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Abstract

CHEN YUHAN

In recent years, substantial research on the application of deep learning to the field
of physical simulation has been actively explored. Physical simulation contributes
to the discovery of new drugs and materials, the design of aircraft body shapes and
the control of robot arms, among many other areas. Since one of the characteristics
of artificial neural networks is their strong applicability, they are capable of learning
physical systems and simulating physical phenomena. This thesis focuses on deep
learning for physical modeling and simulation. Specifically, we develop new deep
physical models and their extensions along with theoretical analysis.

In the first study, we applied artificial neural networks to a secret communication
system for color images. Hereby, the neural network is applied to learn a nonlinear
boundary condition of a chaotic wave equation, making it difficult to steal informa-
tion. In the previous research, a secret communication system using wave equations
with a nonlinear boundary condition causing chaotic oscillations has been considered.
The wave equation with the van der Pol boundary condition is used to form chaotic
oscillations by satisfying the parameter conditions on the 1-dimensional bounded in-
terval. The application of the chaotic distribution system to a secret communication
system extends the transmitted signal from a scalar to vector values, which makes
the system easy to be applied to the encryption and decryption of image signals.
However, the system has the disadvantage that the number of parameters of the van
der Pol boundary condition is so few that the communication image can be easily
stolen.Therefore, in order to improve the security and concealment of the confidential
communication system, this study models the boundary conditions using deep neural
networks, which can be regarded as a black box.

Other studies are about deep physical models. In terms of deep physical mod-
eling, Lagrangian neural networks and Hamiltonian neural networks were developed
based on Lagrangian mechanics and Hamiltonian mechanics, which can guarantee the
physical properties of physical systems. Firstly, the Hamiltonian neural network is a
powerful method; however, theoretical studies are limited. In this study, by combin-
ing the statistical learning theory and KAM theory, we provide a theoretical analysis
of the behavior of Hamiltonian neural networks when the learning error is not com-
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pletely zero. A Hamiltonian neural network with non-zero errors can be considered as
a perturbation from the true dynamics, and the perturbation theory of the Hamilton
equation is widely known as the KAM theory. To apply the KAM theory, we provide
a generalization error bound for Hamiltonian neural networks by deriving an estimate
of the covering number of the gradient of the multi-layer perceptron, which is the key
ingredient of the model. This error bound gives an L∞ bound on the Hamiltonian
that is required in the application of the KAM theory.

Secondly, although existing neural network models are very promising, the com-
monly used representation of the Hamilton equation uses the generalized momenta,
which are generally unknown, and this causes difficulty in applying the models to
real data. Meanwhile, Hamiltonian equations also have a coordinate-free expression
that is expressed by using the symplectic 2-form. In this study, we propose the neu-
ral symplectic form that learns the symplectic form from data using neural networks,
thereby providing a method for learning Hamiltonian equations from data represented
in general coordinate systems, which are not limited to the generalized coordinates
and the generalized momenta.

Thirdly, such deep physical models should be used in physical simulations, which
means that discretization of the models by numerical integrators are necessary. We
propose structure-preserving numerical integrators for Hamiltonian neural networks
as well as for the neural symplectic form, respectively. It is known that when general
numerical integrators are used for discretization, the energy conservation law and
other laws of physics are destroyed. Structure-preserving numerical methods such as
the variational integrator are effective to address this problem.

Last but not least, we propose a method for super resolution. Super resolution
has been widely used to enhance the resolution of images in recent years, thereby
obtaining clearer images. In the field of physics simulation, super-resolution technique
has also been actively developed. However, existing methods based on standard neural
networks work on a single scale factor, making it unsuitable for cases where arbitrary
super-resolution scale factors are required. Meanwhile, DeepONet is a deep learning
framework capable of learning operators between function spaces. In this study, we
propose a DeepONet-based approach to super resolution of numerical solutions of
nonlinear partial differential equations. Some experimental results are also provided.
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Chapter 1 Introduction

Physical simulation has been performed in a wide range of science and engineering
applications. However, for phenomena in which the model is unknown, the model
must be constructed from data. Building deep learning models of physical phenomena
enables the simulation of physical phenomena for which the model is unknown. Hence,
data-driven modelling methods, in particular models based on deep learning, have
attracted much attention in recent years.

The main research of this thesis is a combination of deep learning and physics.
The aim is to explore the applicability of artificial neural networks in physics and to
develop deep physical models with more general applicability. In particular, we aim
to develop methods that preserve physical properties. We also provide theoretical
analysis of these models as well as numerical experiments.

The main work of this thesis is as follows:
(1) As an application of deep physical modelling, we apply deep neural networks
to image encryption. Deep neural networks strengthen the security performance of
chaotic synchronous systems by learning the van der Pol boundary conditions. We
have confirmed that deep neural networks have good approximation ability while also
effectively acting as black boxes via numerical experiments.
(2) In the field of data-driven physical model discovery, we have combined deep learn-
ing with geometric mechanics theory to construct models that retain physical prop-
erties and theoretically analyze the properties of existing models and the proposed
model. Further to this, we have also developed numerical integrators for the dis-
cretization of deep physical models. In this thesis, we refer to neural network models
that learn equations of motion that perform physical phenomena as deep physical
models.



1.1. DEEP LEARNING IN PHYSICS

1.1 Deep Learning in Physics

In the last few years, deep learning has led to very good performance on a variety
of problems, such as visual recognition [58,63], speech recognition [23,82] and natural
language processing [5, 59, 113]. Although deep learning is promising, the training
of deep neural networks often requires large amounts of data, and in many scientific
problems, data is difficult to obtain. Physics is a well-established field that has been
studied theoretically and experimentally for a very long time. This theory can explain
the essence of the behavior of both natural phenomena and artificial objects. We can
design better machine learning models by embedding physical knowledge, such as
physical laws, PDEs, or simplified mathematical models, into neural networks. In
addition to that these models can automatically satisfy some conservation laws, the
models can be trained faster and achieve better accuracy. Therefore, the development
of new generation models that integrate with physical laws has become a promising
area of machine learning research [44,45].

Deep neural networks have been in fact applied into physics [85]. [107] present a
novel deep-learning-based robust nonlinear controller (Neural Lander)，that combines
a nominal dynamics model with a deep neural network that learns high-order inter-
actions. [72,135] developed models based on Lagrangian and Hamiltonian mechanics
in the modeling of underlying system dynamics respectively. In these papers, it was
concluded that due to the integration of physics knowledge, physically informed ma-
chine learning models enjoy better physical plausibility, higher data efficiency and
greater generalisation than simple neural network models. In addition, a hybrid in
situ – in silico algorithm, called physics-aware training, was introduced which applies
backpropagation to training controlled physical systems [123].

One approach to implementing deep learning is to use Convolutional Neural Net-
works (CNN) [62,63]. Convolutional neural networks are modeled to simulate human
visual perception. Convolutional neural networks are trained by feeding the network
with pre-processed images, and by extracting important features hidden in these in-
puts, the algorithm recognizes desirable patterns and relevant points. Convolutional
neural networks have been applied to physics. For example, they are used for particle
recognition and classification as well as for particle trajectory reconstruction [83,128].
Convolutional neural networks have been used for outer-Earth exploration. In astro-
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1.1. DEEP LEARNING IN PHYSICS

physics, some scientists are developing Convolutional neural networks that can dis-
cover new gravitational lensing [11]. Quantum convolutional neural network (QCNN)
is used into the classification of high-energy physics events. This model has quan-
tum architecture that demonstrates an advantage of learning faster than the classical
Convolutional neural networks under a similar number of parameters.

The Physics Informed Neural Network (PINN), which embeds with physical in-
formation to a deep fully-connected neural networks [92, 93]. This model is an ap-
plication of the traditional scientific computing, particularly for solving problems
related to partial differential equations, including equation solving, parameter inver-
sion, model discovery, control and optimisation [22, 91, 117, 122]. Physical principles
in Physics Informed Neural Networks provide theoretical insight and illuminate the
underlying mechanisms, in addition to enhancing the trainability and generalisation
performance of deep learning models [117]. Meanwhile, for modeling and forecast-
ing multi-physical systems, a novel framework named physics-informed convolutional
network (PICN) is suggested from a CNN perspective [108]. As a variant of Physics
Informed Neural Networks, another approach is physics-constrained neural networks
(PCNNs) [136], in which it is reported that the amount of training data can be sig-
nificantly required. However, the weights of different losses from data and physical
constraints are adjusted empirically in physics-constrained neural networks. In [69], a
new physics-constrained neural network with the minimax architecture (PCNN-MM)
is proposed so that the weights of different losses can be adjusted systematically.
In [77], a neural network model that extend the physics-informed neural networks to
be trained with multi-fidelity data sets (MPINNs). In addition, other extensions that
include hp-VPINN [54] and CPINN [48] have been also proposed.

In addition to the above proposals of new models, the Physics Informed Neural Net-
work has an extremely wide range of physical and engineering applications. [10, 41]
studied the application of Physics Informed Neural Networks to various heat trans-
fer problems and demonstrated that the model has broad applications in materials
science. [12] proposed a method to directly predict the expected flow fields based on
given flow conditions and geometry shapes, which saves computational time. In [109],
the Physics Informed Neural Network is trained to solve the problem of identifying
and characterizing a surface-breaking crack in a metal plate.
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1.2. DEEP PHYSICAL MODELS

1.2 Deep Physical Models

1.2.1 Analytical mechanics

Among applications of neural networks for physics, the model discovery, in which the
fundamental equations of classical mechanics are modeled by neural networks, have
been actively studied. Analytical mechanics, which is a theory of classical mechanics,
has two dominant branches, Lagrangian mechanics and Hamiltonian mechanics [1, 4,
73]. The equations of motion of Lagrangian mechanics are called the Euler–Lagrange
equation, for which several neural network models were proposed [20,72]. The Euler–
Lagrange equation is defined as

∂L

∂q
−

d

dt

∂L

∂q̇
= 0, (1.1)

where q is the position and q̇ is the time derivative of q. This equation is known to
equivalent to Newton’s equation of motion.

1.2.2 Deep learning models for physical model discovery

Lagrangian neural networks use neural networks to model the Lagrangian L and
derive the equations of motion from it as the following form:

∂LNN

∂q
=

d

dt

∂LNN

∂q̇
. (1.2)

However, because the theory defines systems on tangent bundles, it is restricted to
systems with a specific symplectic structure and is only equivalent to a part of Hamil-
tonian systems. In Lagrangian mechanics, the equations are described using the state
variables and the time derivatives of them. This feature of Lagrangian mechanics
makes it easy to prepare the data necessary for learning.

On the other hand, Hamiltonian mechanics can describe more general equations
which are not covered by Lagrangian mechanics. In geometry, the Hamiltonian equa-
tion is defined on the cotangent bundle, which is an example of a symplectic manifold.
The governing equation of Hamiltonian mechanics is

d

dt

(
q
p

)
=

(
O I
−I O

)(
∂H
∂q
∂H
∂p

)

. (1.3)
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1.2. DEEP PHYSICAL MODELS

In this equation, q and p represent generalized coordinates and generalized momenta,
respectively. H is a function that depends on q and p and represents the total energy
of the system. This function H is also called the Hamiltonian of the system. In
recent years, there has been a lot of research on predicting the corresponding physical
phenomena by learning the energy function H in such equations with a neural network
HNN (e.g., [19, 20, 38, 75, 135]). Among them, the Hamiltonian neural network is a
powerful method, which is defined as the following form:

d

dt

(
q
p

)
=

(
O I
−I O

)
∇HNN. (1.4)

As the Hamilton equation has the energy conservation law, the Hamiltonian neural
network also guarantees this conservation law. This conservation law is known to
greatly improve the performance in long-term forecasting. In addition, in the last four
years, research on deep physical models still has intensively performed, and numerous
extensions have been proposed, including the DGNet [75] and VIN [99], as well as
other models discretized in the time direction.

In terms of theoretical studies of deep physical models, the universal approximation
theorem for discrete-time neural network models are provided in SympNet [51] for the
Hamilton equation. However, theoretical analysis for deep physical models has not
progressed sufficiently.

1.2.3 Discretization of deep physical models for simulations

These deep physical models are used in physical simulations, which means that
discretization of the models is required. Therefore, models discretized in the time
direction are particularly useful, as such models do not require a further discretization
for simulations. On the other hand, discrete-time models have a disadvantage of being
unable to be simulated with time steps other than that used in the training process.
As a result, developing a way to discretize continuous-time deep physical models for
simulation is important. In addition, discretization methods of deep physical models
are also useful for designing discrete-time models.

The numerical integrators that preserve the mechanical structure are called the
structure-preserving integrators or the geometric integrators. Among them, symplec-
tic integrators are the most important. They are designed so that the symplectic
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1.3. AIM OF THIS THESIS

form is preserved, thereby preserving the physical properties. One way to design a
symplectic integrator is the variational integrator for Lagrangian mechanics [74]. By
discretizing the variational principle, the variational integrator discretizes the Euler–
Lagrange equation while preserving various conservation laws.

In addition to the discrete-time models mentioned above, there have been many
studies of discrete-time models, such as those using Gaussian process regression [95].
As for the variational integrators, VIN [99] and VIGN [24] are known as discrete-time
models in Lagrangian formalism. However, there has been no research on variational
integrators for neural network models that represent the Hamilton equation.

1.3 Aim of This Thesis

The goal of this thesis is to develop novel deep physics models along with theoretical
analysis, thereby extending the applicability of artificial neural networks in physics.
In this thesis, we focus on the following two directions.

Firstly, we focus on the application of deep physical modelling to improve a chaotic-
synchronization-based encryption system of images. Specifically, the purpose of this
study is to establish a more stable and secure communication system by improving
the method reported in [101]. The reason for this is that the number of parameters in
the confidential communication system is too small, and hence the image information
can be easily stolen; in fact, even if only one parameter is attacked, there is a certain
chance that the original image can be seen in its entirety. In order to improve the
security of the system based on the original concept, the development of a new method
that includes a chaotic system with a larger number of independent parameters is
necessary. We addressed this problem by black-boxing the boundary conditions of
the wave equations by approximating them with deep neural networks. We also
observed whether they are certainly able to learn the chaotic behaviours. In fact,
neural networks have a complex structure and are therefore difficult to steal all the
information, i.e., parameters, thus increasing the security of the encryption system.
Our results of this research have been published in [18].

Secondly, the Hamiltonian neural network is a deep physical model represented
using the canonical coordinate system, which means that the preparation of data is
difficult. As a solution to this problem, we propose the neural symplectic form, which
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1.4. ORGANIZATION OF THIS THESIS

is not only able to model equations on a general coordinate system but also to extract
unknown Hamiltonian structures hidden in the data. This research was published
in [16]. Next, we also propose numerical integrators for Hamiltonian neural networks
and the neural symplectic form, respectively. The aim is to discretize the model
without losing physical properties when using these models for physical simulations.
This research was published in [132].

For theoretical studies in deep physics models, to the best of our knowledge, the-
oretical analysis of such models has not been performed sufficiently. Therefore, we
provide a theoretical analysis of the behaviour of Hamiltonian neural networks when
the learning error is not completely zero. The stability of celestial systems and the
recursive nature of physical phenomena greatly affect the usefulness of deep physics
models. Thus, we performed a theoretical analysis of this using KAM Theory and
statistical learning. This research is published in [17].

In addition, super resolution is a technique for increasing the resolution of im-
ages and films. When performing super resolution for physical simulations, there are
certain drawbacks in the existing research; the standard neural network-based ap-
proach works on a single scale factor, which makes it unsuitable for situations where
an arbitrary super-resolution scale factor is required. We propose to use DeepONet’s
network structure for the super resolution of numerical solutions of partial differential
equations. Preliminary results of this research is currently under review.

1.4 Organization of This Thesis

In this section, we describe the organization of this thesis. In Chapter 2, we use neu-
ral networks to learn the boundary conditions of the chaotic wave equations, thereby
improving the security of image transmission encryption systems. First, we outline
the background related to the encryption systems, then we present the details of our
proposed method, followed by numerical experiments on grayscale images as well as
colour images, respectively. The Lyapunov exponent, which is a numerical value used
to judge whether a system is chaotic, was also computed.

In Chapter 3, we present our proposed deep physics model, the neural symplec-
tic form. Firstly, we summarise and compare existing deep physics models such as
Hamiltonian neural networks, Lagrangian neural networks and skew-symmetric ma-
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1.4. ORGANIZATION OF THIS THESIS

trix. Secondly, we explain the theory of this study, and describe the structure of our
proposed model in detail. Finally, we conduct comparative numerical experiments,
using a mass-spring system, the Lotka–Volterra equation, and double pendulums as
experimental subjects.

In Chapter 4, we present a theoretical analysis of Hamiltonian neural networks with
non-zero training loss. We first provide an overview of the relevant research. Then,
we give a brief introduction to the Hamiltonian system and KAM theory. After that,
we show the main theorems and give the corresponding proofs.

In Chapter 5, we give structure-preserving numerical integrators for Hamiltonian
neural networks and the neural symplectic form, respectively. First, we give an
overview of the variational integrator. Then, we illustrate the variational principle
of the Hamiltonian neural network and derive a variation integrator for it. For the
neural symplectic form, we also confirm the existence of the variational principle and
show the derivation of the variational integrator for the neural symplectic form. In
addition, we demonstrate the effectiveness of the proposed integrator using numerical
experiments.

In Chapter 6, we present a method for super resolution of physics simulations for
nonlinear elliptic equations. Firstly, we describe the target nonlinear elliptic equa-
tions, then we describe our proposed super resolution with DeepONet in detail, and
finally, we give a numerical example.

Finally, in Chapter 7, we summarize our studies in this thesis.

8
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Chapter 2 Secret Communication Systems
Using Chaotic Wave Equations
with Neural Network Boundary
Conditions

This chapter aims to improve an existing confidential communication system by
applying the deep physical model. More precisely, we improve a chaotic confidential
communication system, in which a synchronous pair of chaotic distribution systems is
used to encrypt the transmitted object, by black-boxing the the chaotic systems using
a neural network to make it difficult to steal information so that the confidential com-
munication system has a stronger secrecy effect. The following is a brief description
of the proposed approach.

Firstly, following [101] the proposed approach employs the chaotic wave equation,
which is an evolutional partial differential equation and hence has two axes (space and
time). This feature of the equation enables the method to transmit images. Secondly,
the proposed secret communication system consists of two parts, the sender and the
receiver, as shown in Fig. 2.1. First, the wave equation on the sender side is under the
van der Pol boundary conditions that can cause chaotic phenomena, and a deep neural
network is trained so that it has the same chaotic effect. Then, the color images are
encrypted by applying a certain nonlinear transformation together with the solutions
to the wave equations. The nonlinear transformation is designed so that the inverse
of it is computable if the solutions to the wave equations, which are essentially the
secret keys, are known. Second, a chaotic synchronization system is established at
the receiver side to obtain the decrypted recovered images by inverting the function.

The innovation of this study is to use a deep neural network that approximates the
boundary conditions yielding the chaotic oscillations, which addresses the problem



1.4. ORGANIZATION OF THIS THESIS

that the previous system is easier to be cracked and makes it easier for the information
to be stolen due to too few parameters of the van der Pol boundary condition when the
original chaotic synchronization system is used alone. In fact, in the wave equation
with the van der Pol boundary conditions, the only three parameters a,β and η are
required (see Section 2.2 for the specific expressions). Suppose that a hacker now
steals the specific value of β, and the other two (a and η) still exist in a hidden state.
Suppose also that this person makes an effort to guess the values of a and η and tries
to break the encrypted information. In Fig. 2.2, we can see that the possibility exists
that the whole information of the portrait can be seen to some extent.

Although it is known that deep learning techniques are also under threat from
security attacks, a stealer will face greater implementation difficulties than a brute
force attack when parameters are partially compromised. More notably, the way of
the proposed approach which corresponds to the neural network structure with the
boundary conditions at the left end and the right end will also increase the difficulty
for the stealer to crack.

Fig.2.1 A diagrammatic representation of the research ideas and methods used in this study.
It succinctly shows the overall structure of the confidential communication system
as well as the design principles, in which the input portrait was created manually
by the author and is only used here as an example to assist in illustration.
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2.1. BACKGROUND

Fig.2.2 The modulated secrecy image and the restored image after the leakage of some
of the parameters of the confidential communication system. The figure on the
left is the confidential information after it has been encrypted, and we can see
that we have no way of knowing the information about the original image, so we
can say that it was a successful secret communication. The figure on the right is
the restored image after the leakage of some of the parameters of the confidential
communication system; we can almost see that it is a picture of a woman wearing
a hat, that is to say, the hacker can restore the transmitted information to some
extent after breaking some of the parameters.

This chapter is organized as follows. In Section 2.2, the proposed method for
grayscale images is described in detail, along with some numerical examples. In
Section 2.3, the method is applied to color images. In Section 2.4, the encryption
effects of the proposed method and the AES are tested, respectively.

2.1 Background

Innovations in information processing technology have led to the rapid development
of technologies for accessing and transmitting information in recent years, which has
greatly improved the convenience of our daily lives. On the other hand, a wide
variety of information is exchanged in public through the internet and other media, so
encryption technology has become increasingly important to protect this information.

In this study, we consider confidential communication methods using chaos syn-
chronization as one of the encryption techniques. Applying the diversity of chaotic
series, pseudo-random series can be generated with statistical properties close to those
of ideal random series, which can hide the original information. The problem of de-
signing confidential communication systems using chaotic synchronization has been
studied since the 1990s. The core idea of the method is to embed communication
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information into a signal that behaves chaotically. The method accomplishes the
steganography and the recovery of communication information [21, 53, 56, 68, 102].
For example, by applying the Hénon mapping, a chaotic synchronous control method
for discrete-time nonlinear systems can be designed with significant results [102]. A
Hénon map (Hénon–Pomeau attractor/map) is a discrete-time dynamical system that
can generate chaotic phenomena, with an iterative expression of:

{
xn+1 = 1− ax2

n + yn
yn+1 = bxn,

(2.1)

where a, b are parameter values. When they are set to appropriate values, the system
will exhibit chaotic behaviors. In [64], the color image encryption algorithms apply-
ing scrambling-diffusion are improved by introducing the transforming-scrambling-
diffusing model so that the methods have better security and cryptography charac-
teristics. In [29], a SystemC implementation of a chaos-based crypto-processor for the
AES algorithm is presented, where the properties of chaotic systems are employed to
cope with the parameters of the AES algorithm. An image encryption algorithm is
proposed in [3], where the Arnold chaos sequence and the modified AES algorithm
are combined. In [112], a method to encrypt multiple images is proposed by a com-
bination of a fast chaotic encryption algorithm and the AES algorithm. A family of
complex variable chaotic systems are used to develop an image encryption algorithm
in [70]. In [119], hyper-chaos systems and DNA sequences are combined for encrypt-
ing images, where the pseudo-random sequence generated by a hyper-chaos system is
transformed into a DNA sequence to diffuse the image blocks.

However, in most of the above methods, the information on the chaotic systems
must be shared for encryption and decryption to generate the chaotic sequences. In
other words, the parameters of the system and the initial conditions for defining the
state of the system essentially played the role of the keys. Although the algorithms
are quite secure under the assumption that the information on the chaotic system
can be shared safely, there remains a risk of information leakage if this is not the
case. Several papers have proposed methods to address this problem by using chaotic
synchronization [60,68,79,84,86,130,131]. The chaotic systems have positive Lya-
punov exponents, which means that small differences in the initial conditions will
grow exponentially. Therefore, the phenomenon of synchronization of such systems
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is surprising; however, it is known that such synchronization can actually occur [87]
and much attention has been focused on this phenomenon. If the chaotic systems of
the receiver and the sender can be synchronized by introducing appropriate control
signals, the sharing of the parameters and the initial conditions becomes unnecessary.
In particular, in [68], chaos-based synchronized dynamic keys are designed and an
improved chaos-based advanced encryption standard (AES) algorithm is developed
so that a powerful method is proposed that solves the problem of using a static key
for AES, while retaining the advantages of the chaos synchronization-based method.

In this study, we focus on the system proposed in [101], in which a certain initial
boundary value problem of the linear wave equation is employed on a one-dimensional
bounded interval, with a linear homogeneous boundary condition at the left end and
the nonlinear boundary condition, which has a cubic nonlinearity of the van der Pol
type [13,37]. The interaction of these linear and nonlinear boundary conditions leads
to chaos in the Riemann invariants (u, v) of the wave equation when the parameters
satisfy certain requirements. By constructing an observer by applying the method
of characteristics, the appropriate range of the feedback gain is obtained so that the
convergence of the dynamics that describes the synchronization error between two
mappings is ensured. Through the numerical computation, it is also confirmed that
the one-dimensional wave equation with the van der Pol type boundary conditions
exhibits a spatio-temporal chaotic behavior in its dynamics [65]. In [101], this chaotic
vibration of the wave equation under the van der Pol boundary condition is specifically
used to construct the synchronous system. There are two features of this approach—
firstly, the synchronization system is easy to construct and secondly, it transmits
vector-valued signals in a secure communication system [101].

On the other hand, many information security techniques are based on artificial
intelligence. As the problem of image recognition is a specialty of neural networks,
neural networks are often used in information security technologies to solve prob-
lems of image recognition and image analysis. Biometric technologies, such as face
recognition systems and fingerprint authentication, are examples of this [81].

Meanwhile, in terms of security performance, deep learning also does not have the
complete capability to guarantee absolute security and privacy. There are many types
of attacks that are made on deep learning, such as Causative Attacks, Exploratory
Attacks and Indiscriminate Attacks [115]. With these attacks, the model information
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or the knowledge of the training data can be extracted; these are known as model
inversion, model extraction and membership inference, where the attackers steal the
training data and produce the expected results, or provide incorrect training data.
This means that the attackers may have the ability to change the inputs to the training
data, which becomes the reason for parameter changes in the learning model, leading
to a significant decrease in the performance of the subsequent classification tasks. To
address these leakage risks, privacy-preserving learning, such as Defensive Distillation,
has been developed for defending against poisoning attacks; however, these approaches
cannot eliminate all security risks [115] at this time.

2.2 Grayscale Images as Transmission Objects

Before explaining about the system for color images, we will explain the distributed
system with chaotic oscillations and synchronization systems using grayscale image
as transmitted objects, and numerically test it to obtain the encoded images and the
restored images, and compare them with the original images, thereby investigating
the feasibility of the proposed approach. Since grayscale images do not involve RGB,
the system becomes simpler and hence it is somehow easier to understand than that
for color images.

