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HIGHER DIMENSIONAL CARDINAL CHARACTERISTICS
FOR SETS OF FUNCTIONS II

JÖRG BRENDLE AND COREY BACAL SWITZER

Abstract. We study the values of the higher dimensional cardinal characteristics for sets of functions
f : �� → �� introduced by the second author in [8]. We prove that while the bounding numbers for
these cardinals can be strictly less than the continuum, the dominating numbers cannot. We compute the
bounding numbers for the higher dimensional relations in many well known models of ¬CH such as the
Cohen, random and Sacks models and, as a byproduct show that, with one exception, for the bounding
numbers there are no ZFC relations between them beyond those in the higher dimensional Cichoń diagram.
In the case of the dominating numbers we show that in fact they collapse in the sense that modding out by
the ideal does not change their values. Moreover, they are closely related to the dominating numbers d�κ .

§1. Introduction. In [8] the second author introduced 18 cardinal characteristics
on the set of functions f : �� → �� generalizing standard cardinal characteristics
on � by replacing relations on � such as ≤ by their “mod finite” counterparts,
e.g., ≤∗ and the “mod finite” quotienting by “mod I” where I is some well studied
�-ideal on the reals such as the ideal of meager or measure zero sets. In that article
it was shown that these cardinals can be organized into two diagrams of ZFC-
provable relations similar to the Cichoń diagram (see below Figures 1 and 2).
Several relations between these “higher dimensional” cardinals and their brethren
on � were established as well as a number of consistency results, albeit all in the
context where CH holds.

In this paper we look at when CH fails, a situation that turns out to be infinitely
more flexible and interesting. Working in this context we prove, for the bounding
numbers of the higher dimensional relations, that the provable inequalities from the
higher Cichoń diagrams are in fact the only ones, with possibly one exception which
we discuss. The proof consists of considering how standard iterated forcing models
of the reals (Cohen, Random, Sacks, etc.) change the higher dimensional cardinals.
We also present a result, due to the first author, that shows that, in contrast to
what appeared in [8], the CH context was not so interesting after all. We then study
the dominating numbers when CH fails and establish many consistent inequalities
while also exhibiting that several surprising ZFC relations hold between them that
fail in the dual case. The result shows that these higher dimensional cardinals fail
in a strong sense to satisfy the type of duality results that often characterize the
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1422 JÖRG BRENDLE AND COREY BACAL SWITZER

classical cardinal characteristics on � and even their higher analogues on arbitrary,
regular κ. To state these results more precisely we recall some definitions.

Given a set X and a binary relation R on X we say that a set A ⊆ X is R-bounded
if there is a single x ∈ X so that y R x for every y ∈ A. We say that A is R-unbounded
if it is not R-bounded. We say that A ⊆ X is R-dominating if for every x ∈ X there
is a y ∈ A so that x R y. For any such R and X we denote by b(R) the bounding
number of R, i.e., the least size of an R-unbounded set and by d(R) the dominating
number of R, i.e., the least size of an R-dominating set.

We work primarily in Baire space. Recall that a slalom is a function s : � → [�]<�

so that for all n we have |s(n)| ≤ n. Let S be the space of slaloms, which we treat as
homeomorphic to �� by any reasonable homeomorphism. We recall the following
three relations.

Definition 1.1. Let x, y ∈ �� and s be a slalom.
(1) We say that g eventually dominates f, in symbols f ≤∗ g if for all but finitely

many k < � we have f(k) ≤ g(k). The bounding and dominating numbers
for this relation are the classical cardinals b and d, see [2, Section 2].

(2) We say that g is eventually different from f, in symbols f �=∗ g if for all but
finitely many k < � we have f(k) �= g(k). A theorem of Miller states that
b(�=∗) = non(M) and d(�=∗) = cov(M) where M is the ideal of meager sets,
see [2, Theorem 5.9].

(3) We say that f is eventually captured by s, in symbols f ∈∗ s if for all but
finitely many k < � we have f(k) ∈ s(k). By a theorem of Bartoszyński we
have b(∈∗) = add(N ) and d(∈∗) = cov(N ) where N is the ideal of Lebesgue
measure zero sets, see [2, Theorem 5.14].

Throughout let I range over the ideal of Lebesgue measure zero sets, denoted N ,
the ideal of meager sets, denoted M, and the ideal of �-compact subsets of �� ,
denoted K. Note that by a well known result of Rothberger, the latter ideal can
also be characterized as the ideal generated by ≤∗-bounded sets, see [2, Theorem
2.8]. Let R range over ≤∗, �=∗ and ∈∗. Denote by (��)�

�
the space of functions

f : �� → �� . The following definition is the main object of study in the paper.

Definition 1.2. Let I ∈ {N ,M,K} and R ∈ {≤∗, �=∗,∈∗}. Let f, g ∈ (��)�
�

,
or in the case of R = ∈∗, let g : �� → S. We define the relation RI by f RI g if
and only if {x ∈ �� | ¬(f(x)R g(x))} ∈ I. In other words, g is an R-bound for f
on an I-measure one set.

By varying I and R this definition gives nine new relations and 18 new cardinal
characteristics, a bounding and dominating number for each. For readability, let us
give the details below for the case of the null ideal. Similar statements hold for M
and K. First let’s see explicitly what each relation RI is. On the two lists below let
f, g : �� → �� and h : �� → S.

(1) f �=∗
N g if and only if for all but a measure zero set of x ∈ �� we have that

f(x) �=∗ g(x).
(2) f ≤∗

N g if and only if for all but a measure zero set of x ∈ �� we have that
f(x) ≤∗ g(x).

(3) f ∈∗
N h if and only if for all but a measure zero set of x ∈ �� we have that

f(x) ∈∗ h(x).
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For the cardinals now we get the following. Note that ¬x �=∗ y means
∃∞n x(n) = y(n) and the same for the other relations.

(1) b(�=∗
N ) is the least size of a �=∗

N -unbounded setA ⊆ (��)�
�

, i.e., A is such that
for each f : �� → �� there is a g ∈ A so that the set of {x | ∃∞n g(x)(n) =
f(x)(n)} is not measure zero.

(2) d(�=∗
N ) is the least size of a �=∗

N -dominating setA ⊆ (��)�
�

, i.e., A is such that
for every f : �� → �� there is a g ∈ A so that �({x | f(x) �=∗ g(x)}) = 1.

(3) b(≤∗
N ) is the least size of a≤∗

N -unbounded setA ⊆ (��)�
�

, i.e., A is such that
for each f : �� → �� there is a g ∈ A so that the set of {x | ∃∞n f(x)(n) <
g(x)(n)} is not measure zero.

(4) d(≤∗
N ) is the least size of a≤∗

N -dominating setA ⊆ (��)�
�

, i.e., A is such that
for every f : �� → �� there is a g ∈ A so that �({x | f(x) ≤∗ g(x)}) = 1.

(5) b(∈∗
N ) is the least size of a ∈∗

N -unbounded setA ⊆ (��)�
�

, i.e., A is such that
for each f : �� → S there is a g ∈ A so that the set of {x | ∃∞n g(x)(n) /∈
f(x)(n)}.

(6) d(∈∗
N ) is the least size of a≤∗

N -dominating setA ⊆ (��)�
�

, i.e., A is such that
for every f : �� → �� there is a g ∈ A so that �({x | f(x) ∈∗ g(x)}) = 1.

Let us also recall provable relations for these cardinals. The following diagrams
are higher dimensional analogues of Cichoń’s diagram.

Theorem 1.3 [8, Theorem 1.1]. Interpreting → as ≤ the inequalities shown in
Figures 1 and 2 are all provable in ZFC.

We also get the following bounds on these cardinals in terms of �.

Lemma 1.4 [8, Proposition 3.1]. Let R ∈ {∈∗,≤∗, �=∗} and I ∈ {K,N ,M}. In
ZFC it’s provable that b(R) ≤ b(RI) ≤ b(R)non(I).

It was previously left open whether these cardinals could be less than the
continuum. We answer this in the affirmative for the b(RI) cardinals and in the
negative for the d(RI) cardinals. In the case of the b(RI) cardinals this is a
consequence of the following theorem.

Main Theorem 1.1. Suppose R,S ∈ {∈∗,≤∗, �=∗} and I,J ∈ {K,N ,M}. With
one exception, if b(RI) ≤ b(SJ ) is not an inequality in either of Figures 1 and 2 then
it is consistently false. Moreover, for every R and I, b(RI) can be strictly less than the
continuum. More succinctly, with one possible exception, there are no ZFC provable
inequalities between the cardinals b(RI) beyond what is stated in Theorem 1.3 and
Lemma 1.4.

