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ABSTRACT In outdoor positioning, the global positioning system (GPS) is currently the most commonly
used method. Considering the power consumption required to use GPS, it may not be efficient for tracking
in smaller areas, such as outdoor grazing areas in Japan, and using wireless sensor networks seems more
feasible. There are several methods for BLE-based positioning. Because the angles of arrival (AoA) and time
of flight (ToF) require additional equipment, the RSSI-based localization method is the most cost-efficient.
Owing to the outdoor environment, the RSSI transmission model follows a two-ray ground-reflection model,
this can lead to large errors in the trilateration positioning method. On the other hand, fingerprint positioning
requires the creation and maintenance of a large database. This paper proposes an RSSI-based positioning
method formulated as an optimization problem. We evaluated the performance of various algorithms in
two application scenarios. Our simulation results show that a high localization accuracy can be obtained
using this localization method. In contrast to other methods, this approach does not necessitate the use of
supplementary equipment, as is the case with AoA and ToF, nor does it require the establishment and upkeep
of an RSSI fingerprint database.

INDEX TERMS BLE, firefly algorithm, localization, simulated annealing, wireless sensor networks.

I. INTRODUCTION
In recent years, the demand for improving outdoor posi-
tioning accuracy has been increasing. Whether it is global
navigation satellite system (GNSS) based positioning or
wireless sensor network (WSN) based positioning, it is
necessary to provide high-precision outdoor positioning
services as people’s requirements for the quality of IoT
services are constantly increasing.

GNSS is widely used in outdoor positioning because it
provides navigation and positioning services on a global scale
without geographical restrictions [1]. However, depending
on the usage scenarios, WSN also has its own advantages.
For example, WSNs have strong deployment flexibility and
can operate in places where GNSS coverage is unreliable.

The associate editor coordinating the review of this manuscript and

approving it for publication was Nadeem Ahmed .

Several WSNs have been designed for low-power applica-
tions. Compared to GNSS receivers which need to receive
satellite signals continuously, WSN nodes can sleep as
needed to save energy. WSNs can operate in a closed private
network to provide users with higher data security and
privacy protection [2]. Based on these factors, research on
WSN-based positioning technologies is necessary.

In a previous study, the location information of Japanese
Wagyu cattle was used to predict estrus [3]. Indeed, when
cattle are in heat, they tend to chase other cattle and try to
mount them.With a positioning system that achieves amargin
of error of 1 meter or less, we can accurately predict the estrus
status of cattle based on their behavior. In this previous study,
the field considered was 144 meters long, 88 meters wide,
and surrounded by 20 antennas. Each cow was equipped
with a collar fitted with four Bluetooth low energy (BLE)
tags. A fingerprint method is used with a long short-term

45164

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0008-5782-0196
https://orcid.org/0000-0002-9037-967X
https://orcid.org/0000-0002-4143-9429
https://orcid.org/0000-0001-8169-040X


Y. Sun et al.: BLE-Based Outdoor Localization With Two-Ray Ground-Reflection Model

memory (LSTM) neural network. The positioning accuracy
error result obtained using this method was 5.25 meters
on average. Considering the covered area, the localization
accuracy achieved was quite good. However, this is not
sufficient for estrus prediction.

For most of the current research, much focus has been
placed on improving the existing localization methods. For
example, using a Kalman filter in the angle of arrival (AoA)
localization method [4], and using multiple localization
methods or sensors of various natures [5]. However, most
studies have focused on indoor localization. In indoor
localization, the log-normal transmission model is commonly
employed as the propagation model because of its effec-
tiveness in capturing signal behavior in confined spaces.
However, this model is not typically suited for outdoor
localization scenarios, where different factors such as open
space propagation and environmental variables come into
play. The two-ray ground-reflection model is commonly used
for outdoor localization. This model effectively accounts
for signal reflections from the ground and other surfaces
prevalent in outdoor environments, providing an accurate
representation of signal propagation in open areas.

