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Counting cubic fields using Shintani’s zeta function

Frank Thorne (University of South Carolina)

Abstract

From analytic properties of zeta functions, we can effectively count integral

orbits of prehomogneous vector spaces via Landau’s theorem. As a typical

example, I will explain how to count cubic fields by their discriminants,

using the zeta functions studied by Shintani. In particular, I will:

(1) Explain the Davenport-Heilbronn correspondence for maximality of

cubic rings, and how this can be incorporated into Shintani’s zeta

functions;

(2) Give an overview of Landau’s method, and explain how the existence

of zeta functions leads to arithmetic density results;

(3) Describe equidistribution of this maximality condition in terms of

exponential sums, and give an overview of how these sums can be

computed;

(4) Explain how to put these pieces together with a simple sieve, and

thereby count cubic fields.

This note are based on a presentation given (remotely) to the Summer School

on Prehomogeneous Vector Spaces, organized by Yasuhiro Ishitsuka, Kazunari

Sugiyama, and Takashi Taniguchi in Kobe, September 2023.

Note. In some places, there is some textual overlap with some of the author

and his collaborators’ cited papers.

1 Introduction

Here is a typical example of a result in arithmetic statistics. Let Nd(X) count

the number of number fields K, of degree d over Q, and with |Disc(K)| < X.

1
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Then the Davenport-Heilbronn theorem [DH71] asserts that

N3(X) ∼ 1

3ζ(3)
X. (1.1)

A succession of papers [Bel99, BBP10, BST13, TT13b, BTT], written (in vari-

ous permutations) by Karim Belabas, Manjul Bhargava, Carl Pomerance, Arul

Shankar, Takashi Taniguchi, Jacob Tsimerman, and the present author, have re-

sulted in progressively stronger results, with a negative secondary term and a

power saving error term. The strongest result to date is:

Theorem 1.1. We have

N3(X) =
1

3ζ(3)
X + (1 +

√
3)

4ζ(1/3)

5Γ(2/3)3ζ(5/3)
X5/6 +O(X2/3(logX)2.09). (1.2)

The existence of the (negative) secondary term above had been conjectured by

Roberts [Rob01] and Datskovsky and Wright (implicitly in [DW88]). Previously,

Shintani [Shi75] had obtained an analogous result for cubic orders.

We will give an overview of two questions here:

(1) How can one obtain the asymptotic density result (1.1) at all?

(2) How can one obtain the sharpest error terms possible?

Here we will give an overview of a method using Shintani zeta functions and

Landau’s method. This is not the only known method, and indeed we recommend

Bhargava, Shankar, and Tsimerman’s work [BST13] for an account using Bhar-

gava’s averaging method, which also obtains the secondary term in (1.2). (See

also Y. Suzuki’s article [鈴木雄] giving an overview of this method in this volume.)

Bhargava’s method applies in significant generality – see Bhargava and Shankar

[BS15] for a non-prehomogeneous example (one among many!)

The method discussed here is the most complicated of the known methods – at

least, if one is not prepared to black box a lot of relevant background. However,

when all the necessary background ingredients are in place, these are the sharpest

tools available, leading to the strongest possible error terms.

At the end, we recommend some further reading for the interested reader.

2
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2

2 Correspondence for cubic rings

Most approaches to the Davenport-Heilbronn theorem proceed by relating cubic

fields to binary cubic forms, via the correspondences of Levi and Delone–

Faddeev, and Davenport-Heilbronn. See [BST13], among other sources, for

a more thorough treatment.

First, we recall the relevant definitions. The lattice of integral binary cubic

forms is defined by

V (Z) := {au3 + bu2v + cuv2 + dv3 : a, b, c, d ∈ Z}, (2.1)

and the discriminant of f(u, v) = au3+ bu2v+ cuv2+ dv3 ∈ V (Z) is given by the

equation
Disc(f) = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd. (2.2)

Then Disc(f) is nonzero if and only if f(u, v) factors into distinct linear factors

over C.*1

The group GL2(Z) acts on V (Z) by

(γ · f)(u, v) = 1

det γ
f((u, v) · γ). (2.3)

A cubic form f is irreducible if f(u, v) is irreducible as a polynomial over Q, and

nondegenerate if Disc(f) ̸= 0.

One also considers the action (2.3) over other rings such as R, C, or Z/nZ.
Over R this action has two nondegenerate orbits, corresponding to the sign of

Disc(f). Over C all of the nondegenerate forms are in the same orbit, making

this V a prehomogeneous vector space.

