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Abstract: Hepatitis C virus (HCV) is a positive-sense, single-stranded RNA virus that causes chronic
hepatitis, liver cirrhosis and hepatocellular carcinoma. The release of infectious HCV particles from
infected hepatocytes is a crucial step in viral dissemination and disease progression. While the
exact mechanisms of HCV particle release remain poorly understood, emerging evidence suggests
that HCV utilizes intracellular membrane trafficking and secretory pathways. These pathways
include the Golgi secretory pathway and the endosomal trafficking pathways, such as the recycling
endosome pathway and the endosomal sorting complex required for transport (ESCRT)-dependent
multivesicular bodies (MVBs) pathway. This review provides an overview of recent advances in
understanding the release of infectious HCV particles, with a particular focus on the involvement of
the host cell factors that participate in HCV particle release. By summarizing the current knowledge
in this area, this review aims to contribute to a better understanding of endosomal pathways involved
in the extracellular release of HCV particles and the development of novel antiviral strategies.

Keywords: hepatitis C virus; release; Golgi; recycling endosome; multivesicular bodies; endosomal
sorting complex required for transport machinery

1. Introduction

According to the World Health Organization, an estimated 58 million people world-
wide are chronically infected with hepatitis C virus (HCV) and 1.5 million new infections
occur each year. HCV remains a significant public health burden [1]. HCV is a leading
cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma [2]. Although there
have been advancements in direct-acting antiviral (DAA) therapy, which can cure over
95% of patients infected with HCV, the emergence of resistance-associated substitutions
(RASs) and limited access to DAAs therapy in developing countries hinder global HCV
elimination efforts [3–5].

HCV is an enveloped, positive-sense single-stranded RNA virus that belongs to the
Hepacivirus genus of the Flaviviridae family. The HCV genome consists of 9.6-kb RNA
encoding a single polyprotein of approximately 3010 amino acids, which is processed by
viral proteases and cellular signalases to produce three structural proteins (Core, E1, and
E2) and seven nonstructural proteins (p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B) [6–8].
The structural proteins are incorporated into virus particles, while the nonstructural (NS)
proteins are not incorporated into virus particles. NS proteins are essential for HCV RNA
replication and virus assembly [9].

HCV particles circulate in the blood and exhibit a strict liver tropism contacting
with the basolateral side of hepatocytes. HCV particles attach to the cell surface via
glycosaminoglycans, low-density lipoprotein receptor, and scavenger receptor B1. This
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is followed by binding of E1-E2 dimers to CD81 and Claudin-1, which is in contact with
Occludin. HCV particles are then engulfed by clathrin-mediated endocytosis and fused
with the endoplasmic membrane under low-pH conditions [10]. The HCV genomic RNA is
released into the cytoplasm, where the HCV genomic RNA is directly translated to produce
viral proteins and initiate viral replication [9,11].

HCV RNA replication occurs within the membranous web on the endoplasmic reticu-
lum (ER) membrane [7,12,13]. During virus particle assembly, viral RNA is shifted away
from replication or translation and directed toward the assembly site at the ER membrane,
where viral RNA associates with the core protein. NS5A and NS3/4A are involved in
transferring RNA from the replication site to the assembly site [14–16]. The interaction
between NS2 and NS3 is essential for recruiting the viral core protein from lipid droplets to
the assembly site, leading to the formation of the nucleocapsid [17]. Nascent virus particles
assemble through the recruitment of E1-E2 complexes and bud into the ER lumen. In
the ER, the virus particles may fuse with very-low-density lipoproteins, resulting in the
formation of mature lipoviroparticles (LVPs) [9,18].

The release of HCV particles is the final step of the HCV life cycle. HCV is known to be
released via two distinct routes: extracellular release and cell-to-cell transmission [19,20]. In
this review, we focus on the pathways involved in extracellular release. HCV has evolved
to exploit intracellular membrane trafficking machineries for its release from the cells.
While the ER-trans-Golgi network (TGN)-recycling endosomal secretion pathway has been
considered as the canonical route for HCV particle release [21–23], recent research reports
have demonstrated the involvement of the endosomal sorting complex required for the
transport (ESCRT)-dependent multivesicular bodies (MVBs) secretory pathway in HCV
release [24–26]. In addition to the primary routes (ER-TGN-recycling endosomal pathway
and ER-TGN-MVB pathway), HCV also utilizes unconventional secretion pathways for
particle release. These pathways include the autophagy-related release pathway [27,28],
and the ER-to-Golgi bypass pathway, in which HCV-induced ER stress triggers HCV release,
bypassing the Golgi directly [28–30]. In this review, we focus on the host factors involved in
HCV particle release via the pathways of ER-TGN-recycling endosome and ER-TGN-MVB.

