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Societal Impact Statement

Parasitic witchweeds (Striga species) pose a serious threat to food security in Africa,

attacking cereal grains and legumes. Chemicals released from the host roots that initi-

ate the life cycle of Striga are known as germination stimulants, predominantly strigo-

lactones (SLs). Strigol, the first identified SL, was isolated from the root exudates of

cotton (Gossypium hirsutum), a false host of Striga, over 50 years ago. The identifica-

tion of strigol synthase in cotton establishes the complete biosynthesis pathway of

this emblematic SL. This discovery has the potential to advance our understanding of

SL-mediated rhizosphere interactions and enhance cotton's effectiveness as a

trap crop.
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1 | INTRODUCTION

Strigol, a plant specialized metabolite, was first discovered as a germi-

nation stimulant for the root parasitic weed Striga lutea, from root exu-

dates of the cotton plants, Gossypium hirsutum (Cook et al., 1966)

(Figure 1a). Cotton can induce germination of Striga seeds but not func-

tion as a host. This false host is employed as a trap crop to diminish the

seed bank of Striga. The relative structure of strigol was determined

using spectroscopic and X-ray crystallographic data (Cook et al., 1972).

A racemic mixture of strigol (a mixture of two enantiomers, strigol and

ent-strigol) was synthesized and optically resolved, enabling the

unequivocal establishment of the absolute structure of natural strigol

(Brooks et al., 1985). Following the discovery of strigol, structural ana-

logs with the germination-stimulating activity for Striga were identified

in the root exudates of host plants. Butler (1995) coined the term stri-

golactone (SL) to refer to these strigol analogs. SLs are now recognized

as exhibiting diverse functions, including rhizosphere signaling that

induces hyphal branching in arbuscular mycorrhizal fungi (Akiyama

et al., 2005) and endogenous plant hormones that inhibit shoot branch-

ing (Gomez-Roldan et al., 2008; Umehara et al., 2008). The potential of
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F IGURE 1 Screening of strigol synthases and identification of GhCYP71AH as a potential candidate. (a) Structures of canonical strigolactones
(SLs). (b) Proposed pathway for SL biosynthesis in Gossypium hirsutum. Enzymes catalyzing the reactions shown with red arrows were confirmed
in this study. CCD, CAROTENOID CLEAVAGE DIOXYGENASE; MAX1, MORE AXILLARY GROWTH 1; Gh, Gossypium hirsutum. (c) The
reconstruction of the 5-deoxystrigol (5DS) biosynthesis pathway in Nicotiana benthamiana leaves. The transient expression of carlactone
(CL) biosynthesis genes (AtD27, AtCCD7, and AtCCD8) from Arabidopsis and GhMAX1 (Gh_D05G044100) from G. hirsutum produced carlactonoic
acid (CLA). In addition, co-expression of GhCYP722C (Gh_A12G067300) resulted in the formation of 5DS. The signal intensity of each
chromatogram is 1.25 � 104 and 5.60 � 105 for CLA and 5DS, respectively. STD, authentic standard. (d and e) Screening for strigol synthase.

Each candidate cytochrome P450s was co-expressed with the reconstructed 5DS pathway in N. benthamiana leaves. Representative
chromatograms of SL analysis by LC–MS/MS (d) and the results of SL quantification (e) are shown. (d) The signal intensity for each chromatogram
is 5.20 � 105 and 2.40 � 106 for strigol and 5DS, respectively. IS, internal standard; STD, authentic standard. (e) The SL content of
N. benthamiana leaves was represented as the relative peak area per fresh weight of roots. The relative peak area was calculated by measuring
the peak area of peak appearing at the respective retention time for the authentic rac-strigol and rac-5DS, and dividing by the peak area of the
internal standard, rac-20-epi-strigol. Error bars represent means ± SE (n = 3 biologically independent replicates).

2 WAKABAYASHI ET AL.

 25722611, 0, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1002/ppp3.10420 by K

obe U
niversity, W

iley O
nline L

ibrary on [27/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SLs to mitigate the adverse effects caused by root parasitic weeds on

plant production prompted the development of synthetic strigol ana-

logs, including GR compounds (Johnson et al., 1981). It is noteworthy

that most of these structural developments had been accomplished

soon after the identification of strigol. These analogs have had a tre-

mendous impact on SL research, not only for the management of root

parasitic weeds, but also for the study of plant–microbe communication

in the rhizosphere and the control of plant architecture.