The correspondence of Levi [Lev14] and Delone–Faddeev [DF64], as further

extended by Gan, Gross, and Savin [GGS02] to include the degenerate case, is as

follows:

*1 If one factor is a scalar multiple of another, then we do not consider these linear factors

to be distinct.
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Theorem 2.1. There is a canonical, discriminant-preserving bijection between

the set of GL2(Z)-orbits on V (Z) and the set of isomorphism classes of cubic rings.

Under this correspondence, irreducible cubic forms correspond to orders in cubic

fields, and if a cubic form f corresponds to a cubic ring R, then StabGL2(Z)(f) is

isomorphic to Aut(R).

To count cubic fields, we count their maximal orders. A cubic ring is the

maximal order in a cubic field if and only if it is:

� nondegenerate: its discriminant is not zero.

� an integral domain, true if and only if f is irreducible.

� maximal.

Our counting methods will naturally exclude the degenerate rings, so we can

ignore those. We will end up counting all of the maximal rings, including the

reducible ones, but the reducible rings correspond to quadratic fields and so are

easily counted.

The maximality condition is the most subtle. It turns out that maximality can

be checked locally: a cubic ring R is maximal over Z if and only if R ⊗Z Zp is

maximal over Zp for all primes p. We call the latter condition maximality at p,

and the Davenport–Heilbronn maximality condition translates it into the

language of binary cubic forms:

Proposition 2.2 ([DH71]). Under the Levi–Delone–Faddeev correspondence, a

cubic ring R is maximal at p if and only if any corresponding cubic form f belongs

to the set Up ⊆ V (Z) for all p, defined by the following conditions:

� the cubic form f is not a multiple of p; and

� there is no GL2(Z)-transformation of f(u, v) = au3 + bu2v + cuv2 + dv3

such that a is a multiple of p2 and b is a multiple of p.

See, e.g. [BST13] for a complete proof. To give the idea of a proof, consider

the Delone-Faddeev correspondence over Q rather than over Z. The form f

will be nonmaximal at p if and only if there is some other integral binary cubic

4
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4

form f ′, GL2(Z)-inequivalent but GL2(Q)-equivalent to f , and with Disc(f ′) =

p−kDisc(f) for some positive integer k. For example, f ′ can be chosen to be

the maximal order in the cubic field (or algebra) corresponding to the order

corresponding to f .

We can now easily see half of the if and only if: that if f is any form satisfying

the negation of the Davenport-Heilbronn conditions, there exists such a f ′. In the

first case, f = pf ′ for some g, and since scalar matrices act by the same scalars,

there is our f ′.

In the second case, note that

(
p−1 0
0 1

)
· f(u, v) = pf(u/p, v).

Then, after suitable GL2(Z)-transformation, our condition guarantees precisely

that pf(u/p, v) has integral coefficients. (And that it has last coefficient divisible

by p, but we will not need this.)

We now give a very brief introduction to Shintani’s zeta function theory [Shi72].

Define the Shintani zeta functions

ξ±(s) =
∑
n

a±(n)n−s :=
∑

x∈GL2(Z)\V (Z)
±Disc(x)>0

1

|Stab(x)|
|Disc(x)|−s, (2.4)

and note that by the Delone-Faddeev correspondence we have

ξ±(s) =
∑

±Disc(R)>0

1

|Aut(R)|
|Disc(R)|−s, (2.5)

where the sum is over cubic rings.

Shintani’s work establishes that these are ‘nice zeta functions’, enjoying analytic

continuation to C apart from simple poles at s = 1 and s = 5/6 (whose residues

Shintani computed), and satisfying a functional equation. By Landau’s method,

which we will discuss shortly, it is known how to compute the partial sums

∑
0<±Disc(R)<X

1

|Aut(R)|
. (2.6)

5
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Moreover, the factor of 1
|Aut(R)| is well understood (see Proposition 5.1), and can

be removed without too much effort.

If our goal is to count cubic fields, we must handle the three conditions described

previously: nondegeneracy, irreducibility, and maximality.

Nondegeneracy is automatic, as rings with discriminant zero are excluded from

the zeta function. Irreducibility will be handled at the end: ignoring this condi-

tion, our cubic field count will also include a count of algebras of the form K×Q,

where K is quadratic with |Disc(K)| < X – and these algebras are easily counted,

so their counting function can be subtracted.

