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MHz-Driven Snubberless Soft-Switching
Current-Fed Multiresonant DC-DC Converter
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Ryotaro Taguchi, Non-member, and Ching-Ming Lai, Senior Member, IEEE

Abstract—A new multiresonant step-up dc-dc converter is
proposed in this article, which is suitable for obtaining a
high dc-dc voltage ratio with minimizing the counts of active
and passive components. The proposed dc-dc converter fea-
tures the snubberless zero current soft-switching (ZCS) com-
mutation with megahertz (MHz) high frequency driving of
GalliumNitride-High Electron Mobility Transistor (GaN-HEMT)-
based two-phase class-E inverters by adopting quasi resonance
and dual parallel load resonance; multiresonant circuitry. The
circuit configuration and operation principle are described to-
gether with the theory of switch-mode transitions and steady-
state power transfer. A frequency-domain analysis is provided
on the basis of the equivalent circuit, and the design guideline
of multiresonant tanks is provided in details. The essential
performances of the proposed dc-dc converter are demonstrated
by experiment of 1-2MHz / 120W prototype; ZCS operations
are confirmed over the wide range of load variations (40-100%)
with maximum efficiency 91.3% at 86.5% load, electro magnetic
interference (EMI) noise reduction 29-79% as compared to hard
switching, and the voltage ratio 1.5 times higher than the non-
multiresonant topology, and less than 1% low-current ripple
factor in the dc inductor.

Index Terms—current-fed high frequency inverter, high step-
up dc-dc converter, interleaved, multiresonant converter, snub-
berless, zero current soft-switching (ZCS).

I. INTRODUCTION

AStep-up dc-dc converter is the essential power converter

for renewable and sustainable power system, transporta-

tion electrifications, and a wide variety of circuit topologies

have been proposed during the past decades. In particular, the

high step-up ratio is one of the critical performance indexes in

the dc-dc converters so that the energy utilization is enhanced

while efficient power conversion can attain. Downsizing the

converter scale is also a technically popular concern in the lat-

est power electronics application, accordingly high-frequency

switching, e.g. Megahertz (MHz) driving technique has great

relevance with achievement of high power density[1]-[7]. The

MHz-driven step-up dc-dc converter offers compact and low-

profile scale as well as high modularity, the suitable applica-

tions of which includes the emerging power electronics appli-

cations such as piezoelectric energy harvester, fuel cell, and

class-E power amplifier of wireless power transfer (WPT)[8].
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The existing high step-up dc-dc converters are di-

vided into: the stacked connection ([9][10]), switched capac-

itor / inductor ([11]–[13]), voltage multiplier ([14]), reconfig-

urable ([15][16]), edge resonant ([17][18]), and multi reso-

nance ([19]). The overview of those existing topologies are

summarized in TABLE I. Those step-up dc-dc converters ex-

hibit high voltage ratio, however the counts of active and

passive components inevitably increase and cost effectiveness

may be lost. In contrast, current-fed dc-dc converters with high

frequency link naturally attain voltage step-up by overlapping

the ON-duty cycles of two active switches (over 50%). In par-

ticular, the two-phase single-ended current-fed dc-dc converter

is a good candidate for MHz-driven step-up dc-dc converters

in terms of relatively simple circuit topology as well as the

common ground gate drivers[20].

The high efficiency and low electromagnetic interfer-

ence (EMI) noises switching performance plays a key role

in the MHz-driven power converters while the related tech-

nologies include the developments of materials for mag-

netic components such as high frequency transformer (HF-X)

and inductors, and PCB layouts with the reduced leakage

inductances[3][21][22]. As a soft switching technique for

MOS-gated controlled active power devices, zero voltage soft-

switching (ZVS) is suitable for treating the capacitive charges

in the parasitic capacitances. However, the circulating current

inherently is induced in the resonant networks, which leads

to the complicated commutation process between the power

devices with the aid of auxiliary circuit for the wide range

of ZVS performance. In particular, the current-fed dc-dc

converter as aforementioned cannot achieve the soft switching

without any auxiliary active clamp circuit or active snub-

ber [11]. The quasi-resonant ZVS current-fed dc-dc converters

utilizing the leakage inductance of HF-X and the parasitic

capacitances of power devices was also proposed in [18].

However, circulating current still exists in the high frequency

inverter stage, thus MHz switching cannot be ensured in the

type of current-fed dc-dc converter.

As a solution for the technical limitation and constraint

of ZVS, a current-fed dc-dc converter featuring snubberless

zero current soft-switching (ZCS) of GaN-HEMT with MHz
switching was proposed as schematically drawn in Fig. 1[23].