2.2.1 Wave equation with Van der Pol boundary conditions

The system which we consider here is a linear PDE but with a nonlinear boundary
condition, which is from the van der Pol equation without forcing

{
ẍ+ (−αẋ+ βẋ3) + ω2

0x = 0, α,β,ω2 > 0

x(0) = x0, ẋ(0) = x1, x0, x1 ∈ R,
(2.2)

where ω0 is the fixed frequency of the corresponding linear harmonic oscillator. The
energy of this system is given by

E(t) =
1

2
[ẋ(t)2 + ω2

0x(t)
2] (2.3)

and the time rate of change of energy is

d

dt
E(t) = ẋ(t)[ẍ(t) + ω2

0x(t)]
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= αẋ(t)2 − βẋ4(t), (2.4)

so we get





≥ 0, if |ẋ| ≤

(
α

β

)1
2

≤ 0, if |ẋ| >

(
α

β

)1
2

,

(2.5)

which shows the self-regulation effect, for the energy will increase when |ẋ| is small,
and the energy will decrease when |ẋ| is large. Therefore, unless the initial condition
satisfies x0 = x1 = 0 in (2.2), casuing E(t) = 0 for all t > 0, we can know that E(t)

will rise and fall between a certain interval of the (B1, B2). The bounds B1 and B2

can be determined by the parameters α and β.
Let us describe a wave equation below as

1

c2
ytt(x, t)− yxx(x, t) = 0, 0 < x < 1, t > 0, (2.6)

which defines the linear PDE that describes a vibrating string on the unit interval
(0, 1), where c > 0 denotes the speed of wave propagation. Because the speed of wave
c is not an essential parameter, we set c = 1. Thus, in this study, we consider

ytt(x, t)− yxx(x, t) = 0, 0 < x < 1, t > 0, (2.7)

at the left-end x = 0, we choose the following boundary condition

yt(0, t) = −ηyx(0, t), t > 0, η > 0, η &= 1. (2.8)

At the right-end x = 1, we assume a nonlinear boundary condition

yx(1, t) = αyt(1, t)− βy3t (1, t), t > 0, α,β > 0. (2.9)

The initial conditions are

y(x, 0) = y0(x), yt(x, 0) = y1(x), 0 ≤ x ≤ 1 (2.10)

for two given smooth functions y0 and y1.
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As a summary, the wave equation with the van der Pol boundary condition is given
by






ytt(x, t)− yxx(x, t) = 0, 0 < x < 1, t > 0

yx(1, t) = αyt(1, t)− βy3t (1, t), t > 0

yt(0, t) = −ηyx(0, t), t > 0

y(x, 0) = y0(x), yt(x, 0) = y1(x), 0 ≤ x ≤ 1,

(2.11)

where we set α,β, η > 0, and η &= 1. We use the method of characteristics to rewrite
(2.11). Let u and v be the Riemann invariants [27] of (2.11)

{
u(x, t) = 1

2{yx(x, t) + yt(x, t)}

v(x, t) = 1
2{yx(x, t)− yt(x, t)},

(2.12)

with initial conditions
{
u(x, 0) = u0(x) =

1
2 [y

′
0(x) + y1(x)]

v(x, 0) = v0(x) =
1
2 [y

′
0(x)− y1(x)]

0 ≤ x ≤ 1. (2.13)

Then substitution of u and v into the boundary condition (2.9) gives

u(1, t) = Fα,β(v(1, t)), t > 0. (2.14)

Besides, since yx(1, t) = u(1, t) + v(1, t), yt(1, t) = u(1, t) − v(1, t) at the right end
x = 1, the relationship (2.14) becomes

β(u− v)3 + (1− α)(u− v) + 2v = 0. (2.15)

Thus, let us summarize what the 1st order hyperbolic equation of (2.13) looks like
after using Riemann invariants u and v

Σ0 :






ut(x, t) = ux(x, t), x ∈ (0, 1), t > 0

vt(x, t) = −vx(x, t), x ∈ (0, 1), t > 0

u(1, t) = Fα,β(v(1, t)), t > 0

v(0, t) = qu(0, t), t > 0

u(x, 0) = 1
2 [y

′
0(x) + y1(x)] = u0(x), x ∈ [0, 1]

v(x, 0) = 1
2 [y

′
0(x)− y1(x)] = v0(x), x ∈ [0, 1],

(2.16)

where q = 1+η
1−η by (2.12), from which follows

v(0, t) = q(u(0, t)) =
1 + η

1− η
u(0, t), t > 0. (2.17)
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Fig.2.3 Reflection of the characteristic lines. The waves are reflected at x = 0 and x = 1,
where the two functions v = qu and u = Fα,β(v) are applied.

(2.15) and (2.17) represent the boundary conditions of the two boundaries at which
the waves are reflected, respectively, as shown in the Fig. 2.3. When the wave reaches
the right end x = 1, it is reflected to the left via (2.15) changing direction; when it
reaches the left end, it is transmitted to the right via (2.17).

For (2.15), with 0 < α ≤ 1, there exists a unique u ∈ R corresponding to each
v ∈ R [13]. On the other hand, when α > 1, for each v ∈ R, in general there
many exist two or three distinct u’s ∈ R satisfying (2.15). Thus in the latter case,
u = Fα,β(v) is not well-defined, and hence the original PDE system (2.11) is not
unique.

For parameters, for example, α = 0.5,β = 1 and η = 0.625 are used, but special
attention should be paid to the setting of η, which has been shown theoretically to
increase exponentially the total variation of the system if it is chosen as an appropriate
value. Since total variation is one of the indicators of the severity of the function
change, its increase means that the system behaves chaotically.

So far, we have obtained a system of PDEs, which is a wave equation that can
cause chaotic oscillations. This system allows us to chaoticize the transmitted image,
and in order to restore the chaotic image in a later step, we need to construct a
synchronization system. This system is designed so that the system exhibits exactly
the same chaotic oscillations of the original system. In the next section we will
construct such a synchronization system.
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2.2.2 Synchronization system

The construction of a synchronization system requires a portion of the original
system’s information. Hence, the sender sends two signals to the receiver: one is a
secret, coded image, and the other is the signal needed for the synchronized system to
restore the original system’s state. For the system

∑
0 (2.16), consider the following

system
∑

1:

Σ1 :






ût(x, t) = ûx(x, t), x ∈ (0, 1), t > 0

v̂t(x, t) = −v̂x(x, t), x ∈ (0, 1), t > 0

û(1, t) = Fα,β(v(1, t)), t > 0

v̂(0, t) = qu(0, t), t > 0

û(x, 0) = û0(x), x ∈ [0, 1]

v̂(x, 0) = v̂0(x), x ∈ [0, 1],

(2.18)

with two signals, u(0, t), v(1, t), as inputs. The relationship between the two systems
is shown in Fig. 2.4. We set variables ũ = u− û, ṽ = v− v̂ to obtain the error system
as follows:






ũt(x, t) = ũx(x, t), x ∈ (0, 1), t > 0

ṽt(x, t) = −ṽx(x, t), x ∈ (0, 1), t > 0

ũ(1, t) = 0, t > 0

ṽ(0, t) = 0, t > 0

ũ(x, 0) = ũ0(x), x ∈ [0, 1]

ṽ(x, 0) = ṽ0(x), x ∈ [0, 1].

(2.19)

Solving the system using the method of characteristics, we can see that, at any
initial value ũ0, ṽ0, the solution ũ(·, t) and ṽ(·, t) is completely zero at moment t = 2.
In other words, at moment t = 0, there is no error between system (2.18) and system
(2.16) and they reach a synchronized state.
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Fig.2.4 Synchronization system
∑

1

In the previous study [101], it was assumed that the parameters of the system
and information about the boundary conditions necessary to define (2.18) are shared
in advance. The sender then sends the modulated information using the states of
the chaotic system for secret communication, while the receiver sends the values
u(0, t) and v(1, t) at the boundary required for synchronization at the sender to the
synchronization system to evolve and demodulate the information by using the system
state used during modulation.

2.2.3 Proposed secret communication system

In this study, we use neural networks to improve the security of the method by
black-boxing the boundary conditions. Since the experimental objects in this section
are grayscale images, the images can be transmitted as a single signal through the
secure communication system. In the paper [101], in particular, the modulation and
demodulation of the (M +1)× (L+1) pixel image data are studied by extending the
method of the paper [102] to the distribution system. For this purpose, system (2.16)
and synchronization system (2.18) must be discretized in both spatial and temporal
directions.

Divide the interval [0, 1] equally into L parts and set the division points
xi = i∆x(i = 0, 1, ..., L). Here, the interval is given by ∆x = 1

L . The time step size
is set to ∆t and we write tk = k∆t(k = 0, 1, ...). For the system (2.16) u(x, t), v(x, t)

denote the states, ui(k), vi(k) denote the approximation values of u(xi, tk), v(xi, tk) on
the
grid points (xi, tk). For simplicity, we introduce the (L + 1) dimension vectors
u(k) = [u0(k), u1(k), ..., uL(k)]T , v(k) = [v0(k), v1(k), ..., vL(k)]T . Denote ûi(k) =
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û(xi, tk),
v̂i = v̂(xi, tk) for system (2.18) as well, and denote the (L + 1) dimension vec-
tor û(k) = [û0(k), û1(k), ..., ûL(k)]T , v̂(k) = [v̂0(k), v̂1(k), ..., v̂L(k)]T . Thus, for
example, in Fig. 2.4, the signals u(0, t), v(1, t) sent from

∑
0 to

∑
1 for synchroniza-

tion are discretized to u0(k), vL(k), respectively. The time evolution of the vector
u(k), v(k) is shown in Fig.2.5. We approximate the

∑
0 and

∑
1 by the upwind

difference using the same step sizes in the spatial and temporal directions so that the
CFL number is 1. As a result, we obtain an algorithm where ui(k) is transported to
ui−1(k+1) and vi−1(k) is to vi(k+1). More precisely, the system after discretization
is






ui(k+1)−ui(k)
∆t = ui+1(k)−ui(k)

∆x , k > 0, i ∈ {1, 2, ..., L− 1}
vi(k+1)−vi(k)

∆t = −vi(k)−vi−1(k)
∆x , k > 0, i ∈ {1, 2, ..., L− 1}

uL(k) = Fα,β(vL(k)), k > 0,

v0(k) = qu0(k), k > 0.

(2.20)

Here, we set ∆t = ∆x = 1
L as the time and space step sizes, which gives

ui(k + 1) = ui+1(k), k > 0, i ∈ {1, 2, ..., L− 1}

vi(k + 1) = vi−1(k), k > 0, i ∈ {1, 2, ..., L− 1}. (2.21)

∑
1 is discretized in the same manner. Henceforth, the systems

∑
i(i = 0, 1) after

discretization are denoted by
∑

i(i = 0, 1).

Fig.2.5 Time evolution of u(k) and v(k) in the discretized systems with the boundary
conditions given by the neural networks.
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As we mentioned earlier, due to the risk of theft due to the small number of pa-
rameters of the wave Equation (2.16) with the van der Pol boundary condition, in
this study we propose a way to enhance security by approximating the van der Pol
boundary condition with a neural network instead of the original boundary condition.
The first half of this section describes how the u, v evolve over time, and the two sys-
tems

∑
0,
∑

1 are discretized. As shown in Fig. 2.5, in the previous method, the waves
at the boundaries are updated by v0(k + 1) = qu0(k) and uL(k + 1) = Fα,β(vL(k)),
respectively. In the proposed method, which uses a neural network instead of these
boundary conditions, we need two functions, F1 and F0, in order to simulate the
boundary conditions.

One of the properties about neural networks is that they can approximate any
continuous functions defined on compact sets. That is, neural networks can be a
complicated, wiggly function, f(x), as in Fig. 2.6.

Fig.2.6 A complex continuous function f(x).

For every possible input x, no matter what function it is, there is a neural network
whose output value is close to f(x). This property holds for functions with multiple
inputs f = f(x1, ..., xm) and multiple outputs. This property of neural networks
is called the universal approximation property. Moreover, this universality theorem
holds even for neural networks that have only one hidden layer between the input
and output layers. In other words, the expressive power is extremely high even for
extremely simple network structures.

The neural network applied here is composed of seven layers of perceptrons, as
shown in Fig. 2.7, and is approximated to qFα,β by training. Since in this section
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we suppose that the images are of grayscale, both the input and output layers of the
neural network have a single neuron. In this proposed approach, the fourth layer is
also designed as a single neuron. The whole neural network is divided into two parts;
the first part is the first to fourth layers, which is assumed to represent a function
F0, and the second part is the fifth to seventh layers, which is assumed to represent a
function F1. As shown in Fig. 2.5, using the learned neural network, the left boundary
condition is replaced, from v0(k+ 1) = qu0(k) to the front half of the neural network
F0, while the right boundary condition is replaced, from uL(k + 1) = Fα,β(vL(k))

to the back half of the neural network F1. In this way, the boundary conditions are
black-boxed and the information becomes difficult to leak.

Fig.2.7 Relationship between the structure of neural networks and boundary conditions.

After approximating the van der Pol boundary condition, we tested the resulting
new neural network by computing its Lyapunov exponent. In fact, when dealing with
actual chaotic phenomena, instead of providing a clear mathematical definition of
chaos, whether the system is chaotic or not is checked by a practical condition, which
is determined by a certain criterion that is numerically computable. A dynamical
system F is chaotic if it satisfies at least one of the following conditions:

(1) F has a sensitive dependence on initial conditions within the defined region.
(2) F has positive Lyapunov exponents at all points in the definite domain exclud-

ing the final immobile point [39,46].

In this study, we use the method of calculating the Lyapunov exponents, that is,
condition (2). Lyapunov exponents are used to quantify the separation rate between
infinitely close trajectories in a dynamical system. Specifically, under the assumption
that linearization is feasible, the separation rate of the two trajectories with an initial
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interval of σZ0 is

|σZ(t)| ≈ eλt|σZ0|, (2.22)

where λ is the Lyapunov exponents. In this section, where the images are assumed to
be grayscale, since no color issues are involved, it can be viewed as a one-dimensional
discrete-time system, in which case the Lyapunov exponent λ for a one-dimensional
map xn+1 = L(xn) is defined by

λ = lim
N→∞

1

N

N−1∑

i=1

log |L′(xi)|, (2.23)

where x ∈ R is the state variable of the system and n ∈ N is the discrete time. If the
value of the Lyapunov exponent computed in (2.23) is positive, then the system F is
considered to be chaotic. Therefore, we use this method to judge whether the trained
neural network successfully approximates the chaotic functions.

The specific components of the whole secret communication system are the system
∑

0, synchronization system
∑

1, modulation M and demodulation D, where modu-
lation and demodulation, respectively, are represented by the following equations:

Fig.2.8 Secure communication system.

Modulation

M :

{
w(k + 1) = G(u(k), v(k), w(k), s1(k + 1))

c12 = w(k),
(2.24)
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Demodulation

D : t2(k + 1) = G−1(û(k − 1), v̂(k − 1), c12(k − 1), c12(k)), (2.25)

where G is the map G : RL+1 ×RL+1 ×RL+1 ×RL+1 → RL+1 and, for an arbitrarily
fixed a, b, c ∈ RL+1, G(a, b, c, ·) is assumed to have an inverse map G−1(a, b, c, ·). In
addition, the following conditions are also assumed to be satisfied:
(Condition 1:) For any positive number ε, there exists δ such that if

‖ξ1 − ξ2‖RL+1 < δ (ξ1, ξ2 ∈ R
L+1),

then the following inequality holds:

sup
a,b,c∈RL+1

‖G−1(a, b, c, ξ1)−G−1(a, b, c, ξ2)‖RL+1 < ε.

Using the synchronization system
∑

1, after the k = L step, û and v̂ are synchro-
nized to u and v, respectively, so that after the same time, under Condition 1, the
restored signal t2(k+1) is synchronized to the transmitted signal s1(k). If the original
image is encrypted to (M + 1) × (L + 1) pixel image data and is sent from subsys-
tem S1 to subsystem S2. After the running time needed for the synchronization has
passed, the original image data are sliced to s1(k) ∈ RL+1 (one row at a time), hence
the transmission operation should be performed M times. At the reception side, the
image of (M+1)×(L+1) pixels is obtained by storing the restored data t2(k) ∈ RL+1

in sequence.

Remarks. 1. Although the chaotic neural network in the above has the seven layers
and is constructed by learning the van der Pol equation, in the proposed method,
any neural network can be used as long as it is chaotic. The information required
for decryption is the parameters of the neural network representing the boundary
conditions. More specifically, the parameters are the matrices and the bias vectors
that represent the linear transformations performed in each layer. If the numbers of
input and output variables in a certain layer are nin and nout, then the number of
parameters in this layer is nin × nout + nout. The sum of this number for each layer
is the total number of the parameters, which represents the size of the key space.
Since the number of the layers and that of the parameters can be changed freely, the
size of the key space can be arbitrarily large. However, the larger the neural network
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becomes, the more difficult it is to be trained. Therefore, there is a trade-off between
the security performance and the computational complexity of training.

Remarks. 2. The computational cost of the proposed method is as follows. First,
the neural network needs to be trained in advance. The time required for this is
difficult to estimate because it depends on the quality of the actual data; however,
for example, in the following numerical experiments, the average computation time
was 1 minute and 48 seconds for the five trials when using Google Colab and Tesla
P100. In addition, this pre-training has to be performed once before encryption and
decryption. The time required for encryption is the same as the time required to
compute a solution of the wave equation. The solution of the wave equation at each
position and time can be obtained in a constant time. Hence, the computational cost
is proportional to the image size. However, in reality, the computation is much more
efficient than this estimation because the computation of the solution to the wave
equation can be parallelized in the spatial direction, and the number of processors,
especially in GPUs, typically exceeds the numbers of vertical and horizontal pixels in
the image. Therefore, actually, encryption can be expected to be possible within a
computation time that is several times shorter for the vertical and horizontal sizes of
the image. The same is true for decryption.

2.2.4 Numerical experiments

To evaluate the proposed method, numerical experiments were conducted using the
neural networks, the training data and the parameters with the following structure.

For the training data in the experiment, the input x was chosen at equal intervals
from the interval (−2, 2), and Equation (2.15),

β(u− v)3 + (1− α)(u− v) + 2v = 0,

was solved using the Newton method, with the target y of the neural network being
the solution to the equation. The number of data Nd was set to 20,000. The scatter
plot of x and the solutions y for the equation are shown in Fig. 2.9. To reduce the bias
of the input data N = {x1, x2, ..., xNd

} for training, we split the dataset randomly
using the train test split function of the Python library Scikit-learn to select the
training data and the test data. Here, we use 20% of all data as a test set, so the
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number of data in the training set is 16,000 and the number of test sets is 4000. The
neural network was implemented using PyTorch, and it was executed on a Tesla K80
on Google Colaboratory.

Fig.2.9 Scatter plot of the relationship between x and y.

The neural network used in this study was a seven-layer perceptron with batch
normalization layers (the reasons why the batch normalization layers are used are
explained later with data in Tables 2.1 and 2.2).

Fig.2.10 Structure of neural networks in numerical experiments.

Each layer has a weight W and a bias b and performs a nonlinear calculation
as follows:

ŷ = g(Wx+ b). (2.26)

As the training depth of the neural network increases, we apply a batch normaliza-
tion (BN) to each layer of the neural network. This is to keep the overall distribution
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of each layer from biasing towards the upper and lower limits of the interval of the
nonlinear function, which leads to the disappearance of the gradient. BN forces the
distribution of the input values to follow a standard normal distribution, making the
overall learning process more stable. Therefore, each mini-batch for learning should
be normalized. For each mini-batch B = {x1, x2, ..., xm}, consisting of m data, the
average µB and variance σ2

B
of the mini-batch are:

µB =
1

Nd

Nd∑

i=1

xi, (2.27)

σ2
B =

1

Nd

Nd∑

i=1

(xi − µB)
2. (2.28)

Batch normalization transforms each data xi in the mini-batch as follows:

x̂i =
xi − µB√
σ2
B
+ ε

, (2.29)

yi = γx̂i + β, (2.30)

where γ and β are the parameters of the model so that the output of each layer is
normalized. In nonlinear calculations (2.24), g(·) is the activation function. Since we
assumed that the images are grayscale, the first and fourth layers are set as neural
network layers with only one node. In these layers, the hyperbolic function (tanh),

g(r) = tanh(r) =
er − e−r

er + e−r
, (2.31)

is the activation function so that the output converts the input value to a number in
the range of −1.0 to 1.0. For layers 2, 3, 5 and 6, 50 nodes were set up and computed
using the rectified linear unit (ReLU)

g(r) =

{
0, for r < 0

r, for r ≥ 0.
(2.32)

Training error, which indicates learning accuracy, and test error, which determines
generalization performance, were evaluated using the mean square error (MSE),

J =
1

N

N∑

i=1

(yi − ŷi)
2, (2.33)
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where ŷi is the output value and yi is the target value. We used Adam as the op-
timization algorithm for parameter updates in training [55]. The learning rate was
set to 0.001 and the number of learning epochs was set to 1000. The training and
testing errors, for example, are shown in Fig. 2.11 and Fig. 2.12. Since the training
results depend on the random numbers used for parameter initialization, we ran the
training ten times while changing the seed of the random numbers, and evaluated
the performance of the neural network using the mean and standard deviation of the
results. Here, we performed two sets of experiments, one in which each layer of the
neural network was nonlinearly transformed using the activation function only, and
the other in which batch normalization (refer to BN) layers were added to each layer
while performing the nonlinear transformation. The performance results of these two
groups are shown in Tables 2.1 and 2.2, respectively.

Table2.1 Mean ± standard deviation of results performed 10 times without BN.

Epoch Data Set Mean ± Standard

1000 times
train set 0.000005 ± 0.000001

test set 0.000005 ± 0.000001

Lyapunov exponent −0.067282 ± 0.102745

Table2.2 Mean ± standard deviation of results performed 10 times with BN.

Epoch Data Set Mean ± Standard

1000 times train set 0.000002 ± 0.000001

test set 0.000275 ± 0.000394

Lyapunov exponent 0.024377 ± 0.148675

28



2.2. GRAYSCALE IMAGES AS TRANSMISSION OBJECTS

Fig.2.11 Examples of training error (blue line) and testing error (red line) of the neural
network during the learning process. The figure on the left is the result of error
training without using BN; the figure on the right is the result of error training
using BN.

Fig.2.12 Examples of training error drop and test error drop.The 1st figure is training error
without BN; the 2nd figure is testing error without BN; the 3rd figure is training
error with BN; the 4th figure is testing error with BN.

As can be seen from Fig. 2.11, neither the addition of the batch normalization layers
nor the absence of the batch normalization layer affects the speed of the descent,
and from the given illustration alone, it can also be said that the descent of the
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experimental group without the batch normalization layers is slightly better. Then,
in terms of the values used for evaluation, the training and testing errors of the
experimental group without batch normalization layers were 0.000005 ± 0.000001 and
0.000005 ± 0.000001, while the group with batch normalization layers had an error
drop of 0.000002 ± 0.000001 and 0.000275 ± 0.000394, so we can say that the neural
network with batch normalization layers was slightly better than the one without
batch normalization layers. This is one reason why we used batch normalization.

Another important reason is the Lyapunov exponent. Introduced at the beginning
of this section, the Lyapunov exponent is a numerical value used to judge whether a
system is chaotic. Therefore, we also computed the corresponding Lyapunov exponent
for the ten experiments, also taking the mean and standard deviation values for the
numerical evaluation. From the results presented in Table 2.2, the average value of
the Lyapunov exponent for the neural network without batch normalization layers
is −0.067282, which is less than 0, indicating that this set of trained neural nets
does not approximate the chaotic vibrations well. However, the average value of the
Lyapunov exponent for the neural network containing the batch normalization layers
is 0.024377, which is greater than 0. From this point of view, it can be said that the
neural network successfully approximates the boundary conditions, thereby equipping
the chaotic behaviors, and hence being suitable for the secret communication system.

We applied the proposed secret communication system to the image shown in
Fig. 2.13 with size 512 × 512 pixels, i.e. M = 512, L = 512.
Modulation

w(k + 1) = C(w(k)){0.03m|u(k)|V + 0.03m|v(k)|V }+ {0.5C(w(k)) + 0.1I}

× {0.08m|u(k)|V + 0.08m|v(k)|V + s1(k + 1)},

c12(k) = w(k). (2.34)
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Fig.2.13 Original grayscale image.

The detailed formulas for modulation and demodulation are shown below, respec-
tively.
Demodulation

t2(k + 1) =
1

m
{0.5C(c12(k − 1)) + 0.1I}−1

× {c12(k)− C(c12(k − 1))× {0.03m|û(k − 1)|V + 0.03m|v̂(k − 1)|V }]

− 0.08|û(k − 1)|V − 0.08|v̂(k − 1)|V , (2.35)

where w(k) ∈ RL+1, s1(k) ∈ RL+1, I is the (L+ 1) order unit matrix, and m ∈ R is
the parameter. We also denote C(f) = diag(|f0(1− f0)|, .., |fL(1− fL)|) for a vector
f = [f0, f1, .., fL]T , and |f |V = [|f0|, |f1|, ..., |fL|]T . s1 represents the information to
be sent. c12 = w is the information sent and received between the systems during
communication, and t2 is the information retrieved by demodulation and corresponds
to s1 if the two systems are synchronized.

Fig. 2.14 shows the results of numerical experiments using a system with bound-
ary conditions set by the learned neural network, with the parameters m = 6 in the
modulation and demodulation sections. The transmitted image is shown in Fig. 2.13.
Fig. 2.14 (left) shows the modulated image after passing through the secret commu-
nication system, and Fig. 2.14 (right) shows the image recovered by the synchronous
system. In addition, m = 6 is a parameter value obtained after numerous attempts,
and the size of m affects the outcome of the entire modulation and demodulation
operations (see Fig. 2.15).
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Fig.2.14 Encrypted grayscale images and restored images in the proposed method of this
study. The figure on the left is the encrypted grayscale image; the figure on the
right is the restored image.

As shown in Fig. 2.13, the original image is almost unrecognizable from the en-
crypted image. Fig. 2.14 (right) shows the reconstructed image after the demod-
ulation section. There is little distinction between the transmitted image and the
reconstructed image.
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Fig.2.15 The effect of changing the m value in the modulation and demodulation portions
on the image encryption effect. Six different values of m (m = 0.8, 1.25, 2.5, 3.0,
4.5, 6.0) were tried, and the corresponding encryption effects were observed for
each, where the larger the value of m, the better the secrecy performance of the
image, within the computable range.
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2.3 Numerical Experiments with Color Images

In the previous section, we explained the wave equations with van der Pol bound-
ary conditions and the corresponding synchronization systems. We then improved
the security of the confidential communication system by approximating the chaotic
phenomena with a neural network; however, relatively simple grayscale images are
used as input objects. Next, we will replace the input images with colored ones and
conduct experiments to see if the proposed approach is still applicable to those images.
The biggest difference between a color image and a grayscle image is that each pixel
of a color image is usually represented by three components, red (R), green (G) and
blue (B), of which intensities are represented by numerics between, for example, (0,
255), while a pixel of a grayscale image has a single component. This results in three
differences: one being the structure of the neural network itself, the second being that
the training method for each pixel is also optional, which means the three components
(R, G and B) of each pixel can be trained separately by themselves or mixed together,
and the third being the Lyapunov exponent for testing chaotic phenomena.