2. Transport of HCV Particles from the ER to the Golgi Apparatus in Coat Protein
Complex II (COPII)-Coated Vesicles
2.1. COPII Vesicles and Rab1 GTPases

The biogenesis of most cellular membrane proteins and secreted proteins occurs at
the ER. These proteins are transported from the ER to the Golgi apparatus via the COPII
vesicle machinery and finally redistributed to their final destinations [31,32]. The COPII
coat machinery consists of five cytosolic proteins: Sar1, Sec23, Sec24, Sec13, and Sec31. Sar1
is the first COPII component recruited to the ER membrane. Sec23 and Sec24 form the inner
COPII coat, while Sec13 and Sec31 form the outer COPII coat. Sar1, the inner-coat complex,
and the outer-coat complex assemble together to form a complete COPII vesicle, which
buds from the ER through membrane fission [33–35].

In mammalian cells, the directionality of COPII vesicle transport is mediated by Rab1
GTPases, which belong to the Rab GTPase family. Rab GTPase family is a part of the Ras
superfamily of small GTPases, consisting of at least 60 members in humans. Rab1 has
two isoforms, Rab1a and Rab1b, which localize in the ER-Golgi interface and participate in
the COPII-dependent ER-to-Golgi transport [36–41].

2.2. Transport of HCV Particles via ER-to-Golgi Trafficking

HCV RNA is enriched in highly buoyant COPII vesicle fractions, cofractionated
with apolipoprotein B (ApoB), ApoE, and the HCV core and envelope proteins E1/E2.
Moreover, electron microscopy and ultrastructural analysis revealed that HCV envelope
and core proteins were colocalized with apolipoproteins and HCV RNA in the Sec31-coated
COPII vesicles, as well as in the Golgi stacks [23]. An analysis of the dynamics of HCV
core trafficking in Huh-7.5 cells revealed that HCV core proteins were colocalized with
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Golgi markers [22], supporting the notion that HCV particles are assembled in the ER
and transported to the Golgi apparatus in COPII vesicles (Figure 1). The presence of
HCV particles in COPII vesicles is further supported by the observation that the reduced
expression of Sar1 results in the retention of viral particles in infected cells [22].
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Figure 1. Transport of HCV particles from the ER to the Golgi apparatus in COPII-coated vesicles.
HCV particles are assembled in the ER and then bud into COPII-coated vesicles (step 1). Rab1b
mediates trafficking of vesicles from ER to Golgi. Following budding, the COPII coat is removed
(step 2), and the vesicle is transported to the cis-Golgi (step 3), where docking is followed by the
delivery of HCV particles. Sar1 is a COPII component.

Additionally, inhibition of Rab1b reduces the release of HCV particles, suggesting that
ER-to-Golgi trafficking participates in the transport of HCV particles [42].

3. Transport of HCV Particles from the Golgi Apparatus to Recycling Endosomes
3.1. Golgi Apparatus and Cellular Proteins Required for Transport from Golgi to
Recycling Endosomes

The Golgi apparatus plays a central role in the secretory pathway, serving as a hub for
vesicle trafficking. The Golgi stack consists of three compartments: cis, medial, and trans
compartments. At the cis-face, a collection of vesicular tubular clusters mediates transport
between the ER and the Golgi stack. At the trans-face, the TGN acts as a major sorting
station for the secretory pathway and represents the final exit to the cell surface [43]. The
TGN receives proteins that have passed through the Golgi stack and distributes them to
various cellular locations, including the plasma membrane, secretory vesicles, and endo-
somes [44–46]. The formation of vesicles from the TGN, directed towards their destinations
is facilitated by coat and adaptor proteins, actin, and the microtubule cytoskeleton [47,48].