Over 30 distinct naturally occurring SLs have been identified in a

variety of plants. Their common biosynthetic precursor carlactone

(CL) is synthesized from β-carotene through the core SL biosynthesis

pathway involving sequential reactions of DWARF27 (D27), CAROT-

ENOID CLEAVAGE DIOXYGENASE 7 (CCD7), and CCD8 (Alder

et al., 2012). The biosynthesis of SLs downstream of CL has become

increasingly clear. In Arabidopsis, cytochrome P450 (CYP)

AtCYP711A1, encoded by MORE AXILLARY GROWTH 1 (MAX1), cat-

alyzes the conversion of CL to carlactonoic acid (CLA) (Abe et al., 2014;

Seto et al., 2014). This enzymatic conversion was found to be a con-

served function of CYP711A/MAX1 homologs in various plants

(Yoneyama et al., 2018). In rice (Oryza sativa), two MAX1 homologs

convert CL to 4-deoxyorobanchol (4DO) via CLA and 4DO to oroban-

chol (Yoneyama et al., 2018; Zhang et al., 2014). The cotton plants,

G. hirsutum and G. arboreum, produce 5-deoxystrigol (5DS) (Iseki

et al., 2018), a stereoisomer of 4DO. In G. arboreum, the conversion of

CLA to 5DS is catalyzed by another CYP family enzyme, GaCYP722C

(Wakabayashi et al., 2020). The conversion to 5DS is also catalyzed by

the CYP722C subfamily in other 5DS-producing dicot plants (Wu

et al., 2021). SLs sharing the same planar carbon skeleton as 4DO and

5DS have a characteristic tricyclic lactone (ABC-ring) that connects to a

butenolide D-ring through an enol ether bridge. These are collectively

known as canonical SLs. Both strigol and sorgomol are hydroxylated

compounds of 5DS, and contain a hydroxy group at C-5 and C-9,

respectively (Figure 1a). In sorghum (Sorghum bicolor), SbCYP728B35

catalyzes the introduction of a hydroxy group at C-9 of 5DS to form

sorgomol (Wakabayashi et al., 2021); however, the complete biosyn-

thesis pathway for strigol, a prototypical canonical SL, in G. hirsutum

remains elusive, despite more than half a century since its discovery.

In the present study, we selected candidate strigol synthase genes

in a transcriptome analysis of G. hirsutum roots by identifying upregu-

lated genes under conditions that promote SL production. Screening of

candidate genes via heterologous expression in the Nicotiana benthami-

ana transient expression system revealed GhCYP71AH as a promising

candidate. Enzyme assays were performed using purified recombinant

GhCYP71AH expressed in Escherichia coli to determine its substrate

specificity and stereoselective hydroxylation of 5DS. These results con-

firm the function of GhCYP71AH as a strigol synthase (Figure 1b).

2 | EXPLORATION OF CANDIDATE CYPs
FOR STRIGOL SYNTHASE

In a previous study, we demonstrated that the respective administra-

tion of CL, CLA, and 5DS in hydroponic solutions of G. hirsutum

resulted in the formation of strigol (Iseki et al., 2018). The conversion

of the immediate precursor 5DS to strigol was inhibited by the CYP

inhibitor uniconazole-P in a dose-dependent manner (Ueno

et al., 2018), suggesting that CYP catalyzes the introduction of a

hydroxy group at C-5 of 5DS. We also demonstrated that under

phosphate-deficient conditions, the expression of SL biosynthesis

genes was upregulated in G. arboreum, another Gossypium sp., result-

ing in increased SL production (Iseki et al., 2018; Wakabayashi

et al., 2020). In the present study, we confirmed high strigol exudation

from the roots of G. hirsutum grown hydroponically under phosphate-

deficient conditions (Figure S1), which is consistent with our previous

report (see Method S1 for the detailed methods employed in this

study) (Iseki et al., 2018). We hypothesized that the expression of the

biosynthesis gene responsible for the conversion of 5DS to strigol is

also induced by phosphate deficiency in G. hirsutum. To identify candi-

date CYP genes involved in the synthesis of strigol, we performed a

comparative transcriptome analysis by RNA-seq using the above-

mentioned G. hirsutum roots grown under phosphate-rich and

phosphate-deficient conditions (Figure S1). Eleven transcripts, anno-

tated as encoding CYP, were differentially up-regulated under

phosphate-deficient conditions (Table S1). These transcripts include

GhCYP722C (Gh_A12G067300.1), an ortholog of GaCYP722C in

G. arboreum which converts CLA to 5DS (Wakabayashi et al., 2020).

As described below, we confirmed the same function of GhCYP722C

as GaCYP722C. Accordingly, 10 transcripts, excluding GhCYP722C,

were selected as candidates for strigol synthase.