Color images in the neural network can be computed, one by one, as

xr → f(xr) (2.36)
xg → f(xg) (2.37)
xb → f(xb). (2.38)

The neural network structure in this approach is still one input neuron and one out-
put neuron; they are represented by (2.36)–(2.38) and are trained separately. How-
ever, the security of this approach is not very high and there remains a risk of theft.
Therefore, in this study, after R, G and B are fed into the neural network, we will mix
and disrupt them, adopting a structure that has three input neurons and three output
neurons, thus improving the security of the confidential communication system.

The composition diagram of applying RGB to the neural network is shown in
Fig. 2.16, where the data from three neurons are used as inputs to the input layer
and then sent to the hidden layer . First, since color images are involved,

∑
0 and

∑
1

correspond to each color in RGB, and the dependent variables u and v are expanded
to three dimensions. The u and v are then discretized according to the upwind dif-
ference method to obtain the values of u, v at the next time step. (For this part of
the process we can refer to Fig. 2.5 in Section 2.2.3). Because the number of inputs
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is increased from one to three, the number of the nodes of the first, middle and the
last layers are also increased accordingly. By using the input image, the xr, xg, and
xb are computed by using chaotic maps as follows:

xr ↘

xg → gi(xr, xg, xb) → f(gi(xr, xg, xb)) (i = 1, 2, .., hn), (2.39)
xb ↗

where hn is the number of neurons in the hidden layer. The former half of the neural
network, F0, is treated as the left boundary condition, and the latter half, F1, is
treated as the right boundary condition:

u(1, t) = F1(v(1, t))

v(0, t) = F0(u(0, t)). (2.40)

We know that the existence of chaos can be determined by calculating the Lya-
punov exponent of the dynamical system. If the images are grayscale, the Lyapunov
exponent has just one value, hence whether the system is chaotic or not can be deter-
mined by examining the exponent. When confronted with color images, the Lyapunov
exponent is no longer 1-dimensional due to dimensional growth. k-dimensional space
has k Lyapunov exponents. In fact, the Lyapunov exponent {λ1,λ2, ...,λk} is defined
as

(e, eλ1 , eλ2 , .., eλk) = lim
N→∞

[magnitude of the eigenvalues of
N−1∏

n=0

J(xn)
1/N ], (2.41)

and

J(xn) = (
∂Gi

∂xi
) (2.42)

is the Jacobian matrix of the map G(xn). Normally, if the maximum Lyapunov ex-
ponent λ1 is positive, the system can be regarded as chaos, but even if λ1 < 0, there
may be a latent chaotic case which cannot be observed [46]. In this study, as long as
one of the Lyapunov exponents is positive, we conclude that the neural network con-
tains chaotic vibrations, which means that the approximation of the chaotic boundary
condition is successful.
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Fig.2.16 Relationship between the structure of Neural Networks and boundary conditions
with RGB.

For the numerical experiments, we first trained the neural networks so that the
chaotic boundary condition is approximated. We choose training data, from which
input data are sampled from (−2, 2). Since a pixel has three components, the total
amount of data should preferably be a multiple of 3; we choose Nd = 30, 000 and
(2.15) is again solved by the Newton method. The data are randomly divided into a
training set and a test set in the ratio of 8:2. The neural network was implemented
using PyTorch, and it was executed on a Tesla T4 from Google Colaboratory.

The structure of the neural network is still a seven-layer multilayer perceptron
with three neurons in the first, fourth and seventh layers, and 50 neurons in the
other hidden layers. Each layer is nonlinearly transformed by ŷ = g(Wx + b) and
accompanied by BN, where the activation functions of the first and fourth layers
are tanh functions and the others are ReLU functions. The mean squared error is
still used for the error function. The entire training process was updated with the
Adam algorithm with a learning rate of 0.001. The training was completed after 1000
training runs.

Table 2.3 shows the numerical evaluation of the training results and the test re-
sults of the neural network. A total of ten experiments were conducted, and each
time the seed value was changed so that the initial values of the parameters of
the neural networks are changed. The mean and standard deviation are computed
for the experimental results. We can see that the results of training and test-
ing are 0.000694 ± 0.000035 and 0.000919 ± 0.000033, respectively, and Fig. 2.17
shows the error decrease of one of the trainings, from which we can clearly see
that the training error and the testing error both decrease rapidly, and there is al-
most no error rebound. Then, we calculated the Lyapunov exponent, respectively,
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λ1 = 0.1144 ± 0.1469,λ2 = 0.0038 ± 0.0917 and λ3 = −0.1717 ± 0.2333, where λ1

and λ2 are positive, so we can conclude that the neural networks are in fact chaotic,
which somehow approximates the van der Pol boundary condition.

Fig.2.17 Examples of training error (blue line) and testing error (red line) of the neural
network during the learning process.

Table2.3 Mean ± standard deviation of results performed at 10 times with RGB.

Epoch Data Set Mean ± Standard

1000 times
train set 0.000694 ± 0.000035

test set 0.000919 ± 0.000033

Lyapunov exponent

0.1144 ± 0.1469

0.0038 ± 0.0917

−0.1717 ± 0.2333
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Fig.2.18 Original color image.

Fig.2.19 Encrypted color image and restored image in the proposed method of this study.
The figure on the left is the encrypted color image; the figure on the right is the
restored color image.

A color image of size 512 × 512, as shown in Fig. 2.19, is put into the whole system
as the input. The modulation and demodulation are shown below.
Modulation

w(k + 1) = C(w(k)){0.03m|u(k)|V + 0.03m|v(k)|V }+ {0.5C(w(k)) + 0.1I}

× {0.08m|u(k)|V + 0.08m|v(k)|V + s1(k + 1)},

c12(k) = w(k). (2.43)

Demodulation

t2(k + 1) =
1

m
{0.5C(c12(k − 1)) + 0.1I}−1
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× {c12(k)− C(c12(k − 1))× {0.03m|û(k − 1)|V + 0.03m|v̂(k − 1)|V }]

− 0.08|û(k − 1)|V − 0.08|v̂(k − 1)|V . (2.44)

With (2.43) and (2.44), we can modulate and recover the images; however, the pa-
rameter m still needs to be tried. In Fig. 2.20, we have tried six different values of m.
It can be seen that the greater the value of m, the better the secrecy of the image.
Fig. 2.18 shows the experimental results when the value of m = 8.8. Fig. 2.19 (left) is
the image that has been secreted by the proposed system, from which we can conclude
that the proposed method is successfully applied to the transmission of color images.
In fact, it is very difficult to know the original image from the transmitted one while
the restored image shown in Fig. 2.19 (right) is almost identical to the original color
image.

It is notable that the method of sharing the neural network as a black box in
the whole information transfer system is adopted in this study as the common key
cryptosystem. It is well known that the encryption method is based on 2 types
of cryptograms: the common key cryptogram and the open key cryptogram. In
this context, common key cryptography requires generating a common key for each
communication connection, and the key exchange must be secure to prevent being
stolen. And as an alternative method of open key cryptogram, using different keys
for encryption and decryption. The receiver generates a public key and a private key
that is not disclosed to anyone. Thus, it can be seen that as this study transmits
the neural network under a common key, it also carries a risk of theft in practice. In
order to improve this shortcoming, using open key cryptography to share the neural
network will be the topics of my future research.
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Fig.2.20 The effect of changing the m value in the modulation and demodulation portions
on the image encryption effect. Six different values of m (m = 1.0, 2.0, 5.0, 6.0,
7.5, 8.8) were tried, and the corresponding encryption effects were observed for
each, where the larger the value of m, the better the secrecy performance of the
image, within the computable range.
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2.4 Security Evaluation of the Encrypted Images by the Pro-
posed Method

In the previous section, we numerically examined the proposed method in which
the chaotic synchronization system and the artificial neural network are combined. In
particular, we tested different values of m to observe the efficiency of the encryption
and decryption of the images. In this section, we test the security of the encrypted
images. For some different images and the values of m, we investigate whether the
encrypted images are secure or not by computing several numerical security measures
and color histograms.

Based on traditional evaluation ideas, we first test the randomness of encrypted
images: the correlation coefficient and the UACI value [90]. We compare the proposed
method with Advanced Encryption Standard (AES) as a reference method. AES is a
traditional encryption method, which is a group cipher, where the plaintext is divided
into groups of equal length and each group is encrypted until the entire plaintext is
encrypted. We used AES in the ECB mode.

Although these are standard measures of security, note that the above measures are
not suitable for the proposed approach. In fact, in order to choose suitable measures,
the term of “ideal encrypted image” needs to be specified [125]. In typical statistical
measures, encrypted images are considered to be secure for, for example, differential
attacks when it exhibits randomness. On the other hand, the proposed approach
is not designed to generate pseudo-random sequences because a different criterion is
used for the term “ideal encrypted image”. The proposed approach aims to encrypt
the images into almost identical wave images, which are considered to be “ideal” in
this study. The idea behind this is that because, for example, the differential attacks
essentially try to find how differences in the original images affect the encrypted
images, if the encrypted images are almost identical, then the attacks should fail and
the information on the original image cannot be retrieved from them.

Although the statistical measures are not necessarily suitable for the proposed
method, to a certain extent, the method has a good statistical property as shown
below. In addition, we also performed more appropriate tests, in which the distin-
guishability of two encrypted images is checked.
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2.4.1 Randomness testing of encrypted images

Firstly, we computed the correlation coefficients between adjacent pixels for the en-
crypted image in three different directions: horizontal, vertical and diagonal. Suppose
that the image has N × N pixels (xi, yj), i = 1, . . . , N, j = 1, . . . , N . We calculate
the correlation coefficients for R, G and B values, respectively:

rxy =
1
N

∑N
i=1

∑N
j (xi − E(x))× (yi − E(y))

√
1
N

∑N
i=1(xi − E(x))2

√
1
N

∑N
j=1(yj − E(y))2

, (2.45)

where E(x) = 1
N

∑N
i xi, E(y) = 1

N

∑N
j yj. The correlation coefficients are between

−1 and 1. For example, when the value is close to 1, it means a high correlation
between pixels. When it is close to 0, there is no correlation; hence the image is
considered pseudo-random. The results are shown in Table 2.4 for the grayscale
images and in Table 2.5 for the color images. The images encrypted by the proposed
method all present a high inter-pixel correlation, while the traditional AES encryption
has an ideal value of around 0. This is because the encrypted images of the proposed
method have a certain regularity that is caused by the fact that the images represent
the trajectories of waves. Note that this regularity does not imply the recognizability
of the original images.

Secondly, we computed UACI values, which measure how much the encrypted image
differs from the original image. For two different images, I1 and I2, of the same size
N ×N , the UACI values between them is defined by:

UACI =
1

N2

N∑

i=1

N∑

j=1

I1(i, j)− I2(i, j)

tonal range
× 100%. (2.46)

Considering the color range and gray value distribution of images, the ideal value is
found to be 33.3. The closer the UACI of the encrypted image is to this ideal value,
the better the security.

The computed values are shown in Table 2.4 for the grayscale images and in Table
2.6 for the color images. All the results for AES are about 50.0, while those for the
proposed method depend on the target images. AES performs better for the images of
vegetables; however, the values of the proposed method for the images of the woman
are better than those of AES.
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Thirdly, we observed the histograms, which are graphical representations of the
intensity distribution of pixels in an image. For gray images, the grayscale histogram
reflects the grayscale statistical information of the image. For example, each grayscale
image of the previous numerical tests has 256 intensity levels with values from 0 to
255. We store the number of pixels corresponding to each gray level in a 256 capacity
array. Similarly, for color images, we can compute the histograms for each of the
three different channels, R, G and B, respectively.

The results are shown in Fig. 2.21 for the grayscale images and in Fig. 2.22 for the
color images. We can see that the histograms of the images encrypted by AES show
a uniform distribution, both in color and grayscale, which to some extent indicates
that the encrypted images are disordered and hence in a secure state.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig.2.21 The grayscale images and the histograms of the encrypted images. The first row
shows three different grayscale images (a–c). In the second, third and fourth rows,
the three figures in each row represent the histograms of the grayscale values of
the three original images encrypted by the proposed approach under the settings
of T = 1, 2, 3 and m = 6.0, respectively (d–l). The last row shows the histogram
after encryption by the AES. The horizontal coordinate represents the tonal range
and the vertical coordinate represents the absolute frequency (m–o).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)
Fig.2.22 The color images and the histogram of the encrypted image. The first row shows

three different color images (a–c). In the second, third and fourth rows, the
three figures in each row represent the histograms of the three original images
encrypted by the proposed approach under the settings of T = 1, 2, 3 and m = 6.0,
respectively. The last row shows the histogram after encryption by the AES. The
red, green and blue colors correspond to the histograms of each channel of R, G
and B, respectively (d–l). The last row shows the histograms after encryption by
the AES. The horizontal coordinates represent the tonal range and the vertical
coordinates represent the absolute frequency (m–o).

45



2.4. SECURITY EVALUATION OF THE ENCRYPTED IMAGES BY THE
PROPOSED METHOD

Table2.4 Correlation test in horizontal, vertical and diagonal directions and UACI test for
different grayscale images. Different m (m = 6, 7.5) and T (T = 1, 2, 3) were
tried respectively, where “lena” is Fig. 2.21a, “boat” is Fig. 2.21b, and “clock” is
Fig. 2.21c.

Object
Correlation

UACI
Horizontal Vertical Diagonal

lena

m = 6
T = 1 0.972642 0.972993 0.922492 36.141486

T = 2 0.962627 0.962568 0.890740 39.410799

T = 3 0.968880 0.969089 0.915038 35.114740

m = 7.5

T = 1 0.968823 0.969244 0.908995 39.877836

T = 2 0.954396 0.954471 0.874803 39.730604

T = 3 0.976311 0.976517 0.940879 35.622222

AES 0.002630 0.008785 0.000658 49.996347

boat

m = 6

T = 1 0.980538 0.980823 0.943327 36.728787

T = 2 0.961264 0.961193 0.885866 41.783973

T = 3 0.973791 0.973994 0.930897 39.928194

m = 7.5

T = 1 0.972897 0.973300 0.923706 36.761638

T = 2 0.957479 0.957473 0.874213 41.551513

T = 3 0.973904 0.974118 0.936444 40.359627

AES 0.000163 0.000445 0.000502 50.000055

clock

m = 6

T = 1 0.921742 0.922687 0.806450 48.089881

T = 2 0.858309 0.858372 0.664064 58.067992

T = 3 0.888560 0.889011 0.722784 58.823428

m = 7.5

T = 1 0.899274 0.900966 0.770316 47.179087

T = 2 0.853312 0.957473 0.874213 56.637741

T = 3 0.880133 0.881703 0.754349 57.388910

AES 0.005367 0.004363 0.003360 49.92927746
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Table2.5 Correlation test in horizontal, vertical and diagonal directions with different color
images. Different values of m (m = 7.5, 8.8) and T (T = 1, 2, 3) were tried respec-
tively, where “lena” is Fig. 2.22a, “boat” is Fig. 2.22b, and “veg” is Fig. 2.22c.

Object

Correlation

Horizontal Vertical Diagonal

R G B R G B R G B

lena

m = 7.5

T = 1 0.97 0.99 0.98 0.97 0.99 0.98 0.95 0.99 0.96

T = 2 0.99 0.99 0.98 0.99 0.99 0.98 0.98 0.98 0.97

T = 3 0.93 0.94 0.81 0.93 0.94 0.81 0.82 0.89 0.59

m = 8.8

T = 1 0.96 0.99 0.97 0.96 0.99 0.97 0.88 0.88 0.88

T = 2 0.98 0.99 0.98 0.98 0.99 0.97 0.96 0.98 0.96

T = 3 0.89 0.95 0.82 0.90 0.95 0.83 0.75 0.88 0.57

AES 5e−3 1e−3 −1e−3 1e-2 6e−3 8e−3 1e−3 −8e−53e−3
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Table2.5 Cont.

Object

Correlation

Horizontal Vertical Diagonal

R G B R G B R G B

boat

m = 7.5

T = 1 0.96 1.00 0.98 0.97 1.00 0.98 0.94 0.99 0.96

T = 2 0.99 0.99 0.98 0.99 0.99 0.98 0.98 0.98 0.98

T = 3 0.92 0.97 0.92 0.93 0.97 0.92 0.82 0.94 0.86

m = 8.8

T = 1 0.96 0.99 0.97 0.96 0.99 0.97 0.93 0.99 0.95

T = 2 0.98 0.99 0.97 0.98 0.99 0.97 0.96 0.98 0.96

T = 3 0.92 0.96 0.92 0.93 0.97 0.93 0.82 0.93 0.87

AES 6e−4 −1e−3 −1e−4 −3e−3 −1e−3 −3e−3 1e−3 −2e−3 −3e−3

veg

m = 7.5

T = 1 0.97 0.99 0.98 0.97 0.99 0.98 0.94 0.99 0.96

T = 2 0.99 0.99 0.98 0.99 0.99 0.88 0.98 0.98 0.97

T = 3 0.92 0.97 0.92 0.93 0.97 0.92 0.82 0.94 0.86

m = 8.8

T = 1 0.96 0.99 0.97 0.97 0.99 0.98 0.94 0.99 0.96

T = 2 0.98 0.99 0.97 0.98 0.99 0.97 0.96 0.98 0.96

T = 3 0.92 0.96 0.92 0.93 0.96 0.92 0.82 0.96 0.86

AES 2e−4 2e−3 5e−3 −8e−4 2e−3 6e−4 4e−4 4e−3 7e−4
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Table2.6 UACI test for different color images. Different values of m (m = 7.5, 8.8) and
T (T = 1, 2, 3) were tried respectively, where “lena” is Fig. 2.22a, “boat” is
Fig. 2.22b, and “veg” is Fig. 2.22c.

Object
UACI

R G B

lena

m = 7.5

T = 1 46.293217 40.515568 24.708355

T = 2 43.678409 43.262431 37.007906

T = 3 41.407206 42.583560 29.628579

m = 8.8

T = 1 46.454520 41.186064 24.949227

T = 2 44.341227 43.377668 33.920451

T = 3 43.072341 40.273322 40.672362

AES 50.133255 50.047464 49.936812

boat

m = 7.5

T = 1 35.143726 48.660561 52.421603

T = 2 39.571601 55.066602 56.038358

T = 3 47.716444 53.135069 53.060568

m = 8.8

T = 1 35.245613 50.609906 55.037498

T = 2 38.337034 56.456049 58.441035

T = 3 42.331758 55.305545 56.647502

AES 49.953939 50.052023 50.175874

veg m = 7.5

T = 1 37.751291 54.587069 54.226224

T = 2 45.768913 47.626056 62.656476

T = 3 37.213291 48.628576 69.999379
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Table2.6 Cont.

Object
UACI

R G B

m = 8.8

T = 1 37.915899 54.778044 55.353727

T = 2 62.202183 48.556424 40.446628

T = 3 33.298991 51.570749 69.901463

AES 49.956022 50.026667 49.943955

Meanwhile, the histogram of the encrypted image in the mode of the proposed
method presents an unbalanced state with a high concentration in a certain region.
The reason for this phenomenon is as follows. The proposal method uses the reflection
of waves, and even though the initial conditions are random values, they are propa-
gated to the left and right sides along straight lines. In fact, as shown in Fig. 2.23,
the images encrypted by AES and the images encrypted by the proposed method are
apparently different from each other. The former has almost no structure, and the
latter a visible structure that corresponds to the trajectories of the waves. The above
mentioned concentration is observed because the intensity of a trajectory takes the
same value.
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Fig.2.23 The grayscale encrypted image (left) and the color encrypted image (right) ob-
tained by using the AES on the grayscale image (Fig. 2.13) and the color image
(Fig. 2.19).

From this consideration, we deduce that the difference in the position of the highest
point of the histogram reflects the difference in the lengths of the straight lines, which
in turn depend on the waiting time for synchronization. To confirm this, we computed
the histograms changing the waiting time as T×(the vertical size of the target image)
with T = 1, 2, 3. For grayscale images, the highest point of the histogram increases
with the waiting time, and for color images, R, G and B have multiple peaks and the
position and the number of the peaks depend on the waiting time. This implies that
although the histograms of the encrypted images have some peaks, from these peaks
only the waiting time for synchronization can be estimated, and at least in a naive
way, no information on the original images can.

2.4.2 Distinguishability of encrypted images

From the above security tests, we can say that AES has higher security from the
perspective of randomness; however, the AES and the proposed approach are funda-
mentally different in the definition of “ideal encrypted images”. Hence, it is important
to investigate the security issue from another perspective.

Since the ideal encrypted images of the proposed approach are “the indistinguish-
able images of waves”, we calculated the similarity of encrypted images of two different
images. If there is a high correlation between the two, it indicates that the proposed
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method encrypts different images into almost identical encryption results. In addi-
tion, if two encrypted images have high similarity, there is a very low probability of
leaking the original image information.

We evaluated three inter-image-similarity criteria [26, 105] for color and grayscale
images. Firstly we use the averaging pixel values,

√
(I1R − I2R)2 + (I1G − I2G)2 + (I1B − I2B)2

√
3× (255− 0)2

, (2.47)

where I1, I2 are images and the averaging value, for example, IR, for the image I is

IR =
1

Npixel

Npixel∑

i=0

IRi
, IR = {IR0 , IR1 , . . . , IRNpixel

}.

Npixel is the number of pixels and IRi
is the red value of the ith pixel of the image

I. Secondly, we use the histogram for pixel values,
√∑Nint

i=0 (I1RHi
− I2RHi

)2 +
√∑Nint

i=0 (I1GHi
− I2GHi

)2 +
√∑Nint

i=0 (I1BHi
− I2BHi

)2

3×
√

2× (1− 0)2
,

IRH = {IRH0 , IRH1 , · · · , IRHNint
}, (2.48)

where I1, I2 are images and Nint is the number of the levels of intensity, and IRHi
is

the relative degree of the ith bin of the histogram of the red values of the image I.
Thirdly, we use the correlation coefficients:

1−

∣∣∣∣
rI1I2R + rI1I2G + rI1I2B

3

∣∣∣∣ , (2.49)

where

rI1I2R =

∑Npixel

i=0 (I1Ri
− I1R)(I2Ri

− I2R)
∑Npixel

i=0 (I1Ri
− I1R)2

∑Npixel

i=0 (I2Ri
− I2R)2

.

In the experiments, the resolutions of the two images are unified into the same
value. We computed these values changing the value of m and the waiting time for
synchronization.

From the results of the grayscale and color images shown in Tables 2.7 and 2.8, it
can be seen that the correlation coefficients between the encrypted images of differ-
ent images are significantly large. The values are indeed almost close to one; when

52



2.4. SECURITY EVALUATION OF THE ENCRYPTED IMAGES BY THE
PROPOSED METHOD

ten decimal places are used, the values of correlation coefficients are, for example,
0.9999999977 for the grayscale image of “boat” with m = 7.5, T = 1 and that of
“lena” with m = 6.0, T = 1 and 0.9999999865 for the color image of “boat” with
m = 7.5, T = 1 and that of “lena” with m = 8.8, T = 2. The other two measures
are very small in all cases, indicating high indistinguishability between the encrypted
images, hence the high security of the proposed approach.

Table2.7 Similarity comparison between the grayscale encrypted images I1 and I2 with
the proposed approach. Six different encrypted images are taken, the similarity
is calculated between each two, and no comparison is made between encrypted
images of the same original image. The result column has three values, from top
to bottom, corresponding to (2.47)–(2.49). In particular, “lena” is Fig. 2.21a,
“boat” is Fig. 2.21b, and “clock” is Fig. 2.21c.

I1

I2
Lena

(m = 6, T = 1)
Boat

(m = 7.5, T = 2)
Clock

(m = 6, T = 2)

lena
(m = 7.5, T = 1)

0.068396 0.0898650

0.999999 0.999999

0.112057 0.119775

boat
(m = 7.5, T = 1)

0.042764 0.099446

0.999999∗ 0.999999

0.077088 0.143051

clock
(m = 6, T = 3)

0.106253 0.071040

0.999999 0.999999

0.107990 0.081516

∗: The value is 0.9999999977 when 10 decimal places are used.

53



2.4. SECURITY EVALUATION OF THE ENCRYPTED IMAGES BY THE
PROPOSED METHOD

Table2.8 Similarity comparison between the color encrypted images I1 and I2 with the
proposed approach. Six different encrypted images are taken, the similarity is
calculated between each two, and no comparison is made between encrypted
images of the same original image. The result column has three values, from top
to bottom, corresponding to (2.47)–(2.49). In particular, “lena” is Fig. 2.21a,
“boat” is Fig. 2.21b, and “veg” is Fig. 2.21c.

I1

I2
Lena

(m = 8.8, T = 2)
Boat

(m = 7.5, T = 2)
Veg

(m = 8.8, T = 1)

lena
(m = 8.8, T = 3)

0.047194 0.070985

0.999999 0.999999

0.103503 0.184824

boat
(m = 7.5, T = 1)

0.084080 0.008566

0.999999∗ 0.999999

0.185896 0.037862

veg
(m = 7.5, T = 1)

0.092913 0.106315

0.999999 0.999999

0.191360 0.210313

∗: The value is 0.9999999865 when 10 decimal places are used.
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Chapter 3 Neural Symplectic Form: Learn-
ing Hamiltonian Equations on
General Coordinate Systems

Hamiltonian mechanics can describe more general equations which are not covered
by Lagrangian mechanics, of which the equation of motion is defined as follows:

∂L

∂q
−

d

dt

∂L

∂q̇
= 0. (3.1)

In the previous models for Hamiltonian equations, this equation

d

dt

(
q
p

)
=

(
O I
−I O

)(
∂H
∂q
∂H
∂p

)

(3.2)

is typically assumed, where q is the state variable, and p is a variable called the gen-
eralized momentum. For example, the Hamiltonian neural network employs this form
of equation. However, the Hamilton equation becomes this form only on special coor-
dinate systems called the Darboux coordinate system [76]. Such coordinate systems
often rely on unknown energy functions, thus it is usually not possible to prepare data
in this coordinate system. Therefore, it is necessary to build a deep physical model
that can be applied to the general coordinate system.

