasible size of the computational system and amount of time
one user can exclusively devote for such a system. Therefore, it is necessary to
construct a surrogate model that reduces the calculation cost while retaining
the desired accuracy. There are two types of surrogate model. One involves
the simplistic determination of the relation between the input (model shape,
calculation condition, etc.) and output (drag, lift, etc.) using statistical
methods or machine learning. The other is the reduced-order model (ROM),
in which the dimensions of the data are reduced while retaining the physically
important information, and the simulation is conducted in the reduced-order
space. The former simply learns the relationship between input and output.
The latter, however, learns the spatiotemporal features of the physical field;
that is, the spatiotemporal relation, represented as the governing equations,
is the learning target.

Various efforts have been made to construct ROM. First, the methods
of dimension reduction are briefly introduced. The most commonly used
method is proper orthogonal decomposition (POD). POD identifies a linear
subspace in which most data are in the vicinity. A linear subspace is obtained
by solving the eigenvalue problem. POD is discussed in detail in Section
2.1. Another classical method is multidimensional scaling. This method
solves the eigenvalue problem, similar to POD; however, the target matrix
is a more generalized distance matrix. If the matrix is constructed with
Euclidean distance, this method is identical to POD. The distance matrix
can be constructed from other sources than the Euclidean distance. If the kth
neighboring point is used, the solution space can be extended to nonlinear
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space. This method is called “isomap” [1]. With this method, the distance
between the most adjacent points is regarded as the Euclidean distance;
however, the Riemannian manifold can be constructed by concatenating the
local linear distant spaces.

Similar to isomap, several methods can address the nonlinear subspace.
Locally linear embedding [2] is one such approach. In this method, the orig-
inal data are first approximately reconstructed using the linear combination
of the k-th neighboring points. In other words, the coefficients of the lin-
ear combination are evaluated to minimize the error between the original
and reconstructed data. Next, while retaining the coefficients, the reduced-
order data are approximated using the k-th neighboring points. Again, the
minimization problem of the residual for the reduced data is solved. The
Laplacian eigenmap [3] is a nonlinear method in which a weight matrix is
constructed using the information of the neighboring points, and the dimen-
sions are reduced while the information of the Laplacian matrix is preserved.
Finally, another nonlinear method, t-SNE [4], which is an enhanced version of
stochastic neighbor embedding (SNE) [5], symmetrizes the cost function and
uses Student’s t-distribution when considering the distance in the reduced
dimensional space.

Next, the methods for solving time marching in reduced-order space are
introduced. The most typical method in conjunction with POD is Galerkin
projection (GP) [6]. In this method, the solution is represented as a lin-
ear combination of the bases obtained by POD. The governing equation is
projected into the space spanned by the bases, and the ROM is derived.
Consequently, the time marching of the coefficient of linear combination of
the bases is solved using ROM. The method of constructing ROM in this
way using not only data but also information from the governing equations
is called “intrusive reduced-order modeling.” This method is simple in terms
of theory and methodology, thus is popular. However, this method does not
provide sufficient prediction accuracy for an advection-dominant problem,
that is, a case where nonlinearity appears strongly, such as the flow around
a vehicle body. In other words, the solution space of such a problem ex-
hibits a slowly decaying Kolmogorov n-width [7] with an increasing subspace
dimensionality.

A method using a nonlinear manifold can be used to address this prob-
lem. The Galerkin projection can be extended to a nonlinear solution man-
ifold. However, the computational cost of calculating the nonlinear term
during ROM simulation is a challenge. To solve this problem, hyperreduc-
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tion techniques, such as empirical interpolation method [8], discrete empirical
interpolation method [9], Gauss–Newton with approximated tensors [10], and
trajectory piecewise linearization [11], can be used. In addition, the spectral
submanifold method has been attracting attention in recent years [12].

Because deep learning has attracted attention in the field of image recog-
nition, dimension reduction and ROM methods using neural networks have
been proposed as alternatives to the aforementioned methods. The dimen-
sion reduction method using an autoencoder can be considered as a nonlinear
extension of POD [13]. The autoencoder consists of two parts: the encoder,
which reduces the dimensions of the input data, and the decoder, which ex-
pands the dimensions of the input data. The weights of the encoder and de-
coder are updated to minimize the error between the input and output. The
encoder and decoder are typically constructed as multiple layers of a convolu-
tional neural network (CNN), which is called a convolutional neural network
autoencoder (CNN-AE) [14]. Murata et al. proposed the mode-decomposing
convolutional neural network autoencoder (MD-CNN-AE), which is a variant
of CNN-AE in which the decoder section is branched for each mode, with the
intention of visualizing the decomposed flow field, similar to POD [15]. In
this study, this network was extended to a three-dimensional flow field. In re-
cent years, there have also been examples of using a variational autoencoder
(VAE) [16], where the network is trained such that the elements of the latent
vector follow a normally distributed random variable [17, 18, 19, 20, 21].

However, there are many techniques of ROM prediction of time marching
in the reduced-order space using a neural network. In most typical cases, long
short-term memory (LSTM) networks are used [22]. This type of method is
called “nonintrusive reduced-order modeling” [23] because it constructs the
ROM only from data without using the information of the governing equa-
tions (e.g., Gaussian process regression [24] is a nonintrusive method that was
widely used). Hasegawa et al. used a CNN-AE to reduce the dimensions and
LSTM networks for the temporal prediction of latent vector (the variables
represent the system state in the reduced-order space) to evaluate the robust-
ness of the flow field prediction as the model shape changes [25]. In addition,
Nakamura et al. proposed a method for arranging LSTMs with a different
number of features in the hidden state in parallel to improve the accuracy
of the time prediction [26]. Quilodrán et al. [27] proposed an LSTM-based
method in conjunction with generative adversarial networks [28] to increase
the prediction accuracy. Maulik et al. [29] solved the time integration with
neural ordinary differential equations [30]. Kim et al. [31] and Lee et al.
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[32] proposed a nonlinear alternative to the projection method, such as the
Galerkin projection.

With regard to large-scale machine learning for mode decomposition, a
distributed parallel machine-learning environment was implemented on the
supercomputer Fugaku [33, 34]. The hybrid-parallel scheme, the combination
of data parallelism that distributes the training data and model parallelism
that distributes parts of the entire network structure were enhanced [35].
This implementation made it possible to decompose the three-dimensional
flow field of 1.7 million cells into 100 modes using 25,250 nodes (1.2 million
cores). In this study, the method was evaluated precisely in terms of the
prediction accuracy for three-dimensional turbulent flow.

2. Methods

In this section, a high-precision flow simulation in which flow field snap-
shots are used as training data for machine learning is described. In addition,
some mode decomposition methods to be evaluated in the following section
are discussed.