This topology is based on the quasi-resonant and LC res-

onant converters, and is free from the parasitic ringings of

active switches which is inherent to the ZCS-pulse width

modulation (PWM) dc-dc converters[24], owing to the voltage-

clamping effect on the parallel capacitor in the secondary-side

of HF-X. Although the similar approach was proposed in the
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past decade[25], the originality exists in the MHz driving by

snubberless structure together with the dc coupled inductors

for further reduction of passive components. The technical

constraint of the previously-proposed topology in [23] is the

voltage ratio inherently depends on the transformer turns ratio

and voltage doubler rectifier. Thus, the technical challenge of

the snubberless dc-dc converter is how to enhance the step-

up ratio by decoupling the edge resonance and parallel load

resonance.

In order to overcome the technical constraint on increas-

ing the step-up ratio, a new multiresonant high step-up dc-

dc converter is proposed in this article. The multiresonant

circuitry in the secondary-side of HF-X is dedicated for lifting

the voltage without losing the merits of snubberless structure.

Therefore, snubberless ZCS technique with multiresonant tank

is attractive for the MHz-driven current-fed dc-dc converter in

terms of soft switching range, counts of active and passive

components, as well as reduction of reactive current. The

novelty and originality exist in the multi-resonant topology;

edge-resonant for ZCS, anti-resonant for reduction of mag-

netizing current in the HF-X, and parallel-load resonant for

high step-up ratio, all of which are comprised by only the

passive components under the conditions of MHz switching.

It is suitable and beneficial for MHz-driven power converter

in terms of practical and cost-effective circuit topology since

no additional active switches are necessary together with the

snubber components. In addition, the simplicity, high step-

up voltage ratio, low current ripple in the dc input source

together with the galvanic isolation are significantly advanta-

geous for renewable power generation systems and energy har-

vest devices such as photovoltaic, liquid hydrogen / fuel cells

and piezoelectric devices applied for the industry, distributed

power, automotive, home and consumer electronics.

The article [23] was dedicated for the basic and original

type of MHz driven snubberless ZCS dc-dc converter, where

the operation principle and analysis on the PFM-based power

regulations were described and followed by the experimental

verification on the snubberless topology. It leads to the original

idea of high step-up dc-dc converter with simple but practical

circuit topology as treated herein. It is true the newly proposed

dc-dc converter is modified and extended from the basic type

by adding the parallel load resonant tank in the secondary

side. However, the strategies on analysis and design of the

main circuit have the different approaches from the basic type

in terms of resonant converters, accordingly the descriptions

and experimental results are different from [23].

The rest of this article is organized as follows: the circuit

topology and operation principle of the proposed multireso-

nant dc-dc converter are described in Section II. The steady-

state characteristics of dc-dc voltage ratio are revealed in

the frequency-domain analysis, whereby the pulse-frequency-

modulation (PFM)-based load voltage and power regulations

are theoretically explained in Section III. In addition, the

design guideline of circuit parameters is also presented in the

same section so that the snubberless ZCS and high step-up

voltage regulation attain simultaneously. The switching perfor-

mances and steady-state characteristics on the load power and

voltage ratio are investigated together with electromagnetic
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Fig. 1. Snubberless ZCS step-up dc-dc converter[23].

noises by experiment in Section IV, after which the effec-

tiveness of the proposed dc-dc converter is verified from the

practical point of view in Section V.

II. CIRCUIT TOPOLOGY AND OPERATION PRINCIPLE

The circuit topology of the proposed high step-up dc-dc

converter is described with PFM-based power controller in

Fig. 2.

The power stage of the primary-side HF-X consists of the

current-fed two-phase class-E inverters which operate by the

interleaved gate clocking in the active switches Q1 and Q2.

Note here that any additional capacitive snubbers are not

necessary in the two-phase class-E inverters. The secondary-

side HF rectifier comprises of an antiparallel capacitorCa and

the parallel-load resonant circuitLp-Cp, the latter of which

works for voltage lifting. The secondary-side rectifier of HF-

X is the voltage doubler, and other multiplier rectifiers can be

candidates in accordance with the step-up ratio. The controller

consists of voltage and current dual loops of the dc load.

The pulse modulations is based on PFM and over 50% ON-

duty ratio in Q1 and Q2. The load voltage is detected and

compared with its reference, after which their difference is

processed by error amplifier (EA). The output of the voltage

error amplifier (EA) is the command value to the load current,

and the current loop with the another EA generates the control

value. The control signal is processed by V/F converter, and

ON-duty signal is generated by V/F converter. The pulse

signal from the V/F converter is feed to a time delay circuit

corresponding to the edge-resonant interval, then the gate

signal of S1 is produced through an OR logic circuit. The

counterpart of gate signal S2 is also generated by the same

logic with 180◦ of phase shift by a NOT gate.

The key operating waveforms of the main circuit and

gate signals are depicted in Fig. 3. The ZCS commutations

complete at the intervals of the two-switch overlapping ”ON”

states. The dc current ripples in iL1 and iL2 are ideally

canceled out by the interleaved manner, so that the low ripple

in the input side can maintain as low profile. The voltage vCa

across Ca is lifted by the effect of the anti-parallel load

resonant tank Lp-Cp.