This study proposes a new outdoor localizationmethod that
is formulated as an optimization problem. BLE was chosen
as the transmission technology to provide received signal
strength indicator (RSSI) data. We transformed the localiza-
tion problem into an optimization problem by minimizing
the RMSE of the measured RSSI of the target location over
the estimated RSSI. Regarding the optimization algorithms
employed to solve this optimization problem, we considered
the genetic algorithm (GA), firefly algorithm (FA), particle
swarm optimization (PSO), simulated annealing (SA), gradi-
ent descent (GD), and memetic firefly algorithm simulated
annealing (MFASA). The two-ray ground-reflection model
was used as the transmission model, as it is the most realistic
for outdoor settings.

The primary focus of this study is to evaluate the
performance of our localization method in a simulated
environment. We designed a general simulation area of
100 meters by 100 meters to evaluate the localization error
under different conditions. This approach allowed us to
focus on the fundamental aspects of our localization method,
providing clear insights into its feasibility and performance in
reducing localization errors. The contributions of this study
are as follows:

1) We formulate outdoor localization as an optimization
problem in which the objective is to minimize the
difference between the measured and simulated RSSI
at each anchor node.

2) We evaluate the performance of the six algorithms on
this challenging problem to determine the most suitable
one for such a scenario.

The remainder of this paper is organized as follows.
Section II introduces the work related to current studies
on outdoor and indoor localization. Section III describes
the environment and defines the optimization problem.

Section IV introduces the algorithms used in this study.
Section V presents the simulation results and evaluation
of all algorithms in different scenarios. We conclude
in Section VI.

II. RELATED WORK
In this section, we introduce the current BLE-based local-
ization method and propagation model for an outdoor
environment.

Bluetooth low energy (BLE) is a widely used short-range
wireless transmission technology that can support most
cell phones and computers. It has low power consumption
and high security, making it suitable for indoor and out-
door applications. BLE positioning methods include RSSI-
based, time-of-flight-based, angle-based, and fingerprint-
based positioning [2].

Localization based on RSSI involves measuring the
signal strength between the base station (BS) and target
sensor and then calculating the distance between them
using a propagation model [6]. The location of the target
sensor is determined using the trilateration method. This
positioning method has an accuracy of approximately
2 to 4 meters [7].
Time of Flight (ToA) based localization methods include

Time of Arrival (ToA) and Time Difference of Arrival
(TDoA) [8]. ToA is similar to RSSI in that it calculates the
distance between the BS and target sensor using time instead
of RSSI, and the target position is then determined using
the trilateral localization method. This method can provide
high localization accuracy. However, this method requires
precise clock synchronization owing to the short signal prop-
agation time. Without precise clock synchronization, large
positioning errors can occur. The TDoA calculates the relative
distance between the BS and target node by calculating
the time difference between the signal arrivals. The TDoA
can also provide high localization accuracy. In contrast to
the ToA, the TDoA does not require clock synchronization
between the receiver and transmitter. However, achieving
time synchronization between multiple receivers remains a
challenge for this method [9].

The AoA is a localization method that calculates the angle
between the target sensor and the fixed access point (AP) with
respect to the North Pole. It usually requires more than two
APs and has a high positioning accuracy. However, it requires
the use of an antenna capable of measuring the angle [4], [10].
Fingerprint-based localization utilizes the spatial differ-

ences of RSSI in different locations. The RSSI at a specific
place in space is used as the fingerprint of the location, and a
location-fingerprint relation database is established to realize
the estimation of the user’s location through fingerprint
matching [11].
The RSSI, which measures the strength of the signal,

is used in location because of its simplicity, as it does not
require additional equipment such as other methods [2].
Unlike the time-of-flight method, which requires high-
precision clocks, or the AoA method, which requires
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FIGURE 1. Two-ray ground-reflection model [12].

FIGURE 2. Propagation of two-ray reflection-model and log-normal
model.

an antenna array, the RSSI provides a more straightfor-
ward approach. In addition, the fact RSSI decreases with
distance makes it a practical choice for proximity-based
applications.