The exception is that b(∈∗
K) ≤ b(�=∗

N ) holds in ZFC, as shown recently by the first
author (unpublished). This is discussed below, see Question 1 in Section 7.

Main Theorem 1.1 follows cumulatively from the analysis of the various models
in Section 4. The second main theorem is the following, due to the first author.

Main Theorem 1.2. Assume CH. For all R ∈ {∈∗,≤∗, �=∗} and all I ∈
{K,M,N} we have b(RI) = bℵ1 and d(RI) = dℵ1 .

Here, bκ and dκ are the generalized bounding and dominating numbers for the
eventual domination relation on a given cardinal κ. Main Theorem 1.2 addresses a
number of questions left open about the models constructed in Section 4 of [8].
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b(∈∗
N )

b(≤∗
N )

b(�=∗
N )

d(�=∗
N )

d(≤∗
N )

d(∈∗
N )

Figure 1. Higher dimensional cardinal characteristics mod the null ideal.

b(∈∗
M)

b(≤∗
M)

b(�=∗
M)

d(�=∗
M)

d(≤∗
M)

d(∈∗
M)

b(∈∗
K)

b(≤∗
K)

b(�=∗
K)

d(�=∗
K)

d(≤∗
K)

d(∈∗
K)

Figure 2. Higher dimensional cardinal characteristics mod the meager and �-
compact ideals.

There, consistent inequalities between the cardinals in Figures 1 and 2 were
constructed under CH. From this theorem we see that, in fact, there was an easier
way to obtain those results.

We also study the cardinals d(RI) when CH fails and show that the above Main
Theorem 1.2 can fail in this context.

Main Theorem 1.3. For all I ∈ {N ,M,K} it is consistent that d(≤∗
I) < d(∈∗

I)
and d(�=∗

I) < d(≤∗
I).

However, surprisingly, the ideal does not matter for the d(RI) cardinals (in
contrast to the b(RI) cardinals), a result also due to the first author.

Main Theorem 1.4. For all R ∈ {∈∗,≤∗, �=∗},ZFC proves that d(RN ) =
d(RM) = d(RK).

Main Theorems 1.1, 1.3 and 1.4 above taken together show that duality fails
strongly for these higher cardinal characteristics, making their theory starkly
different from that of the classical cardinal characteristics as studied for example in
[1] or [2] or even their higher dimensional analogues on κ, see [4]. See [2, Section 4]
for a particular discussion of this point in the context of cardinals on �.
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The rest of this article is organized as follows. In the next section we study
the CH case, culminating in the proof of Main Theorem 1.2. In Section 3 we
prove a number of ZFC results concerning various implications between the higher
dimensional bounding numbers, cardinals on � and the continuum. In Section 4
we study the bounding numbers for the relations RI in well known models of ¬CH,
culminating in a proof of Main Theorem 1.1. In Section 5 we study the d(RI)
cardinals, showing Main Theorem 1.4. In Section 6 we study consistent inequalities
between the dominating numbers culminating in the proof of Main Theorem 1.3.
Section 7 concludes with some open questions and final remarks.

§2. TheCH case and eventual domination in generalized Baire space. In this section
we prove Main Theorem 1.2. In fact we show something slightly stronger, from which
Main Theorem 1.2 follows immediately. We show the following.

Theorem 2.1. Assume c = c<c is a successor cardinal. Fix R ∈ {∈∗,≤∗, �=∗}
and I ∈ {K,M,N}. If b(R) = add(I) = c then b(RI) = bc and d(RI) = dc. In
particular these equalities hold under CH.

Again recall that here, for any κ, that if f, g ∈ κκ then f ≤∗ g if {α | f(α) �
g(α)} is bounded. The cardinals bκ and dκ denote the bounding and dominating
numbers for this relation respectively.

Of course, in light of Main Theorem 1.4 adding in the ideal I for the dominating
numbers is redundant, however we are interested in a duality result for the bounding
numbers as well so we leave it in. Towards proving Theorem 2.1 we start with the
following lemma.

Lemma 2.2. Fix R ∈ {∈∗,≤∗, �=∗} and I ∈ {K,M,N}. If b(R) = non(I) = c

then d(RI) ≤ dc and bc ≤ b(RI).

Proof. Fix R and I as in the statement of the lemma and assume b(R) =
non(I) = c. Enumerate �� as {xα | α < c} and for each α < c fix an element yα of
�� (or S in the case that R =∈∗) so that for all � ≤ α, x� R yα . Such a yα exists
by the assumption on b(R). Define Ψ : cc → (��)�

�
by letting Ψ(f) : �� → ��

be given by Ψ(f)(xα) = yf(α). Let D = {f	 | 	 < dc} ⊆ cc be a dominating family
of minimal size. Now, let Ψ(D) = {Ψ(f	) | 	 < dc}. We claim that this is a RI
dominating family. To see this, fix g : �� → �� and consider ĝ : c → c given by
ĝ(α) = � if and only if g(xα) = x� . Now there is some f	 ∈ D which dominates ĝ
mod< c. But then the set of reals x ∈ �� for which ¬g(x)RΨ(f	)(x) has size less
than c and hence, by the assumption on non(I) we get that g RI Ψ(f	) as needed.

The other inequality is essentially proved by duality. More precisely, suppose
κ < bc and A ⊆ (��)�

�
is a set of functions of size κ. Let Â = {ĝ | g ∈ A} where

g �→ ĝ is as defined in the previous paragraph. Since Â has size κ it’s bounded, say
by some f ∈ cc. Essentially the same proof as in the previous paragraph then shows
Ψ(f) is an RI-bound on A. 	

Lemma 2.3. Fix R ∈ {∈∗,≤∗, �=∗} and I ∈ {K,M,N}. If add(I) = c then
dc(�=∗) ≤ d(RI) and b(RI) ≤ bc(�=∗).
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1426 JÖRG BRENDLE AND COREY BACAL SWITZER

Here recall that if f, g ∈ κκ then f �=∗ g if the set of α for which f(α) = g(α)
has size less than κ. The bounding and dominating numbers for this relation are
denoted respectively bκ(�=∗) and dκ(�=∗), see [4, Definition 16].

Proof. Fix R and I as in the statement of the lemma and assume add(I) = c.
We show that dc(�=∗) ≤ d(�=∗

I). Let {A	 | 	 < c} be an increasing, cofinal family
of sets from I (that such a family exists follows from add(I) = c). Choose
{x	 | 	 < c} ⊆ �� so that for all 	 < c we have x	 /∈ A	 . Now fix an �=∗

I-dominating
family F = {fα | α < d(�=∗

I)}. Let F : c → �� be a bijection. Define gα : c → c by
gα(	) = F –1(fα(x	)). We claim that {gα | α < d(�=∗

I)} is a dominating family for
the relation �=∗ on cc. Indeed suppose that g : c → c is arbitrary. Let f : �� → ��
be such that f(x	) = F (g(	)) (the other values of f are irrelevant). By assumption
we know that for some α < d(�=∗

I) the set {x | ∃∞n f(x)(n) = fα(x)(n)} is in
I and so it lies in some A	 . As a result for all but <c many 	 we have that
F (g(	)) = f(x	) �=∗ fα(x	) = F (gα(	)) and thus g(	) �= gα(	) for all but<cmany
	 as needed.

The proof for the bounding numbers is dual to the one above. The details are left
to the reader. 	

Putting together Lemmas 2.2 and 2.3 alongside the fact that if κ is a successor
cardinal for which κ<κ = κ then bκ(�=∗) = bκ and dκ(�=∗) = dκ, see [4, Theorem
21], now implies Theorem 2.1.

§3. ZFC results for the bounding numbers. We begin by giving a number of
ZFC results about the higher dimensional cardinals of the form b(RI) and their
counterparts on � that will be used to prove Main Theorem 1.1. The first lemma
was originally proved in [8, Lemma 3.2]. The proof is simply a standard diagonal
argument, making use of the assumptions.

Lemma 3.1 [8, Lemma 3.2]. For each I ∈ {N ,M,K} and R ∈ {∈∗,≤∗, �=∗}, if
b(R) = non(I) = c then c+ ≤ b(RI).

This lemma is actually strengthened by Lemma 2.2, however this is the version we
will need in Section 4 so we quote it here. The next two lemmas show how relations
between the cardinals on R and I can have consequences for the value of b(RI).

Lemma 3.2. Suppose b(R) < cov(I). Then b(RI) = b(R).