The mode transitions of switching one-cycle can be divided

into eight modes as depicted in Fig. 4. The ideal conditions

are given as: i) the inductance of L1 and L2 are identical as

expressed by Ld = L1 = L2, ii) the on-resistances of Q1

and Q2 are small enough to neglect. The dc inductor currents
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TABLE I
COMPARISON OF HIGH STEP-UP DC-DC CONVERTERS

Circuit topology References
Numbers of
power devices/
passive comp.

Switching frequency/
Pulse modulation

Input/output
Voltages

Soft-switching
Efficiency

stacked connection [9] 4 / 6 50 kHz / PWM 20V/400V
NR
94/1%@320W

[10] 7 / 5 50 kHz/PWM 20V/402V
NR
93.3%@250W

switched capacitor / inductor [12] 6 / 6 100 kHz/PWM 30-40V/600V
ZVS
97.0%@600W

[13] 9 / 8 40 kHz/PWM 30V/400V
NR
94%@200W

voltage multiplier and stack [15] 6 / 6 50 kHz/PWM 5-10V / 50-100V
NR
94%@400W

reconfigurable [16] 8 ≤ 62-54 kHz
PFM

24-54V/800V
ZVS
96.1%@600W

edge resonance [18] 4 / 6 50 kHz / PWM 45V/380V
ZVS
95.7%@400W

multi resonance [19]
4N / 1+2N
(N-stage)

20MHz / ON&OFF 15.7-30V / 60V
ZVS / ZCS
≤ 96.5%@200W

snubberless [23] 2 / 2
1-2MHz
PFM

10V/85V
ZCS
86.1%@70W

*Counted by a discrete power device. NR: not reported.
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Fig. 2. Proposed multiresonant high step-up dc-dc converter with power
controller.

iL1, iL2 can be expressed in each mode while the steady-state

time-domain equations of the other variables are summarized

in Appendix:

[Mode 1 (t0 ≤ t < t1): Power transfer mode] The active

switch S1 keeps ON-state while Q2 is OFF in this interval.

Then, the magnetic energy is stored in L1 while it is released

to the load. The dc inductor currents can be expressed by

iL1(t) =
(1 + k)Vin − kavca

(1− k2)Ld
· (t− t0) + iL1(t0) (1)

iL2(t) =
(1 + k)Vin − avca

(1− k2)Ld
· (t− t0) + iL2(t0) (2)

where k is the coupling coefficient of the coupled dc induc-

torsL1,L2 while a (= w1/w2) denotes the windings turns ratio

of the HF-X.

[Mode 2 (t1 ≤ t < t2): Edge resonant mode (Q2 ZCS turn-
on)]
The active switch S2 is turned on at t1, then the edge resonance

begins by the leakage inductance Lr and the parallel capaci-

torCa in the secondary-side power stage. The polarity of the

HF-X primary windings current ip naturally changes, and the

capacitor voltage vca increases gradually with the aid of Lr-Cp

edge resonance. The dc inductor currents are expressed by

iL1(t) =
(1 + k)Vin

(1− k2)Ld
· (t− t1) + iL1(t1) (3)

iL2(t) =
(1 + k)Vin

(1− k2)Ld
· (t− t1) + iL2(t1). (4)

The primary-side transformer winding current ip is expressed

by

ip(t) =
avca
ζ

sin{ωq(t− t1)}+ ip(t1) (5)

ip(t1) =
is(t1)

a
� 2Io (6)

ζ = a

√
Lr

Ca
, ωq =

a

2π
√
LrCa

. (7)

[Mode 3 (t2 ≤ t < t3): Edge-resonant mode (Q1 ZCS turn-
off)] The switch current iQ1 naturally reaches to zero at t2.

By removing the gate-signal during this interval, ZCS turn-off

can attain in Q1. The condition of ZCS commutation from Q2

to Q1 is defined as

ζ <
vca
2Io

. (8)

[Mode 4 (t3 ≤ t < t4): Parallel-load resonant mode] 　 The

switch current iQ2 is identical to the dc input current iin at

t = t3, whereby the edge resonance is terminated. The switch

current iL2 increases linearly while S2 keeps ON-state.

iL1(t) =
(1 + k)Vin − avca

(1− k2)Ld
· (t− t3) + iL1(t3) (9)

iL2(t) =
(1 + k)Vin − kavca

(1− k2)Ld
· (t− t3) + iL2(t3) (10)
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Fig. 3. Key voltage and current waveforms during the switching one cycle.

[Mode 5 (t4 ≤ t < t5) : Power transfer mode] The volt-

age vCp across the parallel load-resonant capacitorCp exceeds

to the voltageVCo1
at t = t4, and the rectifying diodeDo1 is

forward-biased.

