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Abstract

Crispness contributes to the pleasantness and enjoyment of eating foods and is popular

with people of wide ages in many countries. Hence, a quantitative evaluation method for

crispness is required for food companies developing new food products. In this study, the

effects of different sensory combinations on crispness were investigated through sensory

evaluation, and a Gaussian process regression model was used to predict the evaluation

values of crispness. First, four crispness descriptors in Japanese were selected, and sen-

sory evaluations were conducted with ten participants using commercially available snack

foods under three different sensory combinations of force, vibration, and sound to confirm

the effects of the three senses. An instrumental system also measured force, vibration, and

sound for snack foods under the same conditions. The Gaussian process regression model

determined the relationship between the sensory and measurement data and predicted the

sensory evaluation values from the measurement data. Cross-validation verified that the

Gaussian process regression model accurately predicted the food texture evaluation values

from the measurement data even in conditions with different sensory components.

Introduction

Crispness and crunchiness are typical textural attributes that contribute to the pleasantness

and enjoyment of eating foods [1]. Crispness is used to express the texture of various kinds of

food, such as fresh vegetables, baked bread, and fried snacks [2–4]. Fifty years ago, Szczesniak

reported that crispness and crunchiness were the most frequently used descriptors of food tex-

ture based on a survey of 150 individuals [5]. Recently, Luckett and Seo surveyed 337 individu-

als in North America and asked them to pick the first three words they thought of from a large

pool of words related to texture, flavor, and aroma, among others for 32 different foods [6].

They found that the most picked word from the pool of words/adjectives regarding texture

was crunch/crunchy, followed by crisp/crispy. Consumers’ texture vocabulary has also been

studied in other countries, including Finland, Spain, Japan, etc [7–9]. People living in non-

English speaking countries use terms that are equivalent to crispness in their native language.

In Austria, 208 college students were asked to describe the texture of 50 different foods using
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105 texture words, and the word that appeared most frequently was crispness [10]. As crisp-

ness has long been a popular texture attribute among people of different countries and ages,

the development and production of delicious and enjoyable crisp foods are important for food

companies. Food companies need to evaluate crispness in order to develop foods that are

acceptable to consumers.

The definitions of crispness and crunchiness have been reported in many research works.

Szczesniak defined crispness as "Firm and brittle, snaps easily, emitting a typical sound upon

deformation [11]." Dijksterhuis et al. developed a detailed crisp description by adding words

to the crispness and then subdivided the definition of crispness [12]. In a review paper, Saeleaw

and Schleining collected definitions of crispness from relative papers [2]. Most of the defini-

tions included the expression of "sound" such as the above definition by Szczesniak. Christen-

sen and Vickers had participants evaluate crispness by normally biting and chewing a variety

of crisp foods and by biting and chewing those same foods with the sound blocked [13]. Edm-

ister and Vickers had their participants evaluate the sounds of crisp foods by normally biting

and chewing them and by only listening to the sounds of someone else eating them [14]. They

evaluated the effects of sound on crispness in foods. Regarding the use of sound in crispness,

Zampini and Spence reported that modulated sound changed the perceived crispness of potato

chips [15]. Tunick et al. defined crispness as follows: "A dry rigid food which, when bitten with

the incisors, fractures quickly, easily, and totally while emitting a relatively loud, high-pitched

sound [16]." These results suggest that, in order to evaluate the crispness of food, the evalua-

tion system should measure both force and sound data during the fracture of the food in

chewing.

An instrumental method by texture profile analysis (TPA) is generally used for the texture

evaluation of solid food [17]. The TPA parameters evaluate the texture attributes such as hard-

ness and cohesiveness as physical quantities [18]. The TPA parameters are calculated from

measurement data acquired by a force sensor and do not include sound information. Thus,

many researchers used both force and sound measurement data to evaluate crispness [19].