Proof. By Lemma 1.4 it suffices to prove that under the hypothesis
b(RI) ≤ b(R). Let A = {xα | α < b(R)} be an R-unbounded family of minimal
size and for eachα < b(R) let cα : �� → �� be the constant function with value xα .
We claim that the family {cα | α < b(R)} forms an RI-unbounded family. To see
this, suppose that f : �� → �� (or f : �� → S) were a bound. Define a function
h ∈ (��)�

�
so that for each x ∈ �� let h(x) ∈ A be R-unbounded by f(x). Since

no family of sets in I of size b(R) is covering, there must be some xα ∈ A so that
h–1({xα}) is not in I. But this means that on a non-I set cα is not bounded by f, so
f is not a bound on {cα | α < b(R)} as needed. 	

Lemma 3.3. If cov(I) = ℵ1 then b(∈∗
I) ≥ ℵ2.
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Proof. Fix a family {Aα | α < ℵ1} of sets from I covering �� . Without loss,
assume that they are disjoint. Let {fα | α < ℵ1} be a family of functionsfα : �� →
�� . We need to provide a bound g : �� → S. We can do this by defining for x ∈ Aα ,
g(x) to be any slalom bounding the countable set {f�(x) | � < α}. Now, suppose
that α < �1 and observe that for all x /∈

⋃
�≤α A� we have that fα(x) ∈∗ g(x) and

since the latter is in I (since it’s a countable union), we’re done. 	

A surprising corollary of this result is the following.

Proposition 3.4. b(�=∗
N ) ≥ ℵ2.

Proof. If cov(N ) = ℵ1 then the result follows from Lemma 3.3 plus the fact
that b(∈∗

N ) ≤ b(�=∗
N ). Otherwise cov(N ) > ℵ1. Since cov(N ) ≤ b(�=∗) = non(M)

(in ZFC) we get that ℵ2 ≤ b(�=∗) ≤ b(�=∗
N ). 	

Oddly enough the other eight numbers of the form b(RI) can all be ℵ1 as we will
see. Lemmas 3.1 and 3.3 are both actually special cases of a more general lemma
which we prove now.

Lemma 3.5. Fix a cardinal κ and assume that there is a family X = {Xα | α <
κ} ⊆ I so that for all Y ⊆ X if |Y| = b(R) then

⋃
Y = �� (i.e., Y is covering). Then

b(RI) > κ.

Proof. Fix R, I and κ and assume there is a family X = {Xα | α < κ} as in the
statement of the lemma. We need to show that no family of functions {fα | α <
κ} ⊆ (��)�

�
is RI-unbounded. Fix such a family. We will define a bound on it.

First notice that for each x ∈ �� the set {	 | x /∈ X	} has size <b(R) since every
family of size b(R) is covering. Now define g : �� → �� so that for all x ∈ �� we
have g(x) is an R-bound on {f	(x) | x /∈ X	}. We claim that this g RI-dominates
every fα . To see this, fix α < κ and consider the set of x so that ¬(fα(x)R g(x)).
If x is in this set, then by the definition of g we have that x ∈ Xα . Since this later set
is in I this completes the proof. 	

Every computation of a b(RI) cardinal in this paper (and in [8]) factors through
one of Lemmas 3.1, 3.3 or 3.5. Since the later generalizes the former two, every
model in which a cardinal of the form b(RI) is greater than c satisfies the hypothesis
of Lemma 3.5 with κ at least the size of the continuum. We do not know if this is
necessary or not. Families of sets X as described in Lemma 3.5 are called (κ, �)-
Rothberger families for I where κ is the cardinality of X and � is so that every
subfamily ofX of size � is covering. In this terminology, Lemma 3.5 can be rephrased
as saying that the existence of a (κ, b(R))-Rothberger family for I implies that
b(RI) > κ. Such families were investigated in [5], see in particular Definition 2.2.
In connection with this, note that the case where κ < b(R) holds vacuously (both
the antecedent and the conclusion) so the interesting case is when κ is at least
b(R). In this case we obviously have cov(I) ≤ b(R) yet this is not sufficient as, e.g.,
cov(N ) = b(�=∗) = 2ℵ0 in the random model but given any family of continuum
many null sets we can easily find a subfamily also of size continuum and a random
real which escapes all of them. Indeed, we will see in Theorem 4.3 that b(�=∗

N ) = 2ℵ0

so the conclusion of the lemma above is not simply implied by cov(I) ≤ b(R) even.
Nevertheless, replacing the null ideal by the meager ideal, such a family does exist in
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1428 JÖRG BRENDLE AND COREY BACAL SWITZER

the random model and this is what is used to compute the cardinals b(∈M), b(≤∗
M)

and b(�=∗
M) in the random model in Section 4.

§4. Consistency results for the bounding numbers. In this section we study the
values of the bounding numbers in Figures 1 and 2 in various classical models of
set theory such as the Cohen, random and Sacks models. The basic plan is this: we
will iterate some well known forcing over a model of GCH to get a model where c

is some specified κ and 2c = c+. It will follow from Corollary 5.2, which states that
d(RI) > 2ℵ0 for all R and I, that in each model all of the d(RI) cardinals will be
c+ so we focus on the b(RI) cardinals. From now on let us fix an arbitrary regular
cardinal κ > ℵ1. We will need one forcing theoretic lemma.

Lemma 4.1. Assume GCH and suppose P is a finite support or countable support
product of proper forcing notions so that if G ⊆ P is V-generic then in V [G ] the reals
of V are I positive and R-unbounded and the set of Borel codes for elements of I
in V form a Borel basis for I in V [G ] when reinterpreted. Then the set of functions
f ∈ (��)�

� ∩ V extended arbitrarily to the new reals form anRI-unbounded family.
In particular, �P b(RI) ≤ ℵ2.

Proof. Let {gα | α < ℵ2} be any set of functions so that the set of restrictions
to V ∩ �� is exactly the functions in V ∩ (��)�

�
. We need to show that this set

is unbounded. Fix a function f : �� → �� in V [G ]. By restricting f to V ∩ �� ,
the fact that the iteration is a product and CH holds implies that we can find a set
of size ℵ1, say X ⊆ κ so that f is in fact added by the product restricted to this
set, call it PX , and this forcing has size ℵ1. Work in V now, and let ḟ be the name
for f. Without loss assume the maximal condition forces ḟ is a function from ��

to �� . Enumerate Baire space as �� = {xα | α < ℵ1}. Also enumerate all pairs
(pα, Bα)α<�1 in order type �1 of conditions from PX and Borel I sets coded in V so
that xα /∈ Bα . For eachα let qα ≤ pα decide some ground model real not R-bounded
by ḟ(x̌α). Note that such a real exists in the ground model by assumption. Let (in V)
h ∈ (��)�

�
be the function which on xα takes the value qα decides is unbounded

by ḟ. We claim that for any h̄ in V [G ] extending h it’s not the case that h̄ is
RI-bounded by ḟ. Indeed, otherwise there is some α so that pα � {x | ¬ȟ(x)R
ḟ(x)} ⊆ Bα since the Borel sets in I from the ground model form a basis, but qα ≤
pα and qα forces that ¬ȟ(xα)R ḟ(xα) and xα /∈ Bα , which is a contradiction. 	

4.1. The Cohen model. The Cohen model is the model obtained by forcing with
the finite support product of κ many copies of Cohen forcing over a model of GCH,
see [1, Model 7.5.8, p. 386]. We will prove the following theorem.

Theorem 4.2. In the Cohen model the following equalities hold for all
R ∈ {∈∗,≤∗, �=∗}.

(1) b(RK) = b(RM) = ℵ1

(2) b(RN ) = κ+

In words, the numbers associated with M and K are ℵ1 and those associated with N
are κ+.

Proof. There are two things to show. First that b(∈∗
K) = b(�=∗

M) = ℵ1 and
second that b(∈∗

N ) = b(�=∗
N ) = κ+. The first one is easy. Recall that (iterated) Cohen
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forcing does not add a slalom eventually capturing all the ground model reals, nor an
eventually different function and both cov(M) and d (= cov(K)) areκ so Lemma 3.2
applies.

The second argument is slightly more involved. We need to verify that there is a
(κ,ℵ1)-Rothberger family for the null ideal as described in Lemma 3.5. Let G be
V -generic for the product ofκmany Cohen reals and work inV [G ]. Let {cα | α < κ}
enumerate the Cohen reals. Each such real, say cα , codes a null set Nα . It is this
family {Nα | α < κ} that will witness the lemma. It remains to see that any ℵ1-sized
subset is covering.

By the ccc, for each x : � → � there is a countable X ⊆ κ so that in fact x is
added by the forcing restricted to X. Let us denote, for ẋ a name for a real Xẋ the
countable support as described above. Observe that if α /∈ Xẋ then in fact ẋ is forced
to be in Nα by mutual genericity of the Cohen reals. But now, given any ℵ1-sized
family Y ⊆ {Nα | α < κ} and any name for a real ẋ, it must be the case that there
is an Nα ∈ Y so that α /∈ Xẋ so x ∈ Nα as needed. 	