[Mode 6 (t5 ≤ t < t6): Edge-resonant mode (Q1 ZCS turn-
on)] The switch S1 is turned on at t = t5, then the edge

resonance is resumed. The current iQ1 increases gradually,

and ZCS turn-on can attain in Q1. The dc inductor currents

are expressed by 　

iL1(t) =
(1 + k)Vin

(1− k2)Ld
· (t− t5) + iL1(t5) (11)

iL2(t) =
(1 + k)Vin

(1− k2)Ld
· (t− t5) + iL2(t5). (12)
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ip(t) =
avca
ζ

sin{ωr(t− t5)}+ ip(t5) (13)

ip(t5) =
is(t5)

a
� 2Io (14)

[Mode 7 (t6 ≤ t < t7): Edge-resonant mode (Q2 ZCS turn-
off)] The switch current iQ2

naturally reverses its direction at

t = t6, then the diode D2 of Q2 is conducting. During this

interval, the gate signal to S2 is removed, then ZCS turn-off

can attain in Q2.

[Mode 8 (t7 ≤ t < t8): Parallel-load resonant] The switch

current iQ1
is equal to the input current iin at t = t7,

whereby the edge resonance is terminated. The two dc inductor

currents iL1
and iL2

flows into Q1; iL1
linearly increases while

iL2 gradually decreases.

iL1(t) =
(1 + k)Vin − kavca

(1− k2)Ld
· (t− t7) + iL1(t7) (15)

iL2(t) =
(1 + k)Vin − avca

(1− k2)Ld
· (t− t7) + iL2(t7) (16)
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Fig. 4. Mode transitions and equivalent circuits during the switching one
cycle.

Rac

Lp

CpCa

Lr

Lm

vab

′ ′

′

′

′

Fig. 5. Simplified equivalent circuit with the primary-side referred parameters:

L
′
m = a2Lm, L

′
p = a2Lp, C

′
a = Ca/a2, C

′
p = Cp/a2, and R

′
ac =

a2Rac.

III. STEADY-STATE CHARACTERISTICS

A. Frequency-Domain Analysis
The simplified equivalent circuit is depicted in Fig. 5.

Assuming that the power losses in Co1 and Co2 are small

enough for neglecting, the sinusoidal approximation theory can

be applied for the proposed topology. Thus, the ac equivalent

resistance Rac can be expressed by

Rac =
2Vo

π2Io
=

2

π2
RL. (17)

The impedance Zin viewed from the input dc sourceVin can

be defined as [26]

Żin = Żi0

1 +
R

′
ac

Żo0

1 +
R′

ac

Żo∞

= Żi∞
1 + Żo0

R′
ac

1 + Żo∞
R′

ac

(18)

where each impedance can be expressed as

Żi0 =
1

jωC ′
a +

L′
m+L′

p

jωL′
mL′

p

+ jω Lr (19)

Żi∞ = Ż1 + jω Lr,

Ż1 =
{
jω C

′
a +

1

jωL′
m

+
1

jωL′
p +

1
jωC′

p

}−1
(20)

˙Zo0 =
1

jωC ′
p + Ż3

−1 , Ż3 = jω L
′
p + Ż2 (21)

Ż2 =
{ L

′
m + Lr

jωL′
mLr + jωC ′

a

}−1
(22)

Żo∞ =
1

1
Ż4+jωL′

p

+ jωC ′
p

,

Ż4 =
{
jω C

′
a +

1

jωL′
m

}−1
. (23)

Accordingly, the ac voltage ratioMac can be expressed as

Mac =
∣∣∣(1− jωLr

˙Zin

)
·
(

1

jωL′
pẎ5 + 1

)∣∣∣ (24)

Ẏ5 = jωC ′
p +R′−1

ac . (25)

The frequency characteristics of Zin and Mac are drawn in

Fig. 6 by referring to (18) and (24) with a set of numerical

example. The operating area should be set as the capacitive

load area where the switching frequency is less than the

resonant frequency of maximum ac voltage gain in Mac.

On the other hand, the dc voltage ratioG (= Vo/Vin) should

be derived from the viewpoint of power balance between the

input and output in Fig. 5. In order to simply the analysis on

the high-order resonant tank, the two-phase class-E inverter

voltage vab is linearly expressed in Fig. 2. Note here that

linearization follows to the method in [23].

The dc voltage ratio of G both for the basic and multi-

resonant types can be defined by

G =

√
2 aRL

π
× 2

√
2Vin

π (0.5− λ)

√√√√ ∞∑
n=1,3,5..

cos2(λnπ)

n2z2n

=
4aRL

π2 (0.5− λ)

√√√√ ∞∑
n=1,3,5..

cos2(λnπ)

n2z2n
(26)

This article has been accepted for publication in IEEE Transactions on Power Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2024.3380069

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Kobe University. Downloaded on March 22,2024 at 01:05:50 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTION ON POWER ELECTRONICS, VOL. XX, NO. XX, XX 20XX 6