2.1. Full-Order Model

To produce a reference flow field, a full-order model (FOM) simulation
using CUBE [36] was conducted (that is, a high-precision three-dimensional
flow simulation). CUBE is a unified simulation framework that is based on
the building cube method (BCM) [37, 38] and immersed boundary method
(IBM) [39, 40], encompassing an incompressible/compressible flow solver and
a structural solver for computing fluid–solid interactions [41, 42]. In this
study, an incompressible flow solver was used in which the governing equation
is as follows:

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u+ f , (1)

ρ∇ · u = 0, (2)

where u, p, ρ, and µ are the flow velocity, pressure, density, and viscosity,
respectively. The execution parameters of FOM are listed in Table 1. The
computational domain is depicted the black-lined area in Figure 1, which
consists of 28 million cells. In addition, the target region for machine learning
is the area of 1.7 million cells enclosed by the red line in Figure. 1.
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Table 1: Execution parameters of FOM.

Parameter Value
Computational domain 40D× 20D× 2.5Da

Minimum cell size 0.026Da

Number of cells 1, 536× 768× 24
Reynolds number 1,000
Time step size 5.0× 10−3 s
Number of time steps 90,000
Output frequency Every 5 steps (0.025 s)
a D(=1) is the circular cylinder diameter.

10D

40D

20D

2D

2.5D

Inflow

5D

1D

Computational domain

Target domain for 
machine learning

Figure 1: Computational domain of full-order model (Black lined box area) and target
region of the machine learning (Red lined box area).

2.2. POD and Galerkin Projection

POD is a representative method for dimension reduction that assumes a
linear solution manifold. The key idea of POD is to project high-dimensional
data onto a lower-dimensional space. For example, in the case of three-
dimensional data, the data are projected onto a two-dimensional plane (Fig.
2). In other words, the data dimensions are reduced from three to two.
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Figure 2: Dimension reduction into linear subspace. ϕ1 and ϕ2 represent POD bases.
The red plane means the linear subspace spanned by ϕ1 and ϕ2. The blue dots mean the
original (three-dimensional) data and the red dots mean reduced-order (two-dimensional)
data projected to the linear subspace.

In the following, POD is formulated (according to [43]) as

x(t) = q(ξ, t)− q̄(ξ) ∈ Rn, t = t1, t2, ..., tm (3)

where ξ, q(ξ, t), q̄(ξ), and x(t) represent the spacial vector, the vector field,
its time-averaged value, and the fluctuating value of the q(ξ, t), respectively.

Now, you can construct the matrix X with concatenating the time series
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of the x(t).
X = [x(t1) x(t2) ... x(tm)] ∈ Rn×m (4)

Using the method of Lagrange multipliers, the k-th POD mode ϕj is eval-
uated such that variance

∑m
i=1(x(ti) ·ϕj)

2 is maximized subject to constraint

to ϕT
j ϕj = 1.

ϕj = argmax
ϕj

L(ϕj) (5)

= argmax
ϕj

m∑
i=1

(x(ti) · ϕj)
2 − λj(ϕ

T
j ϕj) (6)

= argmax
ϕj

m∑
i=1

(ϕT
j x(ti)x

T (ti)ϕj)− λj(ϕ
T
j ϕj). (7)

That is, ϕj is found when the first derivative of L(ϕj) is 0.

∂L(ϕj)

∂ϕj

= 2
( m∑
i=1

x(ti)x
T (ti)ϕj − λjϕj

)
(8)

= 2
(
XXTϕj − λjϕj

)
(9)

= 0 (10)

Finally, the following eigenvalue problem is derived:

XXTϕj = λjϕj, ϕj ∈ Rn. (11)

However, solving this problem requires considerable computational time;
therefore, the size of the matrix in the following form is reduced in practice
(called “snapshot POD”)

XTXψj = λjψj, ψj ∈ Rm (12)

ϕj = Xψj

1√
λj

, ϕj ∈ Rn (13)
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Once POD mode ϕj is obtained, the ROM can be constructed using
Galerkin projection. The flow field is represented using {ϕj}rj=1 as follows:

u(x, t) =
r∑

j=0

aj(t)ϕj(x). (14)

The incompressible Navier-Stokes equation is

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u. (15)

Substituting Eq. (14) into Eq. (15) and taking the dot product with ϕi

on both sides yields

r∑
j=0

da

dt
⟨ϕi,ϕj⟩+

r∑
j=0

r∑
k=0

ajak⟨ϕi, (ϕj · ∇)ϕk⟩ = −⟨ϕi,∇p⟩+ 1

Re

r∑
j=0

aj⟨ϕi,∇2ϕj⟩.

(16)

From ⟨ϕi,ϕj⟩ = δij and ⟨ϕi,∇p⟩ = 0, Eq. (16) can be written as

r∑
j=0

dai
dt

=
r∑

j=0

r∑
k=0

Fijkajak +
r∑

j=0

Gijaj, (17)

Fjk = −⟨ϕi, (ϕj · ∇)ϕk⟩. (18)

Gij =
1

Re
⟨ϕi,∇2ϕj⟩. (19)

Now, ROM of the incompressible Navier-Stokes equation by the Galerkin
projection is derived. Here, Fijk and Gij are time-invariant, i.e., they can be
calculated prior to the start of the simulation. Finally, the time evolution
of the flow field can be simulated by solving r sets of ordinary differential
equations.
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2.3. Neural-Network-Based ROM

Next, the details of the neural network for mode decomposition, MD-
CNN-AE, are introduced. Figure 3 shows a schematic of the network struc-
ture. The first half of the network, the encoder, inputs the high-precision
flow field snapshots and gradually reduces the dimensions as the data pass
through the layers, and it outputs the vector containing the reduced variables,
the latent vector. The second half of the network, the decoder, branches for
each mode for decomposition. Each branched network inputs each element of
the latent vector. Then, the data dimension is expanded as it passes through
the layers. Each branched network outputs a decomposed flow field for each
mode. Finally, these decomposed flow fields are combined, and the flow field
that reproduces the original flow field is output. These networks are trained
to minimize the errors between the original flow field x(t) and reconstructed
flow field

∑r
j=1 Fdec,j([Fenc(x(t))]j). This optimization problem is formulated

as

{ϕj}rj=1 = argmin
{ϕ̃j}rj=1

∫ tmax

tmin

∥(x(t)−
r∑

j=1

Fdec,j([Fenc(x(t))]j)∥2dt, (20)

where Fenc is the encoder; Fdec,j is the decoder corresponding to the j-th
mode, and {ϕj}rj=1 is the trained network weights. The detailed network
structure is shown in Appendix A.1.
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Figure 3: Schematics of network for three-dimensional mode decomposition.