4.2. The random model. The random model is the model obtained by forcing
with the random forcing Bκ for the measure algebra 2κ over a model of GCH, see [1,
Model 7.6.8, p. 393]. We will prove the following theorem.

Theorem 4.3. In the random model the following hold.
(1) For all R ∈ {∈∗,≤∗, �=∗} we have b(RM) = κ+.
(2) b(∈∗

N ) = b(≤∗
N ) = ℵ1.

(3) b(�=∗
N ) = b(�=∗

K) = κ.
(4) b(∈∗

K) = b(≤∗
K) = ℵ2.

Observe from this theorem the somewhat surprising constellation given by looking
at the cardinals associated with ∈∗ and ≤∗. Namely we have that b(∈∗

N ) = ℵ1 <
b(∈∗

K) = ℵ2 < b(∈∗
M) = κ+, and similarly for ≤∗. We do not know whether it is

consistent that the three cardinals related to �=∗ are simultaneously distinct.

Proof. Let G ⊆ Bκ be generic over V and enumerate the κ-many random reals
as {rα | α < κ}. We argue for each point individually, starting with the cardinals
for the meager ideal. This argument is almost verbatim the same as the argument
in the case of the cardinals associated with the null ideal in the Cohen model. The
difference is that each random real rα codes a meager setMα .

The second item follows from Lemma 3.2 noting that random forcing makes
cov(N ) = κ and is ��-bounding.

For the third, note first that b(�=∗) (= non(M)) is κ in the random model
since every random real adds an eventually different real. It follows that
κ = b(�=∗) ≤ b(�=∗

N ) = b(�=∗
K) so we get the lower bound. Conversely, note that

non(N ) = non(K) = b = ℵ1 in the random model so by Lemma 1.4 we get
b(�=∗

N ) ≤ b(�=∗)non(N ) = κℵ1 = κ and the same for b(�=∗
K).

For the fourth, the lower bound comes from the fact that d = ℵ1 so by Lemma
3.3 we get ℵ2 ≤ b(∈∗

K) ≤ b(≤∗
K). The upper bound is proved in exactly the same

manner as Lemma 4.1. 	

4.3. The Sacks model. The Sacks model refers to either the countable support
product or iteration of κ many copies of Sacks forcing, S, over a model of GCH,
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where in the later case we must insist κ = ℵ2, see [1, Model 7.6.2, p. 388]. It turns
out that the computation of the cardinals is unchanged regardless of whether we
take the product or the iteration.

Theorem 4.4. For all R and I, in the side by side or iterated Sacks model
b(RI) = ℵ2.

Proof. This follows in a straightforward way from the Sacks property by
combining Lemma 3.3 and Lemmas 4.1 and 1.4. In particular, the Sacks property
ensures that all covering numbers are small soℵ2 is a lower bound and the hypotheses
of Lemma 4.1 (for the side by side)/the cardinals in Lemma 1.4 (for the iteration)
are also met thanks to the Sacks property so ℵ2 is the upper bound as well. 	

This is somewhat surprising since this means that some higher dimensional
cardinals are bigger in the Sacks model than in the Cohen and random models.

4.4. The Hechler model. By the Hechler model we mean the finite support
iteration of Hechler forcing, D, over a model GCH, see [1, Model 7.6.9, p. 394].

Theorem 4.5. In the Hechler model the following hold.
(1) For R equal to ≤∗ or �=∗, we have that b(RI) = κ+ for all I ∈ {N ,M,K}.
(2) b(∈∗

K) = b(∈∗
M) = ℵ1.

(3) b(∈∗
N ) = κ+.

Proof. Let G be generic over V for the iteration Dκ. Denote the αth stage of the
iteration by Dα and let {dα | α < κ} be the κ many Hechler reals added by G. Since
each Hechler real is dominating, and also adds a Cohen real, it is well known that in
the Hechler model b = cov(M) = κ. As a result, Lemma 3.1 ensures the first part.
For the second part, it suffices to observe that in the Hechler model cov(M) = κ,
but no slalom is added eventually capturing all ground model reals so Lemma 3.2
applies.

The last item requires more argument and involves verifying the existence of a
(κ,ℵ1)-Rothberger family as in Lemma 3.5. Each Hechler real adds a Cohen real,
and the null sets coded by these Cohen reals will be our family. Towards proving
this fact, fix a partition 〈Ik | k ∈ �〉 of � into finite intervals with |Ik | = k + 1. We
start with some facts about finite support iterations of �-centered forcing notions
〈Pα, Q̇α | α < κ〉. The first is well-known.

Fact 4.6. Let 〈Pα, Q̇α | α < κ〉 be a finite support iteration of �-centered forcing
notions. Let α ≤ � ≤ κ and let ẋ be a P� -name for an element of 2� . Then there
are Pα-names {ẋn ∈ 2� | n ∈ �} so that for all Pα-names ẏ forced to be in 2� if
�α ∀n∃∞k(ẋn � Ik = ẏ � Ik) then �� ∃∞k(ẋ � Ik = ẏ � Ik).

Proof of 4.6. By working in V Pα we may assume without loss of generality
that α = 0. The proof is by induction on � . The case where � = 0 is trivial hence
we may suppose that � > 0. First assume that � = 	 + 1 for some 	 and work
in V P	 . Let Q	 =

⋃
n<� Qn be a partition of Q	 into centered pieces. Fix n, k ∈ �

and define xn � Ik to be any value so that no p ∈ Qn forces ẋ � Ik �= x̌n � Ik . To see
that such a value exists note that since Ik is finite and Qn is centered, if for each
s ∈ 2Ik there was a condition in Qn forcing ẋ � Ik �= s , then a common extension
of these conditions would force a contradictory statement. If y ∈ 2� ∩ V P	 is equal
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to xn � Ik for infinitely many k and all n then �	+1 ∃∞k y̌ � Ik = ẋ � Ik . This is
because otherwise there would be a natural numbers n, l ∈ � and a condition
p ∈ Qn so that p � ∀k > l y̌ � Ik �= ẋ � Ik but by the way we constructed the xn’s,
we can find a q ≤ p and an j > l so that y � Ij = xn � Ij and q � ẋ � Ij = x̌n � Ij .
Now, let ẋn name xn in V and apply the inductive hypothesis to each ẋn to
get elements of 2� , say {xn,m | n,m ∈ �} so that for each n < � and y we have
that if ∀m∃∞k (y � Ik = xn,m � Ik) then �	 ∃∞k(y̌ � Ik = ẋn � Ik). Then using the
countable set {xn,m | n,m ∈ �} for the ẋn’s witness the fact in this case.

Now suppose that � is a limit ordinal. Since ẋ names a real, we can assume
without loss of generality that� has countable cofinality. Let 〈	n | n ∈ �〉be a strictly
increasing sequence of ordinals with limit � . For each n < � find a decreasing set
of conditions in V P	n deciding all of ẋ and let xn ∈ V P	n be the real interpreting ẋ
based on these decisions. Let ẋn be a name for xn in V and, applying the inductive
hypothesis to each xn let {xn,m | m ∈ �} be a set of reals so that for each n < �
and y we have that if ∀m∃∞k (y � Ik = xn,m � Ik) then �	n ∃∞k (y̌ � Ik = ẋn � Ik).
We claim that these {xn,m | n,m ∈ �} work for ẋ. To see this, suppose that for all n
and m there are infinitely many k so that xn,m � Ik = y � Ik but there is an l ∈ � and
a p ∈ P� so that p �� ∀k > l (ẋ � Ik �= y̌ � Ik). By the finiteness of the support, p is
actually a P	n condition for some n < � and, by assumption p �	n ∃∞k (ẋn � Ik =
y̌ � Ik). However, by the construction of the xn’s we can find an r ≤� p and a k > l
so that r �� ẋ � Ik = ẋn � Ik = y̌ � Ik which is a contradiction. 	

Now for some� ≤ κ let ẋ be aD� -name for an element of 2� and define inductively
on � ≤ κ the hereditary support of ẋ, denoted supp(ẋ), as follows. If � = 0 then
supp(ẋ) = ∅. If � = 	 + 1, let (ẋn | n ∈ �) be the D	 -names constructed from ẋ as
in Fact 4.6 and let {pm,k | k ∈ �} be a maximal antichain deciding ẋ(m̌). Set

supp(ẋ) =
⋃

n<�

supp(ẋn) ∪
⋃

m,k

supp(pm,k).