3 | EVALUATION OF THE CONVERSION
ACTIVITY OF 5DS TO STRIGOL BY
CANDIDATE CYPs IN N. benthamiana

Reconstruction of the SL biosynthesis pathway in N. benthamiana

through the transient co-expression of relevant genes represents a

robust approach to determine the function of additional unknown bio-

synthesis genes (Wang et al., 2022). Prior to pathway reconstruction,

we confirmed the function of GhMAX1 (Gh_D05G044100) (Tian

et al., 2022), a homolog of MAX1, using an in vitro enzyme assay as

previously reported (Wakabayashi et al., 2020). Recombinant

GhMAX1, which was expressed in a baculovirus-insect cell expression

system, catalyzed the conversion of CL to CLA (Figure S2), thus

verifying its conserved function (Yoneyama et al., 2018). In the recon-

struction of the 5DS biosynthesis pathway in N. benthamiana, we co-

expressed the Arabidopsis genes AtD27, AtCCD7, and AtCCD8, which

are necessary for CL biosynthesis, along with the G. hirsutum genes,

GhMAX1 and above-mentioned GhCYP722C. LC–MS/MS analysis of

leaf extracts co-expressing these genes revealed 5DS production,

which confirmed the successful reconstruction of the 5DS biosynthe-

sis pathway (Figures 1c and S3). The generation of 5DS by

GhCYP722C provides further evidence of the function of CYP722C in

5DS-producing dicot plants.

We successfully cloned six of the 10 CYP candidates

(Gh_D07G061000.1, GhCYP71AH; Gh_D04G121500.1, GhCYP76A;

WAKABAYASHI ET AL. 3
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Gh_D12G259300.1, GhCYP78A; Gh_A01G219900.1, GhCYP712A;

Gh_D01G076100.1, GhCYP728B; Gh_A02G027800.1, GhCYP749A)

(see Table S2 for primer sequences used for cloning). Sequencing

results showed that the translated amino acid sequences of cloned

GhCYP78A and GhCYP728B matched with those recorded in the

database, but the others were found to be, in part, different from

the database sequences (Figure S4). We transiently co-expressed each

of them together with the 5DS biosynthesis pathway. Of these six

CYPs, the co-expression of only GhCYP71AH resulted in a significant

reduction in 5DS. The generation of a product with a retention time

of 11.67 min was observed, which was consistent with that of

authentic rac-strigol (Figure 1d,e). These results suggest that

GhCYP71AH is a potential candidate for strigol synthase in

G. hirsutum. Sorgomol was not detected in the leaf extracts of

F IGURE 2 Stereospecific introduction of hydroxy group into 5-deoxystrigol (5DS) catalyzed by GhCYP71AH. (a) Structures of the 5DS
stereoisomers used as substrates and the strigol stereoisomers considered the enzyme reaction products. (b) In vitro enzyme assay of
recombinant GhCYP71AH with each of the 5DS stereoisomers as substrates. An enzyme reaction product consistent with the corresponding
strigol stereoisomer standard was confirmed only when 5DS was used as a substrate. STD, authentic standard.

4 WAKABAYASHI ET AL.
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N. benthamiana co-expressing GhCYP728B (Figure S5), which belongs

to the same subfamily as SbCYP728B35 catalyzing the conversion of

5DS to sorgomol in sorghum (Wakabayashi et al., 2021).

4 | IDENTIFICATION OF GhCYP71AH AS
STRIGOL SYNTHASE

To confirm the function of GhCYP71AH as strigol synthase, we per-

formed an in vitro enzyme assay using purified recombinant GhCY-

P71AH. Recombinant GhCYP71AH was expressed in E. coli as a

truncated form of the N-terminal transmembrane domain and purified

(Figure S6). For the enzyme assay, we focused on the substrate speci-

ficity and stereoselectivity of the C-5 hydroxylation of 5DS. The 5DS

stereoisomers, 5DS, ent-5DS, 20-epi-5DS, and ent-20-epi-5DS (4DO),

were used as substrates. Eight stereoisomers of strigol were consid-

ered as enzyme reaction products, depending on the configuration of

the introduced hydroxy group at C-5 of each 5DS stereoisomer

(Figure 2a). When 5DS was used as a substrate, a peak with a reten-

tion time consistent with that of authentic rac-strigol (mixture of stri-

gol and ent-strigol) was observed. In contrast, no products consistent

with the corresponding strigol stereoisomer standards were detected

with the other substrates. (Figure 2b). Because 5DS contains a C-20R

configuration in the D-ring, the enzyme reaction product consistent

with rac-strigol using 5DS as a substrate must be identical to strigol

(Figure 2). The results indicate that GhCYP71AH catalyzes the stereo-

selective introduction of a hydroxy group at C-5 of 5DS to form

strigol.

In the present study, the identification of strigol synthase sig-

nifies a noteworthy advancement in understanding the complete bio-

synthesis pathway of strigol, a prototypical and emblematic SL, at the

molecular and biochemical levels. Enhancing the strigol biosynthesis

pathway in cotton may confer useful traits as a trap crop, producing

high levels of SL resulting in more Striga suicidal germination. On the

other hand, it should be noted that the possibility that four uncloned

candidates, whose inability to be cloned remains obscure, encode

strigol synthase cannot be ruled out. These findings will further

advance the use of strigol in SL research and increase our under-

standing of the rhizosphere interaction between plants and neighbor-

ing organisms.
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