The nonmaximality condition is the serious one. Although we cannot adapt

our zeta function to count only maximal rings, we may handle finitely many of

the maximality conditions at once, and then run a sieve. By work of F. Sato

[Sat89] and Datskovsky-Wright [Wri85, DW86], Shintani’s zeta function may be

extended to define

ξ±(s,Φm) =
∑
n

a±(Φm, n)n−s :=
∑

x∈GL2(Z)\V (Z)
±Disc(x)>0

1

|Stab(x)|
Φm(x)|Disc(x)|−s,

(2.7)

where Φm is any GL2(Z/mZ)-invariant function, lifted to a function on V (Z),
which we think of as describing some ‘local condition’ (mod m). In particular,

we will be interested in the case where m is the square of a product of distinct

primes, and Φm is the function (mod m) which, by Proposition 2.2, detects

nonmaximality at each prime divisor of m.

3 Landau’s method

Landau’s method belongs with the following simple observation, known as

Perron’s formula:

Proposition 3.1. Let c > 0 be a real number. We have

1

2πi

∫ c+i∞

c−i∞
xs ds

s
=

{
1, if x > 1,

0, if 0 < x < 1.
(3.1)

The integral is 1
2 if x = 1, but we can avoid caring about this. The proof is a

6
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6

straightforward exercise in complex analysis. Roughly: if x > 1, shift the contour

all the way to the right, and the integrand decays exponentially as one does this;

if x < 1, shift the contour all the way to the left, this time picking up the residue

from a pole at s = 0.

We quickly obtain the following:

Proposition 3.2. Let L(s) :=
∑

n≥1 a(n)n
−s be a Dirichlet series. Then, we

have ∑
n<X

a(n) =
1

2πi

∫ c+i∞

c−i∞
L(s)Xs ds

s
, (3.2)

valid for any c for which the Dirichlet series defining L(s) converges absolutely.

To prove this, replace L(s) by its definition, switch the order of summation and

integration, and use the previous proposition. (One must worry about conver-

gence, but there are no problems here. We assume that X is not an integer to

avoid an additional 1
2a(X) term on the left.)

How might one use this? For example, let d(n) denote the divisor function of

n, counting the number of positive prime divisors. Then it is easily proved that

∑
n

d(n)n−s = ζ(s)2,

and hence it follows that

∑
n<X

d(n) =
1

2πi

∫ 2+i∞

2−i∞
ζ(s)2Xs ds

s
. (3.3)

To bound this, we work formally and leave any convergence questions for later.

Shift the contour to the line ℜ(s) = 1
2 , passing a double pole at s = 1, and

computing the residue we conclude that

∑
n<X

a(n) = X logX + (2γ − 1)X + E(X), (3.4)

for an error term E satisfying

|E(X)| ≤ X1/2

∫ 1/2+i∞

1/2−i∞
|ζ(s)|2

∣∣∣∣
ds

s

∣∣∣∣ . (3.5)

7
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Since the integrand is independent of X, as long as it is absolutely convergent we

have E(X) ≪ X1/2.

We notice two things about this computation:

(1) This relies on analytic continuation of ζ(s) to ℜ(s) = 1/2, where it is not

defined by its Dirichlet series. At the heart of the usual proof of analytic

continuation is an application of Poisson summation.

(2) Unfortunately, the convergence issues are serious here. The integral in (3.5)

does not converge, and the above cannot be rigorously justified. So, one

must refine the method so as to allow a rigorous proof.

Before describing Landau’s method, which gives a way of handling the con-

vergence issues, we present a sample result. The following variation is due to

Lowry-Duda, Taniguchi, and the author [LDTT22]:

Theorem 3.3. Let ϕ(s) =
∑

n a(n)λ
−s
n be a zeta function with nonnegative

coefficients, absolutely convergent for ℜ(s) > 1, enjoying an analytic continuation

to C which is holomorphic away from a simple pole at s = 1, and with a ‘well

behaved’ functional equation of degree d relating ϕ(s) to ϕ̂(1− s) for a ‘dual zeta

function’ ϕ̂(s) =
∑

n b(n)µ
−s
n .

Then, for X ≥ 2 we have

∑
λn<X

a(n) = Ress=1

(
ϕ(s)

)
X +O

(
X

d−1
d+1 δ

d−1
d+1

1 δ̂1
2

d+1 + δ̂1 log(X)
)
, (3.6)

provided that the error term is bounded by the main term, and where

δ1 = Ress=1

(
ϕ(s)

)
,

δ̂1 = sup
Z

1

Z

∑
µn<Z

|b(n)|.

The implied constant depends on the functional equation, but does not depend

further on ϕ(s) or the a(n).