Endosomal trafficking is an essential cell process involved in the transport of proteins
and lipids. There are three different types of endosomes: early endosomes, late endosomes,
and recycling endosomes. The early endosomes mature into late endosomes, also known
as MVBs. The recycling endosomes are concentrated at the microtubule organizing center
and consist of a mainly tubular network [49]. Both recycling endosomes and MVBs serve
as intermediates during protein transport from the Golgi to the plasma membrane [50,51].

Clathrin, a vesicle coat protein, is involved in the formation of vesicles from the plasma
membrane, endosomal membranes, and TGN by inducing membrane curvature [52,53].
The heterotetrameric adaptor protein complexes (APs) act as major cytosolic cargo adaptors,
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with five APs identified in eukaryotes. Two of these adaptors, AP-1 and AP-4, are involved
in protein sorting at the TGN. AP-1 is a clathrin-dependent adaptor, while AP-4 is not
associated with clathrin. AP-1 has two isoforms, AP-1A and AP-1B. AP-1A primarily
regulates sorting from the TGN to the recycling endosome, and AP-1B regulates sorting
from the TGN to the basolateral plasma membrane. AP-4 is involved in sorting and exiting
from the TGN to both the endosomal and basolateral pathways [54–57].

Other clathrin-associated adaptors are Golgi-localized, gamma adaptin ear-containing,
and ARF-binding (GGA) proteins: GGA1, GGA2, and GGA3. These proteins mediate
vesicular transport between the TGN and endosomes [58].

Rab11A and Rab13, members of the Rab protein family, participate in the membrane
traffic pathway from the TGN to recycling endosomes before being delivered to the plasma
membrane [39,59,60].

3.2. Transport of HCV Particle via TGN-to-Recycling Endosomes Trafficking

The release of HCV particles depends on several components of the TGN-to-recycling
endosome pathway (Figure 2). Accumulating evidence suggests that HCV exploits AP
complexes to facilitate the trafficking of HCV particles during the release. Knockdown of
clathrin or the clathrin adaptor AP-1 [61], AP-1 µ1 subunit [21,22] or γ subunit [61] in HCV-
infected hepatocytes decrease extracellular infectivity titers without altering intracellular
infectivity titers. Additionally, two dileucine-based motifs in the C-terminus of the HCV
NS2 protein mediate the binding to AP-1A, AP-1B, and AP-4. AP-1A is involved in HCV
particle release, while AP-1B and AP-4 mediate cell-to-cell spread [62], further supporting
the requirement of AP-1A for HCV release [22,61,63].
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Figure 2. Transport of HCV particles from the Golgi apparatus to recycling endosome. HCV particles
egress from the trans-Golgi network (TGN) into clathrin/AP-1-coated vesicles (step 1). Rab11A and
Rab13 mediate trafficking of clathrin/AP-1-coated vesicles to recycling endosome (step 2). Upon
reaching the plasma membrane (step 3), HCV particles are released via exocytosis following fusion
with the plasma membrane (step 4).

Silencing of GGA2 mRNA reduces extracellular infectivity, indicating that GGA2, but
not GGA1 or GGA3, is necessary for viral release [21].

Silencing of Rab11A mRNA leads to the accumulation of HCV core protein at the
Golgi, indicating that HCV particles are released from the TGN to recycling endosomes and
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subsequently to the plasma membrane [22]. Additionally, the dominant negative Rab13
protein inhibits the release of infectious HCV [21], further suggesting that infectious HCV
particles exploit TGN-to-recycling endosomes trafficking before being released into the
extracellular space.

4. Transport of HCV Particles from the Golgi Apparatus to MVBs
4.1. MVB Biogenesis and ESCRT Machinery

MVBs are crucial components in endosomal trafficking. MVBs can fuse with lysosomes,
resulting in the degradation of their contents. Additionally, MVBs can be directed towards
the plasma membrane, where MVBs fuse with the plasma membrane, releasing the contents
outside the cell, known as exosomes [51]. MVB formation is regulated by ESCRT machinery,
which facilitates membrane abscission processes and intraluminal budding on endosomal
membranes. The ESCRT machinery comprises five protein complexes (ESCRT-0, -I, -II, -III,
and VPS4) along with associated proteins. These complexes function sequentially to recruit
and cluster cargo proteins (ESCRT-0), induce membrane curvature (ESCRT-I and -II), and
catalyze vesicle fission (ESCRT-III and VPS4). The AAA ATPase VPS4 (two isoforms, VPS4A
and VPS4B) eventually disassembles the ESCRT-III complex from the MVB membrane,
thereby driving membrane fission and recycling of ESCRT-III subunits [64,65].