Varela et al. used a load cell and a microphone to evaluate the crispness of roasted almonds

based on measured force and sound [20]. Sanahuja et al. classified the crispness-related fresh-

ness of puffed snacks from force and sound data by a support vector machine, which is one of

the machine learning methods [21]. de Moraes et al. analyzed the relationship between mois-

ture and physical parameters concerning the crispness of banana snacks [22]. They reported

that the numbers of force and sound peaks were related to the crispness of banana snacks. The

same trend was reported in the case of potato chips [23]. Taniwaki and Kohyama indicated the

magnitude of the force drop at the major fracture related to the crispness of potato chips [24].

Gouyo et al. measured French fries with a force instrument and a microphone and discussed a

method to use force and sound measurement data for the evaluation of the frying process [25].

These studies indicate that the combination and force and sound is necessary for the evalua-

tion of crispness.

Sound can be distinguished into two types, acoustic sound and vibration, which humans

perceive as air-conduction sound and bone-conduction sound, respectively [26, 27]. In the

studies described above, microphones measured air-conduction sound as sound. Spectra of

the sound analyzed by a fast Fourier transform (FFT) had a difference between crispy and

crunchy foods [27]. Neural network models classified snack foods into four grades of sensory

crispness by using sound spectra [28]. On the other hand, bone-conduction sound is vibration

that propagates from the teeth to the inner ear. Since the vibration occurs at the contact point

or area between a tooth and food in the case of humans, an instrument should measure the

vibration of a probe. Iwatani et al. developed a probe with a piezoelectric sensor and analyzed

the relationship between food textures and a texture index calculated from FFT spectra [29].
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Then, Sakurai et al. also developed a probe with a three-axis accelerometer and a swing-arm

device [30]. Their papers reported differences in vibration measurement data occurring due to

differences in food texture. Therefore, a measurement system that simultaneously measures

force, vibration, and sound, and a method for evaluating texture using these measurement

data, are necessary for texture evaluation.

The present study, first, confirms the effects of different sensory combinations of force,

bone-conduction sound, and air-conduction sound on the sensory evaluation values of four

crispness texture descriptors by sensory evaluation. Next, a measurement system obtains force,

vibration, and air-conduction sound data of snack foods under the same conditions as the sen-

sory evaluation. A Gaussian process regression, one of the machine learning methods, predicts

the sensory evaluation values from the feature values extracted from the measurement data,

and iterative predictions verify the prediction accuracy by cross-validation. Based on the

results, the effects of sensory combinations on crispness and the potential of crispness predic-

tion with Gaussian process regression are discussed.

Materials and methods

Food texture descriptors and food samples

This study chose four food texture descriptors to express crispness and crunchiness and

defined them for sensory evaluation. Table 1 lists the four descriptors. Many Japanese people

often use these texture descriptors that mean individually different crispness and crunchiness.

Eight commercially available snacks were chosen based on having crispness and occurring

air-conduction sound. Table 2 lists these snack foods. Thin rice crackers (S2), potato chips

(S4), and pretzel sticks (S5) are highly crispy. Sables (S1), ellipsoid rice crackers (S3), and bis-

cuits (S6) are relatively brittle. Fried sticks of sweet potato (S7) and cubic rice crackers (S8)

have crunchiness. Since they have individually different food textures regarding crispness and

crunchiness, this study chose these snack foods. The sample heights are listed in Table 3.

Sensory evaluation

In sensory evaluation, ten panelists (eight males and two females, with an average age of

23.1 ± 0.94, mean ± standard deviation) tested the eight samples based on the quantitative

descriptive analysis [31, 32]. They were recruited on October 13, 2022. Before the evaluation,

the panelists were provided with Table 1 with an explanation in Japanese for each food texture.

In addition, to confirm four texture descriptors, the panelists chewed four foods: pretzel sticks

(Pretz, Ezaki Glico Co., Ltd., Japan), fried sticks of sweet potato (Imokenpi, Nangoku Seika

Co., Ltd., Japan), rice crackers (Salada usuyaki, Ezaki Glico Co., Ltd., Japan), and Cubic

Table 1. Texture descriptors, their definitions, and the typical foods.