In outdoor positioning, because it is an open area, the
general log-normal model is not applicable, and a two-ray
ground-reflection model is required. The two-ray ground-
reflection model is a commonly used signal propagation
model in wireless communications that considers the inter-
action between the direct and ground reflection paths. In this
model, the signal between the transmitting and receiving
antennas follows two paths: a direct path and a path that
is reflected by the ground as illustrated in Fig. 1 [12]. The
difficulty with using the two-ray ground-reflection model is
that the conversion betweenRSSI and distance is not a one-to-
one correspondence, as is the case with the log-normal model.
In other words, the distance can be directly converted into
RSSI using the model, but each RSSI value can correspond
to multiple distances as shown in Fig. 2.
When using the two-ray ground-reflection model, deter-

mining the target position coordinates based on the RSSI
becomes much more difficult, which is a notable difficulty
in traditional positioning approaches.

Using a fingerprint method can effectively avoid the
problem that the RSSI value cannot be converted into
distance. However, RSSI fingerprinting presents significant
challenges, particularly in terms of building and maintaining
a comprehensive fingerprint database. In large areas, the
exhaustive collection of fingerprint data is a demanding
task, often limited by logistical and practical constraints.

This complexity underscores the limitations of the method in
large-scale environments.

Although ToF, AoA, and fingerprinting all provide high
accuracy, RSSI does not require additional measurement
equipment or maintenance of large fingerprint databases.
Thus, this is the most cost-effective approach. Owing to
the properties of the two-beam ground reflection model, the
distance cannot be calculated directly from the measured
RSSI. Trilateration cannot be used for positioning. Therefore,
we decided to localize by utilizing an optimization algorithm
to avoid the error-prone distance calculations resulting from
the use of the two-ray ground-reflection model.

III. ENVIRONMENT AND PROBLEM FORMULATION
In this section, we introduce our environment model and
objective function. Transforming a localization problem into
an optimization problem can avoid the conversion of the RSSI
and distance. We plan to localize using algorithms such as
particle swarm optimization (PSO) or firefly algorithm (FA)
to minimize the difference between the measured RSSI and
estimated RSSI between the target position and anchor nodes.

A. ENVIRONMENT MODEL
In this study, we consider a 100-meter wide square field
surrounded by eight anchor nodes to remain close to the
real situation presented in [3]. Considering that the usage
environment is outdoor, we choose to use the 2.4GHz
frequency because of its longer transmission distance com-
pared to 5GHz. The height of the transmitter antennas was
4 meters, and the height of the receiver antennas (i.e., the
cow necklaces) was 1.5 meters. The detailed environmental
parameters are summarized in Table 1, and Fig. 3 shows the
simulation area and anchor nodes layout around the field.

B. OPTIMIZATION PROBLEM FORMULATION
As explained in Section II, because of the characterization
of the two-ray ground-reflection model, we cannot use the
RSSI value to calculate the distance from the anchor nodes
directly However, the RSSI value corresponding to a distance
is unique, which means that the received RSSI value can be
predicted based on the antenna’s distance from the anchor
node. Therefore, we can transform this localization problem
into an optimization problem. In a two-dimensional search
space (corresponding to the field at hand), the problem
involves finding the point at which the RSSI computed
according to the two-way ground-reflection model is as close
as possible to the RSSI measured at each anchor node.

The distance between the anchor node and the estimated
position can be calculated using the Euclidean distance

deu =

√
(a2 − a1)2 + (b2 − b1)2, (1)

where

• deu is the Euclidean distance,
• (a1, b1) are the coordinates of the first point, and
• (a2, b2) are the coordinates of the second point.
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TABLE 1. Environment parameters.

FIGURE 3. Simulation area and anchor nodes location.

Using the distance calculated above, the estimated power
received from the antenna at each anchor node can be
calculated using the two-ray ground-reflection model [12].

The received signal power can be calculated by

Pre = Ptr

(
λ

4π

)2 ∣∣∣∣√Gtr

l
+
R
√
Gree−j1φ

x + x ′

∣∣∣∣2 , (2)

where
• Pre is the received power,
• Ptr is the transmitted power,
• λ is the wavelength,
• Gtr is the gain at the transmitter,
• l is the distance from the transmitter to the receiver,
• Gre is the gain at the receiver,
• R is the reflection coefficient,
• j is the imaginary unit,
• 1φ is the phase shift based on path differences,
• x is the distance from the transmitter to the reflection
point, and

• x ′ is the distance from the reflection point to the receiver.
The value of x + x ′ can be calculated by

x + x ′
=

√
(ht + hr)2 + d2, (3)

and the value of l can be calculated by

l =

√
(ht − hr)2 + d2, (4)

where
• d is the plane distance between transmitter and receiver,
• ht is the height of transmitter, and
• hr is the height of receiver.