If � is a limit of countable cofinality, let (	n | n < �) be a strictly increasing sequence
of ordinals whose limit is � , for each n < � let {ẋn,m | m ∈ �} be the D	n -names
constructed from ẋ as in Fact 4.6 and let

supp(ẋ) =
⋃

n,m<�

supp(ẋn,m) ∪
⋃

m,k

supp(pm,k),

where pm,k are as before. Finally for � a limit ordinal of uncountable cofinality
observe that, by the finite support, there is a 	 < � so that ẋ is in fact equivalent
to a D	 -name. Let supp(ẋ) be the support of this D	 -name. Note that in all cases
supp(ẋ) is a countable set of ordinals. We need another fact.

Fact 4.7. Let α < α′ ≤ � ≤ κ and let ẋ be a D� -name for an element of
2� . Assume supp(ẋ) ∩ [α, α′) = ∅. Then there are Dα-names for elements of 2� ,
{ẋn | n ∈ �}, so that for all Dα′ -names ẏ for elements of 2� , if �α′ ∀n∃∞k (ẋn �
Ik = ẏ � Ik), then �� ∃∞k (ẋ � Ik = ẏ � Ik).

Proof of 4.7. The proof is by induction on � . If � = α′ or � = 0 then the fact
is trivially true so assume 0 ≤ α < α′ < � . There are two cases corresponding to
whether � is a successor or a limit.
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First suppose that � = 	 + 1 for some 	. Let {ẋn | n ∈ �} be D	 -names as
constructed in the proof of Fact 4.6. By the definition of the support plus the
assumption that supp(ẋ) ∩ [α, α′) = ∅ we get that supp(ẋn) ∩ [α, α′) = ∅ for all
n < �. Applying the inductive hypothesis we get for each n < � a countable set
of Dα-names {ẋn,m | m ∈ �} so that for all Dα′ -names ẏ for elements of 2� , if
�α′ ∀m∃∞k (ẋn,m � Ik = ẏ � Ik), then �� ∃∞k (ẋn � Ik = ẏ � Ik). Using these the
same way as in the proof of Fact 4.6 completes the proof of this case.

Suppose now that � is a limit ordinal. Since ẋ is a D� -name for a real, we can
reduce to the case where � has countable cofinality. Let 〈	n | n < �〉 be a strictly
increasing sequence of ordinals whose limit is � . For each n < � let {ẋn,m | m ∈ �}
be the D	n -names constructed from ẋ as in Fact 4.6. Using these countably many
names the rest of the proof of this case is the same as in the successor case. 	

Note that if y ∈ 2� then the set Ny = {x ∈ 2� | ∃∞k (x � Ik = y � Ik)} is a null
set. Let cα be the Cohen real added by the αth-Hechler real.

Claim 4.8. If ẋ is a Pκ-name for an element of 2� and α /∈ supp(ẋ) then
�κ ẋ ∈ Nċα .

Proof of Claim. Fix α < κ. It’s well known that for all Dα-names ż for elements
of 2� we have �α+1 ∃∞k (ż � Ik = ċα � Ik). Now the claim follows by applying Fact
4.7 to α′ = α + 1 and � = κ. 	

The proof is now essentially the same as that for Cohen forcing. Since supp(ẋ) is
countable any ℵ1-sized subfamily of {Ncα | α < κ} must be covering. 	

Let us note for later that the computation that b(∈∗
N ) = κ+ relied solely on the

facts that Hechler forcing is �-centered and adds Cohen reals.

4.5. The dual random model. For any uncountable � ≤ κ, the �-dual random
model is formed by first forcing add(N ) = c = κ by a ccc forcing and then adding
�-many random reals. The result, regardless of which � is chosen, the �-dual random
model is a model where the values of the Cichoń diagram are determined by
non(N ) = ℵ1 and cov(N ) = b = κ.

Theorem 4.9. In the �-dual random model, the following equalities hold.

(1) b(∈∗
N ) = b(∈∗

K) = ℵ1.
(2) b(≤∗

N ) = b(�=∗
N ) = κ.

(3) b(≤∗
K) = b(�=∗

K) = b(≤∗
M) = b(�=∗

M) = κ+.
(4) b(∈∗

M) = �+.

Let us note one interesting feature of this model. The value b(∈∗
M) depends on

which � we chose, even though the cardinals in the Cichoń diagram are the same
regardless of �. It follows that the b(RI) numbers are not uniquely determined by
the values of the cardinal characteristics on � alongside cardinal arithmetic.

Proof. For item 1 we can apply Lemma 3.2 since b(∈∗) = ℵ1 but the covering
numbers for both K (= d) and N are of size continuum.

For item 2 note we apply both inequalities in Lemma 1.4. On the one hand κ is
a lower bound since b = b(�=∗) = κ. On the other hand, κ is also an upper bound
since bnon(N ) = κℵ1 = κ.
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Item 3 follows from Lemma 3.1 since b = non(M) = κ = 2ℵ0 .
Finally we tackle b(∈∗

M). By the same argument used in Theorem 4.3, b(∈∗
M) > �

as the � random reals code �many meager sets forming a (�,ℵ1)-Rothberger family.
Also, for � = κ, b(∈∗

M) ≤ 2c = c+ = κ+ = �+.
So assume � < κ. We will show that b(∈∗

M) ≤ �+. We mostly work in the
final extension but once step back into an intermediate random extension. Let
{xα | α < κ} list all reals. Let {(Aα,Mα) | α < κ} list all pairs (A,M ) such
that A ∈ [�+]ℵ1 and M is a Borel meager set. Note that by our assumption
(�+)ℵ1 ≤ κℵ1 = κ, so this is possible. Also let {y
 | 
 < �1} ⊆ �� be a sequence
witnessing b(∈∗) = ℵ1.

Now construct functions {f	 | 	 < �+} ⊆ (��)�
�

and a strictly increasing
sequence {�α | α < κ} of ordinals in κ as follows. Suppose we are at step α. Find
�α such that

• �α > �� for � < α and
• x�α /∈Mα .

Then define f	(x�α ) for 	 ∈ Aα such that

{f	(x�α ) | 	 ∈ Aα} = {y
 | 
 < �1}.
Define the remaining values f	(x�) arbitrarily. This completes the construction of
the f	 .

We claim {f	 | 	 < �+} is a witness for b(∈∗
M).

For assume this were not the case. Then we could find ϕ : �� → S such that

{xα | α < κ&f	(xα) /∈∗
ϕ(xα)} ∈ M,

for all 	 < �+. For each such 	 let B	 be a Borel meager set such that

∀x /∈ B	 (f	(x) ∈ ϕ(x)).

There is a countable set X	 ⊆ � such that the code of B	 lies in the X	 -extension
(that is, the extension obtained by only adding the random reals with index in X	).
Note that cof([�]≤ℵ0) = �.1 Hence we can find a countable X ⊆ � and a Y ⊆ �+ of
size �+ s.t. X	 ⊆ X for all 	 ∈ Y ; in particular, B	 is coded in the X -extension for
all 	 ∈ Y . We may assume Y also belongs to the X -extension. Let A ⊆ Y be any
subset of size ℵ1 in the X -extension. Since add(N ) = add(M) = κ = c ≥ ℵ2 in the
X -extension, the union

⋃
	∈A B	 must be meager, so there is a Borel meager set M,

still coded in the X -extension, such that
⋃
	∈A B	 ⊆M . By construction, there is

α < κ such that (A,M ) = (Aα,Mα). Since x�α /∈Mα we must have

f	(x�α ) ∈ ϕ(x�α ),

for all 	 ∈ Aα . This clearly contradicts the fact that

{f	(x�α ) | 	 ∈ Aα} = {y
 | 
 < �1}
is a witness for b(∈∗), and the proof of the theorem is complete. 	

1This is true in the ground model and not changed by ccc forcing. In fact, it is true in ZFC for the ℵn ,
and forcing its failure for larger � needs large cardinals.
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4.6. The random/Hechler model. The random/Hechler model refers to the finite
support iteration of length κ which results from alternating between adding random
reals and Hechler reals.

Theorem 4.10. In the random/Hechler model the following equalities hold.

(1) For all I ∈ {N ,M,K} we have b(∈∗
I) = ℵ1.

(2) All other cardinals of the form b(RI) are equal to κ+.

Proof. The values of the Cichoń diagram in the random/Hechler model are
that all cardinals are κ with the exception of add(N ) = b(∈∗) = ℵ1. It follows from
Lemma 3.2 that b(∈∗) = b(∈∗

I) = ℵ1 for all I ∈ {N ,M,K} and from Lemma 3.1
that all the other cardinals are κ+. 	