Descriptor Definition Typical food†

Sakusaku Easily broken by biting with a weak force Cookie, apple

Karikari Short fracture with a relatively strong force in a mastication Roasted nuts, unripe plum

Paripari Breaking thin foods with a relatively high-frequency sound Potato chips, sliced

cucumber

Zakuzaku Fractures including layers and small particles with a low-frequency

sound

Shaved ice, cornflakes

†Extract from [9].

https://doi.org/10.1371/journal.pone.0297620.t001

PLOS ONE Effects of sensory combination on crispness and prediction of evaluation value by Gaussian process regression

PLOS ONE | https://doi.org/10.1371/journal.pone.0297620 February 8, 2024 3 / 14

https://doi.org/10.1371/journal.pone.0297620.t001
https://doi.org/10.1371/journal.pone.0297620


granola (Frugra bits, Calbee Co., Ltd., Japan), which have mainly sakusaku, karikari, paripari,

and zakuzaku textures, respectively.

To record the intensity of the four texture descriptors in Table 1, the panelists made a verti-

cal mark at the position representing the intensity on a 120-mm horizontal line in a scorecard.

The horizontal line had two-word anchors at both terminals, with the left and right terminals

corresponding to "no feel" and "strong feel", respectively. After the panelists had completed

their evaluations, the distance from the left endpoint to the position of the vertical mark was

measured and converted into numerical data with intensity ranging from 0 to 120.

The sensory evaluation included the following three conditions with different sensory com-

binations as shown in Fig 1.

• Condition 1 (normal): with force, bone-conduction sound, and air-conduction sound

• Condition 2 (no air sound): with force and bone-conduction sound

• Condition 3 (only air sound): with air-conduction sound

In conditions 1 and 2, the panelists took two chews of a one-bite sample, approximately 25

mm per side or length, by their molars. In condition 2, they wore earplugs (form earplugs,

Moldex Co., USA) in their ears and a hearing protection ear muff (Ear muff X5A, 3M, USA)

on their head. Although condition 2 completely blocked air-conduction sound, the panelists

could hear bone-conduction sound. In condition 3, instead of their own chews, they heard the

air-conduction sounds of two-time chew through a headphone (ATH-M20x, Audio-technica

Co., Japan). These sounds were recorded with a binaural microphone (Binal 2, Wind Audio

Japan Co., Japan) the sound of two-time chew generated by one author’s chews. Since the

microphone has auricle parts, the author made the sound of two-time chew at the position of

the mouth in relation to the auricles, 70 mm below and 70 mm in front of the auricle part.

The panelists chewed each sample twice with their molars or listened to air-conduction

sound via the headphone, and then evaluated four textures by marking them on the scorecard.

The sensory evaluation was performed in the order of conditions 1, 2, and 3. Each condition

included the eight samples, and the order of the samples in each condition was randomized.

All the panelists repeated the sensory evaluation five times for each condition. The room tem-

perature was approximately 20˚C. This study was approved by the Ethics Committee of the

Table 2. Snack samples. All samples are made in Japan.

Index Sample Product name, and company

S1 Sablé Coconut sablé, Nissin Cisco Co., Ltd.,

S2 Thin rice cracker Seven premium usuyaki senbei, Hizatsukiseika Co., Ltd.

S3 Ellipsoid rice cracker Peanut salad, Abeko Seika Co., Ltd.

S4 Potato chip Seven premium potato chips, Calbee Co., Ltd.

S5 Pretzel stick Super karikari pretz, Ezaki Glico Co., Ltd.

S6 Biscuit Macrobiha, Morinaga Co., Ltd.

S7 Fried stick of sweet potato Imokenpi, Nangoku Seika Co., Ltd.