1φ can be calculated by

1φ =
2π (x + x ′

− l)
λ

. (5)

The estimated RSSI can be derived from the received power
with

RSSI esti = 10 log10 Pre, (6)

where RSSI esti is the estimated RSSI at target position. Based
on the above formulas, we can determine the estimated RSSI
value from any position in the region to the anchor nodes.
Thus, minimizing the difference between the measured
and estimated RSSI values makes it possible to determine
the target position. The following objective function was
employed:

f =

√√√√ n∑
i=1

(
RSSImeasured

i − RSSI esti

)2
, (7)

where
• n is the number of anchor nodes, and
• RSSImeasured

i is the measured RSSI at target node i.
The objective value is the RMSE of the difference between
the measured and estimated RSSI value for each antenna. The
smaller the objective value, the closer the position to the target
node.

C. DISCUSSION
In our simulations, we use the ‘‘twoRayChannel’’ toolbox
from the MATLAB Radar Toolbox as the transmission model
to simulate the transmission signal and generate the measured
RSSI values. The system then employs the equation model
detailed in Section III-B to calculate the estimated RSSI.
Fig. 4 shows the relationship between the RSSI and the
distance in the MATLAB and the equation models.

Both models are close but not identical. The difference
between the two models can result in localization inaccu-
racies. Furthermore, particular environmental factors in real
settings may also lead to errors, which will be discussed in
Section V.
The topology of the objective function when the target

node was located at (50, 50) is shown in Fig. 5. The
environmental parameters were the same as those listed in
Table 1, and the RSSI between each anchor node and target
position were generated using Matlab’s twoRayChannel.

Upon inspection of the topology, it became apparent
that the functional surface revealed small bumps, valleys,
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FIGURE 4. MATLAB model and equation model comparison.

FIGURE 5. Objective function topology when the target node is located in
the center of the field at coordinates (50, 50).

and irregularities. Such a topology presents a challenge for
simple optimization algorithms such as gradient descent to
compute the global optimal solution.

IV. OVERVIEW OF ALGORITHMS CONSIDERED
In this section, we introduce the algorithms used in this
study. As outlined in Section III, we convert the localization
problem into an optimization problem. Many algorithms can
tackle such problems, including the gradient descent (GD),
simulated annealing (SA), particle swarm algorithms (PSO),
and genetic algorithms (GA).We employed several optimiza-
tion algorithms, including the firefly algorithm (FA), SA,
memetic firefly algorithm simulated annealing (MFASA),
GD, PSO, and GA. MFASA is a hybrid algorithm that
combines the features of FA and SA. As presented in [13],
this algorithm is adept at solving issues related to the local
optima. Given the complexity of the problem at hand, simple
and widely used algorithms such as gradient descent often
tend to converge on a local optimal solution rather than a
global optimal solution. Therefore, we included MFASA for
comparison with the other algorithms to address this specific
challenge.

A. FIREFLY ALGORITHM (FA)
The FA is a particle swarm-like algorithm proposed by
Yang [14]. The FA is inspired by the flashing behavior of
fireflies, which is an intelligent random algorithm for global
optimization problems. The basic steps of FA are as follows:

1) INITIALIZATION
Randomly initialize a set of fireflies within the search space
that represents potential solutions. Each firefly is assigned an
intensity proportional to the value of the objective function.
The relationship between intensity I and objective function f
for a minimization problem can be expressed as

I (x) = −f (x), (8)

where x represents a firefly in the search space.

2) MOVING FIREFLIES
Each fireflymoves toward fireflies that are brighter than them
(the brightest firefly of the whole swarm does not move). The
extent to which a firefly moves toward a brighter congener is
determined by the distance between them according to the
function β:

β(r) = β0e−γ r2 , (9)

where
• r is the distance between the fireflies,
• β0 is a positive constant, and
• γ is the light absorption coefficient.

