神戸大学附属図書館デジタルアーカイブ
入力補助
English
カテゴリ
学内刊行物
ランキング
アクセスランキング
ダウンロードランキング
https://hdl.handle.net/20.500.14094/0100488545
このアイテムのアクセス数:
48
件
(
2025-05-28
13:15 集計
)
閲覧可能ファイル
ファイル
フォーマット
サイズ
閲覧回数
説明
0100488545 (fulltext)
pdf
1.76 MB
70
メタデータ
ファイル出力
メタデータID
0100488545
アクセス権
open access
出版タイプ
Version of Record
タイトル
Effects of sensory combination on crispness and prediction of sensory evaluation value by Gaussian process regression
著者
Nakamoto, Hiroyuki ; Nishimura, Ryoga ; Kobayashi, Futoshi
著者ID
A1005
研究者ID
1000030470256
ORCID
0000-0001-8259-9317
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail.html?systemId=50759e18b2ef0f62520e17560c007669
著者名
Nakamoto, Hiroyuki
中本, 裕之
ナカモト, ヒロユキ
所属機関名
システム情報学研究科
著者名
Nishimura, Ryoga
著者ID
A0364
研究者ID
1000050314042
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail.html?systemId=da4346cfb30521be520e17560c007669
著者名
Kobayashi, Futoshi
小林, 太
コバヤシ, フトシ
所属機関名
システム情報学研究科
言語
English (英語)
収録物名
PLoS ONE
巻(号)
19(2)
ページ
e0297620
出版者
Public Library of Science
刊行日
2024-02-08
公開日
2024-04-08
抄録
Crispness contributes to the pleasantness and enjoyment of eating foods and is popular with people of wide ages in many countries. Hence, a quantitative evaluation method for crispness is required for food companies developing new food products. In this study, the effects of different sensory combinations on crispness were investigated through sensory evaluation, and a Gaussian process regression model was used to predict the evaluation values of crispness. First, four crispness descriptors in Japanese were selected, and sensory evaluations were conducted with ten participants using commercially available snack foods under three different sensory combinations of force, vibration, and sound to confirm the effects of the three senses. An instrumental system also measured force, vibration, and sound for snack foods under the same conditions. The Gaussian process regression model determined the relationship between the sensory and measurement data and predicted the sensory evaluation values from the measurement data. Cross-validation verified that the Gaussian process regression model accurately predicted the food texture evaluation values from the measurement data even in conditions with different sensory components.
カテゴリ
システム情報学研究科
学術雑誌論文
権利
© 2024 Nakamoto et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
関連情報
DOI
https://doi.org/10.1371/journal.pone.0297620
詳細を表示
資源タイプ
journal article
eISSN
1932-6203
OPACで所蔵を検索
CiNiiで学外所蔵を検索
ホームへ戻る