In this chapter, we propose a method for learning Hamilton equations from data
represented on general coordinate systems, which are not restricted to generalized
momenta. The key ingredient is the neural symplectic form; we proposed to learn the
symplectic 2-form by using neural networks from data, thereby learning a coordinate-
free representation of Hamiltonian equations. In addition, the Hamilton equation
can be represented using a state-dependent skew-symmetric matrix, but not all skew-
symmetric matrices are related to the symplectic 2-form. In the proposed method,
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in order to restrict the model to symplectic 2-forms, the 1-form that derives the
symplectic 2-form is learned by the neural networks. (see Fig. 3.1)

Fig.3.1 Overview of the proposed method. Generally, the analytical representation of gen-
eralized momenta is unknown, so the data cannot be presented in a canonical
coordinate system. The proposed method learns the Hamilton equation from data
represented in an arbitrary coordinate system by learning the symplectic 2-form as
well as the energy function. In particular, to ensure that the learned symplectic 2-
form is closed, our method learns the differential 1-form that derives the symplectic
2-form. A universal approximation theorem is also provided.

Main contributions of this study include:
1. Symplectic geometric approach to learning symplectic 2-forms. The
symplectic 2-form required to describe the Hamilton equation corresponds to a skew-
symmetric matrix, but conversely, not all skew-symmetric matrices correspond to a
symplectic 2-form. In this chapter, we propose an efficient model by learning the
symplectic 1-form that derives the symplectic 2-form with neural networks.
2. Learning the Hamilton equation from data in arbitrary coordinate
systems. By using the coordinate-free representation of the Hamilton equation, it is
possible to learn the Hamilton equation from data represented in a general coordinate
system, not restricted to the Darboux coordinate system. In this way, the proposed
method can determine whether the given data can be explained by the hidden theory
of classical mechanics or not. A universal approximation theorem is also provided.

This chapter is organized as follows. First, in Section 3.1, we explain existing work
related to deep physical models including Lagrangian neural networks and Hamilto-
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nian neural networks. We also explain the drawback of each of these models. In
Section 3.2, we explain a detailed description of the architecture of our proposed
method, the neural symplectic form. In Section 3.3, the numerical experiments are
performed using the Hamiltonian neural network, the Lagrangian neural network, the
skew matrix learning and the neural symplectic form.

3.1 Physical Models with Neural Networks

Physical models with neural networks can approximate physical phenomena from
observations by learning the ordinary differential equation that represents the equa-
tion of motion. In order that physical properties are not lost, physical laws such as
the law of conservation of energy are to be intrinsically integrated into the model ar-
chitecture. Such models are being actively explored including the deep physics models
based on the Euler–Lagrange equations(3.1) and the Hamiltonian equations (3.2).
Neural Networks for Hamiltonian Mechanics Neural ordinary differential equa-
tions (NODE) [15] is a neural network that models the time-derivative of the states,
thereby defining an ordinary differential equation in a general way. Due to the gen-
erality, this model does not admit the energy conservation law.

Hamiltonian neural network (HNN) is a neural network that models the Hamil-
tonian H and defines the dynamics following the Hamiltonian mechanics, thereby
ensuring the energy conservation law [38]. Although models of the form (3.2) are
often used in the previous studies, the Hamilton equation has this form only in the
Darboux coordinates [76]. The Darboux coordinate system, which is essentially the
generalized momentum p, is defined using the Hamiltonian H, which is the target to
be learned. Hence, training data in the coordinate is usually unavailable. In addition,
Hamiltonian equations are defined on general symplectic manifolds; however, in the
existing studies, cotangent bundles are typically assumed as the symplectic manifold.

A numerical integration of the Hamiltonian system is known to destroy the symplec-
tic structure and does not conserve the Hamiltonian H, unless the integrator is care-
fully designed (see, e.g., [40,114]). Several studies focus on the numerical integration
that conserves the Hamiltonian H [19, 25, 75, 126, 135]. The Hamiltonian neural net-
work was extended to energy-conserving partial differential equation (PDE) systems,
such as the Korteweg–De Vries (KdV) equation [75], to dissipative systems, such as a
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Table3.1 Comparison with other studies.

HNN [38] LNN [20]
Skew Matrix

Learning (Sec. 3)
Neural Symplectic
Form (proposed)

In the known Darboux coordinate yes yes yes yes
In general coordinates on cotangent bundles yes yes yes
On general symplectic manifolds yes yes

Only symplectic forms N/A N/A yes

pendulum with friction [75, 134]. In [50], a discrete-time model is proposed for Pois-
son systems, which are extension of Hamiltonian systems, where the skew symmetric
matrix can be degenerate. In particular, in [50], dynamics with state-dependent skew
symmetric matrices are leaned by introducing coordinate transformations for learning
the dynamics in the latent space. The proposed method is different from this study
in that our method does not use the coordinate transformations and hence has an
advantage in interpretability. Another approach is employed in [14, 51], where the
symplectic map is modeled. SympNets [51] are also shown to be universal approx-
imators, and, in [14], a bound on the prediction error is provided. The proposed
method can be combined with these discrete-time approaches.

Modeling using machine learning has also been performed in the field of quan-
tum mechanics, for example, by Tkatchenko and coworkers (e.g. [97, 103]). Some
breakthroughs have been reported that have not been possible with conventional
computational chemistry methods. The relationship with these studies needs to be
investigated in the future.
Neural Networks for Lagrangian Mechanics Another branch of studies focuses
on Lagrangian mechanics. Lagrangian neural network (LNN) is a neural network that
models the Lagrangian L in a general way [20], and deep Lagrangian network explicitly
defines the kinetics energy with a trainable mass matrix [72]. Lagrangian mechanics
defines Lagrangian systems on tangent bundles [73], where the state is the pair of
the position q and velocity q̇. The systems have specific symplectic structures, which
are equivalent to Hamiltonian systems in general coordinate systems on cotangent
bundles. Because the Lagrangian neural network does not assume equations of a
specific form, it can learn a wider class of systems, including a double pendulum, in
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addition to the systems that the Hamiltonian neural network can learn (see Table 3.1).
Similarly to the Hamiltonian neural network, numerical integrators that preserve the
symplectic structure have been investigated [24,98]. Neural network architectures that
ensure translational and rotational symmetries have also been investigated [32,100].

As mentioned before, not all Hamiltonian systems are defined on cotangent bundles.
For examples, the some polynomial equations including the Lotka–Volterra equation
have a different symplectic structure [42]. In fact, the Lotka–Volterra equation is
actually a Hamiltonian system, even though its states are not position, velocity, nor
generalized momentum. These equations are out of the scopes of Hamiltonian neural
networks and Lagrangian neural networks (see Table 3.1).

3.2 Neural Symplectic Form

In this section, we propose a neural network model based on a coordinate-free
representation of Hamiltonian equations. First, we describe this representation. As a
precise description of this representation requires detailed geometric knowledge, the
relevant details are presented next.

3.2.1 Coordinate-free representation of Hamiltonian equations

In terms of geometry, the Hamilton equation is defined as a flow on a symplec-
tic manifold, which is a pair of a manifold and a symplectic 2-form. Because a
flow is defined in a coordinate-free form, the Hamilton equation can be defined in a
coordinate-free manner as well. In this section, this is explained in more detail. For
further information, see, e.g., [4, 73,76].

Let M be a manifold, TM the tangent bundle and T ∗M the cotangent bundle.
For each q ∈ M, TqM denotes the tangent space at q, which is roughly the space of
vectors defined locally at q. T ∗

q M is the dual space of TqM, that is, T ∗
q M is a space of

continuous linear maps from TqM to R. Differential k-forms are the skew-symmetric
multilinear maps from k vectors in TqM to R. In particular, a 0-form is a function
from M to R and a 1-form is a vector in the dual space T ∗

q M. Suppose that M

is N -dimensional and has a local coordinate system x1, . . . , xN . Typical 1-forms are
dxk’s, each of which maps a vector v = (v1, . . . , vN )' ∈ TqM to dxk(v) = vk ∈ R.
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For two 1-forms dxk and dxl, the wedge product dxk ∧ dxl is a 2-form defined by

(dxk ∧ dxl)(v, w) = vkwl − vlwk, for all v = (v1, . . . , vN )', w = (w1, . . . , wN )' ∈ TqM;

in some literature, the wedge product is defined as a constant multiple of the above
definition. It follows from the definition that dxk∧dxl = −dxl∧dxk, and particularly
dxk ∧ dxk = 0.

The exterior derivative d is a linear operator that computes a certain derivative of
differential forms. d maps a k-form to a (k+1)-form, and has a characteristic property
dd = 0. For a 0-form f(q), df in the coordinate system x1, . . . , xN is defined by

df =
∂f

∂x1
dx1 + · · ·+

∂f

∂xN
dxN .

For a 1-form θ =
∑N

k=1 fkdxk, the exterior derivative is

dθ = d
N∑

k=1

fkdxk =
N∑

l=1

N∑

k=1

∂fk
∂xl

dxl ∧ dxk =
∑

l<k

(
∂fk
∂xl

−
∂fl
∂xk

)
dxl ∧ dxk.

For 2 vectors v = (v1, . . . , vN )', w = (w1, . . . , wN )' ∈ TqM, the value of dθ is
represented by using a skew matrix W

dθ(v, w) =
∑

l<k

(
∂fk
∂xl

−
∂fl
∂xk

)
dxl ∧ dxk(v, w)

=
∑

l<k

(
∂fk
∂xl

−
∂fl
∂xk

)
(vlwk − vkwl)

=
(
v1v2 · · · vN

)
W





w1

w2
...

wN




, W =





0 ∂f2
∂x1

− ∂f1
∂x2

∂f3
∂x1

− ∂f1
∂x3

· · ·
∂f1
∂x2

− ∂f2
∂x1

0 ∂f3
∂x2

− ∂f2
∂x3

· · ·
∂f1
∂x3

− ∂f3
∂x1

∂f2
∂x3

− ∂f3
∂x2

0 · · ·
...

...
... . . .




.

Differential 2-forms are generally represented by using a skew matrix in the same
way.

Definition 3.1. A differential form ω is closed if dω = 0.

Definition 3.2. A differential 2-form ω is non-degenerate if the skew matrix associ-
ated with ω is non-degenerate.
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Definition 3.3. A symplectic 2-form is a closed and non-degenerate differential 2-
form.

A Hamiltonian equation on a symplectic manifold M with the symplectic 2-form
ω is defined in a coordinate-free way as

du

dt
= XH , ω(XH , ·) = dH(·), (3.3)

where H is a Hamiltonian and XH is a vector field defined by the second equality
of the above equations. Note that the differential forms are functions of vectors,
which are defined regardless of the coordinate systems. Hence, the model (3.3) is a
coordinate-free representation.

For example, suppose that M is a 2-dimensional manifold with a local coordinate
(q, p)'. dq ∧ dp is a symplectic 2-form on this manifold; in fact, dq ∧ dp is obtained
as the exterior derivative of 1-form θ = qdp:

dθ = d(qdp) = dq ∧ dp

and hence dq ∧ dp is closed:

d(dq ∧ dp) = dd(qdp) = 0

because dd = 0. The matrix representation of this 2-form is

(dq ∧ dp)(

(
q1
p1

)
,

(
q2
p2

)
) =

(
q1 p1

)( 0 1
−1 0

)(
q2
p2

)

because

(dq ∧ dp)(

(
q1
p1

)
,

(
q2
p2

)
) = dq(

(
q1
p1

)
)dp(

(
q2
p2

)
)− dq(

(
q2
p2

)
)dp(

(
q1
p1

)
) = q1p2 − q2p1.

Meanwhile, dH is computed as

dH =
∂H

∂q
dq +

∂H

∂p
dp.

Therefore, by substitution of du/dt = XH with u = (q, p)' into the second equation,
the coordinate-free form (3.3) becomes

dq ∧ dp

(
d

dt

(
q
p

)
,

(
v1
v2

))
= dH(

(
v1
v2

)
) for all v =

(
v1
v2

)
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of which matrix representation is

(
dq
dt

dp
dt

)( 0 1
−1 0

)(
v1
v2

)
=

∂H

∂q
dq(

(
v1
v2

)
) +

∂H

∂p
dp(

(
v1
v2

)
) for all v =

(
v1
v2

)
.

This is equivalent to

v2
dq

dt
− v1

dp

dt
=

∂H

∂q
v1 +

∂H

∂p
v2 for all v1, v2,

which gives the standard form of the Hamilton equation:

dq

dt
=

∂H

∂p
,

dp

dt
= −

∂H

∂q
.

Based on the above prior knowledge of the fundamentals of geometric mechanics,
the model in this chapter can be used on a general symplectic manifold, but for
simplicity, we describe the case where the phase space is M = R2N . A differential
2-form ω on M is a skew-symmetric bilinear function that maps given two vectors
into a real number, depending on each point u on M. The skew-symmetric bilinear
function defined by ω has the following matrix representation:

ωu(v1, v2) = v'1 Wuv2, for all v1, v2 ∈ R
2N ,

where Wu is a skew-symmetric matrix, and the subscript u denotes that ω and hence
its matrix representation Wu depend on u. A symplectic 2-form is a differential 2-form
that is nondegenerate and closed.

The following is the coordinate-free form of Hamiltonian equations [73]

du

dt
= XH , ω(XH , v) = dH(v) for all v ∈ R

2N . (3.4)

Here, dH is the Fréchet derivative of the Hamiltonian H, and XH is a vector field
depending on H. This equation is satisfied regardless of the coordinate system in
which the state variable u is expressed. Therefore, by using this equation as a model,
as long as the given data is described by the Hamilton equation, it is possible to learn
both the symplectic 2-form and the Hamiltonian that define the Hamilton equation,
no matter what coordinate system the data is given in.
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3.2.2 De Rham cohomology and the de Rham theorem

From the property dd = 0 of the exterior derivatives, Im d ⊂ Ker d. The difference
Ker d/Im d is called the de Rham cohomology space.

As is well known, there is a natural duality between differential k-forms ω’s and
k-dimensional integral domains Ω’s in the sense that a real number can be associated
with each pairing of 〈ω,Ω〉 in the following way

〈ω,Ω〉 :=

∫

Ω
ω.

In particular, the Stokes theorem for differential forms
∫

Ω
dω =

∫

∂Ω
ω

gives the duality between the exterior derivative d and the boundary operator ∂

〈dω,Ω〉 = 〈ω, ∂Ω〉.

This duality associates differential forms, the exterior derivative and the cohomology
with integral domains, the boundary operator and the homology, respectively. In fact,
the boundary operator ∂ is defined in such a way that ∂ maps k-dimensional domain to
its k−1-dimensional boundary. Because a boundary of a domain is in general a cycle,
the boundary of a boundary is 0: ∂∂ = 0. This property of the boundary operators
is the same as that of the exterior derivative d, and hence the similar space to the
cohomology space can be introduced. In fact, because Im ∂ ⊂ Ker ∂, we can consider
the difference Ker ∂/Im ∂. This space is the homology space. The domain contained
in the homology space is essentially a “hole,” because basically it is a cycle that is
not a boundary of any other domain. The de Rham theorem states that there is an
isomorphism between the cohomology space and the homology space. In particular,
the dimension of the cohomology space is the same as that of the homology space,
the number of holes. Thus if the underlying phase space has no hole, the cohomology
space vanishes and Im d = Ker d. When the cohomology space does not vanish, the
members of this space must be computed and added to the model. This is possible
because this space is finite-dimensional, and hence we can enumerate the members.
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3.2.3 Naive method: the skew matrix learning

By replacing the symplectic 2-form with the matrix Wu, (3.6) can be rewritten as

du

dt
= XH , X'

HWuv = v ·∇H for all v ∈ R
2N ⇔

du

dt
= W−'

u ∇H.

A natural model based on this representation would be a model in which Wu and H

are modeled by multilayer perceptrons:

du

dt
= W−'

u,NN∇HNN(u), (3.5)

where HNN is a function of u defined by a multilayer perceptron, and Wu,NN is a skew-
symmetric matrix depending on u represented by another multilayer perceptron. We
refer this model as the skew matrix learning. If u is represented in the Darboux
coordinate system, (3.5) becomes (3.2), and hence the model is the same as the
Hamiltonian neural network.

Similarly to Hamiltonian neural networks, this model has the energy conservation
law.

Theorem 3.1. Solutions to (3.5) satisfy dHNN/dt = 0.

Proof. By the chain rule, we have

dHNN(u)

dt
= ∇HNN ·

du

dt
.

Substituting (3.5) into the above equation, we get

dHNN(u)

dt
= ∇HNN ·W−'

u,NN∇HNN = 0

because W−'
u,NN is skew-symmetric and for any skew-symmetric matrix M and for any

vector v

v ·Mv = 0,

which is confirmed by

v ·Mv = v'Mv = (v'Mv)' = v'M'v = −v'Mv = −v ·Mv

because M is skew-symmetric and v'Mv is a 1 × 1 matrix, for which (v'Mv)' =

v'Mv holds. The above equality gives 2v ·Mv = 0.
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3.2.4 Neural symplectic form

Although the model in the previous section is natural, it is a redundant model
and inefficient for learning as explained below. As explained in the beginning of this
chapter, although a differential 2-form corresponds to a skew-symmetric matrix, not
all skew-symmetric matrices define a symplectic 2-form. Symplectic 2-forms have the
characteristic feature of being closed. In this study, we propose a model in which the
learned 2-form is guaranteed to be closed. We refer the learned 2-form as the neural
symplectic form.

First, the necessary terminology is briefly explained. See Section 3.2.1 for details.
A differential 0-form on M = R2N is a function from M to R. A differential 1-form
θ on M = R2N is a field of linear functions each of which maps a vector v ∈ R2N to
θu(v) ∈ R, depending on each point u ∈ M. In general, a linear function from R2N to
R can be expressed as an inner product with a vector, so a differential 1-form can be
expressed as a vector field depending on u. A differential operation called the exterior
derivative d is defined for differential forms. The exterior derivative is a graded linear
map, i.e. a linear map depending on an integer k, which transfers a differential k-form
to a differential (k + 1)-form and has the property that dd = 0.

Fig.3.2 The de Rham theorem ensures the Ker d = Im d.

The differential form in Ker d is called a closed form. Since a symplectic 2-form
is a closed form, in order to learn the symplectic 2-form by neural networks, neural
networks should be designed so that differential 2-forms represented by the neural
networks are contained in Ker d. Meanwhile, due to the property of the exterior
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derivative, dd = 0, it holds that Im d ⊂ Ker d.
Actually, according to the de Rham theorem, when the phase space is R2N , these two

spaces coincide: Im d = Ker d. The difference between these two spaces Im d/Ker d

is called the cohomology space. The de Rham theorem states that the cohomology
space is isomorphic to the homology space, which is roughly a space of ”spatial holes.”
Because R2N contains no holes, the homology space must vanish, and hence Im d =

Ker d holds (see Fig. 3.2.) Even when the phase space has a hole, in many cases the
space can be embedded in a large Euclid space without holes, and the model should
be defined on that space. See Section 3.2.2.

Therefore, in this study, instead of learning the symplectic 2-form directly, we
propose a method to learn the symplectic 2-form by learning the differential 1-form of
which exterior derivative gives the symplectic 2-form. The following is the coordinate-
free form of the proposed model:

ω̃ = dθNN,
du

dt
= X̃HNN , ω(X̃HNN , v) = dHNN(v) for all v ∈ R

2N (3.6)

Unlike (3.5), in this model skew-symmetric matrices that do not correspond to sym-
plectic forms are not explored. Therefore, this model can be trained much more
efficiently than (3.5). In fact, suppose that the dimension of the phase space is 2N .
Then, the number of components of the skew-symmetric matrix is N(2N − 1), while
the differential 1-form is represented as a vector field, the number of which compo-
nents is 2N . Consequently, a model using the neural symplectic form can reduce the
order of the number of functions to be learned from O(N2) to O(N) without sacrific-
ing the expressive power. As per the above, the differential 1-form can be expressed
as a vector field. Hence the neural network for modeling the 1-form in the proposed
model essentially models a vector field YNN, which represents the differential 1-form
θNN. As shown in Section 3.2.1, the vector field YNN is transformed to the matrix W̃u

representing the symplectic 2-form as follows:

(W̃u)i,j =
∂(YNN)i
∂uj

−
∂(YNN)j

∂ui
.

In the actual model, YNN given by the neural network is differentiated by the auto-
matic differentiation, and Wu,NN is obtained by substituting the derivatives into the
above equation. Thus we have the model expressed in terms of vectors and a matrix,
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without using the differential forms:

du

dt
= W̃−'

u ∇HNN(u), (W̃u)i,j =
∂(YNN)i
∂uj

−
∂(YNN)j

∂ui
. (3.7)

It is important to note that the neural symplectic form model can be built on any
coordinate system. We now have two representations of the neural symplectic form
model, the differential form (3.6) and the matrix form (3.7), where the calculation of
the matrix W corresponding to the symplectic 2-form ω is dependent on the coordinate
system. In fact, to select a coordinate system, bases must be specified and different
bases give a different coordinate system. The matrix W is transformed according to
the choice of the bases. This means that we can find W on any coordinate system, thus
enabling the neural symplectic form model to be modelled from general coordinates.

The proposed model has the energy conservation law and the universal approxima-
tion property.

Theorem 3.2. Solutions to (3.6), or equivalently, to (3.7) satisfy dHNN/dt = 0.

Proof. The proof of this theorem is same as the proof of Theorem 3.1.

We denote by Σ(σ) the space of the neural networks with the activation function
σ:

Σ(σ) ={g : Rr → R | g(x) =
q∑

i

βiσ(γ
'
i x+ αi),αi ∈ R,βi ∈ R, γi ∈ R

r}.

Theorem 3.3. Suppose that the Hamilton equation to be learned can be represented
in the form (3.4) using a Hamiltonian H ∈ W 1,p and a symplectic 2-form ω that is
derived from a 1-form θ ∈ W d,p in the sense that

dθ = ω.

Suppose also that the phase space is compact. The model (3.6) with neural networks
in Σ(σ), of which activation function σ is in C∞ and does not vanish everywhere, has
the universal approximation property in the sense that θ and H can be approximated
by the neural networks with arbitrary accuracy.

W 1,p and W d,p are Sobolev spaces; see [2, 47].
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Proof. In the spaces W 1,p and W d,p, the spaces of C∞ functions C∞ ∩ W 1,p and
C∞ ∩ W d,p are respectively dense [47]. Therefore, if neural networks used in the
model admit the universal approximation property to C∞ functions, then the univer-
sal approximation theorem for the differential forms holds. Meanwhile, regarding the
approximation of C∞ functions, the following theorem is known.

Theorem (Hornik et al., 1990). If the activation function σ &= 0 belongs to Sm
p (R)

for an integer m ≥ 0, then Σ(σ) is m-uniformly dense in C∞(K), where K is any
compact subset of RN .

Sm
p (R) is the Sobolev space, which is roughly functions with up to mth (weak)

derivatives with the bounded Lp norm. W 1,p and W d,p are Sobolev spaces of differ-
ential forms; see [2,47] for the definitions and the properties. Hence, if the activation
function σ of the hidden layer is in C∞ ⊂ Sm

p (R) and does not vanish everywhere,
then for any C∞ function, there exists a neural network that approximates this func-
tion. Since it is assumed that σ is C∞ and does not vanish everywhere, we need to
prove that σ and its derivatives are in Lp. Because the phase space is assumed to be
compact and the activation functions are smooth, the outputs of the neural network
and hidden layers are also compact. Hence, the activation function σ is essentially
used on the compact domains. Therefore, σ can be restricted to such domains so that
σ is in Lp. This completes the proof.

3.2.5 Learning dynamics by using the neural symplectic form

The proposed model learns the symplectic form and the Hamiltonian by minimizing
the squared error between the left- and right-hand sides of (3.6), assuming that time
series data of state vectors {u(n)} and its time-derivatives {du

dt

(n)
} are given;

minimize
∑

n

∣∣∣∣∣
du

dt

(n)

− W̃−'
u(n)∇HNN(u

(n))

∣∣∣∣∣

2

, (W̃u(n))i,j =
∂(YNN)i
∂uj

(u(n))−
∂(YNN)j

∂ui
(u(n)).

If the time derivatives are not available, interpolated data should be used. For each
state vector u(n), first YNN(u(n)) is computed. Then, the derivatives of YNN(u(n))

are calculated by the automatic differentiation to obtain (W̃−'
u )i,j. Meanwhile, the

gradient of the Hamiltonian is computed in the same way; first HNN((n)) is computed,
and then ∇HNN((n)) is obtained by the automatic differentiation.
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In the standard Hamiltonian neural networks only the computation of the gradient
of the Hamiltonian is required. Hence the computational cost of the neural symplectic
form is roughly 2N times the computational cost of Hamiltonian neural networks,
where 2N is the number of the state variables, because the number of components
of YNN(u(n)) is 2N . When N is large, such as in many-body problems, the most
computationally expensive part may be computation of the inverse of the matrix
W̃u(n) , which requires O(N3) operations. To avoid the computation of the inverse,
one may be tempted to minimize

∑

n

∣∣∣∣∣
W̃'

u(n)

du

dt

(n)

−∇HNN(u
(n))

∣∣∣∣∣

2

.

However, this model does not work because this is trivially minimized by setting
W̃'

u(n) = O and HNN = (constant.) Learning the inverse while maintaining the
symplectic structure is future work.

3.3 Numerical Examples

The proposed method with the neural symplectic form can model general Hamil-
tonian equations on general symplectic manifolds using data represented by general
coordinate systems. We illustrate these advantages in the following numerical exper-
iments with comparative methods.

We performed the experiments using Hamiltonian neural networks, Lagrangian neu-
ral networks*1, skew matrix learning and neural symplectic form. The energy func-
tion, the skew-symmetric matrix, and the 1-form for the neural symplectic 2-form
were modeled by using a neural network that had two hidden layers of 200 units and
the tanh activation function. We used 80 percent of collected data for training and
the remaining for test. The collected data were normalized so that most of them
were in the range [−1, 1]; however, the errors in this section are given in the original
physical scale. It is worth noting that the collected data used in this experiment was
obtained numerically and therefore there is some error in the simulated data compared

*1 We used the implementation of the Lagrangian neural networks model in torchdyn
[88] https://github.com/DiffEqML/torchdyn/blob/master/docs/tutorials/09_lagrangian_
nets.ipynb (Apache 2.0 License)
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to the actual real data. The neural symplectic form would be a Hamiltonian system,
although the extent to which it deviates from the truth is related to the simulation
errors in the data. We use the most commonly used numerical library SciPy, and the
corresponding module for solving differential equations is scipy.integrate.solve_ivp,
which uses the Runge-Kutta-Fehlberg method (denoted RKF45) in its default set-
ting. Under this setting, the rerative error was set to 10−3 and hence the error for
this experiment should be of the same order. We should use more precise data (eg.
errors of 1e-6) for our experiments, which will be a topic of our future research.