3) BRIGHTNESS UPDATE
After each firefly in the swarm has moved, its brightness is
updated based on its new position according to (8).
These last two steps are repeated until a predefined number

of iterations is reached or a predefined objective value is
reached. The brightest firefly of the last iteration is the best
solution.

B. SIMULATED ANNEALING (SA)
SA was independently proposed by multiple auth-
ors [15], [16]. It is a stochastic optimization algorithm based
on the Monte Carlo method. The inspiration comes from
the annealing process in physics and can be used to solve
optimization problems. The SA starts from a relatively high
initial temperature, and with a continuous decrease in the
temperature, it randomly finds the global optimal solution in
the search space. The annealing process starts with the initial
solution s. In each iteration, a new solution s′ is generated in
the neighborhood of the current solution. The basic steps of
SA are as follows:

1) ENERGY DIFFERENCE
Whenever a new solution is considered, the energy difference
from the current solution is calculated as follows:

1E = f (s′) − f (s), (10)
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where
• 1E is the energy difference between the current solution
and the newly generated solution (difference in objective
value between the two solutions),

• f is the objective function,
• s is the current solution, and
• s′ is the new solution generated in the neighborhood of s.

2) ACCEPTANCE CRITERION
The acceptance or rejection of a new solution is based on two
main conditions:

If the new solution is better than the current solution
(1E < 0), it is directly accepted. An inferior new solution
(1E ≥ 0), it is accepted according to the probability based
on the current temperature. The following equation calculates
this probability

Paccept = e−1E/T , (11)

where
• T is the current temperature, and
• Paccept is the acceptance probability.
A random number r ∼ U (0, 1) is generated and

compared with the above probabilities to determine whether
to accept the new solution. If r < Paccept, the algorithm
accepts it.

3) TEMPERATURE DISPATCH
The high temperature at the beginning of the algorithm
encourages an extensive search, and new solutions may be
accepted even if they are poor. Over time, the temperature
gradually decreased, thus reducing the chance of accepting
poor-quality solutions. The temperature dispatch is deter-
mined by

Tn = T0 × ρn, (12)

where
• Tn is the current temperature,
• T0 is the initial temperature, and
• ρ is the cooling rate.

4) TERMINATION CONDITIONS
Once the temperature is reduced to a predetermined threshold
or the algorithm performs a predetermined maximum number
of iterations, it terminates and returns the current best
solution.

C. MEMETIC FIREFLY ALGORITHM SIMULATED
ANNEALING (MFASA)
MFASAwas proposed by Nadia andMahdi. In each iteration,
after completing the FA move step, SA was performed on
each solution to generate alternatives to the current fireflies.
If these alternatives are better solutions than those obtained
after the move step, the algorithm continues with these
solutions instead. The authors claimed that the algorithm

Algorithm 1MFASA
1: Initialize firefly population, objective function, and

initial temperature T
2: while termination criteria not met do
3: for each firefly i do
4: for each firefly j do
5: if intensity of j > intensity of i then
6: Move firefly i towards j
7: end if
8: end for
9: end for

10: for each firefly i do
11: Choose a new position for i in its neighborhood
12: Calculate the change in objective function 1E
13: if 1E < 0 or r < exp(−1E/T )) then
14: Accept the new position for i
15: end if
16: end for
17: Decrease T using cooling rate
18: end while
19: Return best solution found

outperforms the common FA in terms of accuracy and
convergence speed [13]. The pseudo-code of MFASA is
presented in Algorithm 1.

The algorithm terminates when the predefined objective
value is reached or the limit number of iterations is reached.
The firefly global best at the moment the algorithm halts is
considered as the solution.

Combining these two techniques increases the chances
of finding the global minimum of the objective function
as simulated annealing adds random perturbations to the
solution candidates, allowing the fireflies to escape areas
of local minima and explore other regions of the search
space.