The statement generalizes further, for example to allow a double pole as in

ζ(s)2 and (3.5). Unfortunately the most general version of this result, although

not so complicated theoretically, is rather complicated to state.

8

228



Since the integrand is independent of X, as long as it is absolutely convergent we

have E(X) ≪ X1/2.

We notice two things about this computation:

(1) This relies on analytic continuation of ζ(s) to ℜ(s) = 1/2, where it is not

defined by its Dirichlet series. At the heart of the usual proof of analytic

continuation is an application of Poisson summation.

(2) Unfortunately, the convergence issues are serious here. The integral in (3.5)

does not converge, and the above cannot be rigorously justified. So, one

must refine the method so as to allow a rigorous proof.

Before describing Landau’s method, which gives a way of handling the con-

vergence issues, we present a sample result. The following variation is due to

Lowry-Duda, Taniguchi, and the author [LDTT22]:

Theorem 3.3. Let ϕ(s) =
∑

n a(n)λ
−s
n be a zeta function with nonnegative

coefficients, absolutely convergent for ℜ(s) > 1, enjoying an analytic continuation

to C which is holomorphic away from a simple pole at s = 1, and with a ‘well

behaved’ functional equation of degree d relating ϕ(s) to ϕ̂(1− s) for a ‘dual zeta

function’ ϕ̂(s) =
∑

n b(n)µ
−s
n .

Then, for X ≥ 2 we have

∑
λn<X

a(n) = Ress=1

(
ϕ(s)

)
X +O

(
X

d−1
d+1 δ

d−1
d+1

1 δ̂1
2

d+1 + δ̂1 log(X)
)
, (3.6)

provided that the error term is bounded by the main term, and where

δ1 = Ress=1

(
ϕ(s)

)
,

δ̂1 = sup
Z

1

Z

∑
µn<Z

|b(n)|.

The implied constant depends on the functional equation, but does not depend

further on ϕ(s) or the a(n).

The statement generalizes further, for example to allow a double pole as in

ζ(s)2 and (3.5). Unfortunately the most general version of this result, although

not so complicated theoretically, is rather complicated to state.

8

Note that the error term may be written simply as O(X
d−1
d+1 ), where the implied

constant depends on ϕ. In typical examples, ϕ is fixed and X is allowed to

increase, and the precise ϕ-dependence is not of much interest. In this case, our

work reduces to results obtained by Landau [Lan12, Lan15] and Chandrasekharan

and Narasimhan [CN62]. The novelty of [LDTT22] was to carefully track the ϕ-

dependence.

We will apply this to the Shintani zeta functions of the form defined in (2.7), and

the uniformity will allow us to track the dependence on Φm. From the standpoint

of Landau’s method, the zeta function dual to ξ±(s,Φm) is m4sξ±(s, Φ̂m), where

we define Φ̂m : V ∗(Z/mZ) → C by the usual Fourier transform formula

Φ̂m(x) :=
1

m4

∑
y∈V (Z/mZ)

Φm(y) exp

(
2πi · [x, y]

m

)
, (3.7)

and lift Φ̂m to a function on V ∗(Z), which we identify with V (Z). (There are

some mild technicalities in this identification, which we sweep under the rug.)

Note the factor of m4s! This comes from the functional equation, but if we

include it in the definition of the zeta function – as we will do here – then the

functional equation will be the same for all Φm simultaneously, so that we can

use our ‘Uniform Landau’ Theorem 3.3. We obtain the following:

Theorem 3.4. As described above, given a zeta function pair

ξ±(s,Φm) :=
∑
n

a±(Φm, n)n−s, ξ±(s, Φ̂m) :=
∑
n

a±(Φ̂m, n)n−s.

Let
δ1 = δ1(Φm) := Ress=1ξ

±(s,Φm) (3.8)

and

δ̂1 = δ̂1(Φm) := m4 · sup
N

1

N

∑
α∈{±}

∑
n<N

aα(|Φ̂m|, n), (3.9)

Assuming two technical conditions which we omit here, we have

N±(X,Φm) :=
∑
n<X

a±(Φm, n)

=
∑

σ∈{1, 56}

Xσ

σ
· Ress=σξ

±(s,Φm) +O
(
X3/5δ

3/5
1 (δ̂1)

2/5
)
.

(3.10)

9
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We will end up summing the error term over many different Φm. In practice

we will have something like δ1(Φm) ≪ 1
m for many Φm of interest – and naturally

we are happy to see negative exponents of m in the error term! What is clear

from this formula is that we want to bound δ̂1 – and hence Φ̂m – as much as we

can.