1

2

3

4

0.5

1.5

2.5

3.5

4.5

A
C

 v
o
lt

ag
e 

co
n
v
er

si
o
n
 r

at
io

 M
ac

0

5

10

15

20

25

-90

-45

0

45

90

P
h
as

e 
��
 (

d
eg

)
D

ri
v
in

g
-p

o
in

t 
im

p
ed

an
ce
 |

Z
in
| @Rac=60 ΩZ in| |

@Rac=90 ΩZ in| |

@Rac=120 ΩZ in| |

@Rac=60 Ω

@Rac=90 Ω

@Rac=120 Ω

Mac

Mac

Mac

@Rac=60 Ω

@Rac=90 Ω

@Rac=120 Ω

fr

0.5 0.6 1.10.7 0.8 0.9 1.0 1.2 1.3 1.4 1.5 1.6

rfs / fNormalized frequency

Operating area

0.4

I Ⅱ

Fig. 6. Frequency-domain characteristics of the driving-point
impedance ( ˙Zin) in the ac equivalent circuit (Lr = 44nH, Lm = 25.6μH,
Ca = 2.2 nF, Lp = 2μH, Cp = 1nF, and a = w1/w2 = 1/2).

1

1.1

1.05

1.2

1.25

1.3

1.35

1.4

1.45

 N
o
rm

al
iz

ed
 V

o
lt

ag
e 

C
o
n
v
er

si
o
n
 R

at
io

1.15

0.95

1 1.2 1.4 1.6 1.8 2.0

 Switching Frequency fs [MHz]

Multi-resonant type (Fig.2)

Basic type (Fig.1)

Fig. 7. Theoretical characteristics of the dc-dc voltage conversion ratios
(normalized by the voltage ratio of the basic type at 1MHz).

where λ is defined as

λ =
4π

√
LrCa · fs
5a

. (27)

In addition, Zn in (26) denotes Zn,b in (28) for the basic type

and Zn,mr in (29) for the multi-resonant type, respectively:

Zn,b =

√
R2

ac

(
a2 +

Lr

Lm
− n2ω2LrCa

)2

+ n2ω2L2
r (28)

The dc-dc voltage ratios of the proposed topologies are

compared in Fig. 7 between the basic and proposed topologies.

It can be known from the comparison that higher voltage ratio

can achieve in the proposed converter.

B. Design of Parameters in Resonant Tank

The impedancesZra, Zpp of the edge resonant Lr-Ca and

parallel-load resonant Lp-Cp, and admittanceYma of anti-

resonant Lm-Ca are presented in Fig. 8. The resonant fre-

quencies can be defined as

fa =
1

2π
√
LmCa

, fp =
1

2π
√
LpCp

, fq =
a

2π
√
LrCa

(30)

where the condition expressed by fa < fs < fp < fq should

be satisfied. Once the ratios between the two frequencies are

defined as

α =
fp
fa

, β =
fq
fp

(31)

where the relationships between magnetizingLm, the parallel

capacitorCa, and leakage inductanceLr are expressed by

Ca =
1

ωa
2Lm

, ωa = 2πfa (32)

Lr =
1

ωq
2Ca

, ωq = 2πfq . (33)

It can be understood from Fig. 6 that the frequency range

between fa and fq is most suitable for obtaining the effects of

anti- and parallel-load resonant while edge-resonant frequency

should exist in the higher frequency area. Accordingly, the

anti-resonant frequency fa should be set in the area smaller

than 1MHz for deciding the switching frequency between

1 and 2MHz; Yma,Zpp < Zra. Thus, α and β should be

greater than 1 respectively. By adjusting α and β until the

ZCS condition (8) is satisfied, the parameters of Ca and Lr

can be determined by (32) and (33). Thereby, α and β (α < β)

are decided between 1 and 3 from the practical point of views

for MHz driving.

Furthermore, when the quality factorQ in the parallel load

resonant tank is set as the practical value, e.g. 1 < Q < 10,

Lp can be decided by

Lp =
Rac

ωpQ
, ωp = 2πfp. (34)

Thus, the capacitor Cp can be obtained as

Cp =
1

ωp
2Lp

. (35)

C. Coupled DC Inductors

The ripple factors of the two dc inductors can be defined

by referring to one of the modes where they gradually in-

crease. Now, by giving the average inductors currents IL, Iin
respectively, the ripple factors can be defined as

γL =
(1 + k)Vin − avca
(1− k2)LdILfs

(1−D) (36)

γin =
2Vin − avca

(1− k)LdIinfs
(1−D) (37)

where D (= ton/Ts) is the ON-duty cycle of Q1 and Q2. The

curves of current ripples are illustrated in Fig. 9 according to

(36) and (37) with a set of numerical example (Vin = 10V,

Ld = L1 = L2 = 25μH, vca = 2Vin). It can be known that

γL is minimum at k = 0.6 while γin increases gradually in

accordance with the increase of k.