D. PARTICLE SWARM OPTIMIZATION (PSO)
PSO introduced by Kennedy and Everhartas is a population-
based optimization technique inspired by the social behaviors
of bird flocking [17]. The basic steps of PSO are as
follows [18]:

1) INITIALIZATION
Initialize a swarm of n particles, each represented by a
position vector xi and velocity vector vi.

2) FITNESS EVALUATION
The fitness of each particle is evaluated according to the value
of the objective function f (xi).

3) UPDATE PERSONAL AND GLOBAL BEST
Each particle tracks of its personal best position pbestn and
the global best position gbest of the swarm.
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4) UPDATE THE VELOCITY AND POSITION
The velocity and position of the particles in each iteration are
updated by

vnewi = w× vi + c1 × r1 × (pbest i − xi)

+ c2 × r2 × (gbest − xi),

xnewi = xi + vnewi , (13)

where
• w denotes the inertia weight which helps to balance
global and local search capabilities,

• c1 and c2 are the acceleration coefficients. c1 dominates
the attraction of the particles toward pbestn, whereas
c2 controls the strength of the particle’s attraction to the
gbest, and

• r1 and r2 are random numbers generated independently
and uniformly in interval [0,1]. These random numbers
are used to introduce randomness and help the algorithm
escape the local optima.

These steps are repeated until a predefined number of
iterations is reached or until some other termination condition
ismet. The best solution of the last iteration is then considered
the solution to the optimization problem.

E. GRADIENT DESCENT (GD)
GD is an iterative method for optimizing differentiable
functions introduced by Cauchy [19]. The basic steps of GD
are as follows:

1) INITIALIZATION
Start with an initial point x0 within the search space.

2) ITERATIVE UPDATE
In each iteration, update the position in the direction opposite
to the gradient of the objective function as

xt+1 = xt − η · ∇f (xt ), (14)

where
• xt is the current position in the parameter space at
iteration t ,

• η is the learning rate, and
• ∇f (xt ) is the gradient of the objective function at xt .
These steps are repeated until a predefined number of

iterations is reached or a predefined objective value is
reached.

F. GENETIC ALGORITHM (GA)
GA is a heuristic search and optimization algorithm inspired
by the natural evolutionary process [20]. It mimics the process
of natural selection by selecting the most suitable individuals
to reproduce in order to produce the next generation of
individuals. The basic steps of GA are as follows [21]:

1) INITIALIZATION
A population of N individuals is initialized. Each individual,
also known as a chromosome, is a potential solution for this

problem. The chromosome can be represented in various
forms, such as a 2-dimensional search area with a real value,
which can be represented as

Chromosomei = (ai, bi), (15)

where ai, bi represents the coordinates of Chromosomei in a
2-dimensional area.

2) FITNESS EVALUATION
The fitness of each chromosome’s fitness is evaluated based
on an objective function f (x), which measures the quality of
the represented solution.

3) SELECTION
Selection simulates the survival of the fittest. The individuals
were selected based on their fitness levels. A commonmethod
is roulette wheel selection, where the probability of selection
is proportional to the fitness of the individual.

4) ELITE SELECTION
The best individual (elite) from the current population are
retained directly in the next generation to ensure that the best
solutions currently found are not lost.

5) CROSSOVER
Selected individuals produce offspring by crossover (pairing
and mixing genetic information). This process produces new
individuals that contain combinations of features from the
parent generation, which helps explore the solution space as

Child1,Child2 = Crossover(Parent1,Parent2). (16)

6) MUTATION
Mutation introduces genetic diversity into the population.
This helps the algorithm jump out of the local optima and
explore new solution space as

a′
i =

{
ai + 1 with mutation probability p,
ai otherwise,

b′
i =

{
bi + 1 with mutation probability p,
bi otherwise,

(17)

where
• a′

i, b
′
i are the coordinates after mutation,

• ai, bi are the coordinates before mutation,
• 1 is used to indicate the amount of change in the a and
b coordinates.

These steps are repeated until a termination condition is
met, such as reaching a predetermined number of iterations
or finding a satisfactory solution.

V. EVALUATION
In this section, we evaluate this proposed localizationmethod.
First, we evaluated the performance of the algorithms when
confronted with random points in a field. In the second step,
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TABLE 2. Optimization algorithms parameters.