We trained each model 10 times using the Adam optimizer with a learning rate of
10−3 for 2000 iterations. Only for Lagrangian neural networks, we set the learning
rate to 10−4 due to an instability of learning; in our experiments the loss function of
Lagrangian neural networks sometimes did not converge monotonically, but oscillated
when the learning rate was set to 10−3. Hence we truncated the training process at
the iteration where the loss function achieved the best score. This oscillation should
be due to the non-uniqueness of Lagrangian. See below for details.

Fig.3.3 An example of the histories of the training loss of Lagrangian neural networks for
the double pendulum data when the learning rate is set to 10−3.

On the performances of Lagrangian neural networks In our experiments, al-
though Lagrangian neural networks should be capable of modeling the targets, La-
grangian neural networks sometimes did not work well. Fig. 3.3 shows an example
of the histories of the training loss of an Lagrangian neural network for the double
pendulum data when the learning rate is set to 10−3. As shown in the figure, the
behavior of the loss function was not stable.

This may be due to the lack of enough data; in fact we use a much smaller data
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than [20]. In addition, the neural network in [20] had three hidden layers with 500
units, whereas our neural network had two hidden layer with 200 units. The variance
of the randomly initialized weight parameters was adjusted for each layer using more
than 200 preliminary trainings. The dataset was composed of 600,000 orbits, whereas
we used only 2,000 orbits. These differences should make the learning of Lagrangian
neural network more stable than our experiments.

Another possibility is the non-uniqueness of the Lagrangian. In Lagrangian neural
networks, the Lagrangian of the target dynamics is learned from the given data.
Suppose that a Lagrangian LNN, which is learned from the data, fits the given data.
Then, the dynamics must be described by the Euler–Lagrange equation

∂LNN

∂q
−

d

dt

∂LNN

∂q̇
= 0.

However, there are many Lagrangians that give the same Euler–Lagrange equation.
In fact, the Euler–Lagrange equation is derived by the variational principle, in which
the stationary value of the action integral

S =

∫ T

0
L(q, q̇)dt

with both ends fixed; however, even if the learned Lagrangian gives a stationary point,
other Lagrangians can also give a stationary point. For example, for any smooth
function f(q), another Lagrangian L̃ := L + df/dt gives the same Euler–Lagrange
equation because the action integral associated with L̃

S̃ =

∫ T

0

(
L(q, q̇) +

df

dt

)
dt =

∫ T

0
L(q, q̇)dt+ f(q(T ))− f(q(0)) = S + f(q(T ))− f(q(0))

takes the same stationary value as the original action integral S when both ends fixed.
For example, two Lagrangians L and L̃ = L + qq̇ gives the same Euler–Lagrange
equation because qq̇ = 1

2
d(q2)
dt ; the Euler–Lagrange equation of L̃ is

∂L̃

∂q
−

d

dt

(
∂L̃

∂q̇

)

=
∂L

∂q
+ q̇ −

d

dt

(
∂L

∂q̇
+ q

)
=

∂L

∂q
−

d

dt

∂L

∂q̇
,

which is the Euler–Lagrange equation of L. In Lagrangian neural networks, the La-
grangian is directly modeled by neural networks; however, because the Lagrangian is
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Fig.3.4 The mass-spring system.

not uniquely determined, even after a good Lagrangian is found, the learning algo-
rithm goes on to find another Lagrangian which is possibly better. This is considered
the reason for the instability of the learning processes of Lagrangian neural networks.

As a matter of fact, the loss function of Lagrangian neural network was unstable,
but can be small. Therefore, in the numerical experiments, the model that achieved
the minimum value of the histories was used to analyze the behavior of the models.
In addition, the learning rate was set to a smaller value so that the training process
could be more stable.

In the experiments, we implemented all code using Python v3.8.5 with libraries;
numpy v1.21.2, scipy v1.7.1, and PyTorch v1.9.1. We performed all experiments on
NVIDIA A100. After training, we evaluated the models using the squared time-
derivative errors of the test subset. Using SciPy odeint under the default setting, we
predicted 10 orbits from random initial values and obtained the errors in the system
energy.
Mass-Spring System First, we investigate a Hamiltonian system in a general coor-
dinate on a cotangent bundle, namely, a simple mass-spring system, depicted in Fig.
3.4. The equation of motion of this system is

d

dt





q1
q2
v1
v2



 =





v1
v2

− k1
m1

(q1 − l1) +
k2
m1

(q2 − q1 − l2)

− k2
m2

(q2 − q1 − l2)



 , (3.8)

which is a Hamiltonian system with the energy function

H(q1, q2, p1, p2) =
p21
2m1

+
p22
2m2

+
k1(q1 − l1)2

2
+

k2(q2 − q1 − l2)2

2
,

where q1, q2 are the positions of the mass points, and p1, p2 are the momenta, which
are defined by p1 = m1v1, p2 = m2v2, v1 = dq1/dt, v2 = dq2/dt. Suppose that the
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exact values of m1 and m2 are unknown, and only the positions q1 and q2 and their
derivatives are given. Although m1 and m2 may be estimated from the given states,
for evaluation of the models, we tried to learn the dynamics from the given states
directly.

Note that it should be impossible to write the equation (3.8) as the standard form
of Hamiltonian equation (3.2) with a certain energy function; for example, when the
system has just one mass point and the equation of motion is given by

d

dt

(
q1
v1

)
=

(
v1

− k1
m1

(q1 − l2)

)
,

this can be transformed into a Hamiltonian system

d

dt

(
q1
v1

)
=

(
0 1
−1 0

)
∇H̃,

H̃ =
v21
2m′

1

+ k′1(q1 − l1)
2

with k′1 = k1/m1,m′
1 and the mass m′

1 is 1. Hence, for this system, Hamiltonian
neural networks are applicable without knowledge of m1. However, for the above
system (3.8), such a transformation cannot be applied.

The detailed setup of the experiment is as follows. As the data, we used numerical
solutions to (3.8)with the parameters k1 = 3.0, k2 = 5.0, l1 = 1.0, l2 = 1.0, m1 = 1.0,
m2 = 2.0. The initial values are randomly sampled from the standard normal distri-
bution. The numerical solutions are computed on the time interval [0, 5]. For each
numerical orbit, 100 solutions are sampled at uniform time intervals. The numerical
solutions are by using SciPy odeint with the default setting.

The time-derivative errors and the energy errors are shown in Tables 3.2 and 3.3,
respectively. Nevertheless, as this is a simple problem, all the models work well. Most
of the predicted orbits shown in Fig. 3.5 have a good fit to the true one. Note that
the errors shown in Table 3.2 are small enough. They are multiplied by 103 and
shown in the physical scale; i.e., the errors are not measured by using the normalized
state variables but by using the state variables with the true scale. In the normalized
scale, the error by Lagrangian neural network, for example, was 0.0095. This is also
the case in the other experiments. Among the methods, neural ordinary differential
equations and the neural symplectic form performed better. The test time-derivative
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(a) Ground truth (b) NODE

(c) HNN (d) LNN

(e) Skew Matrix Learning (f) Neural Symplectic Form

Fig.3.5 Example of the orbits predicted by the trained models for the mass-spring test. The
horizontal axis represents time. Each component of u(t) = (q1(t), v1(t), q2(t), v2(t))

is represented: blue (q1), green (v1), orange (q2), and red (v2).

error of the skew matrix learning is a little larger. In terms of the energy error, the
neural symplectic form and Hamiltonian neural networks are superior; however there
is not much difference.

Fig. 3.6 shows the time evolution of the errors for neural ordinary differential equa-
tions, the skew matrix learning and the neural symplectic form. The corresponding
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(a) Energy errors (b) Solution errors

(c) Solution error of Neural Sym-
plectic Form

Fig.3.6 Time evolution of the energy and solution errors obtained by NODE, the skew
matrix learning and the neural symplectic form for the mass-spring test. The
horizontal axis represents time. The energy error shows the difference from the
true energy, and the solution error shows the MSEs. Since the solution error by
the neural symplectic form was tiny, the enlarged graph is also shown.

orbits are shown in Fig. 3.5. In this case, the prediction of the neural symplectic
form was very accurate. This may be related to the fact that the proposed method is
able to preserve the conservation laws other than energy. In fact, in the research field
of physical simulation, it is known that for such a small system, the computational
accuracy can be often improved if additional conservation laws are preserved. As
for the energy error, there is not much difference between the methods. The energy
error appears to be large compared to the solution error; this should be due to the
numerical integration errors in the computation of the predicted orbits.
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Double Pendulum Next, we consider another Hamiltonian system, namely, a double
pendulum shown in Fig. 3.7, of which equation of motion is

dθ1
dt

= φ1,
dθ2
dt

= φ2,

dφ1

dt
=

g(sin θ2 sin(θ1 − θ2)−
m1+m2

m2
sin θ1)− (l1θ21 cos(θ1 − θ2) + l2θ22) sin(θ1 − θ2)

l1(
m1+m2

m2
− cos2(θ1 − θ2))

,

dφ2

dt
=

g(m1+m2)
m2

(sin θ1 cos(θ1 − θ2)− sin θ2)− ( l1(m1+m2)
m2

θ21 + l2θ22 cos(θ1 − θ2)) sin(θ1 − θ2)

l2(
m1+m2

m2
− cos2(θ1 − θ2))

.

(3.9)

Fig.3.7 A double pendulum and the related constants and the variables.

The energy function of this system is

H =
1

2
(m1 +m2)l

2
1φ

2
1 +

1

2
m2l

2
2φ

2
2 +m2l1l2φ1φ2 cos(θ1 − θ2) + gm2l2 cos(θ2)

+ g(m1 +m2)l1 cos θ1

and the Lagrangian is

L =
1

2
(m1 +m2)l

2
1φ

2
1 +

1

2
m2l

2
2φ

2
2 +m2l1l2φ1φ2 cos(θ1 − θ2)− gm2l2 cos(θ2)

− g(m1 +m2)l1 cos θ1,

which derives the generalized momentum

p1 =
∂L

∂φ1
= (m1 +m2)l

2
1φ1 +m2l1l2φ2 cos(θ1 − θ2),

p2 =
∂L

∂φ2
= m2l

2
2φ2 +m2l1l2φ1 cos(θ1 − θ2).
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Because the generalized momenta are not obvious, we assume that the data of
θ1, θ2,φ1,φ2 are given instead of θ1, θ2, p1, p2, where φ1,φ2 are the time derivatives of
θ1, θ2.

Table3.2 Test time-derivative errors.

NODE HNN LNN
Skew Matrix

Learning

Neural
Symplectic

Form
(proposed)

mass-
spring 0.17 ± 0.14 694.77 ± 26.37 882.52 ±

1753.93
102.07 ± 68.00 0.52 ± 0.71

double
pendulum

8.65 ± 1.38 15.69 ± 0.44 269.52 ±

136.85
8.47 ± 1.22 4.02 ± 2.08

Lotka–
Volterra

2.02 ± 5.55 227.03 ± 2.31 N/A 1.05 ± 0.76 0.46 ± 0.30

The best and second best results are emphasized by bold and underlined fonts, respec-
tively. Multiplied by 103 for the mass-spring system and the Lotka–Volterra equation.
The experiments were conducted 10 times each. The results of Lagrangian neural network
for double pendulum were computed using nine times except for a failed one.

We collected data by solving (3.9) with the parameters l1 = l2 = 1.0, m1 = 1,
m2 = 2, and g = 9.8 using 2000 initial conditions randomly generated from the
standard normal distribution. The batch-size was set to 1000.

The test time-derivative errors are shown in Table 3.2. Firstly, (3.9) cannot be
written as the standard form (3.2) with a certain Hamiltonian. Hence, the test
time-derivative error of Hamiltonian neural networks cannot be completely zero when
learned using states θ1(t),φ1(t), θ2(t),φ2(t). The result shown in Table 3.2 confirms
this. The test time-derivative errors by neural ordinary differential equations, the
skew matrix learning and the neural symplectic form are much smaller than that by
Hamiltonian neural networks. In particular, the error by the skew matrix learning is
larger than that by the neural symplectic form. This is due to the non-existence of the
one-to-one correspondence between the skew matrix and the symplectic 2-form, which
decreases the efficiency of learning. neural ordinary differential equations performed
very well too; however, as explained below, this model failed to predict long-term
behaviors.
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Table3.3 Energy errors.

NODE HNN LNN
Skew Matrix

Learning

Neural
Symplectic

Form
(proposed)

mass-spring 0.840 ±

0.328
0.551 ±

0.112
2.281 ±

0.004
6.203 ± 7.555 0.368 ± 0.055

double
pendulum

(T=5)

1.070
± 0.694

(0.755 ±

0.320)
17.740 ±

10.804
3.931 ± 7.266 6.400 ± 0.971

double
pendulum
(T=30)

11.240
± 12.297

N/A N/A
622982.133

± 1814794.079
7.300 ± 3.925

Lotka–Volterra 0.578 ±

0.558
0.444 ±

0.458
N/A 0.041 ± 0.072 0.012 ± 0.013

The best and second best results of the true energies are emphasized by bold and underlined
fonts, respectively. The differences of the true energy functions at t = T and t = 0, where
T = 30 for the Lotka–Volterra equation and T = 5 for the others. 10 orbits were simulated
using randomly generated initial values. In the double pendulum test, the energy error of
the Hamiltonian neural network was best but this is because of the very small amplitudes
of the predicted solutions; hence the result of NODE is cosidered best.

Examples of the predicted orbits are shown in Fig. 3.8. As expected, Hamiltonian
neural networks failed to predict the orbits. In the result by the skew matrix learning,
although the speed of oscillation appears to be correct, the heights of the peaks are
different from the true trajectory. Meanwhile, the prediction by the neural symplectic
form achieved a better agreement with the true one than other models.

The energy errors are shown in Table 3.3. The errors of neural ordinary differential
equations and the skew matrix learning are small for the short term prediction. How-
ever, Fig. 3.9 shows an example of the long-term prediction results of these models
and the proposed neural symplectic form. The results of the two neural ordinary dif-
ferential equations are obtained using the models trained with different seeds. Since
neural ordinary differential equations does not have a Hamiltonian structure, the re-
sults gradually decay or diverge. The prediction results by the skew matrix learning
also show a gradual increase in the state variables, and the results collapse after ex-
ceeding a certain value. On the other hand, the result by the neural symplectic form
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(a) Ground truth (b) NODE

(c) HNN (d) LNN

(e) Skew Matrix Learning (f) Neural Symplectic Form

Fig.3.8 Example of the orbits predicted by the trained models for the double pendu-
lum test. The horizontal axis represents time. Each component of u(t) =

(θ1(t),φ1(t), θ2(t),φ2(t)) is represented: blue (θ1), orange (φ1), green (θ2), and
red (φ2).

oscillates stably, although the range of oscillation is a little larger than the true orbit.
We show the time evolution of the errors for the neural ordinary differential equa-

tions, the skew matrix learning and the neural symplectic form in Fig. 3.10 along
with the corresponding orbits in Fig. 3.8. The errors are not significantly different;
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(a) Ground truth

(b) NODE1 (c) NODE2

(d) Skew Matrix Learning (e) Neural Symplectic Form

Fig.3.9 Example of the orbits during a long period (t = 30) predicted by the trained
models for the double pendulum test. NODE1 and NODE2 are results of two
NODE models trained with a different random seed. The horizontal axis represents
time. Each component of u(t) = (θ1(t),φ1(t), θ2(t),φ2(t)) is represented: blue (θ1),
orange (φ1), green (θ2), and red (φ2).

however, the errors for the neural ordinary differential equations and the skew matrix
learning are relatively small. Although these methods are not suitable for long-term
predictions, they are effective for short-term predictions.

We also performed a test for a more chaotic orbit using the neural ordinary differ-
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(a) Energy errors (b) Solution errors

Fig.3.10 Time evolution of the energy and solution errors obtained by NODE, the skew
matrix learning and the neural symplectic form for the double-pendulum test. The
errors are represented: blue (skew matrix learning), green (NODE), red (neural
symplectic form). The horizontal axis represents time. The energy error shows
the difference from the true energy, and the solution error shows the MSEs.

ential equations and the neural symplectic form. Examples of the predicted orbits
are shown in Fig. 3.11. Note that in this experiment, we used models trained with
the same data as the above experiment, and this data may not contain many chaotic
trajectories.

Because the results of the neural ordinary differential equations often diverged as
shown in this figure we omit the quantitative results for this test. Although the
predicted orbits are not so similar to the true one, the proposed method typically
kept oscillating. The worse performance may be due to the lack of enough data on
the behaviors when the angle became large. In fact, a chaotic double pendulum can
rotate many times, and its angle can be very large; however, our data are generated by
simulating the orbits from relatively small initial conditions. For better performance,
the periodic structure of the phase space as a Lie group should be integrated into the
model for efficient training.

Lotka–Volterra equation Systems of differential equations with a polynomial right-
hand side are often Hamiltonian with a hidden symplectic structure. For example,
the Hamiltonian structure of the generalized Lotka–Volterra equation

dxi

dt
= xi(

m∑

j=1

aijΠ
l
k=1x

bjk
k + λi), (3.10)

is investigated in [42]. The right-hand side of this equation is quite general because this
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(a) Ground truth (b) NODE (c) Neural Symplectic Form

Fig.3.11 Example of the orbits predicted by the trained models for the double pendulum
with a chaotic behavior. The horizontal axis represents time. Each component of
u(t) = (q1(t), v1(t), q2(t), v2(t)) is represented: blue (q1), green (v1), orange (q2),
and red (v2).

equation has the form of xi(polynomial of the other state variables). For example,
many mathematical compartment models in biology are of this form. In fact, the
original Lotka–Volterra model is proposed as a model of a predator-prey dynamics.

We used a standard Lotka–Volterra model, which is included in (3.10), of the fol-
lowing form:

dx1

dt
= a12x1x2 + λ1x1,

dx2

dt
= a21x1x2 + λ2x2.

Provided that x1 &= 0 and x2 &= 0, this equation can be written as a Hamiltonian
equation:

d

dt

(
x1

x2

)
=

(
O x1x2

−x1x2 O

)(
∂H
∂x1

∂H
∂x2

)

, H(x1, x2) = −a21x1 − λ2 lnx1 + a12x2 + λ1 lnx2,

which is different from the standard Hamiltonian equation (3.2). In fact, this equation
cannot be written as (3.2) globally; the Darboux coordinate system only locally exists
in general. For example, if the first equation can be written as

dx1

dt
=

∂H

∂x2

with a certain function H(x1, x2), H(x1, x2) should be of the form

H(x1, x2) =
a12
2

x1x
2
2 + λ1x1x2 + f(x1)

with a function f . However, in that case it must hold that

∂H(x1, x2)

∂x1
=

a12
2

x2
2 + λ1x2 +

df(x1)

dx1
,
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which cannot be in general the right-hand side of the second equation of the Lotka–
Volterra equation for any f . In the experiment, we checked if this unknown symplectic
structure can be extracted from the data or not.

In the experiment, because the state variables are not the pair of q and q̇, Lagrangian
neural networks is not applicable to this equation. Hence, we tested neural ordinary
differential equations, Hamiltonian neural networks, the skew matrix learning and the
neural symplectic form. We set the parameters as a12 = −1, a21 = −1,λ1 = 1 and
λ2 = 1. As the data, 1000 orbits on the time interval [0, 5] are numerical computed by
using SciPy odeint. Initial conditions are sampled from the uniform distribution on
[0, 1]. Each orbit contains 100 numerical solutions at a uniform sampling rate. The
data are normalized so that they are in [0, 1].

The test time-derivative errors are shown in Table 3.2. Again, the error by Hamil-
tonian neural networks is larger than those by the other models. As seen from the
table, the proposed neural symplectic form stably gave better results than the other
models.

Regarding the energy errors, the energies are well preserved as shown in Table
3.3. In particular, the proposed method preserves the energy with the highest ac-
curacy. Besides, predicted orbits are shown in Fig. 3.12. The peaks of the orbits
by Hamiltonian neural networks and the skew matrix learning are smaller than the
true trajectory, and the orbit of the neural ordinary differential equations is gradually
decaying. On the other hand, the proposed neural symplectic form gives the almost
identical orbits to the true one.Thus the hidden symplectic structure of this equation
is certainly extracted by the proposed method.

We show the time evolution of the errors for the neural ordinary differential equa-
tions, the skew matrix learning and the neural symplectic form in Fig. 3.13. The
corresponding orbits are shown in Fig. 3.12. Since the peaks of the orbit of the
neural ordinary differential equations is gradually decaying, the energy error of the
neural ordinary differential equations is increasing. Regarding the solution errors,
although the predicted orbit of the skew matrix learning is not so different from the
ground truth, the error becomes very large. This is due to the error in the velocity
of the oscillation. This error causes the position of the peaks to deviate from its true
position, resulting in a large error.

In addition, we also performed another test in which long term behaviors are pre-
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(a) Ground truth

(b) NODE (c) HNN

(d) Skew Matrix Learning (e) Neural Symplectic Form

Fig.3.12 Example of the orbits predicted by the proposed and the comparative models for
the Lotka–Volterra model. The horizontal axis represents time. x1(t), x2(t) are
represented: blue (x1) and orange (x2).

dicted. In this case, we compared the well-performed models: neural ordinary differ-
ential equations, skew matrix learning and the neural symplectic form. The predicted
orbits are shown in Fig. 3.14. The two neural ordinary differential equations results
are obtained by the two neural ordinary differential equations trained with a differ-
ent random seed. Because the neural ordinary differential equations does not satisfy

84



3.3. NUMERICAL EXAMPLES

(a) Energy errors (b) Solution errors

Fig.3.13 Time evolution of the energy and solution errors obtained by NODE, the skew
matrix learning and the neural symplectic form for the Lotka–Volterra test. The
errors are represented: blue (skew matrix learning), green (NODE), red (neural
symplectic form). The horizontal axis represents time. The energy error shows
the difference from the true energy, and the solution error shows the MSEs.

the energy conservation law, the predicted orbits by these models gradually decay or
diverge as expected. Meanwhile, the orbits by the other two models keep oscillating.
The energy errors are shown in Table 3.4. While the error of the neural ordinary
differential equations is very large, the results by the other two are almost the same.
The error of the skew matrix learning is slightly larger; this is probably due to the
lower height of the peaks.

Table3.4 Energy errors.

NODE
Skew Matrix

Learning

Neural
Symplectic

Form
(proposed)

Lotka–Volterra (t = 100) 42.951 ± 56.005 0.0735 ± 0.0764 0.0704 ± 0.0597

The best and second best results of the true energies are emphasized by bold and underlined
fonts, respectively. The differences of the true energy functions at t = 100 and t = 0 are
shown. 10 orbits were simulated using randomly generated initial values.
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(a) Ground truth

(b) NODE1 (c) NODE2

(d) Skew Matrix Learning (e) Neural Symplectic Form

Fig.3.14 Example of the orbits during a long period (t = 100) predicted by the trained
models for the Lotka–Volterra test. NODE1 and NODE2 are results of two NODE
models trained with a different random seed. The horizontal axis represents time.
x1(t), x2(t) are represented: blue (x1), orange (x2).

Learning from Images As an application of the proposed method, we learned the
equation of motion from some images. One way to achieve this is to extract features
from the images by using an autoencoder and to learn the equation of motion that
the features satisfy [38]. In this case, the extracted features are not supposed to
be momenta. The proposed method is suitable for this application because it is
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independent of the coordinate system.
In this experiment, we first pretrained an autoencoder. Then Hamiltonian neural

networks and the neural symplectic form are applied to learn the dynamics of the
features. In this experiment, we used Hamiltonian neural networks code and data
(https://github.com/greydanus/hamiltonian-nn, Apache 2.0 License) almost as-
is; we used a pre-trained autoencoder with two hidden layers of 200 units and the
ReLU activation function. We trained the autoencoder using the Adam optimizer
with a learning rate of 10−4 for 150000 iterations. The test error of the autoencoder
was 3.81e-03. The neural networks in Hamiltonian neural networks and the neural
symplectic forms have two hidden layers of 200 units and the tanh activation function.
These networks are trained for 100000 steps; in our experiment it took a long time
for the neural symplectic form to find an appropriate symplectic form. The original
Hamiltonian neural networks code includes a loss function that measures how close
the latent space is to the canonical coordinates in order to make it closer to the
canonical coordinates. However, in our experiment, we trained without this loss
function. The other settings are the same as in the similar experiment of Hamiltonian
neural networks. The final test losses of Hamiltonian neural networks and the neural
symplectic form were 0.161 and 0.060 respectively. The predicted pictures are shown
in Fig. 3.15. The last four pictures of Hamiltonian neural networks are noisy; this
implies relatively large errors in the latent space. However, this is only a preliminary
test; for example, the performance may depend on the architecture of the autoencoder.
Further thorough investigation is needed for this application.

Fig.3.15 Example of the predicted images by the proposed method and Hamiltonian neural
networks.
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Chapter 4 KAM Theory Meets Statistical
Learning Theory:
Hamiltonian Neural Networks
with Non-Zero Training Loss

In this chapter, we consider the equation of Hamiltonian mechanics in the form

du

dt
= S

∂H

∂u
, (4.1)

where u : t ∈ R 3→ u(t) ∈ RN , H : u ∈ RN 3→ H(u) ∈ R and S is a skew-symmetric
matrix. The Hamiltonian neural network which is a typical deep physical model for
learning the above equation was proposed:

du

dt
= S

∂HNN

∂u
. (4.2)

In this chapter, we focus on the Hamiltonian neural network, particularly in practical
situations where the learning error is not completely zero. In this case, the trained
model can be regarded as a perturbed Hamiltonian system due to the modelling error
of the energy function. In addition, S is a general skew-symmetric matrix and hence
(4.2) includes discretizations of Hamiltonian partial differential equations [75].

In mathematical physics, the recursive nature of physical phenomena is also of
interest in physics; however, whether such phenomena can be reproduced by deep
learning models is an important problem that greatly affects the usefulness of deep
physical models. In this chapter, we give an answer to this question by combining the
KAM theory and statistical learning theory.

Importantly, for the neural network models to be close to the true dynamics, we
need a universal approximation theorem and also a generalization error bound. In
this chapter, we also provide such results for Hamiltonian neural networks. Regarding
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Fig.4.1 Outline of our main theorem. The first main result is the generalization error of the
energy function, which is proved by the statistical learning theory. By combining
the first result and the KAM theorem, we prove that the quasi-periodic behaviors
of target systems are preserved.

the generalization error bound, because the derivative of a multi-layer perceptron is
used in Hamiltonian neural networks, a bound for the derivative is required. To this
end, we estimated the covering number of the derivative of multi-layer perceptrons.
An L∞ bound on the error in the Hamiltonian is also provided, which is required for
application of the KAM theory.