In addition, a hybrid-parallel scheme was implemented, that is, the train-
ing data and network structure are both distributed to the other MPI pro-
cesses, which do not share memory space, to execute large-scale machine
learning for mode decomposition (Figure 4). For the latter parallelization,
the encoder and multiple decoders are assigned to a single MPI process. This
implementation can overcome the memory barrier and increase the number
of decompositions to the limit of the number of nodes provided by the sys-
tem. To conduct large-scale machine learning using this implementation, as
many as 25,250 nodes of the Fugaku supercomputer (1.2 million cores) were
used. The number of MPI processes to be used for data parallelization is
fixed at 384 MPI processes, and the total number of processes is increased
by a constant factor of 384 with a number of decompositions.

The number of data used for training is 10,000 with a time step size
equal to 0.025 seconds. Of those 7,000 are for training and 3000 are for
evaluation. Besides, the number of test data is 2,000. The global batch size
is 768. Therefore, dividing by the number of 384 MPI processes regarding
to data parallelism gives a local batch size of 2. This network trained 11,000
epochs using the Adam optimizer [44]. A more detailed explanation of hyper-
parameters for the network is shown in Appendix B.1.
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Figure 4: Processing flow of the hybrid parallelization scheme for mode decomposition.
The top is the original sequential execution, and the bottom is the hybrid parallel execu-
tion. The blue and black line represent the local data flow and the MPI communication,
respectively.

Once the machine learning for mode decomposition has been completed,
the dimensions of the original flow field snapshots can be reduced. There-
fore, the time series of latent vectors can be obtained. Next, another neu-
ral network, the LSTM network, is harnessed for learning the time series.
LSTM network is a type of recursive neural network (RNN) that specializes
in learning long-term dependency. Figure 5 shows the internal structure of
the LSTM. LSTMs take the 20-time steps of the latent vectors to step τ and
predict the unknown latent vector of step τ+1. Once the LSTM is trained,
using only the initial 20-time steps of the latent vectors, it is possible to
predict the following time steps up to the last step. Finally, the trained de-
coder network can decode the time series of latent vectors to the flow field
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snapshots. The corresponding procedure is formulated as follows:
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Predicted time series of latent vectors
from step 𝜏 − 18 to 𝜏 + 1

Decode

Prediction

Figure 5: Schematics of network for learning time series of latent vector.

it = σ(Waiat + bii +Wãiãt + bhi), (21)

ft = σ(Wafat + bif +Wãf ãt + bhf ), (22)

c̃t = tanh(Wacat + big +Wãc̃ãt + bhg), (23)

ot = σ(Wioat + bio +Wãoãt + bho), (24)

ct = ft ⊙ ct−1 + it ⊙ c̃t, (25)

ãt+1 = ot ⊙ tanh(ct), (26)

where at, W , b, it, ft, c̃t, ot, ct, and ãt+1 represent the latent vector of the
current time-step, weight, bias, input gate, forget gate, candidate of the new
cell state, output gate, new cell state, and predicted latent vector of the next
time-step, respectively. The network inputs the latent vector for the past 20
steps and outputs that for the past 19 steps and the subsequent step. The
entire network consists of a parallel arrangement of LSTM networks with a
different numbers of features in the hidden state, as reported by Nakamura
et al. [26]. The detailed network structure is shown in Appendix A.2.

The number of data used for training is 10,000 with a time step size equal
to 0.25 seconds. Of those 7,000 are for training and 3000 are for evaluation.
Besides, the number of test data is 2,000. This network trained 2,000 epochs
using the Adam optimizer. A more detailed explanation of hyperparameters
for the networks is shown in Appendix B.2.
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3. Results and Discussion

In this section, the results of ROM simulations using the conventional
(combining POD and GP) and proposed (combining MD-CNN-AE and LSTM)
methods are presented, and the reproducibilities of both for the FOM flow
field are compared.

3.1. Reduction Performance of Flow Field Structure

In this subsection, to evaluate the flow field dimension-reduction perfor-
mance (excluding the time evolution part), the reduction performance of the
only mode decomposition part, MD-CNN-AE, is evaluated.

Figure 6 shows the history of the validation error when training MD-CNN-
AE. In this case, the maximum number of mode decompositions is up to 64
due to the restriction of computational resources (it requires 6,244 compu-
tational nodes × 150 hours). We conducted two modes of decomposition for
the minimum case. However, there is no reproduction performance. Thus, we
set 16 modes as the baseline number of decompositions. Before 6000 epochs,
the error of the 64-mode training is larger than that of 16-modes training.
This means that a greater number of training iterations is required when the
number of mode decompositions increases.
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Figure 6: History of validation error of MD-CNN-AE training: the blue and orange lines
indicate the decomposition into 16 and 64 modes.

To evaluate the reduction performance of the instantaneous flow field,
POD decomposition was applied to the original flow field (full-order model)
and reconstructed flow field with the MD-CNN-AE, and the energy distri-
bution of each POD mode was evaluated (Figure 7). When using 16 modes,
if the number of epochs is larger, the gradient of the energy retained by
each POD mode is more moderate. The same trend can be seen with the 64
modes, but the gradient is gentler than that with the 16 modes.
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Figure 7: Energy distribution corresponding to each POD mode: the black line indicates
the Full-order model. The blue and orange lines indicate the 16-modes decomposition using
MD-CNN-AE trained with 5,500 and 11,000 epochs. The green and red lines indicate the
64-modes decomposition using MD-CNN-AE trained with 5,500 and 11,000 epochs.
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The time series of the latent vector elements with the 16-mode decompo-
sition are shown in Figure 8 (only four elements out of 16 are extracted). It
can be seen that the value of some elements can change significantly as the
number of epochs increases.
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Figure 8: Time series of latent vector elements: the blue and orange lines indicate the
results of MD-CNN-AE trained with 5,500 and 11,000 epochs.