Idea of the proof of uniform Landau. To even give a reasonable sketch of the

proof would take us too far afield, but we will at least give the idea. As explained

above, we have

∑
n<X

a±(Φm, n) =
1

2πi

∫ 2+i∞

2−i∞
ξ±(s,Φm)Xs ds

s

and morally the idea is to shift the contour to the left of the critical strip, picking

up polar contributions at s = 1 and s = 5/6, and using the functional equation

of the zeta function to estimate and bound the resulting integral.

Unfortunately, the zeta function grows along vertical lines to the left of the

critical strip. This also implies that known bounds grow within the critical strip.

To remedy the convergence issues, we consider the following variation of Per-

ron’s formula, based on Riesz means, which holds for each positive integer k:
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As the growth of ξ is polynomial along vertical lines, by taking k large enough we

obtain convergence of the integral if we shift the line to ℜ(s) = c, for c ∈ [0, 1],

or for c slightly smaller than 0. The above strategy then works as it was earlier

described.

We could simply declare victory for a variant of our cubic field count-

ing problem, where we count each field with |Disc(K)| < X with weight

(1− |Disc(K)|/X)k. This is an example of a general principle in number theory,

that incorporating smooth weights often leads to simpler analysis and/or better

error terms. (At heart, the general principle comes from Fourier analysis: the
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smoother the function, the more rapidly its Fourier transform decays.) See

Shankar, Södergren, and Templier [SST23] for an example where the authors

‘declare victory’ with a different smoothing function, and then obtain striking

results on the central values of the associated Dedekind zeta functions.

Instead, we recover the unsmoothed estimate, up to an error term. Define the

kth finite difference operator ∆k
y by

∆k
yF (X) =

k∑
ν=0

(−1)k−ν

(
k

ν

)
F (X + νy), (3.12)

and then in (3.11) we have

N(X,Φm) = y−k∆k
y

(
XkN(X,Φm, k)

)
+O

( ∑
X≤n≤X+ky

|a(Φm, n)|
)
. (3.13)

Provided that one can also analyze the finite differences of the shifted integral in

(3.11), we are able to obtain the theorem.

4 Equidistribution and exponential sums

Recall from (3.10) that we can obtain good error terms by bounding the partial

sums of |Φ̂m(x)| where by (3.7) we defined

Φ̂m(x) :=
1

m4

∑
y∈V (Z/mZ)

Φm(y) exp

(
2πi · [x, y]

m

)
. (4.1)

It turned out that Taniguchi and I got very lucky, in that when Φm = Ψp2 is

the characteristic function of those binary cubic forms which are nonmaximal at

p, we obtained the following explicit formula in [TT13a]:

Theorem 4.1. The Fourier transform of Ψp2 is given as follows:

(1) Let b ∈ pV (Z/p2Z). We write b = pb′ and regard b′ as an element of

V (Z/pZ). Then

Ψ̂p2(pb′) =




p−2 + p−3 − p−5 b′ : of type (0),

p−3 − p−5 b′ : of type (13), (121),

−p−5 b′ : of type (111), (21), (3).
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(2) For b ∈ V (Z/p2Z) \ pV (Z/p2Z),

Ψ̂p2(b) =





p−3 − p−5 b : of type (13∗∗),

−p−5 b : of type (13∗), (1
3
max),

0 otherwise.

We omit the precise definitions of notation such as (13∗∗). What is most impor-

tant is that the ‘otherwise’ case is by far the most common, so that we have

|Ψ̂p2(b)| ≈ p−7 (4.2)

on average. As the error term (3.10) contains sums of |Ψ̂m2(b)| over many different

b, the power savings here is very visible in our final error terms!

Taniguchi and I developed two methods for proving formulas such as the one

above. Our work in [TT13a] was based on work of Mori [Mor10]; see also Hough

[Hou20] for a formidable computation of this type. In [TT20], we developed a

simpler method which works in many cases.

To give the reader some idea of how such formulas may be proved, we will give

a complete proof of a simpler formula, using the method in [TT20].

Proposition 4.2. Let wp : V (Fp) → C be the counting function of the number

of roots of v ∈ V (Fp) in P1(Fp). Then, assuming that p ̸= 3 we have

ŵp(v) =




1 + p−1 v = 0,

p−1 v ̸= 0 and v has a triple root in P1(Fp),

0 otherwise.

(4.3)

It turns out that this formula is itself of significant interest! But for now we

notice the parallel structure: better than square root cancellation in average, with

the largest values confined to the most singular orbits.