In addition, we show a universal approximation theorem for a model with the
coordinate transformation

dx

dt
= (

∂u

∂x
)−1S(

∂u

∂x
)−'∂H

∂x
≈ (

∂uNN

∂x
)−1S(

∂uNN

∂x
)−'∂HNN

∂x
. (4.3)

This model was indispensable in practice; to apply Hamiltonian neural networks, the
data are given in the canonical coordinate system because the equation of motion is
in the form of Hamilton equation (4.1) only when the state variables are represented
by the canonical coordinate system. However, this problem has been addressed in
Chapter 3.

The main contributions of this study are as follows:
1. Combination of the KAM theory and statistical learning theory for
Hamiltonian neural networks with non-zero training loss to prove the ex-
istence of quasi-periodic behaviors (see Fig. 4.1).
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2. Derivation of a generalization error bound for Hamiltonian neural net-
works.
3. Development of a universal approximation theorem for Hamiltonian
neural networks and other energy-based physical models with coordinate
transformations.

This chapter is organized as follows. First, in Section 4.1, we first explain existing
work on the theoretical study of Hamiltonian neural networks and their extension
models, as well as the uniqueness of the theoretical study conducted in this chapter.
In Section 4.2, we give a brief introduction to Hamiltonian systems and the KAM
theory. In Section 4.3, we show the main results in which the universal approxi-
mation properties and the generalization performance of deep physical models are
investigated. In addition, the application of this result to the KAM theory is also
provided.

4.1 Preparation

Many physical phenomena are described by Hamiltonian mechanics using an en-
ergy function. Recently, the Hamiltonian neural network, which approximates the
Hamiltonian by a neural network, and its extensions have attracted much attention.
Before presenting the results of this theoretical study, we will give an introduction to
the previous studies related to it.

Meanwhile, the model (4.3) is indispensable in practice; to apply Hamiltonian neural
networks, the data are given in the canonical coordinate system because the equation
of motion is in the form of the Hamilton equation (4.1) only when the state variables
are represented by the canonical coordinate system. However, this coordinate system
depends on an unknown Lagrangian and hence the energy function. Hence, the coor-
dinate system must be also learned from data by using, for example, neural networks.
In addition, this model also represents other energy-based physical models beyond
the Hamilton equation. We will explain this in more detail in this chapter.
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4.1.1 Related work

Many studies of neural network models for physical phenomena that can be mod-
eled by energy-based equation (4.1) have been put forward. Among them, the most
basic studies are neural ordinary differential equations [15] and Hamiltonian neural
networks [38]. In particular, extensions of Hamiltonian neural networks have been
intensively developed.

Describing them all is beyond the scope of thsi chapter, but some examples are
given here. In [116] Hamiltonian neural networks were extended to latent variable
models. Other studies, such as [25, 126, 135], focused on the symplectic structure
of the Hamilton equation. For Noether’s theorem, which is a fundamental theorem
in classical mechanics, several studies [6, 7, 31] developed methods related to sym-
metry and conservation laws. In addition, a discrete-time model that preserves the
energy behaviors was constructed in [75]. In [34], Hamiltonian neural networks were
combined with a Bayesian approach.

Methods applied to the framework of classical mechanics other than Hamiltonian
mechanics include those in [20, 24, 98], which are methods for Lagrangian formalism.
In [52], reinforcement learning was applied to the variational principle. A simplified
model formed by introducing constraints was proposed in [32]. In [50], Hamiltonian
neural networks were extended to the Poisson system, which is a wider class of mechan-
ical equations. There are also a number of proposals that integrate them with more
advanced deep learning techniques, namely, graph networks [100], recurrent neural
networks [19], and normalizing flows [66]. As an application-oriented approach, [30]
designed a microscopic model for structural analysis.

However, to the author’s best knowledge, there is no theoretical research other than
the universal approximation theorems for Hamiltonian mechanics in SympNet [51],
in which a certain kind of neural network is shown to have universal approximation
properties for symplectic maps. The difference between their results and ours is that
(1) we analyze the behaviors of a Hamiltonian neural network with non-zero training
loss by a combination of the KAM theory and statistical learning theory, (2) we
provide a generalization error bound for Hamiltonian neural networks, and (3) the
universal approximation theorems in [51] are for discrete-time models, while ours are
for continuous-time models.

91



4.1. PREPARATION

Meanwhile, as an existing energy-based model, the Hopfield neural network is
known. Both the Hopfield neural network and Hamiltonian neural networks are
derived from energy-based theories, and their dynamics are described by (1). The
Hamiltonian neural network is associated with a skew-symmetric matrix S and is
a model of an energy-preserving, continuous-time, and deterministic physics phe-
nomenon. Its output is the time-series of the state. Hopfield network is associated
with a negative definite matrix S and exhibits a dynamics which is often energy-
dissipating, discrete-time, and stochastic. It is a machine learning tool rather than
a physical model, and its equilibrium point is treated as its output. Because their
outputs are different, their theoretical properties should be discussed separately.

4.1.2 Energy-based physical models

Equation (4.1) (and its coordinate transformation (4.3)) and the related model (4.2)
(and its coordinate transformation (4.3)) describe not only Hamiltonian systems but
also various types of other phenomena. In fact, as shown in the theorem below, models
similar to (4.1),

du

dt
= G

∂H

∂u
, (4.4)

where G is a skew-symmetric or negative-semidefinite matrix, have not only the en-
ergy conservation property but also the energy-dissipation property, depending on the
matrix G. The same result for the models similar to (4.3) is obtained in a straight-
forward way.

Theorem 4.1. Equation (4.4) admits the energy conservation law,

dH

dt
= 0,

if G is skew-symmetric, and it admits the energy dissipation law,

dH

dt
≤ 0,

if G is negative-semidefinite.

Proof of Theorem 4.1 We use the chain rule to obtain

dH

dt
=

∂H

∂u

'du

dt
=

∂H

∂u

'

G
∂H

∂u
. (4.5)
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Hence, when the matrix G is skew-symmetric, the energy conservation law holds:

dH

dt
= 0

because v'Gv = 0 holds for all vectors v when G is skew-symmetric.
When the matrix G is negative semidefinite, the energy function is monotonically

non-increasing:

dH

dt
=

∂H

∂u

'

G
∂H

∂u
≤ 0. (4.6)

As mentioned above, equations of this form are used not only in Hamiltonian me-
chanics but also in many fields of mathematical modeling, for example, in the Landau
theory and the phase-field method. Phenomena such as phase separation, crystal
growth, and crack propagation are modeled using these theories (e.g., [9,78,110,121]).
The above model also includes the semi-discretized partial differential equations. For
example, the KdV equation, which is a model of shallow-water waves,

∂u

∂t
= αu

∂u

∂x
+ β

∂3u

∂x3
,

where α,β are parameters. This equation can be written as

∂u

∂t
=

∂

∂x

δH

δu
, (4.7)

where H(u, ∂u/∂x) is the Hamiltonian and δH/δu is the variational derivative of H,
which is defined by

δH

δu
=

∂H

∂u
−

∂

∂x

∂H

∂ux
,

where ux denotes ∂u/∂x. Equation (4.7) is an example of a Hamiltonian partial
differential equation, in which ∂/∂x in front of δH/δu plays the role of the skew-
symmetric matrix G. In fact, if ∂/∂x is discretized by using a central difference
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operator,

∂

∂x
4 D :=

1

2∆x





0 1 0 · · · 0 0 −1
−1 0 1 · · · 0 0 0
0 −1 0 · · · 0 0 0
... . . . . . . · · ·

. . . . . . ...
0 0 0 · · · 0 1 0
0 0 0 · · · −1 0 1
1 0 0 · · · 0 −1 0





.

Because the difference matrix D is skew-symmetric, the semi-discretized equation has
the form of equation (4.3) with a skew-symmetric matrix G. Similarly, an equation
with the form

∂u

∂t
=

∂2

∂x2

δH

δu
, (4.8)

is semi-discretized to equation (4.3) with a negative-semidefinite G. In fact, if the
∂2/∂x2 in front of δH/δu is discretized,

∂2

∂x2
4 D2 :=

1

∆x2





−2 1 0 · · · 0 0 1
1 −2 1 · · · 0 0 0
0 1 −2 · · · 0 0 0
... . . . . . . · · ·

. . . . . . ...
0 0 0 · · · −2 1 0
0 0 0 · · · 1 −2 1
1 0 0 · · · 0 1 −2





,

which is known to be negative semidefinite [33].
The universal approximation properties and the generalization error analysis are

also applied to this model in a straightforward way under the assumption that S

is non-degenerate. In fact, the properties of the matrix S used in the theoretical
analyses are (1) S is non-degenerate and (2) the norm of S is bounded. If S is a
constant matrix, (2) is automatically satisfied and hence (1) is the only assumption
of the matrix S. In a part of the theoretical analysis, we consider the errors in the
gradient ∇H of the energy function. However, typically, the loss function of S∇H is
minimized in the training process, and if S is degenerate, errors in ∇H may not be
small even when those in S∇H are small. Hence, S should be non-degenerate.
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4.2 Brief Introduction to Hamiltonian Systems and the KAM
Theory

We briefly introduce some properties of Hamiltonian systems.

Theorem 4.2 (Darboux). By an appropriate coordinate transformation, the matrix
S is transformed into the normal form

(
O I
−I O

)
.

Definition 4.1. The function ω : (v, w) ∈ RN × RN 3→ ω(v, w) ∈ R

ω(v, w) = v'S−1w

is called the symplectic form. Using the symplectic form associates a vector field XF

with each function F : RN → R by requiring

ω(XF , w) =
∂F

∂u
· w for all w.

For two functions F,G, the following operation is called the Poisson bracket:

{F,G} = ω(XF , XG). (4.9)

Definition 4.2. A Hamiltonian system for which the state variable is N = 2M dimen-
sional is integrable in the sense of Liouville if this Hamiltonian system has the first in-
tegrals (i.e., conserved quantities) F1, F2, . . . , FM with ∇F1(u),∇F2(u), . . . ,∇FM (u)

independent at each u and for all i, j:

{Fi, Fj} = 0.

For integrable systems, Theorem 4.3 is known.

Theorem 4.3 (Liouville–Arnold). Suppose that for an integrable Hamiltonian sys-
tem, constants c1, . . . , cM exist such that K = ∩M

i=1F
−1
i (ci) is connected and compact.

Then, there exists a neighborhood N of K, U ⊂ Rn and a coordinate transform

φ : (θ, J) ∈ T
n × U → φ(θ, J) ∈ N (4.10)

such that the transformed system is the Hamilton equation of which Hamiltonian
H ◦ φ depends only on J .
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4.2. BRIEF INTRODUCTION TO HAMILTONIAN SYSTEMS AND THE KAM
THEORY

The variables J and θ are called action-angle variables. Theorems 4.2 and 4.3
roughly mean that integrable Hamiltonian systems can be written in the following
form:

d

dt

(
θ
J

)
=

(
O I
−I O

)(
∂H̃
∂θ
∂H̃
∂J

)

.

Further, because H̃ = H ◦ φ depends on I only, it holds that

d

dt

(
θ
J

)
=

(
O I
−I O

)(
0
∂H̃
∂J

)
=

(
∂H̃
∂J
0

)
.

This shows that J is constant, and hence θ moves on the torus at a constant velocity.
Because the velocities are typically not co-related to each other, the dynamics are
“quasi-periodic.” See, for example, [104] for more details.

As seen above, integrable Hamiltonian systems are quasi-periodic. Note that general
Hamiltonian systems are not necessarily quasi-periodic and neither are Hamiltonian
neural networks. However, for Hamiltonian neural networks that are trained to model
integrable systems, the quasi-periodic behaviors are preferably maintained. When the
modeling error is sufficiently small, this is considered as a perturbation problem. The
perturbation theory of Hamiltonian systems has been investigated from various per-
spectives. For example, perturbed integrable Hamiltonian systems are in general no
longer integrable; hence, approximation of integrable Hamiltonian systems by inte-
grable neural network models appears to be difficult. Fortunately, however, the KAM
theory shows that even though the perturbed system is not integrable, it maintains
the quasi-periodic behaviors described above under certain conditions.

The KAM theorem has many variants under various conditions. The following
variant [104] is typical:

Theorem 4.4 (KAM Theorem). Let θ and J be the action-angle variables for a C∞

integrable Hamiltonian H0 : R2M → R with M ≥ 2. If H0 is non-degenerate, that is,

det
∂2H0

∂J2
&= 0, (4.11)

for the perturbed system H(θ, J) = H0(J) + εF (θ, J, ε) by F ∈ C∞, there exists ε0

such that if εF < ε0, there exists a set of M -dimensional tori that are invariant under
the perturbed flow. For each invariant torus, the flow of the perturbed system H
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is quasi-periodic. In addition, the set of invariant tori is large in the sense that its
measure becomes full as ε → 0.

Remarks. 3. The last sentence – the set of invariant tori is large in the sense that
its measure becomes full as ε → 0 – corresponds to the non-existence of so-called
resonance. If the perturbation added to the system is in resonance with the original
system, the perturbation may grow rapidly and the behavior of the system may change
significantly. This statement assures that for small perturbations, such a situation
almost never occurs.

Remarks. 4. It may be difficult to check whether the target system is integrable
by using given data. One possibility is application of the Koopman operator, which
makes it possible to find the conserved quantities that the given data may admit. If
a sufficient number of conserved quantities exist, it is highly likely that the target
system is integrable.

4.3 Main Results

We proved the persistence of the quasi-periodic behaviours of integrable Hamil-
tonian systems with a high probability even when the loss function is not perfectly
zero. Further, we provided a generalization error bound and universal approximation
theorems for Hamiltonian neural networks to ensure that the loss function can be
sufficiently small for the application of the KAM theorem. In this section we present
our main results.

4.3.1 Universal approximation properties of Hamiltonian neural networks

For Hamiltonian neural networks to be close to the true dynamics, a universal
approximation theorem and a generalization error analysis are needed. First, we
show universal approximation theorems.

We first define some notation to describe the theorem. Cm(X) with the topology
of the Sobolev space W p,m(X) is denoted by Sm

p (X), where W p,m(X) is a space of
functions that admit weak derivatives up to the mth order that bounds Lp-norms.
Hence, Sm

p (X) is the space of functions in W p,m(X) with (usual) derivatives; for

97



4.3. MAIN RESULTS

details on the Sobolev theory, see [2]. Lp-norms of functions are denoted by ‖ · ‖Lp ,
and those of vectors by ‖ · ‖p.
Universal approximation theorem for Hamiltonian neural networks The
following theorem shows the universal approximation property of Hamiltonian neural
networks.

Theorem 4.5. Let H : RN → R be an energy function with the equation

du

dt
= S

∂H

∂u
,

where u : t ∈ R 3→ u(t) ∈ RN and S is a skew-symmetric N × N matrix. Suppose
that the phase space K of this system is compact and the right-hand side S∂H/∂u is
Lipschitz continuous. If the activation function σ &= 0 belongs to S1

2(R), then for any
ε > 0, there exists a neural network HNN for which

∥∥∥∥S
∂H

∂u
− S

∂HNN

∂u

∥∥∥∥
2

< ε

holds. In addition, if the energy function is C∞, the function can be approximated
by a C∞ neural network provided that the activation function is sufficiently smooth.

An outline of the proof is as follows. From the existence theorem of a solution to
ordinary differential equations, the right-hand side of the equation must be Lipschitz
continuous to guarantee the existence of a solution. Therefore, the differential of the H
is Lipschitz continuous, which implies the smoothness of H. Then, the approximation
property is obtained from the universal approximation theorem for smooth functions
by [43]. For the detailed proof is as follow.
Proof of Theorem 4.5 We prove the following universal approximation theorem for
the general energy-based physical models.

Theorem 4.6. Let H : RN → R be an energy function with the equation

du

dt
= G

∂H

∂u
,

where u : t ∈ R 3→ u(t) ∈ RN and G is a non-degenerate N × N matrix. Suppose
that the state space K of this system is compact and the right-hand side G∂H/∂u is
Lipschitz continuous. If the activation function σ &= 0 belongs to S1

2(R), then for any
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ε > 0 there exists a neural network HNN for which
∥∥∥∥G

∂H

∂u
−G

∂HNN

∂u

∥∥∥∥
2

< ε

holds. In addition, if the energy function is C∞, the function can be approximated
by a C∞ neural network provided that the activation function is sufficiently smooth.

To prove this theorem, we use the following theorem and the lemma, both of which
were shown in [43].

Theorem 4.7 (Hornik et al., 1990). Let Σ(σ) be the space of the neural networks
with the activation function σ. If the activation function σ &= 0 belongs to Sm

p (R,λ)

for an integer m ≥ 0, then Σ(σ) is m-uniformly dense in C∞(K), where K is any
compact subset of RN .

Lemma 1 (Hornik et al., 1990). Under the same assumption, Σ(σ) is also dense in
Sm
p (R,λ).

Hence, if the activation function σ of the hidden layer is in Sm
p (R,λ) and does not

vanish everywhere, then for any sufficiently smooth function, there exists a neural
network that approximates the function and its derivatives up to the order m arbi-
trarily well on compact sets. This theorem has also been extended to the functions
of multiple outputs; see [43].

Proof of Theorem 4.5 Because the target equation is determined only by the gradi-
ent of H, any function obtained by shifting H by a constant gives the same equation.
Hence, we choose and fix an energy function H that yields the target equation. Be-
cause G∂H/∂u is Lipschitz continuous and hence continuous on the phase space K,
this function is bounded and square-integrable. Thus, G∂H/∂u ∈ S0

2(K), which
means H is in S1

2(K). Therefore, from Lemma 1 and the assumption that the activa-
tion function is in S1

2(R), for each ε, there exists a neural network that approximates
H in S1

2(K):

‖H −HNN‖
2
2 +

∥∥∥∥
∂H

∂u
−

∂HNN

∂u

∥∥∥∥
2

2

<
ε2

‖G‖22
,
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Fig.4.2 Double pendulum used as the target in the experiment for the illustration of the
model with the coordinate transformations.

which gives
∥∥∥∥G

∂H

∂u
−G

∂HNN

∂u

∥∥∥∥
2

2

≤ ‖G‖22

∥∥∥∥
∂H

∂u
−

∂HNN

∂u

∥∥∥∥
2

2

< ε2.

Hamiltonian neural networks with a coordinate transformation The practi-
cal use of Hamiltonian neural networks is hampered by the fact that the state variables
must be represented by a specific coordinate, such as the generalized momentum; how-
ever, the derivation of the generalized momentum requires the energy function, which
is unknown. For example, the double pendulum in Fig. 4.2 exhibits the dynamics
shown in Fig. 4.3. These are predicted by the models that are trained from the data
of the state variables and their derivatives, not those of the generalized momenta.
Hamiltonian neural networks failed to solve such problems because the data were not
given in the canonical coordinate system. For the details, see Section 3.1.

Based on this, we here propose a model with a coordinate transformation, such as
the transformations that appear, for example, in [50,94].

Suppose that, although the given data x(t) is not represented by the canonical
coordinate system, the data x(t) can be transformed into the canonical coordinate
system by an unknown transformation u(t) = uNN[x(t)]. By substituting u = uNN(x)

into the model equation (4.2), we obtain

dx

dt
= (

∂uNN

∂x
)−1S(

∂uNN

∂x
)−'∂HNN

∂x
. (4.12)

We show that model (4.12) admits the same energetic property as the original
equation and also the universal approximation property.
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(a) Ground truth (b) Naive HNN model

(c) HNN model with a coordinate transfor-
mation

Fig.4.3 Examples of the orbits predicted by a Hamiltonian neural network and
the model with coordinate transformations. Each component of x(t) =

[q1(t), v1(t), q2(t), v2(t)] is represented as red (q1), green (v1), blue (q2), and black
(v2).

Theorem 4.8. The model (4.12) admits the energy conservation law in the sense
that dHNN/dt = 0.

Proof. By substituting the equation, we obtain

dHNN

dt
=

∂HNN

∂x

'dx

dt
=

∂HNN

∂x

'∂uNN

∂x

−1

S
∂uNN

∂x

−'∂HNN

∂x
= 0

because S is skew-symmetric and hence for any vector v, v'Sv = 0.

Theorem 4.9. Let H : RN → R be an energy function for the equation

dx

dt
= (

∂u

∂x
)−1S(

∂u

∂x
)−'∂H

∂x
,
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where x : t ∈ R 3→ x(t) ∈ RN , u : x ∈ RN 3→ u(x) ∈ RN , and S is an N ×N matrix.
Suppose that the phase space K of this system is compact and the right-hand side
∂H/∂u is Lipschitz continuous. Suppose also that u is a C1-diffeomorphism. If the
functions σ &= 0 and ρ &= 0 belong to S1

2(R), then for any ε > 0, there exist neural
networks HNN with the activation functions σ and uNN with ρ for which

∥∥∥∥(
∂u

∂x
)−1S(

∂u

∂x
)−'∂H

∂x
− (

∂uNN

∂x
)−1S(

∂uNN

∂x
)−'∂HNN

∂x

∥∥∥∥
2

< ε

holds.

We prove the following theorem, which is a generalization of Theorem 4.9.

Theorem 4.10. Let H : RN → R be an energy function for the equation

dx

dt
= (

∂u

∂x
)−1G(

∂u

∂x
)−'∂H

∂x
,

where x : t ∈ R 3→ x(t) ∈ RN , u : x ∈ RN 3→ u(x) ∈ RN , and S is an N × N

non-degenerate matrix. Suppose that the phase space K of this system is compact
and the right-hand side ∂H/∂u is Lipschitz continuous. Suppose also that u is a
C1-diffeomorphism. If the functions σ &= 0 and ρ &= 0 belong to S1

2(R), then for any
ε > 0 there exist neural networks HNN with the activation functions σ and uNN with
ρ for which

∥∥∥∥(
∂u

∂x
)−1G(

∂u

∂x
)−'∂H

∂x
− (

∂uNN

∂x
)−1G(

∂uNN

∂x
)−'∂HNN

∂x

∥∥∥∥
2

< ε

holds.

Proof. We need to prove the approximation property for (∂u/∂x)−1. From the as-
sumption that ρ &= 0 is in S1

2(R), there exists a function uNN that approximates
∂u/∂x. Because the determinant function of matrices is continuous, it is deduced
that det ∂uNN/∂x &= 0 and hence (∂uNN/∂x)−1 exists. Because the matrix inverse is
also continuous, (∂uNN/∂x)−1 is also approximated by uNN.
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4.3.2 Generalization error analysis of Hamiltonian neural networks

Next, we derive a generalization error bound for the standard Hamiltonian neural
network (4.2) by employing a technique from statistical learning theory. More pre-
cisely, we adjust the technique so that an estimate on the energy gradient can be
obtained.

Remarks. 5. Although the standard Hamiltonian neural network without the coor-
dinate transformations is considered below, the results can be extended to the general
energy-based model with the coordinate transformations if the matrix (∂u/∂x)−1 is
bounded.

In statistical learning theory, generalization error bounds are typically obtained by
using the Rademacher complexities. See, for example, [8, 36,106,111] for details.

Definition 4.3. For a set V ⊂ Rn,

Rn(V ) :=
1

n
Eσ∼{−1,1}n sup

v∈V

n∑

i=1

σivi

is called the Rademacher complexity of V .

Lemma 2. Let X and Y be arbitrary spaces, F ⊂ {f : X → Y } be a hypotheses
class, and L : Y × Y → [0, c] be a loss function. For a given data set (xi, yi) ∈

X × Y (i = 1, . . . , n), let G be defined by {(xi, yi) ∈ X × Y 3→ L[yi, h(xi)] ∈ R | h ∈

F , i = 1, . . . , n}. Then, for any δ > 0 and any probability measure P , we obtain, with
a probability of at least (1−δ) with respect to the repeated sampling of Pn-distributed
training data, the following:

E[L(Y, h(X))] ≤
1

n

n∑

i=1

L(yi, h(xi)) + 2Rn(G) + 3c

√
2 ln 4

δ

n

for all h ∈ F .

The Rademacher complexity is known to be bounded by using the covering number.

Definition 4.4. Let V and V ′ be subsets of Rn. V is r-covered by V ′ with respect
to the metric function defined by the norm ‖ · ‖ if for all v ∈ V , there exists a v′ ∈ V ′

such that ‖v − v′‖ < r. The covering number N(r, V, ‖ · ‖) of V is the minimum
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number of elements of a set that r covers V . N(r, V, ‖ · ‖) is also denoted by N(r, V )

if the metric is clear from the context.

Lemma 3. If
√

logN(c2−k, V ) ≤ α + kβ for some α and β, then Rn(V ) ≤

6c(α+ 2β)/n.

Thus, if the covering number is estimated for a Hamiltonian neural network, the
bound on the generalization error is obtained. To this end, we suppose that the model
is trained by minimizing the p-norm of the error in the right-hand side of the model.
More precisely, for the hypothesis h : uj 3→ S ∂HNN(uj)

∂u , we consider the loss function

L[∇H(uj), h(uj)] =

∥∥∥∥
∂H(uj)

∂u
−

∂HNN(uj)

∂u

∥∥∥∥
p

p

, (4.13)

where ui are training data. We denote the Lipschitz constant of the loss function
associated with the above by ρp. Of course, p = 2 is typically used; however, we show
below that p > 2M is useful to obtain an L∞ bound on the Hamiltonian.

Remarks. 6. The training can be performed also by using the symplectic gradient:
∥∥∥∥S

∂H(uj)

∂u
− S

∂HNN(uj)

∂u

∥∥∥∥
p

p

. (4.14)

In that case, the results will be slightly modified using the norm of S; however, we
omit this for simplicity.

A bound of the covering number is derived as follows.

Theorem 4.11. Suppose that the hypotheses class F consists of multi-layer percep-
trons fNN that have ρσj

-Lispchitz activation functions σj(j = 1, . . . , nl), for which
the derivatives are ρ′j-Lipschitz continuous and bounded by sup |σ′

j| < cσj
. Suppose

also that the matrices A'
j (j = 1, . . . , nl + 1) in the linear layers in the perceptrons

have the bounded norm |A'
j | < cAj

:

F = {fNN(u) | Anl+1σnl
(Anl

σnl−1 [· · ·σ1(A1u+ b1) · · · ] + bnl
) + bnl+1},

where bj’s are vectors. Let G be defined by {L[∇H(ui), h(ui)] | h ∈ F} with the
ρp-Lipschitz continuous loss function L. In addition, suppose that the phase space
is compact so that the data ui(i = 1, . . . , n) are in a bounded set with the bound
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‖ui‖ < cu. Then, the covering number of G is estimated by

N(ε,G) ≤
(2ρpcucAnl+1

ρ′σnl
(
∏nl−1

j=1 ρσj
)(
∏nl−1

j=1 cσj
)(
∏nl

j=1 cAj
)2

ε
+ 1

)n
.