Next, the decomposed flow field using POD and MD-CNN-AE is shown.
The original flow field created with the FOM simulation was decomposed
using POD (Figure 9(a)). Each decomposed flow field had a symmetric
structure in which the two modes were paired. However, the MD-CNN-AE
decomposition applied to the original flow field (Figure 9(b)) showed a more
complicated flow structure in each mode, which was not symmetrical. Fur-
thermore, only mode 3 of the MD-CNN-AE decomposition was decomposed
by POD (Figure 10). It can be seen that one MD-CNN-AE mode contains
two or more POD modes.
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Figure 9: Decomposed flow field by applying (a)POD and (b)MD-CNN-AE to FOM sim-
ulation result.
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Figure 10: Decomposed flow field by applying POD to mode 3 of MD-CNN-AE result.
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3.2. Prediction by ROM Simulation

The prediction performance of ROM simulation was evaluated. The time
variation of the element of the latent vector of the training data and ROM
simulation results using LSTM are shown in Figure 11. The LSTM predicts
all the time steps from only the initial 20 steps. The oscillation phase of the
ROM prediction almost matched with that of the test data. In addition, the
amplitude of the prediction roughly matched in each mode (See Appendix
C for all of the latent vector elements by 16-modes and 64-modes decompo-
sition). The time series of latent vector elements with low-frequency oscil-
lation shows deviations from FOM results. Although the hyper-parameter
optimization for LSTM is necessary to resolve low-frequency oscillations, this
topic lies outside the scope of this paper.
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Figure 11: Time series of latent vector elements (only the first four modes are extracted):
the blue and orange lines indicate, respectively the test data and the prediction with LSTM
derived from first 20 time steps.

Figures 12–14 show comparisons of the flow fields between the FOM
results and ROM predictions with 16-mode decomposition. The proposed
method, which enhanced the MD-CNN-AE and LSTM (MD-CNN-AE +
LSTM), reproduced a more complex flow field than the method combin-
ing POD and GP (POD + GP). Moreover, the oscillation phase predicted
by MD-CNN-AE + LSTM is better matched than that predicted by POD
+ GP. The reason MD-CNN-AE + LSTM works better than POD + GP is
that the decomposed mode extracted by MD-CNN-AE corresponds to the
multiple POD-decomposed modes [15]. Therefore, when the number of de-
composition modes is fixed, the former shows higher reproducibility.
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ROM: PODとAIの⽐較 (Streamwise velocity)
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Figure 12: Comparison of streamwise velocity between FOM and ROM predictions with
16 modes.ROM: PODとAIの⽐較 (Vertical velocity)

l 16モード使⽤、MDCNNAEのエポック数は11000、LSTMのエポック数は2000
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Figure 13: Comparison of vertical velocity between FOM and ROM predictions with 16
modes.ROM: PODとAIの⽐較 (Spanwise velocity)

l 16モード使⽤、MDCNNAEのエポック数は11000、LSTMのエポック数は2000
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Figure 14: Comparison of spanwise velocity between FOM and ROM predictions with 16
modes.
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Figures 15–17 are comparisons of the flow fields between the FOM results
and ROM predictions with 64-mode decomposition. Using MD-CNN-AE +
LSTM, The reproducibility of the complex flow field structure contained in
the original flow field was better than that of the 16 modes. Specifically, the
amplitude of the flow was reproduced well by the proposed method in the
spanwise velocity.ROM: PODとAIの⽐較 (Streamwise velocity)

l 64モード使⽤、MDCNNAEのエポック数は11000、LSTMのエポック数は2000
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Figure 15: Comparison of streamwise velocity between FOM and ROM predictions with
64 modes.ROM: PODとAIの⽐較 (Vertical velocity)
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Figure 16: Comparison of vertical velocity between FOM and ROM predictions with 64
modes.
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ROM: PODとAIの⽐較 (Spanwise velocity)
l 64モード使⽤、MDCNNAEのエポック数は11000、LSTMのエポック数は2000
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Figure 17: Comparison of spanwise velocity between FOM and ROM predictions with 64
modes.

Figure 18 shows the time-averaged value of the L2 error between the
FOM and ROM predictions with 16-mode decomposition. In MD-CNN-AE
+ LSTM method, the area with a large error value (black region) is smaller
than that of POD + GP.

L2エラー
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モード数:16

Streamwise velocity 𝒖

Vertical velocity 𝒗

Spanwise velocity 𝒘

ROM (POD + GP) ROM (MD-CNN-AE + LSTM)

Figure 18: Comparison of time-averaged L2 error between FOM and ROM predictions
with 16 modes: the upper, center, and bottom figure represents, respectively the stream,
vertical, and spanwise velocity.

Figure 19 shows the time-averaged value of the L2 error between FOM and
ROM predictions with 64 modes. The reproduction accuracy of MD-CNN-
AE + LSTM is still higher than that of POD + DP; however, the difference
is moderate because the property of the time-averaged field is considered to
be mostly determined in 64 POD modes.
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Figure 19: Comparison of time-averaged L2 error between FOM and ROM predictions
with 64 modes.

Figure 20 shows the time variation of the space-averaged L2 error between
the FOM and ROM predictions with 16 and 64 modes. While both the MD-
CNN-AE + LSTM and POD + GP methods show a trend of increasing
error as the number of modes increases, the error value of the MD-CNN-AE
+ LSTM is smaller than that of the POD + GP method for most of the
period. However, the error of the POD + GP may oscillate periodically;
thus, in the last 10 s, the error of the POD + GP method is lower than that
of MD-CNN-AE + LSTM method.
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Figure 20: Comparison of time variation of the space-averaged L2 error between FOM
and ROM predictions with 16 and 64 modes.
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Figure 21 shows the time-averaged value of the flow field on the center
line between the FOM and ROM predictions with 16 and 64 modes. In this
case, MD-CNN-AE + LSTM method with 16 modes is the best fitted to the
FOM results.
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Figure 21: Comparison of the time-averaged value of the flow field on the center line
between FOM and ROM predictions with 16 and 64 modes. From left to right are the
time-averaged value of the stream-wise, vertical, and span-wise velocity, respectively.

The results so far in this chapter show that as the number of decomposing
modes increases, finer vortex structures can be resolved (Fig. 12–17) while
the reproducibility of average values in time or space decreases (Fig. 18–21).
This is because the temporal or spatial average of the flow field is determined
by only a few dominant modes. Using more than a sufficient number of modes
to reproduce the mean field is considered to introduce noise into the mean
field reconstruction.

Figure 22 shows the isosurface of the second invariant of the velocity
gradient tensor between the FOM and ROM predictions with 16 modes. The
reproduction of the POD + GP method is not precise in the wake region. In
contrast, MD-CNN-AE + LSTM can reproduce the complex flow field of the
FOM.
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Figure 22: Comparison of the iso-surface of the second invariant of the velocity-gradient
tensor between FOM and ROM predictions with 16 modes.