S8 Cubic rice cracker Ponsuke, Mitsubishi Shokuhin Co., Ltd.

https://doi.org/10.1371/journal.pone.0297620.t002

Table 3. Height of snack samples. Mean ± standard deviation of 10 measurements.

Index S1 S2 S3 S4 S5 S6 S7 S8

Height mm 6.2±0.2 5.1±0.3 8.3±0.3 4.3±0.5 3.4±0.1 12.5±0.6 5.1±0.1 17.9±0.5

https://doi.org/10.1371/journal.pone.0297620.t003
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Kobe University Graduate School of System Informatics (No. R02-01) in accordance with the

Helsinki Declaration. Written informed consent was obtained from all study participants. The

sensory evaluation results were anonymized and converted into data so that individuals could

not be identified. The statistical analysis of the results was carried out using MATLAB

(R2022a, Mathworks, Inc, USA).

Measurement system

The measurement system shown in Fig 2 was used to measure force, vibration (bone-conduc-

tion sound), and air-conduction sound during sample fracture. The measurement system

mainly consists of a magnetic food texture sensor [33], a microphone (MI-1271M12, Ono

Sokki Co. Ltd., Japan), a data recorder (DR-7100, Ono Sokki Co. Ltd., Japan), a motorized

slider (LEY16DA, SMC Co. Ltd., Japan), a motor driver (LECPAN1, SMC Co. Ltd., Japan),

and a desktop computer. The food texture sensor measures both force and vibration occurring

on a probe, which is a part that presses a sample, with a sampling frequency of 10 kHz. The

range of force is from -10 to +70 N, where + and—mean compression and tensile forces,

respectively. The maximum error is within ±5% of the range. The vibration of the sensor’s

probe is measured as a change of voltage due to induced electromotive force (details written in

[33]). The fast vibration of the probe induces high voltage. The microphone measures sound

pressure and its sampling frequency is 51.2 kHz. The probe is a cylindrical shape with a diame-

ter of 10 mm. The distance between the probe of the texture sensor and the microphone was

approximately 30 mm. The measurement system drives the motorized slider to press a sample

with the probe of the texture sensor. Simultaneously, the desktop computer records the data of

force, vibration, and sound.

In instrumental experiments, the measurement system pressed a sample with the texture

sensor at 10-mm/s velocity from the position where it was in contact with the sample, and

returned the texture sensor to its contact position. In advance of measurement, the height of

each sample was measured. The distance of the movement was 80% of the height of each sam-

ple. The measurement system repeated this motion twice to simulate a two-chew motion.

Feature values of instrumental measurement data for food texture

prediction

Feature values that are used as a part of the dataset for food texture prediction were deter-

mined from the measurement data of force, vibration, and sound pressure. The feature values

were calculated by Python 3.10 and MATLAB (R2022a, Mathworks, Inc, USA).

Fig 1. Three conditions in sensory evaluation.

https://doi.org/10.1371/journal.pone.0297620.g001
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Force. Based on the texture profile analysis [18], six values; hardness, fracturability, adhe-

sive force, adhesiveness, cohesiveness, and gumminess, were calculated from the force data as

feature values.

Vibration. Firstly, the baseline of the data was set to 0. Secondly, the stationary noise of

the vibration data derived from the amplifier circuit was removed. Specifically, the standard

deviation of the noise was calculated from the data without vibration, and the data that did not

exceed three times the standard deviation were set to 0. After taking the absolute value of the

data, the time-series feature values, which consisted of the maximums of the moving average

of vibration peaks during the first and second compressions, the number of vibration peaks,

the mean interval of vibration peaks, mean, standard deviation, variance, skewness, and kurto-

sis of the vibration data were calculated. The frequency-related feature values, twelve average

spectra of octave bands with center frequencies ranging from 1 to 2000 Hz, were also calcu-

lated. Thus, both the time-series and frequency-related feature values are used for the vibration

data. The number of the feature values of vibration is 22.