4.7. The eventually different model. Recall that eventually different forcing E
consists of pairs (s, E) so that s ∈ �<� and E ⊆ �� is finite. The extension relation
is (s0, E0) ≤ (s1, E1) just in case s0 ⊇ s1,E0 ⊇ E1 and for all k ∈ dom(s0) \ dom(s1)
we have s0(k) �= f(k) for all f ∈ E1. The eventually different model is the model
obtained by adding κ-many eventually different reals with finite support over a
model GCH, see [1, Model 7.5.6, p. 385].

Theorem 4.11. In the eventually different model the following equalities hold.

(1) For R equal to ∈∗ or ≤∗ we have that b(RM) = b(RK) = ℵ1.
(2) b(�=∗

M) = κ+.
(3) b(�=∗

K) = κ.
(4) For all R ∈ {∈∗,≤∗, �=∗} we have b(RN ) = κ+.

Proof. Recall that the values of the Cichoń diagram in the eventually different
model are determined by b = cov(N ) = ℵ1 and non(M) = b(�=∗) = cov(M) = κ.
From this item 1 follows from Lemma 3.2 and item 2 follows from Lemma 3.1.
The third item follows from Lemma 1.4 since b(�=∗) = κ and non(K) = b = ℵ1. The
fourth item is verbatim the same as the proof that b(∈∗

N ) = κ+ holds in the Hechler
model, see Theorem 4.5. This follows from the observation made after that proof
plus the fact that E is �-centered and adds Cohen reals. 	

4.8. The Laver model. The Laver model is the ℵ2 length countable support
iteration of Laver forcing over a model of GCH, see [1, Model 7.6.13, p. 396].

Theorem 4.12. In the Laver model the following hold.

(1) For R equal to ≤∗ or �=∗ we have b(RK) = b(RM) = ℵ3.
(2) For all R ∈ {∈∗,≤∗, �=∗} we have b(RN ) = ℵ2.
(3) b(∈∗

K) = ℵ1.

Note that the one cardinal not determined by this theorem is b(∈∗
M). This is the

one cardinal that we were not able to calculate in one of the “standard iterated
models.” By the fact that cov(M) = ℵ1 in the Laver model, Lemma 3.3 implies the
value is either ℵ2 or ℵ3 but we do not know which one. To show that it is ℵ3 it would
suffice to exhibit an (ℵ3,ℵ1)-Rothberger family for M however we do not know if
one exists in the Laver model.
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Proof. Recall that the values of the Cichoń diagram in the Laver model
are determined by cov(N ) = non(N ) = ℵ1 and b = ℵ2. Let �l = {lα | α < ℵ2}
enumerate the Laver reals added and work in V [�l ]. The first item then follows
from Lemma 3.1. For the second item, the lower bound comes from Lemma 3.3.
For the upper bound, observe that by Lemma 1.4 we have b(�=∗

N ) ≤ b(�=∗)non(N ) =
ℵℵ1

2 = ℵ2. The third item follows from Lemma 3.2, recalling that cov(K) = d which
is ℵ2 in the Laver model. 	

4.9. The Miller model. The Miller model is the ℵ2-length countable support
iteration of Miller forcing over a model of GCH, see [1, Model 7.5.2, p. 382].

Theorem 4.13. In the Miller model the following hold.
(1) For all R ∈ {∈∗,≤∗, �=∗} we have b(RM) = b(RN ) = ℵ2.
(2) For all R ∈ {∈∗,≤∗, �=∗} we have b(RK) = ℵ1.

Proof. Recall that the values of the Cichoń diagram in the Miller model are
determined by d = ℵ2 and non(N ) = non(M) = ℵ1. The first item then follows by
Lemmas 3.3 (for the lower bound) and 1.4 (for the upper bound). The second item
follows from Lemma 3.2. 	

§5. ZFC results for the dominating numbers. In this section we explore ZFC
provable equalities between the cardinals of the form d(RI). The main theorem
of this section is the following, which shows that, unlike the bounding numbers,
d(RI) does not depend on I. Note that this strengthens Main Theorem 1.4 and
provides a proof of that theorem. We also investigate the relationship between the
d(R{∅}) cardinals and the cardinals d�κ introduced in [3].

Theorem 5.1. Assume I is an ideal on �� so that cof(I) ≤ c and for all
X ∈ I, |�� \ X | = c. Then d(RI) = d(R{∅}) for all R ∈ {∈∗,≤∗, �=∗}. Here {∅} is
the trivial ideal consisting only of the empty set.

Note that N , M and K all fulfill the hypotheses on I in the theorem statement.
This theorem is somewhat analogous to the fact that, e.g., the dominating number
(on �) is unchanged if we insist on everywhere dominating versus mod finite
domination. Note that there as well this fact does not hold true of unbounded
sets.

Proof. Fix an ideal I as in the statement of the theorem. Clearly any
R{∅}-dominating family is RI-dominating hence d(RI) ≤ d(R{∅}) so we need to
just prove the reverse inequality. Fix κ < d(R{∅}) and a family of κ many functions
F = {fα | α < κ}. We need to see that F is not dominating.

Enumerate (possibly with repetitions) a cofinal family in I, {Xα | α < 2ℵ0}. Also,
let 	̄ : 2ℵ0 × 2ℵ0 → 2ℵ0 be a bijection. Inductively on 	 < 2ℵ0 for 	 = 	̄(α, �) define
yα,� ∈ �� so that yα,� �= yα′,�′ for (α, �) �= (α′, � ′) and yα,� /∈ Xα for all � < 2ℵ0 .
Note that this is possible by the assumption that �� \ Xα has size continuum for
all α.

For each α < 2ℵ0 consider the restriction of F to {yα,� | � < 2ℵ0}, i.e., {f	 �
{yα,� | � < 2ℵ0} | f	 ∈ F}. Since κ < d(R{∅}), none of these sets are dominating
so there is a g : �� → �� so that for all f ∈ F and all α < 2ℵ0 there is a � so that
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¬(g(yα,�)R f(yα,�)). But since the Xα ’s formed a basis for I it follows that g is not
RI-bounded by any f ∈ F , as needed. 	

As a result of this theorem we have the following.

Corollary 5.2. For all R and I we have d(RI) > 2ℵ0 .

Proof. In light of Theorem 5.1 it suffices to show that for all R, d(R{∅}) > 2ℵ0 .
Fix a family F = {fα | α < 2ℵ0} ⊆ (��)�

�
(or S�� in the case of R = ∈∗).

Enumerate�� as {xα | α < 2ℵ0}. Define g : �� → �� so that g(xα) is not R below
fα(xα). It follows that for each α there is an x so that ¬(g(x)R fα(x)) and hence
F does not contain a bound on g so it is not dominating. 	

In the next section we study consistent inequalities between the dominating
numbers of the relations RI . The computations of these cardinals in various
models factor through relating the cardinals d(R{∅}) to the cardinals d�κ of
[3, Section 4]. In the rest of this section we establish ZFC results between these
two families of cardinals. Recall that if � ≥ κ and f, g ∈ κ� then we let f ≤∗ g
if and only if {α < � | f(α) > g(α)} has size less than κ. The cardinal d�κ is the
dominating number of this relation. The following, which was proved in [3], will be
useful for us.

Fact 5.3. [3, Proposition 12] The value of d�κ is unchanged if we work with the total
domination relation as opposed to the mod <κ domination.

The main question, which is open, is whether every cardinal d(R{∅}) is provably
equal to a cardinal of the form d�κ. Indeed, in every model we know the value of
d(R{∅}) is equal to that of dc

b(R). We know that this equality follows from certain
extra assumptions about R. To explain this result we need a few more definitions.

Definition 5.4. Fix a relation R ∈ {∈∗,≤∗, �=∗} and an arbitrary cardinal κ.

(1) A family {xα | α < κ} ⊆ �� is an eventually R-dominating sequence if for all
y ∈ �� there is an α0 < κ so that for all α ∈ [α0, κ), y R xα .

(2) A family {xα | α < κ} ⊆ �� is an eventually R-unbounded sequence if for all
y ∈ �� there is an α0 < κ so that for all α ∈ [α0, κ), ¬(xα R y).

It is not hard to check that these two notions are dual to one another, i.e.,
R-eventually dominating is ¬Ř-eventually unbounded where ¬Ř is the dual relation
to R. Note also that the existence of an eventually R-dominating sequence of lengthκ
implies that b(R) ≥ cf(κ) and d(R) ≤ cf(κ). Dually, the existence of an eventually
R-unbounded sequence of length κ implies b(R) ≤ cf(κ) and d(R) ≥ cf(κ). Some
examples will be helpful also moving forward.

Example 5.5.

(1) In ZFC there is an eventually ≤∗-unbounded sequence of length b. Meanwhile
the existence of an eventually ≤∗-dominating sequence of length κ implies
that b = d = cf(κ). Conversely if b = d = κ then there is an eventually
≤∗-dominating sequence of length κ.