Figure 23 shows the isosurface of the second invariant of the velocity
gradient tensor between the FOM and ROM predictions with 64 modes. Al-
though, the reproduced flow field of the AI method is slightly noisy owing to
the insufficient number of learning epochs, it can reproduce a more complex
flow field than the one with 16 modes. Thus, it is expected that the greater
the number of modes to decompose in MD-CNN-AE + LSTM, the greater
is the reproduction accuracy for the complex flow field.
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Figure 23: Comparison of the iso-surface of the second invariant of the velocity-gradient
tensor between FOM and ROM predictions with 64 modes.
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3.3. Computational Performance of Training for Mode Decomposition

Table 2 lists the computational performances of the training for mode
decomposition using one of the four computational units called core memory
groups (CMGs) in A64FX CPU installed in Fugaku node. The entire training
loop, which involves I/O and communications, indicates 129 GFLOPS, which
corresponds to 7.76 % of the single-precision floating-point arithmetic peak
performance. Moreover, the convolution kernel indicates 1.1 TFLOPS, which
corresponds to 65.39 % of the peak performance. This kernel calls convolution
routine in the Intel oneDNN library ported to Fugaku by Fujitsu [45]. Figure
24 shows the CPU cycle counter result, which indicates whether the core
works efficiently in each CPU cycle in the convolution routine. The light
blue bar indicates the amount of time while the instructions are committed
most efficiently — that is, this kernel is almost perfectly optimized to A64FX.

Table 2: Computational performance of the training for mode decompositiona.

Total Convolution
FLOPS 129.50 GFLOPS (7.67%) 1103.09 GFLOPS (65.39%)
Mem. throughput 10.92 GB/s (4.26%) 38.16 GB/s (14.91%)
L1D cache miss rate 2.39% 0.34%
L2 cache miss rate 0.67% 0.25%
a 1 CMG running at 2.2GHz is used.
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9.10E-02 1103.09 130.79% 38.16 14.91% 7.47E+09 1.00E+11 86.79% 100.00% 99.23% 3.11 82.12 7.20E-05 3.48E-05 7.66E-05 1.35E-04 3.98E-04 2.24E-03 1.43E-03 1.56E-03 1.32E-04 1.07E-03 5.47E-05 2.45E-04 0.00E+00 2.80E-04 6.10E-05 8.02E-03 8.93E-03 7.29E-03 5.90E-02 1.32E-05 9.10E-02

Process Thread
0 0 67.68% 65.75% 10.60% 10.35% 74.04% 80.95% 78.09% 98.48% 100.00% 100.00% 100.00% 0.00
0 1 67.60% 65.66% 10.65% 10.38% 73.84% 80.94% 78.04% 98.48% 100.00% 100.00% 100.00% 0.00
0 2 67.62% 65.67% 9.88% 9.71% 73.96% 81.86% 78.80% 98.48% 100.00% 100.00% 100.00% 0.00
0 3 67.62% 65.68% 10.60% 10.42% 73.96% 80.97% 78.07% 98.48% 100.00% 100.00% 100.00% 0.00
0 4 67.59% 65.66% 10.61% 10.35% 73.85% 80.93% 78.00% 98.48% 100.00% 100.00% 100.00% 0.00
0 5 67.59% 65.66% 10.64% 10.36% 73.90% 80.95% 78.04% 98.48% 100.00% 100.00% 100.00% 0.00
0 6 67.59% 65.67% 10.59% 10.34% 73.83% 80.95% 77.99% 98.48% 100.00% 100.00% 100.00% 0.00
0 7 67.60% 65.67% 10.55% 10.32% 73.90% 80.93% 78.01% 98.48% 100.00% 100.00% 100.00% 0.00
0 8 67.59% 65.66% 10.61% 10.33% 73.91% 80.93% 78.02% 98.48% 100.00% 100.00% 100.00% 0.00
0 9 67.62% 65.69% 10.47% 10.22% 73.87% 80.85% 77.91% 98.48% 100.00% 100.00% 100.00% 0.00
0 10 67.60% 65.67% 10.39% 10.14% 73.84% 80.82% 77.85% 98.48% 100.00% 100.00% 100.00% 0.00
0 11 67.58% 65.67% 10.41% 10.15% 73.79% 80.82% 77.90% 98.48% 100.00% 100.00% 100.00% 0.00

67.61% 65.68% 10.50% 10.26% 73.89% 13.09% 14.91% 80.99% 78.06% 98.48% 100.00% 100.00% 100.00% 0.00

Process Thread
0 0 0.00 2.79E+08 9.56E+05 0.00 7.20% 92.77% 0.03% 8.37E+05 0.00 3.69% 54.94% 41.36% 0.00010 0.00000
0 1 0.00 2.79E+08 9.55E+05 0.00 7.13% 92.81% 0.05% 3.81E+05 0.00 4.17% 2.59% 93.24% 0.00010 0.00000
0 2 0.00 2.77E+08 9.55E+05 0.00 7.15% 92.89% -0.04% 8.36E+05 0.00 1.93% 55.67% 42.40% 0.00010 0.00000
0 3 0.00 2.79E+08 9.56E+05 0.00 7.19% 92.73% 0.08% 8.38E+05 0.00 3.38% 54.75% 41.87% 0.00010 0.00000
0 4 0.00 2.79E+08 9.56E+05 0.00 7.22% 92.69% 0.09% 3.82E+05 0.00 0.40% 2.53% 97.08% 0.00010 0.00000
0 5 0.00 2.79E+08 9.54E+05 0.00 7.17% 92.83% 0.00% 8.40E+05 0.00 3.57% 54.77% 41.65% 0.00010 0.00000
0 6 0.00 2.79E+08 9.55E+05 0.00 7.20% 92.71% 0.09% 8.34E+05 0.00 4.33% 38.16% 57.51% 0.00010 0.00000
0 7 0.00 2.79E+08 9.54E+05 0.00 7.08% 92.89% 0.03% 3.85E+05 0.00 0.33% 38.58% 61.09% 0.00010 0.00000
0 8 0.00 2.79E+08 9.53E+05 0.00 7.06% 92.97% -0.03% 8.26E+05 0.00 3.39% 54.84% 41.77% 0.00010 0.00000
0 9 0.00 2.78E+08 9.68E+05 0.00 8.46% 91.62% -0.08% 8.27E+05 0.00 3.29% 54.80% 41.90% 0.00009 0.00000
0 10 0.00 2.78E+08 9.70E+05 0.00 8.54% 91.48% -0.02% 6.06E+05 0.00 3.90% 1.97% 94.13% 0.00009 0.00000
0 11 0.00 2.78E+08 9.68E+05 0.00 8.47% 91.57% -0.04% 6.13E+05 0.00 1.95% 55.70% 42.35% 0.00009 0.00000