FIGURE 6. Error values of different algorithms in random position.

we generate three random waypoints and restrict the search
space to the neighborhood of the previous point. Indeed,
in our case, it is reasonable to assume that successive points
will be close to one-another. Finally, we discuss the overall
results and trends in Section V-C.

For parameter tuning, we used the same data and grid
search method for each algorithm. Through a grid search,
we obtained the optimal parameters for each algorithm as
shown in Table 2.

A. RANDOM POSITION
We randomly generated 50 positions within a 100 meters by
100 meters field. Each algorithm was run ten times at each
position. Statistical analyses were performed based on the
results obtained. The error distribution for each algorithm is
shown in Fig. 6.

The performances of the various algorithms in terms
of localization accuracy exhibited significant variations.
MFASA demonstrated the lowest mean error at 1.10 meters,
indicating a superior average localization accuracy. Its
maximum error of 6.62 meters suggests a relatively stable
performance even in the worst-case scenarios. GA displayed
a slightly higher mean error of 1.15 meters. However, the
maximum error of 8.11 meters indicates the potential for
substantial deviations in certain cases. PSO and FA reported
mean errors of 1.83 meters and 2.02 meters, respectively,
showing overall less efficacy compared to MFASA and
GA. In particular, PSO exhibited a significant maximum
error of 69.15 meters, highlighting the possibility of large
localization inaccuracies under some conditions. SA and
GD had considerably higher mean errors of 20.44 meters
and 52.89 meters, respectively, indicating markedly lower
localization precision in this setup.

In summary, MFASA and GA outperformed other algo-
rithms. In particular, MFASA excels in terms of both
mean accuracy and stability. In contrast, SA and GD
demonstrated subpar performance. Therefore, we chose not
to consider SA and GD further in the remainder of our
evaluation.

To evaluate the performance of various algorithms across
different regions, we divided the 100 meters by 100 meters
area into 100 subareas, each measuring 10 meters by
10 meters. Within each subarea, we generated ten location
coordinates. We then ran each algorithm on these points and
computed the average error for each subarea. The results are
shown in Fig. 7.

The mean error for the GA is 1.58 meters, indicating that
the overall error is within the control. The standard deviation
of 1.24 shows some fluctuation in the error distribution, but
it is relatively small. The mean error of 1.15 meters for
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FIGURE 7. Average error of 4 algorithms in each subarea.

MFASA was the lowest of the four algorithms, indicating the
best overall performance. The standard deviation of 0.70 is
relatively small, indicating good consistency of the results.
The maximum error of 3.58 meters was the smallest of
the four algorithms, indicating that the performance was
still good in extreme cases. For PSO, the mean error is
2.75 meters, which is significantly higher than that of the
other algorithms, showing poorer overall performance. The
maximum error of 12.34 meters is very high, indicating
that the algorithm performance may be unstable, similar to
the GA in some special areas. The mean error of FA is
1.99 meters, which is located between those of the GA and
PSO. The standard deviation is 0.99, which is relatively
small compared to those of GA and PSO, but larger than
that of MFASA. The maximum error is 5.08 meters, which
is larger than that of MFASA but smaller than those of
GA and PSO.

MFASA performed best in this set of comparisons,
with the lowest mean error and highest stability. The GA
exhibits the next-best performance with better mean error
and stability. It is important to note that it had a maximum
error of 10.64 meters. FA lags behind MFASA and GA in
performance but may still outperform PSO. PSO appears to
have the best erratic performance, with the highest mean and
maximum errors.

Regarding the location of outliers, no significant outliers
appeared in the FA and MFASA results. In contrast, PSO and
GA had the same outliers at locations (2, 8) and (8, 7). It is
impossible to determine whether the specificity of the region
is responsible for this result or if there is another reason.

Overall, the errors for GA, MFASA, and FA were evenly
distributed, with most of the high error regions located at the
edges of the overall region. However, the GA has two outliers,
and all three algorithms have low center errors. We believe
that this is related to modeling errors. When the target is
at the edge position, more than half or half of the anchor
nodes are too far away from the target position, resulting in
modeling errors.

