

PDF issue: 2024-12-22

Antireflection Substrates for Determining the Number of Layers of Few-Layer Hexagonal Boron Nitride Films and for Visualizing Organic Monolayers

Hattori, Yoshiaki Taniguchi, Takashi Watanabe, Kenji Kitamura, Masatoshi

(Citation) ACS Applied Nano Materials,6(23):21876-21886

(Issue Date) 2023-10-29

(Resource Type) journal article

(Version) Accepted Manuscript

(Rights) © 2023 The Authors.

(URL) https://hdl.handle.net/20.500.14094/0100486146

Supporting Information for:

Antireflection Substrate for Determining the Number of Layers of Few-Layer Hexagonal Boron Nitride Films and for Visualizing Organic Monolayers.

Yoshiaki Hattori^{1*}, Takashi Taniguchi², Kenji Watanabe³, and Masatoshi Kitamura^{1**}

¹ Department of Electrical and Electronic Engineering, Kobe University, 1-1, Rokkodai-cho, Nada, Kobe, 657-8501, Japan

² International Center for Materials Nanoarchitectonics, National Institute for Materials Science,
1-1 Namiki, Tsukuba 305-0044, Japan

³ Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan

Corresponding author:

*Email: hattori@eedept.kobe-u.ac.jp, **Email: kitamura@eedept.kobe-u.ac.jp

Note S1: Locus of a non-absorbing layer

The locus of a non-absorbing layer in the multilayer coating is a circular arc in the circle diagram. The arc is traced clockwise and increases with layer thickness. The half-wave layer traces out a complete circle. If a *q*-th non-absorbing layer is deposited on a (q - 1)-th layer, the size and position of the circle depend on the N_q and starting point of the arc, which corresponds to the termination of the locus of the previous layer, that is $\rho_{q-1}(d_{q-1}) = \rho_q(0)$. The locus of the $\rho_q(d)$ is given by

$$\rho_{\mathbf{q}}(d) = \frac{\rho_q^T + \rho' \exp(-2i\delta_q)}{1 + \rho_1^T \rho' \exp(-2i\delta_q)},$$

where, $\delta_q = 2\pi N_q d/\lambda$, $\rho_q^T = (N_m - N_q)/(N_m + N_q)$, $\rho' = (\rho_{q-1}(d_{q-1}) - \rho_q^T)/(1 - \rho_{q-1}(d_{q-1}) \rho_q^T)$, respectively.¹⁶ The center and radius of the arc are

$$\left(\frac{\rho_q^T (1-|\rho'|^2)}{1-|\rho'|^2 \rho_q^{T^2}}, 0\right)$$

and

$$\frac{|\rho'|(1-\rho_q^{T^2})}{1-|\rho'|^2\rho_q^{T^2}},$$

respectively. The center of the arc is on the real axis. In Sec. 4.4, the non-absorbing single layer on a metric base substrate is discussed for designing an AR coating with a layer of arbitrary materials on top, where it is important to consider the locus of the non-absorbing layer. In this case, $\rho_{q-1}(d_{q-1})$ is ρ_{sub} . Figure S2 shows the loci of various non-absorbing layers with different refractive indices on the metric base substrate, indicating that the termination of the locus of a non-absorbing layer can be freely controlled in a wide range by adjusting the thickness and selecting the *R* of the base substrate.

Figure S1: The refractive index of SiO_2 (a) and SiN_x (b) measured by the ellipsometer, respectively. The refractive index was obtained from dielectric dispersion with the Lorentz oscillator model.

Figure S2: Loci of various non-absorbing layers with different refractive indices on the metric base substrate.

Figure S3: (a) Monochromatic image for 1–4 L hBN on the AR substrate at $\lambda = 530$ nm. (b–f) Tapping-AFM phase images corresponding to the red square in (a). (g–k) Height images corresponding to (b–f). (l–p) Profiles of the average height along the white solid bold lines in (g–k).

Figure S4: Calculated (a) reflection and (b) contrast spectra of AR substrates for NA = 0.7. The black and red lines indicate the Si/SiN_x (62.0 nm) and Si/SiN_x (50.0 nm)/ SiO₂ (25.0 nm) substrates, respectively. The contrast spectra is for 1L hBN on the AR substrate.