0.00 3.34E+09 1.15E+07 0.00 7.49% 92.49% 0.01% 8.20E+06 0.00 2.92% 45.11% 51.98% 0.00010 0.00000

Non-SIMD Non-SIMD

Process Thread Process Thread
0 0 3.96E+04 0.00E+00 0.00E+00 2.61E+08 1.25E+07 8.50E+01 0.00E+00 3.48E+06 4.09E+04 0.00E+00 0.00E+00 1.83E+06 0.00E+00 7.03E+05 1.33E+06 0.00E+00 4.96E+05 7.38E+04 1.51E+06 2.61E+08 0.00E+00 0.00E+00 1.85E+06 9.30E+01 1.19E+06 1.82E+05 0.00E+00 7.63E+07 6.23E+08 0 0 2.72E+00
0 1 3.96E+04 0.00E+00 0.00E+00 2.61E+08 1.25E+07 8.50E+01 0.00E+00 3.15E+06 4.09E+04 0.00E+00 0.00E+00 1.83E+06 0.00E+00 7.05E+05 1.33E+06 0.00E+00 4.96E+05 7.45E+04 1.51E+06 2.61E+08 0.00E+00 0.00E+00 1.85E+06 3.00E+00 1.26E+06 1.82E+05 0.00E+00 7.68E+07 6.23E+08 0 1 2.72E+00
0 2 3.96E+04 0.00E+00 0.00E+00 2.61E+08 1.25E+07 8.50E+01 0.00E+00 1.12E+06 4.09E+04 0.00E+00 0.00E+00 1.83E+06 0.00E+00 4.66E+05 1.33E+06 0.00E+00 4.96E+05 7.43E+04 1.51E+06 2.61E+08 0.00E+00 0.00E+00 1.85E+06 3.00E+00 1.30E+06 1.82E+05 0.00E+00 7.91E+07 6.23E+08 0 2 2.68E+00
0 3 3.96E+04 0.00E+00 0.00E+00 2.61E+08 1.25E+07 8.50E+01 0.00E+00 3.19E+06 4.09E+04 0.00E+00 0.00E+00 1.83E+06 0.00E+00 7.11E+05 1.33E+06 0.00E+00 4.96E+05 7.43E+04 1.51E+06 2.61E+08 0.00E+00 0.00E+00 1.85E+06 3.00E+00 1.32E+06 1.82E+05 0.00E+00 7.70E+07 6.23E+08 0 3 2.72E+00
0 4 3.96E+04 0.00E+00 0.00E+00 2.61E+08 1.25E+07 8.50E+01 0.00E+00 3.15E+06 4.09E+04 0.00E+00 0.00E+00 1.83E+06 0.00E+00 7.05E+05 1.33E+06 0.00E+00 4.96E+05 7.43E+04 1.51E+06 2.61E+08 0.00E+00 0.00E+00 1.85E+06 3.00E+00 1.24E+06 1.82E+05 0.00E+00 7.66E+07 6.23E+08 0 4 2.72E+00
0 5 3.96E+04 0.00E+00 0.00E+00 2.61E+08 1.25E+07 8.50E+01 0.00E+00 3.18E+06 4.09E+04 0.00E+00 0.00E+00 1.83E+06 0.00E+00 7.10E+05 1.33E+06 0.00E+00 4.96E+05 7.45E+04 1.51E+06 2.61E+08 0.00E+00 0.00E+00 1.85E+06 3.00E+00 1.31E+06 1.82E+05 0.00E+00 7.68E+07 6.23E+08 0 5 2.72E+00
0 6 3.96E+04 0.00E+00 0.00E+00 2.61E+08 1.25E+07 8.50E+01 0.00E+00 3.12E+06 4.09E+04 0.00E+00 0.00E+00 1.83E+06 0.00E+00 7.02E+05 1.33E+06 0.00E+00 4.96E+05 7.43E+04 1.51E+06 2.61E+08 0.00E+00 0.00E+00 1.85E+06 3.00E+00 1.27E+06 1.82E+05 0.00E+00 7.70E+07 6.23E+08 0 6 2.71E+00
0 7 3.96E+04 0.00E+00 0.00E+00 2.61E+08 1.25E+07 8.50E+01 0.00E+00 3.08E+06 4.09E+04 0.00E+00 0.00E+00 1.83E+06 0.00E+00 6.97E+05 1.33E+06 0.00E+00 4.96E+05 7.43E+04 1.51E+06 2.61E+08 0.00E+00 0.00E+00 1.85E+06 3.00E+00 1.22E+06 1.82E+05 0.00E+00 7.67E+07 6.23E+08 0 7 2.72E+00
0 8 3.96E+04 0.00E+00 0.00E+00 2.61E+08 1.25E+07 8.50E+01 0.00E+00 3.18E+06 4.09E+04 0.00E+00 0.00E+00 1.83E+06 0.00E+00 7.01E+05 1.33E+06 0.00E+00 4.96E+05 7.43E+04 1.51E+06 2.61E+08 0.00E+00 0.00E+00 1.85E+06 3.00E+00 1.20E+06 1.82E+05 0.00E+00 7.66E+07 6.23E+08 0 8 2.72E+00
0 9 3.96E+04 0.00E+00 0.00E+00 2.61E+08 1.25E+07 8.50E+01 0.00E+00 2.83E+06 4.09E+04 0.00E+00 0.00E+00 1.83E+06 0.00E+00 6.66E+05 1.33E+06 0.00E+00 4.96E+05 7.45E+04 1.51E+06 2.61E+08 0.00E+00 0.00E+00 1.85E+06 2.00E+00 9.78E+05 1.82E+05 0.00E+00 7.67E+07 6.22E+08 0 9 2.71E+00
0 10 3.96E+04 0.00E+00 0.00E+00 2.61E+08 1.25E+07 1.19E+02 0.00E+00 2.74E+06 4.09E+04 0.00E+00 0.00E+00 1.83E+06 0.00E+00 6.55E+05 1.33E+06 0.00E+00 4.96E+05 7.43E+04 1.51E+06 2.61E+08 0.00E+00 0.00E+00 1.85E+06 2.00E+00 9.46E+05 1.82E+05 0.00E+00 7.65E+07 6.22E+08 0 10 2.71E+00
0 11 3.96E+04 0.00E+00 0.00E+00 2.61E+08 1.25E+07 8.50E+01 0.00E+00 2.81E+06 4.09E+04 0.00E+00 0.00E+00 1.83E+06 0.00E+00 6.65E+05 1.33E+06 0.00E+00 4.96E+05 7.48E+04 1.51E+06 2.61E+08 0.00E+00 0.00E+00 1.85E+06 2.00E+00 9.67E+05 1.82E+05 0.00E+00 7.65E+07 6.22E+08 0 11 2.71E+00