Sound. The sound pressure data included a stationary noise derived from the amplifier

circuit. Hence, in the same manner as the vibration data, the noise was removed. Feature val-

ues; the maximums of the moving average of pressure peaks during the first and second

Fig 2. Measurement system.

https://doi.org/10.1371/journal.pone.0297620.g002
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compressions, the number of sound pressure peaks, the mean interval of sound pressure

peaks, the maximum, mean, standard deviation, variance, skewness, and kurtosis of the sound

pressure were calculated from the sound data. In addition, the maximums and means of loud-

ness and sharpness, and 23 means of a-weighted spectra in 1/3 octave bands of center fre-

quency from 80 to 12500 Hz were calculated [34]. The number of the feature values of sound is

38.

Condition and dataset. The measurement system measured force, vibration, and sound

to correspond to three conditions shown in Fig 1. In condition 1, the measurement system

obtained all the force, vibration, and sound data. In condition 2, force and vibration, and con-

dition 3, sound were measured, respectively. The feature values were calculated from the mea-

surement data in three conditions. In the case of condition 2, the feature values of sound were

set to 0. In condition 3, the force and vibration features were set to 0. The number of measure-

ment replicates was 15 times per sample in each condition. Thus, the total number of the data-

set was 360, 120 for each condition.

Food texture prediction

To predict sensory evaluation values from feature values of measurement data, this study uses

a Gaussian process regression (GPR) [35]. The GPR determines the relationship between the

sensory evaluation values and measured feature values by a kernel function as follows:

k x; x0ð Þ ¼ y1exp �
jx � x0j2

y2

� �

; ð1Þ

where x and x0 are vectors of measured feature values. θ1, θ2 are hyperparameters of this Gauss-

ian kernel. N combinations of sensory evaluation value y and measured feature vector x are

defined by

D ¼ fðx1; y1Þ; ðx2; y2Þ; . . . ; ðxN; yNÞg: ð2Þ

If a kernel matrix is represented as K composed of kernel functions, unknown measured

feature vector x* and its predicted sensory value y* are expressed by the following conditional

probability of multivariate Gaussian distributions

pðy∗jx∗;DÞ ¼ NðkT
∗K
� 1y; k∗∗ � kT

∗K
� 1k∗Þ ð3Þ

where k*, k** are expressed by

k∗ ¼ ðkðx
∗; x1Þ; kðx

∗; x2Þ; . . . ; ðx∗; xNÞÞ
T

ð4Þ

k∗∗ ¼ kðx∗; x∗Þ ð5Þ

kT
∗K
� 1y in Eq (3) is an expectation value and is also the prediction value of sensory evaluation

in this study. The prediction value was calculated by Python 3.10.

In the Gaussian process modeling of each food texture, the mean of the sensory evaluation

values and the features of the measured data in the three conditions are used as the dataset as

the objective value and the explanatory vector, respectively. The number of datasets was 360.

One explanatory vector includes 66 feature values. One GPR model determined the relation-

ship between the objective and explanatory vectors for one texture. In other words, this study

made four GPR models. Each GPR model iteratively predicted one sensory evaluation value

from one explanatory vector by the leave-one-out cross-validation method. Due to using 360

datasets, the number of iterations of the leave-one-out cross-validation is 360.
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Results and discussion

Sensory evaluation

The box plots of sensory evaluation data are shown in Fig 3, which include significant differ-

ences (p< .05) between two conditions of a sample calculated by Tukey’s honestly significant

difference test.

Regarding conditions 1 (normal) and 2 (no air sound), S5 and S7 of karikari and S2 and S4

of paripari had significant differences, and their medians of condition 1 are higher than those

of condition 2 by more than 10. In addition to these cases, the medians in other results tended

to be lower due to the absence of sound. Several previous studies have also indicated that air-

conduction sound played an important role in crispness [21, 22, 25]. the trend of the present

experiment is consistent with these studies.