IV. EXPERIMENTAL EVALUATIONS

A. Specification of Prototype

The performances of proposed dc-dc converter are eval-

uated by experiment of 1–2MHz / 120W prototype with

GaN-HEMT (GS61004B, VDS = 100V, IDS = 38A,

RDS,on = 16mΩ, Coss = 110 pF, Qg = 3.3 nC, GaN
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Zn,mr =
Lm

Lr
·
√
α2 + β2

α = Rac

{
1 +

a2Lm

Lr
+

(
nω

ωa
· nω
ωp

)2

−
(
nω

ωa

)2

−
{
1 +

Lm(Lr + a2Lp)

LrLp

}(
nω

ωp

)2
}

β = nωLp

{
1 +

Lm(Lr + a2Lp)

LrLp
−
(
nω

ωa

)2
}

(29)
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Fig. 9. Current ripple ratios versus magnetically coupling coefficient in the
dc side.

Systems) for Q1, Q2, and Silicon Carbide Schottky diode (SiC-

SBD) (IDH06G65C6, 650V, 6A, typical VF : 1.25V, Infe-

nion) for Do1, Do2, respectively. The exterior appearance

of prototype is portrayed in Fig. 10. The circuit parameters

and specification are displayed in TABLE II. Selection of

1.8MHz for the rated power can be justified in line with the

technical trend of automotive applications; 1.8MHz-2.2MHz
is preferably selected in order to mitigate electro-magnetic

interference from the dc-dc power converters.

The planar transformer is designed for 1-2MHz switching,

and its core material is MnZn ferrite (PC200, ER-23/5/13). The

magnetic core selection is based on a maximum magnetic flux

density. The gate resistors of Q1 and Q2 are decided as 10Ω
for minimizing parasitic ringings in MHz driving. The quality

factor Q of Lp-Cp resonant tank in (34) is given as 2 at the

Q1

Q2

Do1

Do2

Co1

Co2

CLC

Resonant tankHigh-frequency

planar transformer

Gate driver

Coupled inductors

V
o

lt
ag
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ie

r

Cp
Ca

Lp

Fig. 10. Exterior appearances of prototype.

TABLE II
CIRCUIT PARAMETERS OF PROTOTYPE

Item Symbol Value
DC input voltage Vin 10V

DC output voltage Vo 85-160V
Output power rating Po 120W

Nominal Switching frequency fs 1.8MHz
Anti-resonant frequency fa 680 kHz
Load resonant frequency fp 3.8MHz
Edge-resonant frequency fq 8.1MHz

Duty cycle D 0.56
Input dc inductor L1 71μH
Input dc inductor L2 73μH

L1, L2 windings turns ratio n(= N1/N2) 1
Mutual inductance M 43μH

Coupling coefficient k 0.59
HF-X magnetizing inductance Lm 26μH

HF-X leakage inductance Lr 45 nH
HF-X windings turns ratio a(= w1/w2) 1/2

Anti-resonant capacitor Ca 2.2nF
Load-resonant capacitor Cp 1nF
Load-resonant inductor Lp 1.8μH

Voltage dividing capacitors Co1,2 180nF

nominal RL = 200Ω.

B. Switching Performances and Steady-State Characteristics

The switching waveforms of the prototype can be observed

in Fig. 11 for fs = 1.1MHz (light load) and 1.5MHz (heavy

load) respectively. It can be observed in each cases that the

current iQ1 gradually declines by edge resonant while the

current iQ2 gradually increases, which leads to ZCS turn-on

in Q2 and ZCS turn-off in Q1 respectively. After the power
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 Q1i

 Q1v

 abv

 Q2v

 Q2i

(a)

 Q1i

 Q1v

 abv

 Q2v

 Q2i

(b)

Fig. 11. Observed switching waveforms of active switches at: (a)
fs = 1.1MHz and Po = 51W (iQ1, iQ2:2.5A/div, vQ1,
vQ2:6V/div, vab:10V / div, 200μs/div), and (b) fs = 1.5MHz and
Po = 104,W (iQ1, iQ2:2.5A/div, vQ1, vQ2:6V/div, vab:10V / div,
200μs/div).

transfer interval, iQ1 starts to increase with a certain slope

from zero by supplying the gate signal to S1 while iQ2
declines

gradually, which leads to ZCS turn-on in Q1 and ZCS turn-

off in Q2 respectively. Thus, the feasibility of snubberless ZCS

topology is verified for the light and heavy load conditions.

The resonant capacitor voltages vCa
and vCp

are also ob-

served in Fig. 12. The amplitude of the parallel-resonant

capacitor vCp
are lifted from that of vCa

at both the light

and heavy loads, and the double voltage appears in the output

voltageVo with the effect of the voltage doubler rectifier. Thus,

step-up operations of the multi-resonant tank are demonstrated

hereby.

The dc input current Iin is shown in Fig. 13. The ripple

current is less than 0.1% for the average dc current 12A: γin
is 0.83% while the theoretical value is calculated as 0.63%
at vca = 56V from (37). Thus, the effectiveness of (37) is

verified herein.