4.75E+05 0.00E+00 0.00E+00 3.13E+09 1.50E+08 1.05E+03 0.00E+00 3.51E+07 4.91E+05 0.00E+00 0.00E+00 2.20E+07 0.00E+00 8.09E+06 1.60E+07 0.00E+00 5.96E+06 8.92E+05 1.82E+07 3.13E+09 0.00E+00 0.00E+00 2.22E+07 1.23E+02 1.42E+07 2.18E+06 0.00E+00 9.23E+08 7.47E+09 3.26E+01 1.89E+00 3.97E+00
8.92E+05 1.23E+02 1.42E+07 2.18E+06 0.00E+00 9.23E+08 7.47E+09

L1/L2

Process Thread Process Thread Process Thread
0 0 61.59% 0.00% 0.00% 32.76% 0.00% 0.00% 5.66% 0 0 0.00.E+00 8.36.E+09 0.00.E+00 91.18 0 0 0.00% 0.00% 0.00% 6.24E+08 4.35E+03 2.44E+04 0.00E+00 0.00E+00 99.92% 0.64%
0 1 72.13% 0.00% 0.00% 21.34% 0.00% 0.00% 6.53% 0 1 0.00.E+00 8.36.E+09 0.00.E+00 91.22 0 1 0.00% 0.00% 0.00% 6.24E+08 3.87E+03 2.37E+04 0.00E+00 0.00E+00 99.92% 0.52%
0 2 72.22% 0.00% 0.00% 22.17% 0.00% 0.00% 5.62% 0 2 0.00.E+00 8.36.E+09 0.00.E+00 91.24 0 2 0.00% 0.00% 0.00% 6.24E+08 3.87E+03 2.37E+04 0.00E+00 0.00E+00 99.92% 0.56%
0 3 61.93% 0.00% 0.00% 32.83% 0.00% 0.00% 5.24% 0 3 0.00.E+00 8.36.E+09 0.00.E+00 91.18 0 3 0.00% 0.00% 0.00% 6.25E+08 3.87E+03 2.37E+04 0.00E+00 0.00E+00 99.92% 0.56%
0 4 85.64% 0.00% 0.00% 5.87% 0.00% 0.00% 8.49% 0 4 0.00.E+00 8.36.E+09 0.00.E+00 91.28 0 4 0.00% 0.00% 0.00% 6.24E+08 3.87E+03 2.37E+04 0.00E+00 0.00E+00 99.92% 0.53%
0 5 61.64% 0.00% 0.00% 32.52% 0.00% 0.00% 5.84% 0 5 0.00.E+00 8.36.E+09 0.00.E+00 91.22 0 5 0.00% 0.00% 0.00% 6.25E+08 3.87E+03 2.37E+04 0.00E+00 0.00E+00 99.92% 0.51%
0 6 60.96% 0.00% 0.00% 32.40% 0.00% 0.00% 6.64% 0 6 0.00.E+00 8.36.E+09 0.00.E+00 91.18 0 6 0.00% 0.00% 0.00% 6.25E+08 3.87E+03 2.37E+04 0.00E+00 0.00E+00 99.92% 0.57%
0 7 83.94% 0.00% 0.00% 6.53% 0.00% 0.00% 9.53% 0 7 0.00.E+00 8.36.E+09 0.00.E+00 91.24 0 7 0.00% 0.00% 0.00% 6.24E+08 3.87E+03 2.37E+04 0.00E+00 0.00E+00 99.92% 0.54%
0 8 60.83% 0.00% 0.00% 32.34% 0.00% 0.00% 6.83% 0 8 0.00.E+00 8.36.E+09 0.00.E+00 91.27 0 8 0.00% 0.00% 0.00% 6.24E+08 3.87E+03 2.37E+04 0.00E+00 0.00E+00 99.92% 0.53%
0 9 69.31% 0.00% 0.00% 22.56% 0.00% 0.00% 8.12% 0 9 0.00.E+00 8.36.E+09 0.00.E+00 91.18 0 9 0.00% 0.00% 0.00% 6.23E+08 3.77E+03 2.36E+04 0.00E+00 0.00E+00 99.93% 0.60%
0 10 61.13% 0.00% 0.00% 31.89% 0.00% 0.00% 6.98% 0 10 0.00.E+00 8.36.E+09 0.00.E+00 91.22 0 10 0.00% 0.00% 0.00% 6.23E+08 3.77E+03 2.36E+04 0.00E+00 0.00E+00 99.93% 0.58%
0 11 68.88% 0.00% 0.00% 22.41% 0.00% 0.00% 8.71% 0 11 0.00.E+00 8.36.E+09 0.00.E+00 91.18 0 11 0.00% 0.00% 0.00% 6.23E+08 3.77E+03 2.36E+04 0.00E+00 0.00E+00 99.93% 0.61%

68.35% 0.00% 0.00% 24.63% 0.00% 0.00% 7.02% 0.00.E+00 1.00.E+11 0.00.E+00 1094.59 0.00% 0.00% 0.00% 7.49E+09 4.66E+04 2.85E+05 0.00E+00 0.00E+00 99.92% 0.56%
7.49E+09 0.00E+00 0.00E+00 99.92% 0.56%

read 2.33E+01 1.96E-01 3.06E-03 0.00E+00
write 1.52E+01 1.83E-01 1.55E-04 0.00E+00
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L1 busy rate execution time
L2 busy rate execution time
Memory busy rate execution time

(*) Includes wait time for integer L1D cache access
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Figure 24: Cycle counter result of the convolution kernel .

Figure 25 show the results of the weak scaling test — that is, the number
of nodes increased while maintaining the computational cost per node. In
this case, the number of modes was increased; thus, the number of branches
in the encoder increased as the number of nodes increased. The entire train-
ing process indicates 7.80 PFLOPS when decomposing into 100 modes using
25,250 nodes and 72.9% of weak scaling performance relative to that of 750
nodes. Furthermore, forward-propagation and backward-propagation indi-
cates 25.1 PFLOPS and 19.4 PFLOPS, respectively.
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Figure 25: Weak scaling performance of the training for mode decomposition: the blue,
orange, and red lines indicate, respectively the performance of the entire training process,
forward-propagation, and back-propagation in the decoder. The solid line corresponds to
measured values and the dashed line corresponds to the ideal scaling of that.

Figure 26 shows the result of the weak scaling test of the convolution
routines. Its scaling is almost perfect and reaches around 100 PFLOPS using
25,250 nodes.
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Figure 26: Weak scaling performance of the convolution routines. The blue, the cyan,
and the orange line means the routine for forward propagation, the back-propagation to
calculate error signal, and the back-propagation to calculate the amount of the weight
update. The solid line corresponds to measured values and the dashed line corresponds to
the ideal scaling of that.