In comparison between conditions 1 (normal) and 3 (only air sound), more than half of the

foods had significant differences in the four textures. Sakusaku and zakuzaku had lower values

in condition 3, and this result indicates that sakusaku and zakuzaku are emphasized by force

Fig 3. Box plots of four textures in sensory evaluation. The center red line of each box shows median. The upper and lower

lines in each box represent the 75th and 25th percentiles, the maximum and minimum values in the whiskers represent the

maximum and minimum values for non-outlier data, and the dots represent outliers. Brackets mean the significant difference

(p< .05) between the conditions of the same sample. (a) Sakusaku, (b) Karikari, (c) Paripari, and (d) Zakuzaku.

https://doi.org/10.1371/journal.pone.0297620.g003
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and vibration. On the other hand, karikari and paripari had higher values in condition 3 for

almost samples than in condition 1. The differences between the means of the sensory evalua-

tion in conditions 1 and 3 were 11.8 and 19.0 for karikari and paripari, respectively. It is con-

sidered that air-conduction sound emphasizes the perception of karikari and paripari.

In comparison between condition 2 (no air sound) and condition 3 (only air sound),

although there were some exceptions such as S2 and S4 of Paripari, the relationship between

conditions 2 and 3 was mostly like that between conditions 1 and 3. The slight difference

between conditions 1 and 2 implied that force and vibration (bone-conduction sound) play a

dominant role in the four texture descriptors.

Instrumental measurement

Typical measurement data under condition 1 are shown in Fig 4. The plots of each sample are

arranged in the order of force, vibration, and air-conduction sound from the top to the bot-

tom. Two peaks of force show the data of the first and second compressions and the higher

peak shows the harder sample. The unit of the vertical axis in the vibration plots is voltage by

electromotive induction. The higher voltage indicates a faster vibration. The vibration and

sound data had few peaks at the second compression due to the fracture of samples at the first

Fig 4. Typical measurement data of eight samples. (a) S1, (b) S2, (c) S3, (d) S4, (e) S5, (f) S6, (g) S7, and (h) S8.

https://doi.org/10.1371/journal.pone.0297620.g004
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compression. The vibration and sound data of Fig 4(B) and 4(H) had many spike-shaped

peaks, and these samples occurred much vibration to the probe of the sensor and emitted

sound. On the other hand, Fig 4(G) included fewer vibration and sound peaks. Fig 5 shows

measurement data of eight samples during 0.5 s from the start of measurement. Each plot cor-

responds to the plot in Fig 4. Fig 5 reveals the detailed change of three measurement data in

the first compression.

S1 showed brittleness at the peak of the first compression in force and synchronous high

vibrations and small sounds made some peaks. S3 also showed the same trend as S1 in the

three data. These two samples had higher evaluation values of sakusaku in the sensory evalua-

tion under condition 1 in Fig 3. So, it is considered these features of the three data were unique

for sakusaku. The force of S2 had some peaks before reaching its maximum value, while the

vibration and sound had many peaks. S4 was fractured by a low force, and the three data of S4

were low. The measurement data of S2 and S4 seemed different characteristics, however, both

S2 and S4 had high values of paripari in sensory evaluation. When the three plots of S2 were

compressed in the vertical direction, they were like those of S4. This characteristic, which is

the ratio among the three data, may be important for Sakusaku. S5 and S7 fractured at the

maximum force, and simultaneously single and high vibrations were measured. Because S5

Fig 5. Typical measurement data of eight samples during 0.5 s from the measurement beginning. Each plot

corresponds to the plot in Fig 4. (a) S1, (b) S2, (c) S3, (d) S4, (e) S5, (f) S6, (g) S7, and (h) S8.

https://doi.org/10.1371/journal.pone.0297620.g005
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and S7 had high sensory evaluation values of karikari, the characteristics of these measurement

data are unique for karikari texture. S8 had the highest force among the samples. The vibration

and sound data showed high peaks. The force and vibration of S6 had similar characteristics to

S8. Since S8 and S6 were the samples with high evaluation values of zakuzaku, it is considered

that the high peak of force with vibration is a main characteristic of the measurement data of

zakuzaku.