The radiated noise emissions are measured by comparing

with hard switching conditions in Fig. 14. The radiated noise

is reduced by 29% from 11.4μW to 8.1μW at fs = 1.5MHz
due to the snubberless ZCS. Furthermore, it is reduced by

79% from 134.8μW to 27.8μW at fs = 18MHz. Thus, the

effectiveness of snubberless ZCS is proven in the experimental

result.

The steady-state characteristics of input-output dc voltage

ratioG are measured under the open loop control in Fig. 15.

More than sixteen of G can attain in the proposed topology,

and 1.5 times higher than the previously proposed topology

in Fig. 1. The maximum voltage ratio is 16 at fs = 2MHz.

 oV

 Cpv

 Cav

(a)

 oV

 Cpv

 Cav

(b)

Fig. 12. Observed capacitor waveforms at: (a) fs = 1.1MHz and (b) fs =
1.5MHz (vQ2:15V/div, vab:15V / div, Vo:20V / div, 200μs/div).

 inI

Fig. 13. Observed waveform of the dc input current Iin (2A / div, and
200μs/ div).

Therefore, the higher voltage step-up can achieve in Fig. 15.

The steady-state characteristics of output power versus

switching frequency are measured under the condition of

Vo = 120V in Fig. 16. It can be confirmed from the curve that

Po increase gradually from 51W with fs = 1.1MHz up to

about 120W at fs = 1.8MHz. The complete ZCS operation

can be obtained in the switching frequency 1MHz to 1.8MHz.

Thus, the effectiveness of PFM-based power regulation with

the snubberless ZCS is revealed in the curves.

C. Power Conversion Efficiency and Loss Analysis

The actual efficiency of the prototype is presented in Fig. 17.

The ZCS turn-on and -off operations can maintain up to 86.5%
load (Po � 104W, fs = 1.5MHz) while ZCS turn-off cannot

attain from 86.5% to 100% load since (8) cannot be satisfied.

The maximum efficiency is recorded as 91.3% at 86.5% load,

and over 90% efficiency can be ensured in the load ratio of

70%–92%.
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The power loss breakdown relevant to Fig. 17 is revealed in

Fig. 18. The conduction losses of active switches and copper
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Fig. 17. Actual efficiency curves for load variations.
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Fig. 18. Power loss breakdown at fs = 1.5MHz, Po = 104W and η =
91.3%.

losses of HF-X account for a large part of the total loss. The

iron loss is less than 1.2% in the total loss, thus is included

in the ”Other losses”. The conduction losses in the secondary

side are relatively high as compared to the primary side due to

the multiresonant tanks. The power loss in the gate resistor is

calculated with the gate chargeQg = 3.3 nC, the gate driving

voltage VDR = 6V at fs = 1.5MHz as

PD = Qg × VDR × fs = 30mW (38)

, which accounts for about 0.3% in the total power loss.

The thermography image of the prototype in ten minutes

after the start-up is shown in Fig. 19. The temperatures of Q1

and Q2 are measured as 43.2 ◦C and 35.6 ◦C, respectively.

The dc inductor, parallel resonant inductor, HF-X, and diode

rectifiers have temperatures as 25.4 ◦C, 43.5 ◦C, 32.7 ◦C, and

38.6 ◦C, respectively. It should be remarked here that Q1 has

higher temperature than Q2 due to the shorter distance from

the HF-X.

The comparisons with the existing topologies are summa-

rized in TABLE III in terms of modulation, voltage conditions,

efficiency, and power density. It can be understood hereby

that the proposed topology has competitive efficiency and

power density as a high step-up MHz-driven dc-dc converter

while almost all the existing topologies are limited to buck

type which are prone to have higher efficiency due to less

conduction losses in active switches.
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TABLE III
COMPARISON OF MHZ-DRIVEN DC-DC CONVERTERS

Circuit topology
Galvanic
isolation

Switching
frequency

Modulations
Input/output
Voltages

Soft-switching
Peak Efficiency
Power device

Power density

Two-phase
half-bridge[27]

isolated 1MHz PWM
36V-60V/1.8V
(buck)

ZVS&ZVS
NR@90W
GaN-HEMT
(EPC2014)

-

Current-fed
active-clamped[28]

isolated 1MHz PWM
25V/100V
(boost)

ZVS
–
–

–

DC-X[29] isolated 1MHz/300 kHz PWM
48V/12V
(buck)

ZVS/ZCS
95.2%@300W
Si-MOSFET
(BSC098N10NS5)

370W/in3

LLC[30] isolated
1.2-2.5MHz
/300 kHz

PWM
48V/12V
(buck)

ZVS
94.5%@700W
GaN-HEMT

49W/in3

Class-E2[31] non-isolated 20MHz ON/OFF
9-18V/5V
(buck)

ZVS
75%@10W
GaN-HEMT
(EPC2016)

–

Active clamped[32] isolated 2MHz PWM
18V/5V
(buck)

ZVS
93.5%@25W
Si-MOSFET
(BSC097N06NS)