(2) In the Cohen model there are eventually �=∗-unbounded sequences of length
κ for ℵ1 ≤ κ ≤ c but no eventually �=∗-dominating sequences of any length.
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(3) In the random model there are eventually �=∗-dominating sequences of length
κ for ℵ1 ≤ κ ≤ c but no eventually �=∗-unbounded sequences of any length.

Lemma 5.6. Fix R ∈ {∈∗,≤∗, �=∗} and a cardinal κ ≤ c.
(1) If there is an eventually R-dominating sequence of length κ then d(R{∅}) ≤ dcκ.
(2) If there is an eventually R-unbounded sequence of length κ then d(R{∅}) ≥ dcκ.

Proof. Let F = {xα | α < κ} ⊆ �� be an eventually R-dominating sequence
of length κ. Let G be a witness for dcκ. Also let {y	 | 	 < c} enumerate �� . For
g ∈ G define g ′ ∈ (��)�

�
so that g ′(y	) = xg(	). It follows that G′ = {g ′ | g ∈ G} is

a R{∅}-dominating family, as needed.
The second item is proved the same way by duality. 	
As a corollary of this lemma we have the following in the case that R = ≤∗. Note

that this relation is particularly nice because it is a partial order (when moded out
by equality “mod finite”) and hence there is in ZFC an eventually ≤∗-unbounded
family of size b and therefore d(≤∗

{∅}) ≥ dc
b
.

Lemma 5.7. If b = d then d(≤∗
{∅}) = dc

b
.

Proof. If b = d there is a scale of length b, i.e., a dominating family well-ordered
by ≤∗ of length b, see [2, Theorem 2.6]. Such a scale is simultaneously an eventually
≤∗-unbounded and an eventually ≤∗-dominating sequence. Hence, by combining
the first and second items in Lemma 5.6 it follows that d(R∅}) is equal to dc

b
. 	

It is unclear whether similar hypotheses to b = d imply the same for the other
relations. It is also unclear if the additional assumption is necessary. In every model
we have computed d(R{∅}), regardless of whether or not b = d, we have equality.
We conjecture this is a ZFC phenomenon.

Conjecture 5.1. In ZFC it is provable that dc
b

= d(≤∗
{∅}).

This conjecture is true if c < ℵ� .

Theorem 5.8. If c = b+n for some n < � then dc
b

= d(≤∗
{∅}).

Proof. Let M be a model of a large enough fragment ofZFC of size dc
b

containing
a witness for dc

b
. We show that M contains a witness for d(R{∅}) as well. Since the dcκ

are decreasing in κ (at least at successor steps), see [3, Theorem 13], we may assume
that M also contains a witness for each dcκ for b ≤ κ ≤ c. Note that �� ⊆M . Let
{y	 | 	 < c} ∈M enumerate �� . By induction on κ we show the following:

(∗): For any κ ∈ [b, c] if {x	,α | 	 < c, α < κ} ∈M is a list of reals and f : c → κ
is arbitrary, then there is a g : �� → �� in M so that for a 	 < c, x	,f(	) ≤∗

g(y	).
This is clearly true for κ = b. Furthermore if (∗) holds for κ = c we’re done.

Therefore assume (∗) holds for κ and we will show it holds for κ+. Let {x	,α | 	 <
c, α < κ+} ∈M be a list of reals. Let f : c → κ+ be arbitrary and let h : c → κ+

in M dominate f everywhere. Reindex the list in M so that for each 	 we have
{x′	,α | α < κ} = {x	,α | α < h(	)}. Applying the induction hypothesis to {x′	,α | 	 <
c, α < κ} ∈M and f′ : c → κ given by x′

	,f′(	) = x	,f(	) gives an g ∈M so that for
all 	 < c, x′

	,f′(	) = x	,f(	) ≤∗ g(y	) as needed. 	
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1438 JÖRG BRENDLE AND COREY BACAL SWITZER

§6. Consistency results for the dominating numbers. In this section we consider
consistency results for the cardinals of the form d(RI). As shown in Theorem 5.1 the
ideal here is unimportant so we really only have three cardinals, d(∈∗

{∅}), d(≤∗
{∅}),

d(�=∗
{∅}). Nevertheless we can separate them all.

Theorem 6.1. The following constellations of cardinals are all consistent.
(1) d(�=∗

{∅}) < d(≤∗
{∅}) = d(∈∗

{∅}).
(2) d(�=∗

{∅}) = d(≤∗
{∅}) < d(∈∗

{∅}).
(3) d(�=∗

{∅}) < d(≤∗
{∅}) < d(∈∗

{∅}).
(4) d(�=∗

{∅}) = d(≤∗
{∅}) = d(∈∗

{∅}) < 2c.
(5) c+ < d(�=∗

{∅}) = d(≤∗
{∅}) = d(∈∗

{∅}).

The models witnessing Theorem 6.1 are discussed in the proofs of Lemmas 6.5–
6.7. The general form of proving these consistency results involves first adding Cohen
subsets to �1 and then adding various kinds of reals. The point will be that all of
the d(R{∅}) cardinals will reduce to combinatorics on some space of the form κc but
depending on how many subsets of � and �1 we add, as well as which type of reals
we add, κ may change depending on the relation R. Towards proving these results,
we begin with a simple, well known lemma.

Lemma 6.2. AssumeGCH and letκ > ℵ3 be a regular cardinal. LetG ⊆ add (�1, κ)
be generic over V. Then in V [G ] we have that d�1 = κ and d�2 = ℵ3.

Proof. The fact that d�1 = κ is well known, see for example [4]. For d�2 it suffices
to note that, by the ℵ2-c.c., the forcing is ℵℵ2

2 -bounding and hence the ground model
functions f : ℵ2 → ℵ2 form a dominating family. 	

We also will use the following result several times.

Lemma 6.3. AssumeGCH. FixR ∈ {�=∗,≤∗,∈∗}. LetG ⊆ add (�1, �4) be generic
over V. In V [G ] let Q ∈ V be ccc (in V [G ]) and suppose �Q “b(R) = ℵ1 and
2ℵ0 = ℵ2.” Let H ⊆ Q be generic over V [G ]. Then in V [G ][H ] we have that
d(R{∅}) = ℵ4.

Proof. First work inV [G ][H ] and note that the cardinal arithmetic in this model
is 2ℵ0 = ℵ2 and 2ℵ1 = 2ℵ2 = 2ℵ3 = ℵ4 and by Lemma 6.2 , dℵ1 = ℵ4 and dℵ2 = ℵ3.
It follows that every d(R{∅}) is either ℵ3 or ℵ4 in light of Corollary 5.2. Therefore to
prove the lemma it suffices to show that d(R{∅}) > ℵ3.

Suppose towards a contradiction that {ḟα | α < �3} names a R{∅}-dominating
family in V [G ][H ]. Using the product lemma, plus properness, we can find an
intermediate extension containing all of the ḟα ’s and H. Call this W ⊆ V [G ][H ].
By the ccc of Q, the remainder forcing R ∈W is �-distributive and, in fact,
is isomorphic to add (�1, �4)V . Moreover we can assume that W |= b(R) = ℵ1

since this is true in the final model so we can add the unbounded family. Fix
an ℵ1-sized R-unbounded family {xα | α < �1}. Also, enumerate all of the reals as
{yα | α < �2}. Let {ġα | α < �2} enumerateR-names for�2 many generic functions
�1 → �1. Via a bijection from �2 × �1 to �2, we can think of this as one function
from �2 to �1. Let’s name this function ġ. Consider now a name ġ ′ for the function
g ′ : �� → �� inV [G ][H ] so that ġ ′(yα) = x� if and only if ġ(α) = � . The following
claim leads to the contradiction which completes the proof. 	
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Claim 6.4. In W we have �R “ġ ′ is not R{∅}-dominated by the ḟα ’s”.

Proof of Claim. Fix α < �3, let p ∈ R and let 	 < �2 be so that p does not
decide ġ(	). Now we can simply extend p to some q which forces ġ(	) = � so that
x� is not R-below ḟα(y	) (since {xα | α < �1} is an unbounded family). But then
q forces that ḟα is not an R{∅}-bound on ġ ′ as desired. 	

We now begin with the first model towards proving Theorem 6.1.

Lemma 6.5. Assume GCH. Let G ⊆ add (�1, �4) be generic over V. Let H be
generic for B�2 over V [G ]. Then in V [G ][H ] we have:

(1) d(�=∗
{∅}) = ℵ3.

(2) d(≤∗
{∅}) = d(∈∗

{∅}) = ℵ4.