To prove this theorem, we use the following lemmas, which are typically used to
estimate the covering numbers [106].

Lemma 4. Let B be a unit ball in Rn. Then, N(ε, B, ‖ · ‖2) ≤
(
2
ε + 1

)n.

Lemma 5. Suppose that functions φi : R → R, i = 1, 2, . . . , n are ρ-Lipschitz
continuous. Then, for V ⊂ V n, N(ε, 0φ ◦ V ) ≤ N( ερ , V ), where for v ∈ Rn, 0φ(v) :=

[φ1(v1), . . . ,φn(vn)], 0φ ◦ V := {0φ(v) | v ∈ V }.

Proof of Theorem 4.11 To simplify the discussion, we will estimate the covering num-
ber of the following perceptron

fNN(u) = A3σ2[A2σ1(A1u+ b1) + b2] + b3.

Because the proof for general cases is exactly the same, we need to estimate the
covering number of the gradient of fNN, which is written as

∇fNN(u) = A'
1 (Dσ1)A

'
2 (Dσ2)A

'
3 ,

where Dσ2 and Dσ1 are Jacobian matrices. These Jacobian matrices are evaluated
at u = A2σ1(A1u + b1) + b2 and A1u + b1, respectively. We first estimate the cov-
ering number associated with Dσ2. Dσ2 has the same architecture as a multi-layer
perceptron, except that the last activation function is replaced by the differential σ′

2

of σ2:

Dσ2 = σ′
2[A2σ1(A1u+ b1) + b2].

Assuming that the input data are in the ball Bcu with radius cu, we obtain

N(ε, Bcu) ≤

(
2cu
ε

+ 1

)n

.

Then, because the norms of A1, A2 are bounded by cA1 , cA2 , matrix multiplications
by these matrices are cA1- and cA2-Lipschitz continuous, respectively. In addition,
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σ1 is ρ1-Lipschitz and σ′
2 is ρ′2-Lipschitz continuous. Therefore, the covering number

associated with Dσ2 is estimated by

N(ε, Dσ2) ≤

(
2ρ1ρ′2cA1cA2cu

ε
+ 1

)n

.

Finally, because σ′
1 is assumed to be bounded by cσ1 , the norms of the matrices

other than Dσ2 in ∇fNN are bounded as follows: ‖A'
1 ‖ < cA1 , ‖A

'
2 ‖ < cA2 , ‖A

'
3 ‖ <

cA3 , ‖Dσ1‖ < cσ1 . Because the loss function is assumed to be ρp-Lipschitz continuous,
we obtain the estimate

N(ε,G) ≤

(
2ρpρ1ρ′2cσ1(cA1cA2)

2cA3cu
ε

+ 1

)n

.

4.3.3 L∞ estimate on the error in the Hamiltonian

The generalization error analysis in Theorem 4.11 shows that, at a certain proba-
bility, the expectation of the loss function can be bounded. If this bound certainty
holds and if the training is performed by minimizing the p-norm with p > 2M , we
can derive an L∞ estimate on the Hamiltonian for the standard Hamiltonian neural
network (4.2) by applying the Poincaré inequality and the Sobolev inequality under
Assumption 1.
Assumption 1 There exists a density fP for measure P with inf fP > 0.

Remarks. 7. The condition p > 2M is not required in practice because of the
well-known equivalence of the norms in finite dimensional spaces; for example, if the
standard 2-norm is small enough, then the p-norm is also small. However, when
the dimension 2M is large, the 2-norm needs to be very small to bound the p-norm
because the constant in the inequality used to bound the p-norm depends on the
dimension. Therefore, it is preferable to minimize the p-norm in such cases.

Theorem 4.12 (Poincaré inequality). Suppose that 1 ≤ p ≤ ∞ and Ω ⊂ R2M is
bounded. Then there exists a constant cp such that, for any H ∈ S1

p(Ω),
∫

Ω
|H(u)− H̄|pdu ≤ cp

∥∥∥∥
∂H

∂u

∥∥∥∥
p

p

, H̄ =
1∫

Ω du

∫

Ω
H(u)du.

The constant cp is called the Poincaré constant.
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Theorem 4.13 (Sobolev inequalities). There exist constants c1, c2 such that, if lp >

2M ,

‖e‖L∞(R2M ) ≤ c‖e‖Wp,l(R2M ), ‖e‖L∞(T2M ) ≤ c‖e‖Wp,l(T2M ).

By using these inequalities along with the invariance of the Hamilton equation
under the constant shift of the energy function, we obtain an error bound on the
Hamiltonian.

Lemma 6. Among the energy functions that yield the target Hamilton equation, we
choose the one for which

∫
H(u)du =

∫
HNN(u)du (4.15)

holds, so that the error function has zero mean: e(u) := H(u) −HNN(u), ē(u) := 0.

Then,
∫

Ω
|e(u)|pdu ≤ cp

∥∥∥∥
∂e

∂u

∥∥∥∥
p

Lp

.

From the above estimate, we obtain

∫ ∥∥∥∥
∂H(u)

∂u
−

∂HNN(u)

∂u

∥∥∥∥
p

p

dP ≤
1

n

n∑

i=1

L[Yi, h(Xi)] + 2Rn(G) + 3c

√
2 ln 4

δ

n
.

By using the density fP for the measure P , we obtain

inf fP

∫ ∥∥∥∥
∂H(u)

∂u
−

∂HNN(u)

∂u

∥∥∥∥
p

p

du ≤

∫ ∥∥∥∥
∂H(u)

∂u
−

∂HNN(u)

∂u

∥∥∥∥
p

p

dP,

which gives us
∫ ∥∥∥∥

∂H(u)

∂u
−

∂HNN(u)

∂u

∥∥∥∥
p

p

du

≤
1

inf fP

∫ ∥∥∥∥
∂H(u)

∂u
−

∂HNN(u)

∂u

∥∥∥∥
p

p

dP

≤
1

inf fP



1

n

n∑

i=1

L[Yi, h(Xi)] + 2Rn(G) + 3c

√
2 ln 4

δ

n



 .
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We note that the left-hand side is the Sobolev norm of the error in W p,l; then,
under the assumption that p > 2M , we can use the Sobolev inequality to obtain

(sup
u

‖H(u)−HNN(u)‖)
p ≤ cp

∥∥∥∥
∂H(u)

∂u
−

∂HNN(u)

∂u

∥∥∥∥
p

p

≤
cp

inf fP



1

n

n∑

i=1

L[Yi, h(Xi)] + 2Rn(G) + 3c

√
2 ln 4

δ

n



 ,

which ensure that H and HNN are close in terms of the function values.

4.3.4 KAM theory for Hamiltonian neural networks

The universal approximation property shown in the previous sections guarantees
that the value of MSE can be made arbitrarily small by training; however, in actual
training, a finite error remains. In this section, as an application of the generalization
bound, we apply the KAM theory to theoretically investigate the trained standard
Hamiltonian neural network model (4.2) in such cases by assuming that the target
system is integrable.

We make a few assumptions that are needed for the application of the KAM theory.
Assumption 2 The dimension of the phase space is assumed to be 2M with M ≥ 2.
Assumption 3 The target system is an integrable Hamiltonian system with the con-
served quantities F1, . . . , FM . The series c1, . . . , cM exists such that K = ∩M

i=1F
−1
i (ci)

is connected and compact.
Under the above assumptions, from the Liouville–Arnold theorem there exist a

neighborhood N of K, U ⊂ Rn and a coordinate transform

φ : (θ, J) ∈ T
n × U → φ(θ, J) ∈ N , (4.16)

such that the transformed system is the Hamilton equation. Following the usual
setting of the KAM theorem, we consider the target system and the Hamiltonian
equation in the transformed coordinate Tn × U .
Assumption 4 The Hamiltonian H : Tn × U → R of the target system is C∞ and
non-degenerate. The activation functions of the Hamiltonian neural network used are
in C∞.
Assumption 5 From the generalization error analysis in the previous section, we
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have essentially shown that if p > 2M , with at least probability 1− δ, it holds that

sup |H(u)−HNN(u)| < c1Ltrain + c2Rn + c3

√
ln 1

δ

n

with constants c1, c2, and c3, where Rn is a bound on the Rademacher complexity.
We assume that the training was performed with p > 2M and the above statement
certainly holds.

Using these assumptions, we obtain Theorem 4.14.

Theorem 4.14. Let the threshold of the KAM theorem be ε0 and δ be

δ = exp

(

−n

(
ε0 − c1Ltrain − c2Rn

c3

)2
)

.

Under the above assumptions, with a probability of at least (1− δ), a set of invariant
tori exists for the trained model HNN.

Proof. It is confirmed by a straightforward calculation that if δ is given as described
above, it holds that sup |H(u)−HNN(u)| < ε0, and hence the assumption of the KAM
theorem is satisfied.

Remarks. 8. As mentioned in Remark 1, the KAM theorem also shows that the
invariant tori become larger when the perturbation becomes smaller. Hence, if the
generalization error is small enough, the size of the tori is expected to be large.

Note that general Hamiltonian systems, and hence general Hamiltonian neural net-
works, are not quasi-periodic. Therefore, a model that approximates a quasi-periodic
Hamilton equation may be (in some sense) approximately quasi-periodic, but it is not
necessarily strictly quasi-periodic. This theorem states that the trained model can be
strictly quasi-periodic even if the training loss does not completely vanish.
Numerical Example: Learning the Zabusky and Kruskal Experiment As a
numerical experiment, we trained a Hamiltonian neural network*1 so that the dynam-
ics of the KdV equation is learned by using the data from the experiment by [133], in
which a nontrivial recurrence of initial states is reported.

*1 We use the Hamiltonian neural network code for the KdV equation provided by https://
github.com/tksmatsubara/discrete-autograd (MIT License).
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The KdV equation is derived from the following energy function H:

H(u) =

∫ [
1

6
αu3 −

1

2
β

(
∂u

∂x

)2
]

dx.

In fact, under the periodic boundary condition, the variational derivative is

δH

δu
=

∫ [
1

2
αu2 + β

∂2u

∂x2

]
dx.

Then, the time evolution is expressed as a Hamiltonian equation:

∂u

∂t
=

∂

∂x

δH

δu
= αu

∂u

∂x
+ β

∂3u

∂x3
.

For spatial discretization, we used the forward and backward difference operators,

Df :=
1

∆x





−1 1 0 · · · 0 0 0
0 −1 1 · · · 0 0 0
0 0 −1 · · · 0 0 0
... . . . . . . · · ·

. . . . . . ...
0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1
1 0 0 · · · 0 0 −1





and

Db :=
1

∆x





1 0 0 · · · 0 0 −1
−1 1 0 · · · 0 0 0
0 −1 1 · · · 0 0 0
... . . . . . . · · ·

. . . . . . ...
0 0 0 · · · 1 0 0
0 0 0 · · · −1 1 0
0 0 0 · · · 0 −1 1





,

respectively. The central difference operator D is their mean, specifically D = 1
2(Df +

Db) and that for the second derivative is D2 = DfDb = DbDf . Using these difference
operators, the equation is semi-discretized as

H(u) =
∑

x

[
1

6
αu3 −

1

2
β
(Dfu)2 + (Dbu)2

2

]
∆x,

du

dt
= D

∂H

∂u
= D

(
1

2
αu2 + βDu

)
.

Following [133], we set the parameters to α = −1.0 and β = −0.0222, set the width
of phase space to 2.0, and used the initial condition u(0, x) to u(0, x) = cos(xπ). We
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discretized the system with the spatial and temporal mesh sizes of ∆x = 0.1 and
∆t = 0.01. We obtained an orbit for 200 time steps from the initial condition using
the fifth-order Dormand–Prince method with the absolute and relative tolerances of
10−10 and 10−8.

We performed the experiments on an NVIDIA TITAN V with double precision.
We employed a three-layered convolutional neural network with kernel sizes of 3, 1,
and 1. The number of hidden channels was 200, the number of output channels was
1, the activation function was the tanh function, and each weight parameter was
initialized as a random orthogonal matrix. We summed up the output in the spatial
direction and obtained the global energy. We used the whole orbit at every iteration,
and minimized the mean squared error of the time derivative as the loss function
using the Adam optimizer with a learning rate of 10−3 for 10,000 iterations; the error
reached a maximum of 1.37 × 10−3. Given the true dynamics u, the absolute error
between the energy function H and the neural network HNN was 1.31 × 10−4 on
average and 2.51× 10−4 at most.

Using the true model and the trained neural network, we also obtained orbits for
1100 time steps from the same initial condition, as shown in the second and third
panels of Fig. 4.4, respectively. In the top panels, blue and orange lines denote the
true state u and the state predicted by the trained neural network uNN at t =0.0,
2.0, 4.8, and 9.8. The bottom panel shows the energy function H given the predicted
states u and uNN. Due to the non-zero training error, more waves incur a larger error.
Nonetheless, at around t = 9.8, the true model and learned neural network reproduce
sin waves, which are given as the initial condition, and the energy error is restored to
zero; they exhibit quasi-periodic behaviors.
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Fig.4.4 Results of training in the Zabusky and Kruskal experiment [133]. (top panels) The
predicted states at t =0.0, 2.0, 4.8, and 9.8. (second panel) The true dynamics u.
(third panel) The dynamics uNN modeled by a neural network. (bottom panel)
The energy function H given the true dynamics u and modeled dynamics uNN.
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Chapter 5 Variational Integrator for
Hamiltonian Neural Networks
and Neural Symplectic Forms

A primal application of the Hamiltonian neural network and the neural symplectic
form we proposed in Chapter 3 are physical simulations, and to perform the sim-
ulations, these models must be discretized. In this chapter, we present variational
integrators for discretization of Hamiltonian neural networks and neural symplectic
forms, respectively. First, we consider Hamiltonian neural networks for the following
Hamilton equation:

d

dt

(
q
p

)
=

(
O I
−I O

)
∇H. (5.1)

Traditional numerical integrators destroy physical properties, such as the energy
conservation law. Numerical methods that preserve physical properties are called
structure-preserving numerical integrators; however, these are designed for, typically,
the Hamilton equations with known Hamiltonian, and hence, application to deep
physical models may not be straightforward. Hence it is necessary to develop nu-
merical methods that can be applied to deep physical models. Typical integrators
are symplectic integrators, which can be derived as variational integrators [74]. By
discretizing the variational principle, the variational integrator discretizes the Euler–
Lagrange equation while preserving various conservation laws. Thus one of the aims
of this study is to propose a variational integrator for Hamiltonian neural networks.

To address our problems, we need to solve the following two questions.

• Is it possible to formulate a discrete variational problem similar to the varia-
tional problem for the Hamilton equation using the energy function given by a
neural network?
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• Can the discrete Hamilton equation be derived from the formulated discrete
variational problem?

In particular, regarding the second question, because the Hamiltonian is provided by a
neural network, it is not possible to execute variational calculus manually. Therefore,
perhaps it is necessary to apply automatic differentiation to perform the discrete
variational calculus.

Meanwhile, most symplectic integrators are designed for the Hamilton equation of
the canonical form, and they may not be available for the neural symplectic forms
because the Hamilton equations of the neural symplectic forms are not canonical.
In this study, we also show that the variational integrator is available for neural
symplectic forms, that is, the model of neural symplectic form admits a variational
principle that can be used to derive variational integrators.

In addition, the energy conservation property of the proposed method was confirmed
by the numerical experiment.

The main contributions of this study include:
1. Physical simulations while preserving the physical properties just by
giving the data. The proposed variational integrators enable physical simulations
using the Hamiltonian neural network and neural symplectic form without destroying
the physical properties, such as the energy conservation law. Further, our results
enable users to perform physical simulations just by supplying the observed data in
an arbitrary coordinate system while preserving physical properties.
2. Designing various symplectic integrators. The variational integrator can de-
rive a variety of symplectic integrators, depending on the discretization method of the
action integral. Hence, numerical integrators that meet the needs of the application,
such as accuracy and computational complexity, can be designed.

This chapter is organized as follows. First, in Section 5.1, we briefly introduce the
basics of the varitaional integrator. In Section 5.2, we explain varitaional integrators
for Hamiltonian neural networks and conduct numerical experiments. In Section
5.3, we show that the variational principle that derives the neural symplectic form
certainly exists, and develop a variational integrator for this model.
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5.1 Outline of the Variational Integrator

The variational integrator was proposed as a discretization method for the Euler–
Lagrange equation [74] , which is the fundamental equation of Lagrangian mechanics,
by using the variational principle. First, the variational principle and the Euler–
Lagrange equation are explained briefly. Let q(t) : t ∈ R 3→ q(t) ∈ Rn denote a
variable that represents the state. Consider the case of a mass point in motion under
a force derived by a potential energy V (q). The Lagrangian L(q, q̇), which depends
on q and its time derivative q̇, is defined as the difference between the kinetic and the
potential energy:

L(q, q̇) :=
m

2
q̇ · q̇ − V (q),

where the mass is denoted by m. The Euler–Lagrange equation, which is the equation
of motion in Lagrangian mechanics, is defined as follows:

∂L

∂q
−

d

dt

∂L

∂q̇
= 0. (5.2)

This equation is known to be equivalent to Newton’s equation of motion. The vari-
ational principle states that the Euler–Lagrange equation is obtained by computing
the stationary points of the action integral S, which is defined as

S :=

∫ T

0
L(q, q̇)dt.

The variational integrator uses this principle for discretization. More precisely, in
general, numerical integrators of differential equations are derived by discretizing a
given differential equation; however, to obtain the variational integrator, the varia-
tional principle is discretized, that is, the action integral is discretized and stationary
points of the discretized action integral are computed. In the following, the approxi-
mate value of q(n∆t) is denoted by q(n), where ∆t is the time step size. Then, q̇ can
be approximated, for example, as follows:

q̇ 4
q(n+1) − q(n)

∆t
.

Suppose that the Lagrangian is given as (5.2). Then the Lagrangian can be approxi-
mated by

Ld(q
(n), q(n+1)) :=

m

2

q(n+1) − q(n)

∆t
·
q(n+1) − q(n)

∆t
− V (q(n)).
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Using this discretized Lagrangian, the action sum Sd is defined as follows:

Sd =
N−1∑

n=0

Ld(q
(n), q(n+1))∆t.

It is easy to confirm that this is an approximation of the action integral S. In the
variational integrator, as in ordinary Lagrangian mechanics, the discrete equations
of motion are derived by computing the variation of the action sum. Let δq(n) be a
variation with q(n) with both ends fixed

δq(0) = δq(N) = 0

as is common in the original variational principle. Ignoring higher-order terms, the
computation of difference of Sd leads to

N−1∑

n=0

Ld(q
(n) + δq(n), q(n+1) + δq(n+1))∆t−

N∑

n=1

Ld(q
(n), q(n+1))∆t

=
N−1∑

n=0

(
D1Ld(q

(n), q(n+1))δq(n) +D2Ld(q
(n), q(n+1))δq(n+1)

)
∆t

=
N−1∑

n=0

(
D1Ld(q

(n), q(n+1)) +D2Ld(q
(n−1), q(n))

)
δq(n)∆t,

where D1 and D2 are derivatives with respect to the first and second variables, re-
spectively. Note that the final equality uses δq(0) = δq(N) = 0. To be zero for any
variation δq(n), the following conditions must be satisfied

D1Ld(q
(n), q(n+1)) +D2Ld(q

(n−1), q(n)) = 0.

This is an approximation to the Euler–Lagrange equation and is known as the discrete
Euler–Lagrange equation.
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5.2 Variational Integrator for Hamiltonian Neural Networks

5.2.1 Variational principle and variational integrator for Hamiltonian

neural networks

Similar to the Euler–Lagrange equation, the Hamilton equation is known to be
derived by the variational principle. Instead of S, consider the following integral:

∫ T

0
(p · q̇ −H(q, p)) dt (5.3)

By ignoring the higher-order terms and fixing both ends, the variation of this integral
becomes

∫ T

0
((p+ δp) · (q̇ + δq̇)−H(q + δq, p+ δp)) dt−

∫ T

0
(p · q̇ −H(q, p)) dt

=

∫ T

0
(p · δq̇ + δp · q̇ −D1Hδq −D2Hδp) dt

=

∫ T

0

(
−ṗ · δq + δp · q̇ + [p · δq]T0 −

∂H

∂q
· δq −

∂H

∂p
· δp

)
dt

=

∫ T

0

(
(−ṗ−

∂H

∂q
) · δq + (q̇ −

∂H

∂p
) · δp

)
dt

For this variation to be zero for any δq and δp, the following conditions must be hold:

−ṗ−
∂H

∂q
= 0, q̇ −

∂H

∂p
= 0.

This corresponds to the Hamilton equation (5.1).
Next, we propose a variational integrator for Hamiltonian neural networks. Suppose

that a trained Hamiltonian neural network is given, of which Hamiltonian is given by
a neural network HNN. First, as in the Lagrangian formalism, consider the following
sum that approximates the integral (5.3)

N−1∑

n=0

(
p(n) ·

q(n+1) − q(n)

∆t
−HNN(q

(n), p(n))

)
∆t

where q(n) and p(n) are approximations of q(n∆t) and p(n∆t), respectively. Com-
puting the variation of the above sum with respect to the infinitesimal perturbations
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δq(n) and δp(n) of q(n) and p(n) under the assumption that δq(0) = δq(N) = 0, we
obtain

N−1∑

n=0

(
p(n) + δp(n) ·

(q(n+1) − q(n)

∆t
+

δq(n+1) − δq(n)

∆t

)

−HNN(q
(n) + δq(n), p(n) + δp(n))

)
∆t

−
N−1∑

n=0

(
p(n) ·

q(n+1) − q(n)

∆t
−HNN(q

(n), p(n))

)
∆t

=
N−1∑

n=0

(
p(n) ·

δq(n+1) − δq(n)

∆t
+ δp(n) ·

q(n+1) − q(n)

∆t

−D1HNN(q
(n), p(n)) · δq(n) −D2HNN(q

(n), p(n)) · δp(n)
)
∆t.

For the first term, the following equality holds:

N−1∑

n=0

p(n) ·
δq(n+1) − δq(n)

∆t
∆t =

N−1∑

n=0

p(n) · δq(n+1) −
N−1∑

n=0

p(n) · δq(n)

=
N∑

n=1

p(n−1) · δq(n) −
N−1∑

n=0

p(n) · δq(n)

=
N−1∑

n=0

p(n−1) · δq(n) −
N−1∑

n=0

p(n) · δq(n)

=
N−1∑

n=0

(
−
p(n) − p(n−1)

∆t
· δq(n)

)
∆t

where δq(0) = δq(N) = 0 is used. This is often referred to as ”summation by parts.”
Using this, the above variation can be rewritten as follows:

N−1∑

n=0

(
−
p(n) − p(n−1)

∆t
· δq(n) + δp(n) ·

q(n+1) − q(n)

∆t

−D1HNN(q
(n), p(n))δq(n) −D2HNN(q

(n), p(n))δp(n)
)
∆t

=
N−1∑

n=0

((
−
p(n) − p(n−1)

∆t
−D1HNN(q

(n), p(n))
)
· δq(n)

+
(q(n+1) − q(n)

∆t
−D2HNN(q

(n), p(n))
)
· δp(n)

))

∆t.
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Hence for the vatiation to be zero the following equation must hold:

−
p(n) − p(n−1)

∆t
−D1HNN(q

(n), p(n)) = 0,

q(n+1) − q(n)

∆t
−D2HNN(q

(n), p(n)) = 0.

These equations can be rearranged to




q(n+1) − q(n)

∆t
p(n) − p(n−1)

∆t



 =

(
O I
−I O

)(
D1HNN(q(n), p(n))
D2HNN(q(n), p(n))

)
. (5.4)

It turns out that this is certainly an approximation of the Hamilton equation (5.1).
We now consider whether q(n+1) and p(n+1) can be computed using this equation

for a Hamiltonian HNN given by a neural network. First, because each expression of
(5.4) is valid for any n, so (5.4) can be rewritten as





q(n+1) − q(n)

∆t
p(n+1) − p(n)

∆t



 =

(
O I
−I O

)(
D1HNN(q(n), p(n))

D2HNN(q(n+1), p(n+1))

)
. (5.5)

This defines the simultaneous equations for q(n+1), p(n+1), when q(n), p(n) are given.
This system of equations can be solved numerically as explained below. The D1

and D2 are the derivatives of the neural network from the first and second variables,
respectively. Therefore, if the values of HNN(q(n), p(n)) and HNN(q(n+1), p(n+1)) can
be calculated, D1HNN and D2HNN can be obtained by using automatic differentiation.

For simplicity, let us solve the above system of equations by using a simple fixed-
point iteration method. Let q(n+1)

(k) , p(n+1)
(k) be the approximations of q(n+1), p(n+1) at

the kth iteration. The algorithm of the fixed-point iteration method is as follows:

q(n+1)
(0) = q(n), p(n+1)

(0) = p(n),
(
q(n+1)
(k+1)

p(n+1)
(k+1)

)

=

(
q(n)

p(n)

)
+∆t

(
O I
−I O

)(
D1HNN(q(n), p(n))

D2HNN(q
(n+1)
(k) , p(n+1)

(k) )

)

.

The right-hand side can be computed using automatic differentiation. Thus, when the
algorithm converges, the numerical method (5.5) certainly determines q(n+1), p(n+1).
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5.2.2 Numerical example

We trained Hamiltonian neural networks using a data set of a simple harmonic
oscillator:

q̇ = p, ṗ = −q.

We performed physical simulations by using the trained model discretized by the
explicit Euler method and the proposed variational integrator. The time step size was
set to ∆t = 0.01. The numerical solutions are computed from t = 0 to t = 100. When
the neural network was trained, it was confirmed that the loss function was certainly
small enough. Fig. 5.1 shows the simulation results by the two methods, while Fig.
5.2 shows the energy behaviors. When the explicit Euler method was employed, the
energy increased and the numerical solution diverged. When the proposed method
was used, however, the energy was very well conserved and the solution continued to
oscillate within a certain range.

Fig.5.1 Predicted solutions (q: blue, p: orange) by the Euler method (left) and those by
the variational integrator (right).