–

Two-phase buck[33] non-isolated 1MHz PFM
12V/4V
(buck)

ZVS
97.5%@24W
GaN-HEMT
(EPC2015C)

–

LLC /parallel[34] isolated 1MHz PFM
12V/5V
(buck)

ZVS
94%@240W
GaN-HEMT
(EPC2020)

53W/in3

Flying Capacitor[35] Non-isolated 1MHz PFM
400V/178V
(buck)

ZVS
94%@200W
GaN-HEMT
(GS66508B)

−

MHz driving
snubberless[23]

isolated 1-2MHz PFM
10V/85V
(boost)

ZCS
86.1%@70W
GaN-HEMT
(PGA26E19BA)

17W/in3

Proposed converter isolated 1-2MHz PFM
10V/160V
(boost)

ZCS
91.3%@104W
GaN-HEMT
(GS61004B)

39W/in3

*Counted by a discrete power device.

Coupled inductors

High-frequency
planar transformer
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Resonant tank
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Fig. 19. Thermography image of prototype in ten minutes after the start up
at 24.5 ◦C of the room temperature.

V. CONCLUSIONS

A MHz-driving snubberless ZCS high step-up dc-dc con-

verter with multiresonant circuitry has been proposed in this

article. The multiresonant tank works for high step-up ratio

without loosing the simplicity in the snubberless circuit topol-

ogy and the low ripple in the input stage of dc-dc power

converter. The frequency-domain analysis has been revealed

the design guideline of the circuit parameters of the anti- and

parallel load resonant circuits, then selection guideline of the

coupling coefficient of the dc inductors has been theoretically

provided by the steady-state characteristics for the input and dc

inductor currents. In order to demonstrate the performances of

the proposed dc-dc converter, the 1-2MHz / 120W prototype

has been built, and the snubberless ZCS operations under MHz

driving and low ripple rations less than 1% have been verified

by experiments as well as steady-state characteristics.

It has also been proven that the EMI noises are well reduced
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TABLE IV
STEADY-STATE EQUATIONS IN EACH MODE FOR THE HALF CYCLE

Intervals Primary-side L-C network

Mode 1: t ∈ [0, t1] VL1 − VL2 + aLp d
dt
iLp(t)− Lr d

dt
iL2(t) +

aV o
2

= 0

vCa(t) = Lp
diLp

dt
(t) + Vo

2
= Lm

diLm
dt

Ca
dVCa
dt

(t) + iLm(t) + iLp(t) = −aiL2(t)
VL1 = Vin

VL1 = L d
dt
iL1(t)−M d

dt
iL2(t)

VL2 = L d
dt
iL2(t)−M d

dt
iL1(t)

Mode 2 and 3: t ∈ [t1, t3] iL1(t) = iL1(t1) +
V in(t−t1)(k+1)

L(1−k2)

iL2(t) = iL2(t1) +
Vin(t−t1)(k+1)

L(1−k2)

aLp
diLp

dt
(t)− Lr

(
− diQ2

dt
(t) +

V in(k+1)

L(1−k2)

)
+ aVo

2
= 0

vCa(t) = Lp
diLp

dt
(t) + Vo

2
= Lm

diLm(t)
dt

Ca
dvCa(t)

dt
+ iLm(t) + iLp(t) = −a

(
IL2(t1) +

V in(t−t1)(k+1)

L(1−k2)

)
+ aiQ2(t)

IL1(t1) + IL2(t1) +
2Vin(t−t1)(k+1)

L(1−k2)
= iQ1(t) + iQ2(t)

Mode 4: t ∈ [t3, t4] VL1 − VL2 + Lr
diL1(t)

dt
+ aVCa(t) = 0

VCa(t) = Lp
diLp(t)

dt
+ 1

Cp

t∫
t7

iLp(τ) dt = Lm
diLm(t)

dt

Ca
dVCa(t)

dt
+ iLm(t) + iLp(t) = aiL1(t)

VL2 = Vin

(29%-79%) owing to the soft switching techniques as com-

pared to the hard switching from the spectrums of radiation

noises. The dc-dc voltage ratio increases more than 1.5 times

as the existing snubberless dc-dc converter, thus high step-up

operation has been clarified. The actual efficiency is recorded

as 91.3% at 86.5% load while the power dissipation of

magnetic components should be reduced for further efficiency

improvement under the conditions of MHz driving.

The future researches include enhancement of power rating

and power conversion efficiency by optimizing the design of

magnetic components suitable for MHz driving. Furthermore,

the validity of the closed loop controller will be demonstrated

by experiments for steady-state and dynamics operations.

APPENDIX

The steady-state equations of each modes are summarized

in TABLE IV. Note here that the steady-state equations for

the other half cycle operations (Mode 5-8) are symmetrical to

those in TABLE IV. The voltage and current waveforms at

each mode can be derived by giving the initial values at the

mode 1, and solving the high-order equations with the aid of

computer calculations.
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