3.4. Computational Cost of FOM and ROM

Table 3 lists the computational costs of the FOM and ROM using the MD-
CNN-AE + LSTM method. Compared to the FOM, if you decompose into 20
modes, the execution time of the ROM is reduced by 4 orders of magnitude,
and the number of operations is reduced by 5 orders of magnitude. Even
if you use 400 modes, the execution time and the number of operations are
estimated to reduce by 3 and 4 orders of magnitude, respectively.
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Table 3: Comparison of the computational costs of FOM and ROM using AI method.

Cells/
modes

CPU Clock
[GHz]

Total
CPUs

Total
cores

Exec. time
per step

Operations
per stepa

FOM 28M Intel Xeon Gold
6148

2.4 32 384 1.74 s 85.5 Tflop

ROM 2 Fujitsu A64FX 2.0 1 12 572 µs 439 Mflop
20 7.37 µs 566 Mflop
400 4.22 msb 3.24 Gflopb

a The number of operations is an estimated value calculated by (Execution
time)×(Peak floating point calculation performance)

b Estimated value calculated from the measurements of two modes and 20
modes.

4. Conclusions

A large-scale machine-learning-based nonlinear reduced-order modeling
method for a three-dimensional turbulent flow field (Re = 1000) using un-
supervised neural-network learning was proposed. The mode decomposition
method for the three-dimensional flow field data using a CNN-AE-like neural
network is implemented in the form of distributed machine learning using a
hybrid parallelism scheme tailored for the proposed network structure. To
validate this method, the prediction performance of the mode decomposi-
tion method was evaluated and compared with the POD method. Using this
implementation, it is possible to decompose 1.7 million cells of the three-
dimensional flow field data into 64 modes, which results in a sufficient reduc-
tion accuracy. Then, a ROM was constructed using LSTM neural networks.
It was demonstrated that the time evolution of a turbulent three-dimensional
flow field can be simulated at a significantly low cost (approximately three
orders of magnitude) without a major loss of accuracy. In this study, a uni-
form flow around a circular cylinder model was used as a test case. The
reconstruction accuracy was estimated in terms of various criteria compared
with the model based on POD in conjunction with the GP method, and the
superiority of the proposed method was demonstrated.

In future, it is planned to apply the method to more-complex flow fields,
such as the flow around a vehicle body. In addition, time-random phenomena,
such as the temporal pressure variation in the fluctuating flow around a
3D triangular cylinder, should be reproduced. Furthermore, the reduction
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performance of the VAE version of MD-CNN-AE must be evaluated.
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Appendix A. Network Structure

In this section, the network structure we used are detailed.

Appendix A.1. MD-CNN-AE

The detailed MD-CNN-AE network structure is presented in Table A.4.

Table A.4: Network structure of MD-CNN-AE.

Encoder Data size Decoder Data size
Input (384, 192, 24, 3) 1st Value (1, 1, 1, 1)
1st 3D convolution (384, 192, 24, 16) Fully connected (6, 3, 3, 4)
1st 3D maxpooling (192, 96, 12, 16) 1st 3D upsampling (12, 6, 3, 4)
2nd 3D convolution (192, 96, 12, 8) 1st 3D convolution (12, 6, 3, 4)
2nd 3D maxpooling (96, 48, 6, 8) 2nd 3D upsampling (24, 12, 3, 4)
3rd 3D convolution (96, 48, 6, 8) 2nd 3D convolution (24, 12, 3, 8)
3rd 3D maxpooling (48, 24, 3, 8) 3rd 3D upsampling (48, 24, 3, 8)
4th 3D convolution (48, 24, 3, 8) 3rd 3D convolution (48, 24, 3, 8)
4th 3D maxpooling (24, 12, 3, 8) 4th 3D upsampling (96, 48, 6, 8)
5th 3D convolution (24, 12, 3, 4) 4th 3D convolution (96, 48, 6, 8)
5th 3D maxpooling (12, 6, 3, 4) 5th 3D upsampling (192, 96, 12, 8)
6th 3D convolution (12, 6, 3, 4) 5th 3D convolution (192, 96, 12, 16)
6th 3D maxpooling (6, 3, 3, 4) 6th 3D upsampling (384, 192, 24, 16)
Fully connected (na, 1, 1, 1) 6th 3D convolution (384, 192, 24, 3)
a n is the number of the mode decompositions.

Appendix A.2. LSTM

The detailed LSTM network structure is shown in Table A.5.
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Table A.5: Network structure of LSTM.

Order Layer Activation Output size
1 Input (20, n)a

2-a LSTM tanh (20, n)
LSTM linear (20, n)

2-b LSTM tanh (20, 1.5n)
LSTM linear (20, n)

2-c LSTM tanh (20, 2n)
LSTM linear (20, n)

2-d LSTM tanh (20, 2.5n)
LSTM linear (20, n)

2-e LSTM tanh (20, 3n)
LSTM linear (20, n)

2-f LSTM tanh (20, 3.5n)
LSTM linear (20, n)

2-g LSTM tanh (20, 4n)
LSTM linear (20, n)

3 Add 2-a–2-g tanh (20, n)
a n is the number of the mode decompositions.

Appendix B. Hyperparameters

In this section, the hyperparameters we used are detailed.

Appendix B.1. MD-CNN-AE

The hyperparameters of MD-CNN-AE we used is shown in the Table B.6.

Table B.6: Hyperparameters of MD-CNN-AE.

Name Value Name Value
Filter size 3× 3× 3 Batch size 768
Pooling size 2× 2× 2 Number of epochs 11,000
Weight initializer Xavier uniform Number of training data 9984
Optimizer Adam Ratio of validation data 30%
Learning rate 0.001 Number of test data 2,000
Time step size 0.025 s
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Appendix B.2. LSTM

The hyperparameters of MD-CNN-AE we used is shown in the Table B.7.

Table B.7: Hyperparameters of LSTM.

Name Value Name Value
Sequence length 20 Batch size 1,000
Num. of LSTM layers 3 Number of epochs 2,000
Weight initializer Xavier uniform Number of training data 10,000
Optimizer Adam Ratio of validation data 30%
Learning rate 0.001 Number of test data 2,000
Time step size 0.25 s

Appendix C. Time series prediction with LSTM

In this section, the time series of the latent vector elements predicted by
LSTM are shown.

Figure C.27 shows all the latent vector elements in the case decomposed
in 16 modes.
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Figure C.27: Time series of latent vector elements predicted by LSTM with 16 modes-
decomposition: the blue and orange lines indicate the test data and the prediction with
LSTM derived from first 20 time steps.

Figure C.28 shows all the latent vector elements in the case decomposed
in 64 modes.
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Figure C.28: Time series of latent vector elements predicted by LSTM with 64 modes-
decomposition: the blue and orange lines indicate the test data and the prediction with
LSTM derived from first 20 time steps.
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