5.3 Variational Integrator for Neural Symplectic Forms

5.3.1 Variational principle and variational integrator for neural symplec-

tic forms

As is well-known the Hamilton equation (5.1) in the canonical form is derived from
the variational principle using the action integral (5.3) [1]. We need a similar action
integral that is compatible with the neural symplectic form. The following is the
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Fig.5.2 Predicted energies by the Euler method (left) and by the variational integrator
(right).

model of neural symplectic form on the configuration manifold M:

ω̃ = dθNN,
du

dt
= X̃HNN , ω(X̃HNN , v) = dHNN(v) for all v ∈ TuM. (5.6)

HNN is the Hamiltonian and θNN is the symplectic 1-form, which are modeled by
using multi-layer perceptrons. ω̃ is the symplectic 2-form. To be a symplectic form ω̃

must be closed; dω̃ = 0. To ensure this property, ω̃ is modeled as ω̃ = dθNN. Because
of the property of the exterior derivative dd = 0, this ensures the learned 2-form is
closed; dω̃ = ddθNN = 0. XNN is a vector field that is defined by the last equation of
(5.6). See [16] or Chapter 3 for details.

We focus on the first term pdq of the action integral (5.3). Taking the exterior
derivative of it gives the symplectic form: d(pdq) = −dq ∧ dp, which is similar to
−θNN in neural symplectic form. Therefore, instead of (5.3), we should consider the
following integral:

∫ T

0
(−θNN(u̇)−HNN) dt, (5.7)

In fact, the variational principle associated with this integral derives neural symplectic
form. For details, we consider the variation of the action integral (5.7) of neural
symplectic form with infinitesimal perturbations ∆u with respect to u with the both
ends fixed ∆u(0) = ∆u(T ) = 0:
∫ T

0
(−θNN(u+∆u) · (u̇+∆u̇)−HNN(u+∆u)) dt−

∫ T

0
(−θNN(u) · (u̇)−HNN(u)) dt.
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Using the Taylor expansion to the above equation, we get
∫ T

0

(
−θNN(u) ·∆u̇−

∂θNN

∂u
∆u · u̇−

∂HNN

∂u
∆u

)
dt,

where higher-order terms of ∆u are omitted. Next, by the integration by parts we
obtain

∫ T

0

(
d

dt
θNN(u) ·∆u− u̇T ∂θNN

∂u
∆u−

∂HNN

∂u
∆u

)
dt.

Then, from the chain rule, we have

∫ T

0

[(

u̇T (
∂θNN

∂u

T

−
∂θNN

∂u
)−

∂HNN

∂u

)

∆u

]

dt.

For this variation to be zero for any ∆u, the following equation must be satisfied

u̇T (
∂θNN

∂u

T

−
∂θNN

∂u
)−

∂HNN

∂u
= 0 ⇐⇒ (

∂θNN

∂u

T

−
∂θNN

∂u
)T u̇ =

∂HNN

∂u
. (5.8)

As show in [16] or Chapter 3, the neural symplectic form is known to be represented
by in terms of vectors and a matrix, without using the differential forms:

u̇ = W̃−'
u ∇HNN(u), (W̃u)i,j =

∂(θNN)i
∂uj

−
∂(θNN)j
∂ui

,

which is corresponded by the derived equality (5.8).
Note that all quantities that are needed to define the above integral are available

in the neural symplectic form model (5.6).
The above action integral can be used to derive variational integrators. Although

any discretization can be employed, we discretize the above action integral (5.7), for
example, as

N∑

n=0

(
−θNN(

u(n+1) − u(n)

∆t
;
u(n+1) + u(n)

2
)−HNN(

u(n+1) + u(n)

2
)

)
∆t, (5.9)

where ∆t is the time step size and u(n) is an approximation of u(n∆t). As for
θNN(

u(n+1)−u(n)

∆t ; u
(n+1)+u(n)

2 ), because θNN is a 1-form and a 1-form is a covector
field, θNN defines a linear function θNN(·;

u(n+1)+u(n)

2 ) ∈ Tu(n+1)+u(n)

2

M at each point
u(n+1)+u(n)

2 ∈ M.

122



5.3. VARIATIONAL INTEGRATOR FOR NEURAL SYMPLECTIC FORMS

Computing the variation of discretized action integral (5.9) with respect to the
infinitesimal perturbations ∆u(n) of u(n) under the assumption that ∆u(0) = ∆u(N) =

0, we obtain

N∑

n=0

(
−θNN(

u(n+1) +∆u(n+1) − u(n) −∆u(n)

∆t
;
u(n+1) +∆u(n+1) + u(n) +∆u(n)

2
)

−HNN(
u(n+1) +∆u(n+1) + u(n) +∆u(n)

2
)

)
∆t−

N∑

n=0

(
−θNN(

u(n+1) − u(n)

∆t
;
u(n+1) + u(n)

2
)

−HNN(
u(n+1) + u(n)

2
)

)
∆t,

Using the Taylor expansion to symplectic 1-form term θNN and Hamiltonian term
HNN, respectively, We get

N∑

n=0

(
−D1θNN(

u(n+1) − u(n)

∆t
;
u(n+1) + u(n)

2
)
∆u(n+1) −∆u(n)

∆t

−D2θNN(
u(n+1) − u(n)

∆t
;
u(n+1) + u(n)

2
)
∆u(n+1) +∆u(n)

2

−DHNN(
u(n+1) + u(n)

2
)
∆u(n+1) +∆u(n)

2

)
∆t,

where DHNN is the derivative of HNN; D1θNN and D2θNN are derivatives with respect
to the first and second variables of the θNN, respectively. The higher-order terms of
∆u(n)’s are omitted. Since θNN is a 1-form, θNN defines a linear map that maps a
vector v to a real number θNN(v;u) for each u. Because this is a linear map, there
exists a vector 0θNN(u) such that θNN(v;u) = 0θNN(u) · v. Note that although 0θ is a
linear map with respect to the vector v, 0θ can be nonlinearly dependent on u. By
using this expression, D1θNN and D2θNN are given as

D1θNN(v;u) =
∂

∂v
0θNN(u) = 0θNN(u)

D2θNN(v;u) =
∂

∂u
0θNN(u) · v = JT v,

where J is the Jacobian matrix: J = ∂+θNN
∂u .
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Rearranging the above equation, we get
N∑

n=0

[(
1

∆t
D1θNN(

u(n+1) − u(n)

∆t
;
u(n+1) + u(n)

2
)−

1

2
D2θNN(

u(n+1) − u(n)

∆t
;
u(n+1) + u(n)

2
)

−
1

2
DHNN(

u(n+1) + u(n)

2
)

)
∆u(n)

]
∆t+

N+1∑

n=1

[(
−

1

∆t
D1θNN(

u(n) − u(n−1)

∆t
;
u(n) + u(n−1)

2
)

−
1

2
D2θNN(

u(n) − u(n−1)

∆t
;
u(n) + u(n−1)

2
)−

1

2
DHNN(

u(n) + u(n−1)

2
)

)
∆u(n)

]
∆t.

The second term can be rewritten by using the assumption that the both ends are
fixed, ∆u(0) = ∆u(N) = 0, as:
N+1∑

n=1

[(
−

1

∆t
D1θNN(

u(n) − u(n−1)

∆t
;
u(n) + u(n−1)

2
)−

1

2
D2θNN(

u(n) − u(n−1)

∆t
;
u(n) + u(n−1)

2
)

−
1

2
DHNN(

u(n) + u(n−1)

2
)

)
∆u(n)

]
∆t

=
N∑

n=0

[(
−

1

∆t
D1θNN(

u(n) − u(n−1)

∆t
;
u(n) + u(n−1)

2
)−

1

2
D2θNN(

u(n) − u(n−1)

∆t
;
u(n) + u(n−1)

2
)

−
1

2
DHNN(

u(n) + u(n−1)

2
)

)
∆u(n)

]
∆t.

We thus obtain
N∑

n=0

{[
1

∆t

(
D1θNN(

u(n+1) − u(n)

∆t
;
u(n+1) + u(n)

2
)−D1θNN(

u(n) − u(n−1)

∆t
;
u(n) + u(n−1)

2
)

)

+
1

2

(
−D2θNN(

u(n+1) − u(n)

∆t
;
u(n+1) + u(n)

2
)−DHNN(

u(n+1) + u(n)

2
)

−D2θNN(
u(n) − u(n−1)

∆t
;
u(n) + u(n−1)

2
)−DHNN(

u(n) + u(n−1)

2
)

)]
∆u(n)

}
∆t.

Considering variations with respect to any ∆u(n)) to be zero, we require the follow-
ing equality:

1

∆t

(
D1θNN(

u(n+1) − u(n)

∆t
;
u(n+1) + u(n)

2
)−D1θNN(

u(n) − u(n−1)

∆t
;
u(n) + u(n−1)

2
)

)

+
1

2

(
−D2θNN(

u(n+1) − u(n)

∆t
;
u(n+1) + u(n)

2
)−DHNN(

u(n+1) + u(n)

2
)

−D2θNN(
u(n) − u(n−1)

∆t
;
u(n) + u(n−1)

2
)−DHNN(

u(n) + u(n−1)

2
)

)
= 0,

which is the proposed variational integrator.
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5.3.2 Numerical example

We illustrate the effectiveness and advantage of the proposed method in the fol-
lowing numerical experiment. Firstly, we trained the neural symplectic form on a
Hamiltonian system, a double pendulum, using the code and data published in [16]*1.
In this experiment, the equation of the double pendulum used in the experiment is
as follows

dθ1
dt

= φ1,
dθ2
dt

= φ2,

dφ1

dt
=

g(sin θ2 sin(θ1 − θ2)−
m1+m2

m2
sin(θ1))− (l1θ21 cos(θ1 − θ2) + l2θ22) sin(θ1 − θ2)

l1(
m1+m2

m2
− cos2(θ1 − θ2))

,

dφ2

dt
=

g(m1+m2)
m2

(sin θ1 cos(θ1 − θ2)− sin(θ2))− ( l1(m1+m2)
m2

θ21 + l2θ22 cos(θ1 − θ2)) sin(θ1 − θ2)

l2(
m1+m2

m2
− cos2(θ1 − θ2))

.

We also explained why it is difficult to learn this equation with a Hamiltonian neural
network and why a neural symplectic form is necessary in Chapter 3.

The training conditions are the same as in [16] or Chapter 3. The Hamiltonian
HNN and the 1-form θNN were modeled by using a neural network with two hidden
layers of 200 units and the tanh activation function. We trained the model using the
Adam optimizer with a learning rate of 10−3 for 2000 iterations. All computations
are performed by using NVIDIA A100. The time step ∆t was set to 0.04.

Next, the model was discretised using the proposed method. The proposed method
is symmetric and hence has a second-order accuracy [40]. Therefore, we compared
it with the Heun method, which also has a second-order accuracy. The calculated
trajectories and the energies learned by the neural network are shown in Fig. 5.3 and
Fig. 5.4, respectively. Although the trajectories are not significantly different, the
energy graphs show that the energy by the Heun method gradually increases, while
that by the proposed method oscillates, neither diverging nor decaying. This confirms
the energy conservation property of the proposed method.

*1 https://github.com/YuhanChen0805/neural_symplectic_form (MIT License)
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(a) The Heun method (b) Proposed variational integrator

Fig.5.3 Example of the orbits simulated by the numerical methods. Each component of
u(t) = (θ1(t),φ1(t), θ2(t),φ2(t)) is represented: blue (θ1), orange (φ1), green (θ2),
and red (φ2).The horizontal axis represents the time and the vertical axis represents
the values of the variables.

(a) The Heun method (b) Proposed variational integrator

Fig.5.4 Example of the state of the conservation of the energies predicted by the proposed
and the comparative numerical method. The horizontal axis represents time and
the vertical axis represents energy.
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Chapter 6 Super Resolution of Numerical
Solutions of Nonlinear Elliptic
Equations by DeepONet

In this chapter, we propose to employ DeepONet’s network architecture for super
resolution of numerical solutions of partial differential equations. Because the output
of the DeepONet is a function, our method can achieve super resolution of the results
of physical simulations regardless of the scale factors or the discretization method.

This chapter is organized as follows. First, in Section 6.1, we show a biref intro-
duction to super resolution and neural operators. Section 6.2 explains the nonlinear
elliptic equation and a numerical method for this equation. Next, in Section 6.3, we
explain the proposed super resolution method with DeepONet. Finally, in Section
6.4, we show the results of numerical experiments, which illustrate the validity of our
proposed method.

6.1 Related Work with Super Resolution and Neural Opera-
tors

Super resolution amplifies the resolution of images to obtain clearer images. This
method is used for general image processing and ultra-high resolution microscopy by
reconstructing high-resolution images from low-resolution counterparts. Meanwhile,
deep neural networks have been widely applied to solving partial differential equa-
tions in a data-driven manner without using numerical solvers [49, 80, 124, 127]. In
particular, super-resolution modeling of sparse observations is used in the field of
physics [96]. However, most deep neural networks for super resolution are developed
in configurations with a single scale factor, which cannot be used in scenarios re-
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quiring arbitrary super-resolution factors [118, 129]. Once trained on a specific grid
size, the neural network is limited to that resolution. In the field of physics, solving
partial differential equations at different resolution is often necessary to investigate
the systems in more detail.

In recent years, neural operators have been proposed as deep neural networks for
learning mapping relations between infinite-dimensional function spaces, and they
are actively used in obtaining numerical solutions for partial differential equations
[57]. Neural operators can approximate any given nonlinear continuous operator
in a data-driven manner and perform well in many applications. Neural operators
typically use the kernel integrals on the spatial domain, thereby explicitly capturing
the global relations that are needed for learning the underlying solution operators
of the partial differential equations. While conventional numerical solvers of partial
differential equations take a long time to simulate the dynamics, neural operators
can yield approximate solutions much faster. For example, DeepONet was proposed
for approximating operators based on a universal approximation theorem [61, 71].
Other methods such as Fourier Neural Operator [67], Spectral Neural Operators [28],
and Super-Resolution Neural Operator [120] have also been proposed. Training these
models require input functions and solutions as the training data for each partial
differential equation. Typically, these data are generated using numerical solvers.
The network weights are iteratively adjusted until the entire network approximates
the target operator as closely as possible.

6.2 Target Nonlinear Elliptic Equations

The nonlinear elliptic equation is one of the types of partial differential equations
describing phenomena that do not change from moment to moment. In real physical
phenomena such as weather systems or thermodynamic systems the change in the
independent variable of a given system is mostly not proportional to the change in
the output. Therefore, our study discusses the case of nonlinear elliptic equations.
More precisely, we consider the following nonlinear Poisson equation on the interval
[0, a] under the Dirichlet boundary condition as a typical example:

uxx = f(u, x), u = u(x), u(0) = u(a) = 0 (6.1)
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where uxx is the second order partial derivative of u with respect to x [89].
In this study, we suppose that the standard finite difference method is used to

discretize the equation. The finite-difference method is a discretization approach to
obtain the numerical solution of the equation. This method defines a grid in the region
where the solution is to be obtained, and the partial differentials are approximated by
the finite differences between the grid points, thereby reducing the partial differential
equations to difference equations [35].

Suppose that the grid has M + 1 nodes so that the region is divided into M parts
with the step size hx = a/M .

The positions of the nodes are denoted by xi and the approximated solution at each
xi is denoted by ui. By discretizing the differential operators by the central difference
method(6.1), we obtain

ui+1 − 2ui + ui−1

h2
x

= f(ui) (i = 2, ...,M), u1 = uM+1 = 0 (6.2)

An approximate solution is obtained by solving the above difference equations (6.2).
However, the step size hx must be sufficiently small to yield highly accurate numerical
solutions necessary for physics, which is often computationally expensive.

6.3 Super Resolution with DeepONet

In conventional deep learning problems, approximating functions is the typical prob-
lem setting. On the other hand, neural operators can learn mappings between function
spaces [57]. This implies neural operators can be applied to the super resolution; we
propose such a method in this study.

In our proposed method, we employ DeepONet for learning the mapping between
low-resolution numerical solutions and high-resolution ones so that the trained model
can perform super resolution of physical simulations. In particular, because the output
of DeepONet is a function we can obtain the super-resolution results at arbitrary scales
by the proposed method.

The details of the proposed method are as follows. Let B(Q) be a certain Banach
space of functions of the solutions to the target equation. For example, for the nonlin-
ear Poisson equation, Q is the interval [0, a] and B(Q) is the Sobolev space H1 since
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the nonlinear Poisson equation can be formulated as the weak form:

−

∫ a

0
uxvxdx =

∫ a

0
f(u, x)v(x)dx for all v,

which requires only the 1st order differentiability. Because the low-resolution numer-
ical solutions are finite dimensional vectors in RM+1, we want to approximate the
operator G : RM+1 → B(Q) = H1([0, a]); we apply DeepONet to this task.

DeepONet defines an operator Gθ between two Banach spaces with the trainable
parameters θ. DeepONet has a bifurcated structure, processing input in two parallel
networks: the branch and the trunk. Each of these networks are defined as a standard
dense neural network. The ”branch” network takes a finite number of sampled values
of the input function; in the proposed method we input the whole low-resolution
numerical solutions of the target partial differential equation without sampling since
the numerical solutions are finite dimensional. The ”trunk” network takes the spatial
coordinate x ∈ Q as the input. In our case, we input the position x ∈ [0, a] at which
the high-resolution solution should be evaluated.

In order to train the proposed model, we should minimize the following empirical-
risk

min
θ

1

N

N∑

k=1

∫ a

0
|u(k) −Gθ(a

(k))|2dx, (6.3)

where {(a(k), u(k)) | a(k) ∈ RM+1, u(k) ∈ H1([0, a]), k = 1, . . . , N} is the training data
set. For the minimization problem (6.3) to be tractable, the L2 norm should be dis-
cretized by a numerical integration method, which requires a finite numbers of sample
points of the integrand. Hence, what we actually need as the target data is a set of a
finite number of observations of the target solutions {u(k)(x̂1), . . . , u(k)(x̂M̂+1 |k=1,…,
N)}.

In the proposed method, to generate these data, we solve the difference equation
with a coarse step size hs for low-resolution numerical solutions for the input data
and with a fine step size hd for high-resolution numerical solutions used to evaluate
the discretized empirical-risk.
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6.4 Numerical Example

To test the proposed method, we apply our method to the following nonlinear
Poisson equation

uxx = u2 + frand(x) (6.4)

frand(x) is given as a randomly generated polynomial. The data used to train the
model are obtained by solving the difference equations with Scipy fslove.

In this experiment we used the set of numerical solutions each of which is associated
with a different frand(x). The low-resolution data are computed with the sparse grid
with 11 nodes, i.e., M = 10. The high-resolution data is the set of sampled values of
the solutions to the weak form of the nonlinear Poisson equation. We employed the
trapezoidal rule to discretize the L2 norm in the loss function (6.3). We performed
two experiments in which 200 and 1000 sample points are used to evaluate the loss
function, respectively. The DeepOnet were modeled using two neural networks with
the same hidden layer of 200 units and the tanh activation function. We used 80
percent of generated data for training and the remaining for the test. We trained the
model with a learning rate of 10−4 for 10000 iterations.

After the neural networks were trained, it was confirmed that the loss function was
certainly small enough. In this experiment, the value of the loss function under the
200 sample points and 1000 sample points decreases to 4.74× 10−5 and 9.82× 10−6,
respectively.

Examples of the output of super resolution by the proposed method are shown in
Figure 6.1, while Figure 6.2 shows the graph of the corresponding function frand in
(6.4). As expected, the output of our model fit the real solution very well.
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Fig.6.1 The learning results of the proposed method by the 200 sample points(top) and
1000 sample points(bottom). The scatters are the input low-resolution numerical
solutions. The orange orbit is the ground truth, and the blue orbit is the output
result of our proposed method.

Fig.6.2 Polynomial functions with random parameters in the nonlinear Poisson equation
with 200 sample points(top) and 1000 sample points(bottom). Note that these
functions are not input into the neural network model.
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Chapter 7 Conclusion

Artificial neural networks have been shown to have a universal approximation theo-
rem, which states that the model has the ability to approximate any function. In the
field of physics, most physical phenomena can be represented by equations of motion
as differential equations. The study of neural network-based physical models is of
great research value. In this thesis, we explore deep learning in physics. Specifically,
we have proposed several novel deep physics models along with theoretical analyses
and numerical experiments. In addition, structure-preserving numerical integrators
for deep physics models and a method of super-resolution using a neural operator
are also proposed. Thus, this thesis is a broad study regarding the potential of deep
learning to contribute to physical modelling and simulation. Below, we provide a brief
summary and discuss future work for each study.

Firstly, as an application of neural networks to physical modelling, we establish a
more stable and secure communication system by improving the encryption system
proposed in [101]. The summary and future work regarding this study is as follows.

• This study proposes a confidential communication system for color image com-
munication using a chaotic synchronous distribution system and deep learning.
We use a neural network to approximate the van der Pol boundary condition,
so that the learned neural network can exhibit chaotic behavior as the origi-
nal boundary condition does. In the construction of the neural network, we
consider the middle layer of the hidden layer as an output layer as well. The
number of neurons in the input and output layers is related to the input image,
so that the network can be divided into two parts, corresponding to the left
and right boundary conditions, respectively. After confirming that the proposed
approach can be applied to simpler grayscale images, we further experimented
with color images. The experimental results show that the neural network still
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learns chaotic phenomena, and it can hide and restore the images well.
• Several security tests were also performed. The proposed method is not de-

signed to encrypt the images as the pseudo-random sequences. Therefore, sta-
tistical tests were not appropriate, and in many cases AES produced images
that were closer to random numbers. However, in terms of the UACI value,
the proposed method was superior in some cases. On the other hand, if the
encrypted images are identical regardless of the original image, then it becomes
difficult to infer the original image from the encrypted image. We performed
some tests from this perspective as well. The results imply that the encrypted
images from the proposed method are almost the same regardless of the original
images, thereby showing that the proposed method is certainly secure.

• Although we have confirmed to some extent that the techniques used in this
study can be applied to color images, there is still room for improvement.
In particular, the neural network in this study learns chaotic phenomena by
approximating qFα,β, which is still somewhat risky. In the future, instead of
approximating a function, new activation functions will be created to make the
network behave in a chaotic manner.

Secondly, we have investigated deep physics models. Deep physics models are neural
network models that can learn equations of motion representing physical phenomena.
Therefore the most important feature is the ability to retain physical properties while
approximating the equations. Such models include Hamiltonian neural networks and
Lagrangian neural networks. Based on these existing deep physical models, we pro-
pose a new model that can learn the coordinate-free form of the Hamilton equation,
which overcomes the shortcomings of existing models. This is one of the significant
achievements of this thesis.

• We clarify the advantages and disadvantages of the existing models, such as (1)
both models are proposed based on analytical mechanics and thus can retain
physical properties well; (2) from the geometric mechanic, Hamiltonian neural
networks have wider applications than Lagrangian neural networks since the
Euler-Lagrange equation is only partially equivalent to Hamiltonian equations;
(3) the generalized momentum in Hamiltonian neural networks is dependent
on the unknown energy Hamiltonian H, which makes data preparation very
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difficult; (4) it is possible that the learning outcome of skew matrix learning is
not a Hamilton equation, which makes learning less efficient.

• We proposed a method for learning Hamilton equations from data represented
on general coordinate systems, which are not restricted to generalized momenta.
The key ingredient is the neural symplectic form; we proposed to learn the
symplectic 2-form by using neural networks from data, thereby learning this
coordinate-free representation. In particular, the Hamilton equation can be
represented using a state-dependent skew-symmetric matrix, but not all skew-
symmetric matrices are related to the symplectic 2-form. In the proposed
method, in order to restrict the output of the model to the symplectic 2-forms,
the 1-form that derives the symplectic 2-form is learned by the neural networks.

• Meanwhile, the proposed method requires the inverse of the skew-symmetric
matrix, which may be computationally expensive for modeling large systems.
To address this problem, the perturbation theory of the inverse matrix may be
applied. For example, it is known that for a matrix M if the norm of ∆M is
small enough, (M + ∆M)−1 4 M−1 + M−1∆MM−1 holds. This should be
investigated to reduce the computational costs in future work.

Thirdly, as stated above, deep physical models are mainly used for simulations;
however, they must be discretized using numerical integrators for simulations, and
unless carefully designed, numerical integrators destroy physical laws such as the
energy conservation law. Numerical integrators that do not destroy physical laws are
called structure-preserving integrators. Typical integrators are symplectic integrators,
which can be derived as variational integrators. In this study, we show that variational
integrators can be applied to both Hamiltonian neural networks and neural symplectic
forms.

• For deep physical models, the variational calculus cannot be performed by
hand because the energy function is given by a neural network. Therefore, it
was necessary to confirm that this principle can be certainly applied and the
solutions of the derived numerical method can be computed by using automatic
differentiation. In addition, the energy conservation property of the proposed
method was confirmed by the numerical experiment.

• The model equation in the neural symplectic form is not in the standard form
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of the Hamilton equation that is usually assumed in the design of symplec-
tic integrators, and hence the development of symplectic integrators is not
straightforward. In this study, we focused on the fact that the action integral
that derives the model of the neural symplectic forms can be expressed using
the symplectic 1-form and Hamiltonian learned by the neural networks. Taking
the variation of the discretized action integral expressed by the neural networks,
we have proposed variational integrators for the neural symplectic forms. The
numerical experiment has indeed confirmed the conservation of energy.

• Future work includes the development of more accurate numerical integrators
by discretizing the action integral in a more sophisticated way.

In addition, super resolution amplifies the resolution of images to obtain clearer im-
ages. This method is used for general image processing and ultra-high resolution mi-
croscopy by reconstructing high-resolution images from low-resolution counterparts.
Super resolution modelling of sparse observations of partial differential equations
based on the conventional super-resolution techniques for images has a disadvantage
that the deep neural network is only applicable to a single scale factor. Instead, neural
operators that can learn the mapping relation between two infinite-dimensional func-
tion spaces. We present in this study a method capable of super resolution modelling
at arbitrary scale factors by applying a neural operator, DeepONet.

• Deeponet, which is a type of neural opraters, can approximate the operator
between function spaces. DeepONet has a characteristic architecture which
processes data in two parallel networks, the branch and the trunk. DeepONet
learns the solution operators for partial differential equations by taking the
inner product of the outputs of these two networks. The approach we propose
is to combine DeepONet with super resolution; in fact, since the output of
DeepONet is a function, we can obtain the super-resolution results at arbitrary
scales. To train this model, we solve the differential equation with a coarse step
size for low-resolution numerical solutions for the input data and with a fine
step size for high-resolution numerical solutions used to evaluate the discretized
empirical risk.

• At present, our numerical experiments with super resolution of first-order par-
tial differential equations have provided preliminary support that the proposed
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approach is capable of generating high-resolution solutions at arbitrary scale
factors.

• However, as the experimental subjects are relatively simple, numerical exper-
iments on second-order nonlinear elliptic equations and even more complex
partial differential equations are required.
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