Here is the proof. First we note that there is a bilinear form defined on V ,

by
[x, x′] := aa′ + bb′/3 + cc′/3 + dd′, (4.4)

which satisfies [gx, g−Tx′] = [x, x′] identically, as can be checked by hand or by

more highbrow methods. This formula is formally true over Z or over Fp (p ̸= 3),

and we already used it implicitly to identify V ∗(Z) with (a sublattice of) V (Z).
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Now write ⟨n⟩ := exp(2πin/p), and write Φp for the characteristic function of

the orbit (13): those nonzero elements of V (Fp) which have a triple root. By

Fourier inversion, it suffices to compute the Fourier transform of the right side of

(4.3), and thus to compute Φ̂p.

Using the facts that (13) is a single GL2(Fp)-orbit, and that our bilinear form

is SL2(Fp)-invariant, we compute that

p4Φ̂p(y) =
1

p2 − p

∑
g∈SL2(Fp)

∑

t∈F×
p

⟨[g · (t, 0, 0, 0), y]⟩

=
1

p2 − p

∑
g∈SL2(Fp)

∑

t∈F×
p

⟨[(t, 0, 0, 0), gT y]⟩

The inner sum is equal to p − 1 if [1 : 0] ∈ P1(Fp) is a root of gT y, and −1 if

it is not. Equivalently, the inner sum is equal to p − 1 if gT y is in the subspace

(0, ∗, ∗, ∗) defined by a = 0, and −1 if it is not.

For each root α of y, counted with multiplicity, [1 : 0] will be a root of gT y for
|SL2(Fp)|

p+1 = p2 − p elements g ∈ SL2(Fp), so that

p4Φ̂p(y) =
1

p2 − p
· (p2 − p) ·

(
pwp(x)− (p+ 1)

)
.

Proposition 4.2 now follows easily.

We can isolate the following principle from the proof. Let W = (∗, 0, 0, 0) be

the subspace of binary cubic forms which are multiples of u3; this consists of the

zero form and forms in (13). We then have W⊥ = (0, ∗, ∗, ∗), and all forms in

this subspace have a root. Translating each of these subspaces around by all of

SL2 or GL2, we obtain ‘dual’ functions which depend only on the GL2-orbits of

y, and whose Fourier transforms are related by the above formula.

Generalizing this recipe, and following [TT20], suppose we have:

� A prehomogeneous vector space (G,V );

� A finite number of orbits, which we list as O1, . . .Or. We write |Oi| for
their cardinalities and ei for their characteristic functions.

� A bilinear form [−.−] satisfying an analogue of the G-invariance property

described above.
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Then for any subspace W of V , we have

∑
1≤i≤r

|Oi ∩W |
|Oi|

· êi =
|W |
|V |

∑
1≤i≤r

|Oi ∩W⊥|
|Oi|

· ei. (4.5)

Then, both sides are functions of the G-orbits on V . If we choose enough differ-

ent W , so that the functions on the left span the r-dimensional vector space of

functions of the G-orbits of V , then we obtain all the êi – and hence an explicit

formula for the Fourier transform of any G-invariant function.

5 Putting it all together

We now see how to put all of these ingredients together. For convenience, we

will track the error terms a bit less carefully than in (1.2), and obtain an error

term of O(X2/3+ϵ).

Let, for each squarefree q, Ψq2 : V (Z/q2Z) → C denote the characteristic

function of those binary cubic forms which are nonmaximal at every prime di-

viding q. The Levi–Delone–Faddeev correspondence, the Davenport–Heilbronn

correspondence, and inclusion-exclusion give

N±
≤3(X) =

∑
q

µ(q)N±(X,Ψq2), (5.1)

where:

� As above,

N±(X,Ψq2) :=
∑
n<X

a±(Ψq2 , n),

ξ±(s,Ψq2) =
∑
n

a±(Ψq2 , n)n
−s

:=
∑

x∈GL2(Z)\V (Z)
±Disc(x)>0

1

|Stab(x)|
Ψq2(x)|Disc(x)|−s.

Equivalently, N±(X,Ψq2) is the number of binary cubic forms x, weighted

by |Stab(x)|−1, with 0 < ±Disc(x) < X, which are nonmaximal at q;

14
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· êi =
|W |
|V |

∑
1≤i≤r

|Oi ∩W⊥|
|Oi|

· ei. (4.5)

Then, both sides are functions of the G-orbits on V . If we choose enough differ-

ent W , so that the functions on the left span the r-dimensional vector space of

functions of the G-orbits of V , then we obtain all the êi – and hence an explicit
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� N±
≤3(X) is the number of maximal cubic rings R with 0 < ±Disc(R) < X,

each weighted by |Aut(R)|−1. These are in bijection with the following

sets: cubic fields K; algebras L × Q where L is a quadratic field; and

Q×Q×Q.