Proof. As in the proof of Lemma 6.3, note that the cardinal arithmetic in this
model is 2ℵ0 = ℵ2 and 2ℵ1 = 2ℵ2 = 2ℵ3 = ℵ4 and by Lemma 6.2, dℵ1 = ℵ4 and
dℵ2 = ℵ3. It follows that every d(R{∅}) is either ℵ3 or ℵ4 in light of Corollary 5.2.
From now on work in V [G ].

Let us begin by showing that d(�=∗
{∅}) = ℵ3. Indeed, it suffices to see that

d(�=∗
{∅}) ≤ ℵ3 since the lower bound is for free in light of Corollary 5.2. However,

d(�=∗
{∅}) ≤ ℵ3 actually follows from the first part of Lemma 5.6 given the fact that

there is an eventually �=∗-dominating sequence of length �2 in the random model.
Now we turn to the proof that d(≤∗

{∅}) = ℵ4. Since d(≤∗
{∅}) ≤ d(∈∗

{∅}) ≤ ℵ4 this
will complete the proof of the theorem. This however follows from the fact that
b = ℵ1 in the random model alongside an application of Lemma 6.3. Alternatively,
we can simply use the fact that in the random model there is a scale of length ℵ1 and
apply Lemma 5.7. 	

Moving on to the next model we have the following.

Lemma 6.6. Assume GCH. Let G ⊆ add (�1, �4) be generic over V. Let H be
generic for D�2 , the finite support iteration of length�2 of Hechler forcing, overV [G ].
Then in V [G ][H ] we have:

(1) d(�=∗
{∅}) = d(≤∗

{∅}) = ℵ3.
(2) d(∈∗

{∅}) = ℵ4.

Proof. The proof of this theorem is very similar to that of Lemma 6.5. As in that
proof, in V [G ] we have that 2ℵ0 = ℵ2 and 2ℵ1 = 2ℵ2 = 2ℵ3 = ℵ4 and by Lemma 6.2
dℵ1 = ℵ4 and dℵ2 = ℵ3. The Hechler reals added form a scale of size ℵ2 (and there is
no such scale of size ℵ1). Again by Lemma 5.7 it follows that d(≤∗

{∅}) = ℵ3, which
finishes the first item.

For the second item we simply apply Lemma 6.3 alongside the fact that b(∈∗) is
ℵ1 in the Hechler model. 	

Now we consider the model where all three cardinals are different.

Lemma 6.7. Assume GCH. Let G ⊆ add (�2, �5) be generic over V. Let H ⊆
add (�1, �6) be generic over V [G ]. In V [G ][H ] let P be the forcing consisting of
an �2-length iteration of Hechler forcing followed by adding �3 many random reals,
D�2 ∗ Ḃ�3 and let K ⊆ P be generic over V [G ][H ]. In V [G ][H ][K ] we have:
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(1) d(∈∗
{∅}) = ℵ6.

(2) d(≤∗
{∅}) = ℵ5.

(3) d(�=∗
{∅}) = ℵ4.

Proof. Modifying the arguments from Lemmas 6.2 and 6.3 alongside well known
facts about these forcing notions we have that inV [G ][H ][K ] the following all hold.

(1) 2ℵ0 = ℵ3 and for all κ ∈ [ℵ1,ℵ5], 2κ = ℵ6,
(2) b(∈∗) = ℵ1 < b = d = ℵ2 < b(�=∗) = ℵ3, and
(3) dℵ3 = ℵ4, dℵ2 = ℵ5 and dℵ1 = ℵ6.

Now, by essentially the same argument as in Lemma 6.3 we get that d(∈∗
{∅}) = ℵ6.

To show that d(≤∗
{∅}) = ℵ5 we will apply Theorem 5.8. We need to see that d

ℵ3
ℵ2

is ℵ5. To see why this is true, observe that a simply density argument forces that
d
ℵ3
ℵ2

= ℵ5 in V [G ] and since the remainder forcing is ℵ2-c.c., the set ��3
2 ∩ V [G ]

forms a dominating family in ��3
2 while no family of smaller cardinality does.

Finally to show that d(�=∗
{∅}) = ℵ4 we can use the same argument as in Lemma 6.5

(but upping each cardinal by one). 	

The final two models for proving Theorem 6.1 follow (under CH) from
Theorem 2.1 alongside well known facts about dℵ1 , see for example [6]. However,
they can also be proved in the ¬CH context. In the case that all d(R{∅}) cardinals
are greater than c+, we can add �4 many Cohen subsets to �1 and then ℵ2 many
Cohen reals and apply Lemma 6.3, noting that in the Cohen model, b(∈∗) = b =
b(�=∗) = ℵ1. In the case where all d(R{∅}) cardinals are less than 2c, first force to
add �4 many Cohen subsets to �1 and then force with a finite support iteration
of localization forcing LOC of length �2. The resulting generic for the localization
iteration will be a sequence of �2-many slaloms {sα | α < �2} which is eventually
∈∗-dominating. It follows from the first item in Lemma 5.6 that d(R{∅}) ≤ dcℵ2

= ℵ3

and hence all d(R{∅}) cardinals are ℵ3. See [7, Section 3.8] for more on properties
of the localization poset.

§7. Conclusion and open questions. The results of the previous section begin to
give a more complete picture of the relations RI and their cardinal characteristics.
Nevertheless several open questions remain. We conclude by discussing them. The
first question concerns the final inequality between the bounding numbers whose
negation does not follow from Figures 1, 2 and yet does not hold in any of the models
in Section 4.

Question 1. Is b(�=∗
N ) < b(∈∗

K) consistent?

The issue in providing a model where b(�=∗
N ) < b(∈∗

K) is consistent is that for
most of our consistent inequalities, the smaller one is shown to be ℵ1 using
Lemma 3.2. However, by Proposition 3.4 this is not possible in this case. Indeed, if
add(N ) < d then by Lemma 3.2 we have that b(∈∗

K) = add(N ) so in such a model
b(∈∗

K) ≤ b(�=∗
N ). It follows that if b(�=∗

N ) < b(∈∗
K) is consistent we must have that

add(N ) = d < c, however in all the standard models of this inequality we have
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computed, namely the random and Sacks models, the inequality b(�=∗
N ) < b(∈∗

K)
does not hold.2

The next question we have also concerns the bounding numbers. Recall that the
final b(RI) number not computed is b(∈∗

M) in the Laver model.

Question 2. What is the value of b(∈∗
M) in the Laver model?

As noted in the section on the Laver model, this cardinal must be either ℵ2 or ℵ3.
A related question is the following.

Question 3. Is there an (ℵ2,ℵ1)-Rothberger family for M in the Laver model?

Note that a positive answer to this question implies that b(∈∗
M) = ℵ3 in the Laver

model by Lemma 3.5.
We can also ask about Rothberger families more generally. As noted after the

proof of Lemma 3.5, every computation of the form b(RI) > c can be thought of
as factoring through this lemma. It is therefore worth asking if this is necessary.

Question 4. Given R and I, assume b(RI) > c. Does it follow that there exists a
(c, b(R))-Rothberger family for I as in Lemma 3.5?

Moving on the dominating numbers, the main open question, as discussed
in Section 5 is the relation between the cardinals of the form d(R{∅}) and the
numbers d�κ.

Question 5. Is every d(R{∅}) cardinal equal to one of the form dcκ? In particular,
is d(R{∅}) ZFC-provably equal to dc

b(R)?

One can ask a more general question along these lines. Namely if the cardinal
characteristics on spaces of the form κ� with κ ≤ � ≤ c determine any of the
bounding or dominating numbers for the RI relations.

Question 6. Are any of the cardinal characteristics discussed determined by the
values of the cardinals in the Cichoń diagram and its higher analogues on κ� for
κ ≤ � ≤ c?

Put another way, is there either a b(RI) or a d(R{∅}) cardinal whose value is
completely determined by the values in the Cichoń diagrams on κκ for κ ∈ [�, c]
and the numbers b�κ and d�κ for κ ≤ � ≤ c? We know by the computation of b(∈∗

M)
in the �-dual random model that this is not true in general, but could it be true for
some of the cardinals? Note that a positive answer to Question 5 implies a positive
answer to this question in the case of the dominating numbers.

Finally we ask about the relationship between the b(RI) and the d(RI) cardinals.
These relations were not considered in this paper at all.

Question 7. Can some b(RI) be consistently strictly larger than some d(RJ )?

The only relation R for which is is not explicitly ruled out by Figures 1 and 2 is
the relation �=∗, so really the question is whether there is an ideal I ∈ {N ,M,K} so
that b(�=∗

I) > d(�=∗
{∅}) is consistent.

2Added in proof. The first author has recently shown (unpublished) that b(∈∗
K) ≤ b(�=∗

N ) holds in
ZFC so Question 1 has a negative answer.
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