4.2. Transport of HCV Particle via TGN-to-MVB Trafficking

HCV release depends on several components of the ESCRT (Figure 3). Dominant-
negative forms of VPS4 or CHMP4B, a component of ESCRT-III, have been found to
reduce the release of HCV particles without affecting the intracellular virus titers [26].
Similarly, knockdown of VPS4B, CHMP4B, TSG101 (a component of ESCRT-1), and Alix
(an accessory protein that binds to TSG101 and CHMP4B) mRNAs inhibits the release of
HCV particles without affecting HCV replication and intracellular infectivity [25,66]. These
findings support the requirement of ESCRT for the release of infectious HCV particles,
without directly impacting HCV replication or assembly. Electron microscopy analysis
also revealed the presence of HCV particles, HCV core protein, and envelope proteins
within the intraluminal vesicles of MVBs [67–69]. Additionally, the HCV core protein in
the supernatants of HCV-infected cells was localized to the exosome-rich fractions [69],
indicating the utilization of exosome secretion during HCV release. HCV NS2 and NS5A
proteins interact with HRS, an ESCRT-0 component, and utilize HRS as an entry point into
the ESCRT network [66].

4.3. HCV-Induced ROS/JNK/Itch Signaling Pathway Promotes VSP4A Polyubiquitylation,
Leading to Enhancement of VPS4A ATPase Activity, Thereby Upregulating the Release of
HCV Particles

While the studies mentioned above demonstrate the involvement of VPS4 in the release
of HCV particles, the precise mechanisms underlying how HCV exploits VPS4 through
activating VPS4 ATPase activity were investigated. VPS4 ATP hydrolysis is required for
the disassembly of the ESCRT-III complex from the MVB membrane [70]. The interaction
between VPS4 and ESCRT-III proteins leads to the induction of VPS4 ATPase activity
through the relief of VPS4 autoinhibition [71,72]. Our laboratory recently reported that
HCV-induced reactive oxygen species (ROS)/c-Jun N-terminal kinase (JNK)/Itch signaling
pathway promotes VPS4A polyubiquitylation, leading to the enhancement of VPS4A
ATPase activity, thereby upregulating the release of HCV particles [24] (Figure 4).
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Itch, a HECT-type E3 ubiquitin ligase, causing a conformational change and activation of Itch (step
1). Activated Itch promotes the polyubiquitylation of VPS4A (step 2), increasing its interaction with
CHMP1B (step 3), which is involved in the promotion of VPS4A ATPase activity and formation of
a VPS4A hexamer. Activated VPS4A dissociates ESCRT-III complex from endosomal membranes
(step 4), resulting in membrane scission and formation of the MVB. Subsequently, ESCRT-MVB
pathway-mediated HCV particle release is enhanced (step 5). P, phosphorylation; Ub, ubiquitylation.
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We and other groups previously reported that HCV infection induces mitochondrial
ROS production and activates the JNK signaling pathway [73–76]. Itch is a member of
the neural precursor cell-expressed developmentally downregulated protein 4 (NEDD4)
family of HECT-type E3 ligases [77,78]. Under physiological conditions, Itch WW domains
restrict the interdomain mobility of the HECT domain, locking Itch in a closed inactive
conformation [79]. Activated JNK phosphorylates Itch at Ser199, Thr222, and Ser232,
leading to a conformational change that weakens the interaction between the WW and
HECT domains, thereby enhancing the catalytic activity of Itch [80].

In our study, we first demonstrated that HCV infection promotes phosphorylation
of Itch at Thr222 via the ROS/JNK signaling pathway. Furthermore, knockdown of Itch
does not affect HCV replication but decreases the release of HCV particles, indicating
the involvement of Itch in HCV release. Cell-based ubiquitylation assays showed that
HCV-induced JNK/Itch signaling pathway specifically promotes polyubiquitylation of
VPS4A, but not VPS4B. Additionally, VPS4A, but not VPS4B, is involved in the release of
HCV particles. We explored the impact of the VPS4A polyubiquitylation on the activation
of VPS4A ATPase activity. Immunoprecipitation analysis revealed that HCV infection
specifically enhances the interaction between VPS4A and CHMP1B, a component of ESCRT-
III, via VPS4A polyubiquitylation. Moreover, HCV infection significantly enhances ATPase
activity of VPS4A, but not VPS4B. Our results clearly demonstrated that the ROS/JNK/Itch
signaling pathway enhances the release of HCV particles via the polyubiquitylation of
VPS4A [24].