The factor of |Aut(R)| is a little bit annoying, but not actually difficult to deal

with:

Proposition 5.1. Let R be the maximal order in K, L × Q, or Q × Q × Q as

above. Then:

� If K is an S3-cubic field, then |Aut(R)| = |Aut(K)| = 1.

� If K is an cyclic cubic field, then |Aut(R)| = |Aut(K)| = 3.

� If R is a maximal order in L × Q with L quadratic, then |Aut(R)| =

|Aut(L×Q)| = |Aut(L)| = 2.

� If R is the maximal order in Q × Q × Q, then |Aut(R)| = 6. (There is a

unique such example – so the contribution to the asymptotics is negligible.)

As there are only O(X1/2) cyclic cubic fields K with |Disc(K)| < X, we thus

have

N±
3 (X) = N±

≤3(X)− 1

2
N±

2 (X) +O(X1/2) (5.2)

where N±
3 (X) and N±

2 (X) count the number of cubic and quadratic fields, re-

spectively, counted without weighting, with discriminant bounded by X.

We now split the sum into two parts in accordance with whether q ≤ Q or

q > Q, and apply Landau’s method (Theorem 3.4) for the former. We obtain

N±
≤3(X,Σ) =

∑
q≤Q

µ(q)N±(X,Ψq2) +
∑
q>Q

µ(q)N±(X,Ψq2)

=
∑

σ∈{1, 56}

Xσ

σ

∑
q≤Q

µ(q) · Ress=σξ
±(s,Ψq2) +O (E2 + E3) ,

=
∑

σ∈{1, 56}

Xσ

σ

∞∑
q=1

µ(q) · Ress=σξ
±(s,Ψq2) +O (E1 + E2 + E3) ,

15
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with

E1 :=
∑

σ∈{1, 56}

Xσ
∑
q>Q

∣∣Ress=σξ
±(s,Ψq2)

∣∣ ,

E2 :=X
3
5

∑
q≤Q

Ress=1ξ
±(s,Ψq2)

3
5 δ̂1(Ψq2)

2
5 ,

E3 :=
∑
q>Q

N±(X,Ψq2).

We handle the residues first; we have

Ress=1ξ
±(s,Ψq2) = α±

∏
p|q

(p−2 + p−3 − p−5) + β
∏
p|q

(2p−2 − p−4), (5.3)

where

α+ =
π2

72
, α− =

π2

24
, β =

π2

24
, (5.4)

and the residues at s = 5/6 are smaller. Roughly, if not quite technically, we have

Ress=1ξ
±(s,Ψq) ≍ 1

q2 . We obtain

E1 ≪
∑
q>Q

X

q2−ϵ
≪ X

Q1−ϵ
.

For E3, we have a tail estimate

N±(X,Ψq2) ≪ X/q2−ϵ, (5.5)

and hence we get

E3 ≪
∑
q>Q

X

q2
≪ X

Q1−ϵ
.

The existence of the tail estimate (5.5) is probably the most unique feature of

this problem; in analogous situations, very often tail estimates are expected but

cannot be proved.

The proof of (5.5) is algebraic rather than analytic, and it is not difficult to

prove. One must understand, for each maximal cubic ring R, how many nonmax-

imal cubic rings it can contain with index q. See, for example, Proposition 29 of

[BST13] for an elementary upper bound, which is stated for q prime but which

readily generalizes to q squarefree. More precise equalities can also be obtained:

see Proposition 33 of [BST13] or Section 2 of [DW88].
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The trickiest part of the argument – at least that was not known prior to

[TT13b], is to verify that δ̂1(Ψq2) ≪ q1+ϵ. We will not try to explain the messy

details here, but the heart of the argument is that

δ̂1(Ψq2) ≪ q8−7+ϵ, (5.6)

where this −7 is the same −7 as in (4.2). Roughly speaking, heuristically speaking

one expects that the −7 of (4.2) should lead to a −7 in (5.6), and some of the

more technical parts of [BTT] are dedicated to demonstrating that the details

can be made to work.*2

Given that, we see that

E2 ≪ X
3
5

∑
q≤Q

q−6/5+ϵ · q2/5+ϵ ≪ X
3
5Q1/5+ϵ,

and so we obtain a final error term of

E1 + E2 + E3 ≪ Xϵ
(X
Q

+X
3
5Q1/5 +

X

Q

)
.