Food texture prediction

The mean and standard deviation were calculated from the prediction values of the leave-one-

out cross-validation as shown in Fig 6. In many cases in Fig 6, the sensory evaluation values

were within the standard deviation of the predicted values, resulting in accurate predictions.

In Fig 6(B), the prediction values of S7 had a relatively large difference from the mean value of

the sensory evaluation. There are two causes for this result: first, the measurement data of S7

had a variance because of the internal voids in its structure, which induces the data to be

variated. The other cause is that the sensory evaluation value of S7 is different from the other

samples. The combination of these two causes made accurate prediction of the GPR model

Fig 6. Prediction results of sensory evaluation values. The circles represent the mean of the prediction values, and

the error bars represent the range of the standard deviation of the prediction values. The crosses represent the mean of

the sensory evaluation values. (a) Sakusaku, (b) Karikari, (c) Paripari, and (d) Zakuzaku.

https://doi.org/10.1371/journal.pone.0297620.g006

PLOS ONE Effects of sensory combination on crispness and prediction of evaluation value by Gaussian process regression

PLOS ONE | https://doi.org/10.1371/journal.pone.0297620 February 8, 2024 11 / 14

https://doi.org/10.1371/journal.pone.0297620.g006
https://doi.org/10.1371/journal.pone.0297620


difficult. If we improve the latter cause and add samples with a high karikari texture, it is

expected that the prediction accuracy will be improved.

Table 4 shows mean absolute errors (MAEs) between the means of the sensory evaluation

values and the prediction values. Since the range of the sensory evaluation value was 0–120, an

MAE of 6 corresponds to 5% of that range. Except for karikari, the MAEs in Table 4 are less

than 6, indicating that the GPR model was able to accurately predict the sensory evaluation val-

ues from the instrumental measurement data. In the sensory evaluation results described

above, we considered that the sound emphasized paripari. The GPR model for paripari was

able to predict this relationship such that paripari was low in conditions 1 and 2, but high in

condition 3, as shown in Fig 6(C). Conversely, the sensory evaluation values for sakusaku and

zakuzaku in condition 3 were low, but each GPR model was also able to predict their relation-

ships. Hence, it was confirmed that the four food textures including the effects of sensory com-

binations can be predicted from the instrumental measurement data by the GPR model.

The GPR model predicted the sensory evaluation values in conditions 2 and 3 without sig-

nificant errors. Condition 2 (no air sound) may be effective for the prediction of the texture of

elderly people with hard hearing. Condition 3 (only air sound) could be also used to evaluate

texture sound on TV or videos on the internet.

This study has limitations. The panels of the sensory evaluation were only young partici-

pants about 23 years old. The sensory evaluation should collect participants of a wide range of

ages. Under the conditions of this study, the sensations of force and bone-conduction sound

were not separated. To investigate the detailed effects of the sensory components, their sensa-

tions of them should be separated in sensory evaluation.

Conclusion

In this study, the effects of the sensory combinations of force, bone-conduction sound, and

air-conduction sound on the four food textures was confirmed by sensory evaluation. There

was a less significant difference between with or without acoustic sound, but the sensory evalu-

ation values of karikari and paripari were relatively higher in the sound-only condition. The

instrumental system also measured force, vibration, and air-conduction sound data under the

conditions and the GPR model determined the relationship between the sensory evaluation

values and the measurement data. The GPR model predicted the evaluation values from the

measurement data. The MAEs between sensory and prediction values were low even with the

different sensory combinations. This study confirmed that the four food textures including the

effects of sensory combinations can be predicted from the instrumental measurement data by

the GPR model.

In the sensory evaluation of this study, the participants were only young people. In the

future, the sensory evaluation will be performed on people with other age groups.
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