Notably, Itch is also exploited by other RNA viruses and DNA viruses for viral release
or budding. For example, Itch induces the release of influenza A virus from endosomes
through the ubiquitylation of the viral M1 protein [81]. Itch also facilitates Ebola virus
budding [82] and nuclear egress of the Epstein–Barr virus [83] through interaction with
viral proteins VP40 and BFRF1, respectively. Knockdown of Itch expression reduces the
release of human T-cell leukemia virus type 1 [84]. These findings highlight the importance
of the E3 ligase Itch in viral release or budding.

Viruses typically recruit the ESCRT machinery through the late domains, which are
conserved motifs found within viral structural proteins. Some characterized late domains
include P(T/S)AP, YPXL, and PPXY signals (where X is any amino acid), which bind to
TSG101 (ESCRT-1), Alix, or E3 ligase NEDD4 family proteins [85]. Although HCV structural
and nonstructural proteins lack defined late domains [25,66], further investigations are
needed to clarify whether Itch participates in the ubiquitylation of HCV structural proteins,
which could play a role in the process of entry into the ESCRT machinery.

Additionally, some enveloped RNA viruses, like human immunodeficiency virus
type 1, employ the ESCRT machinery to obtain their membrane envelopes, influencing their
assembly and release following membrane scission [86]. ESCRT machinery is also exploited
by nonenveloped RNA viruses, such as hepatitis A virus [87], bluetongue virus [88], and
enveloped DNA viruses, including hepatitis B virus [89], to aid in intracellular budding
or release.

5. Conclusions

In Table 1, we summarized host factors that participate in HCV particle release,
which are discussed in this review. In this review, our emphasis is on the utilization
of intracellular membrane trafficking machineries for HCV particle release, spanning
from the ER to the Golgi, through the endosomes (recycling endosomes or MVB), and
ultimately reaching the plasma membrane. Despite these detailed investigations, the
precise mechanisms directing HCV particle sorting into recycling endosomes or MVB
remain unclear. Notably, HCV employs alternative release pathways, including cell–cell
transmission, the autophagy-related release pathway, and the ER-to-Golgi bypass pathway.
It was reported that glycyrrhizin, a drug for chronic hepatitis patients used in Japan,
decreases infectious HCV particle release [90]. Identifying the functions of host factors
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involved in HCV particle release may provide new opportunities for the development of
novel antiviral strategies.

Table 1. Summary of cellular factors involved in HCV particle release discussed in the text.

Protein Names Role in the Cell Role in HCV Infection References

Sar1 COPII-vesicle formation, ER-Golgi trafficking KD leads to inhibition of release [22]
Rab1b COPII-dependent ER to Golgi trafficking DN expression reduces release [42]
COPII Traffic from ER to Golgi Budding from ER [23]

Clathrin Vesicle formation at TGN, endosomes, and
plasma membrane

KD decreases extracellular infectivity and
RNA amount [61]

AP-1A TGN to recycling endosome bidirectional
transport

KD decreases extracellular infectivity and
RNA amount [22,61,62]

GGA2 TGN to recycling endosome transport KD decreases extracellular infectivity [21]

Rab 11A TGN to recycling endosome transport KD results in accumulation of core at the
Golgi [22]

Rab 13 TGN to recycling endosome transport DN leads to inhibition of release [21]

VPS4A Late steps of MVB biogenesis, membrane
fission

KD or DN expression reduces extracellular
infectivity [24,26]

VPS4B Late steps of MVB biogenesis, membrane
fission

KD or DN expression reduces extracellular
infectivity [25,26]

CHMP4B Subunit of ESCRT-III complex, membrane
fission

KD or DN expression reduces extracellular
infectivity [25,26]

TSG101 Subunit of ESCRT-0, cargo sorting KD reduces extracellular infectivity [25]
Alix MVB biogenesis KD reduces extracellular infectivity [25,66]
Itch HECT-type E3 ubiquitin ligase KD reduces extracellular infectivity [24]

KD, knockdown; DN, dominant negative.
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