We optimize by taking Q = X1/3 and getting an error term of O(X2/3+ϵ).

Further reading

Within this volume, we recommend three other contributions on closely related

topics: M. Suzuki’s discussion [鈴木美] of Hough’s work [Hou19] on the shape of

cubic fields; Y. Suzuki’s work [鈴木雄] describing Bhargava’s averaging method,

proving similar results without the use of zeta functions; and Yamamoto’s note

[山本] describing O’Dorney’s work [O’D] on ‘algebraic functional equations’, which

we describe a bit more below.

Some additional references (a far from exhaustive list!) are:

� For the proof of Theorem 1.1, along the lines presented here, see Bhargava,

Taniguchi, and the author’s work [BTT]. This paper also presents a version

*2 See [TT13b, Theorem 3.1] for a direct proof of (5.6). In [BTT], (5.6) is proved on average

over q, in conjunction with a variant of Landau’s method that permits this. This allowed

us to simultaneously obtain an analogue to (1.2) for 3-torsion in quadratic fields, where

the analogue of (5.6) can’t be proved directly but can be proved on average.
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of Theorem 1.1 with ‘local conditions’ – for example, if one wants to count

cubic fields where 5 is ramified and 7 is inert.

This ‘local conditions’ version has various applications to other arithmetic

statistics problems; see [BTT] for a summary and further references.

� Taniguchi and the author’s previous work [TT13b] also proves a variation,

counting cubic fields in arithmetic progressions. Here we were able to

demonstrate unexpected biases. For example, in the functions counting

cubic fields K with Disc(K) ≡ a (mod 7), the secondary term is different

for every a!

� For an alternative treatment of Theorem 1.1 with a somewhat larger error

term, see Bhargava, Shankar, and Tsimerman [BST13]. Their approach

avoids the zeta function theory, instead applying Bhargava’s averaging

method, and is much more self-contained. We also recommend [BST13] for

a particularly readable treatment of the Delone-Faddeev and Davenport-

Heilbronn correspondences.

Their methods generalize widely; see, for example, Bhargava and Shankar

[BS15] for one of many examples of spectacular results that can be thus

obtained.

� Yet another alternative treatment involves smoothing the sums; see

Shankar, Södergren, and Templier [SST23] for such a variation of Theorem

1.1.

� Analogues of these questions are also interesting in the function field set-

ting, where some algebro-geometric considerations ‘explain’ the secondary

term. See Zhao [Zha13].

� For background on Shintani zeta functions, we recommend Shintani’s orig-

inal paper [Shi72]. For a more comprehensive overview to prehomogeneous

vector spaces and their zeta functions, see Kimura’s book: [木村 98] in

Japanese, or [Kim03] in English translation. See also Sato-Shintani [SS74]

for the landmark paper on which much of Kimura’s book is based, and

Yukie’s book [Yuk93] for a research monograph on this more general fam-

ily of Shintani zeta functions, most notably treating the ‘quartic case’ of

pairs of ternary quadratic forms.
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[BS15] for one of many examples of spectacular results that can be thus

obtained.

� Yet another alternative treatment involves smoothing the sums; see

Shankar, Södergren, and Templier [SST23] for such a variation of Theorem

1.1.

� Analogues of these questions are also interesting in the function field set-

ting, where some algebro-geometric considerations ‘explain’ the secondary

term. See Zhao [Zha13].

� For background on Shintani zeta functions, we recommend Shintani’s orig-

inal paper [Shi72]. For a more comprehensive overview to prehomogeneous

vector spaces and their zeta functions, see Kimura’s book: [木村 98] in

Japanese, or [Kim03] in English translation. See also Sato-Shintani [SS74]

for the landmark paper on which much of Kimura’s book is based, and

Yukie’s book [Yuk93] for a research monograph on this more general fam-

ily of Shintani zeta functions, most notably treating the ‘quartic case’ of

pairs of ternary quadratic forms.

18

� Finally, the Shintani zeta functions satisfy a stunning – and to the author,

totally surprising – “algebraic functional equation”, proved via class field

theory instead of complex and Fourier analysis. This was conjectured by

Ohno [Ohn97] and proved by Nakagawa [Nak98]; see Gao [Gao18] and

O’Dorney [O’D17] for further proofs. See also [O’D] for further results

by O’Dorney in this vein, or Yamamoto [?] for an overview of O’Dorney’s

work.
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