In contrast, the PSO results did not have high errors at
the edge locations and low errors at the center. Instead,

large errors occur near the edge region, which is different
from the results of the other three algorithms.

B. RANDOM WAYPOINT
In a real environment, neither humans nor animals move
quickly. Therefore, to make the evaluation more reasonable,
we decided that the first iteration of the algorithm in local-
ization would perform a full-area search. Each subsequent
iteration redefines the region in which the algorithm is
executed based on the localization results of the previous
iteration. Based on the results of the previous set, we decided
to define the extent of this new search area as a circle of
radius 20 meters centered on the location coordinates of
the previous localization result. When the cattle run, it can
reach an average speed of 7.6 meters per second. However,
considering that most of the time, cattle stay somewhere for
a long time or make very slow movements, we decided to set
the distance between two successive waypoints to 4 meters.
We randomly generated three paths, each with 100 waypoints
and a distance of 4meters between eachwaypoint. The results
are shown in Fig. 8 and Table 3.
All four algorithms tracked the movement trajectory of the

target accurately. In Path 1, both GA and PSO outperformed
FA and MFASA with a mean error of 0.78 meters, and
median errors of 0.59 meters and 0.51 meters, respectively.
The maximum error of the GA is 3.55 meters, which is
significantly lower than the maximum errors of the other
algorithms. In Path 2, GA continues to perform better
with a mean error of 0.89 meters and a median error
of 0.59 meters. Although PSO has the highest maximum
error (11.43 meters) at this waypoint, its mean and median
errors (1.08 meters and 0.64 meters, respectively) still show
better overall performance. In Path 3, the errors of the four
algorithms are significantly higher. The average error for both
FA and GA is 1.52 meters, which is the lowest among the
four algorithms. The median errors were 0.89 meters and
0.83 meters, respectively, which performed well relative to
the other methods. The four algorithms had similar maximum
errors, with no significant differences in performance. This is
due to the path that goes into a place on the field in which all
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FIGURE 8. Estimated path obtained from four optimization algorithms on three random waypoint paths.

TABLE 3. Error statistics for each waypoint.

algorithms do not perform as well as in other areas (as shown
in Fig. 7).

TheGAhad the lowest mean andmedian errors for all three
paths, indicating a superior overall performance. Although

PSO performs better in Path 1, it exhibits higher errors in
Paths 2 and 3. A maximum error of 11.44 meters occurs in
Path 2, which is unsatisfactory. In contrast, FA was more
stable in all three paths. Although its overall performance is
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not as good as that of GA, it can provide stable positioning
results with acceptable errors.

The results for MFASA are quite surprising. MFASA
performed the best in both the random location and subarea.
However, after narrowing down the search range to a random
waypoint, MFASA did not perform as well as the other
algorithms. This could be due to the fact thatMFASA uses the
simulated annealing mechanism which causes the algorithm
to accept worse results at runtime in order to speculatively
avoid suboptimality. However, the limited number of searches
reduces the likelihood of encountering this issue. Therefore,
it is reasonable for this algorithm to present worse results than
other algorithms in this setting.

C. DISCUSSION
Overall, several algorithms can provide improved localization
results in this mode. In more detailed comparisons, the GA
exhibits better stability and lower localization errors in this
system and performs well in both the subarea and the random
waypoint. FA has a higher error rate than GA. However,
it consistently provides higher localization results. In the
whole-field search, MFASA outperformed GA because of its
strong ability to handle local optimization. However, MFASA
performs poorly at random waypoints, and its localization
accuracy is not as good as that of other algorithms once
the search space has been somewhat restricted around the
previously known location. PSO can also provide more
accurate localization results but is less stable than GA, FA,
and MFASA. Regarding GD and SA, these two algorithms
cannot achieve highly accurate localization results in this
mode. Owing to the complexity of the problem, these
algorithms may fall into local optima, resulting in large errors
in the localization results.

However, the present analysis is based on a simulation.
In the actual environment, the impact of environmental
factors on the RSSI will not be the same as that in the
ideal model, and other factors, such as signal interference,
also need to be considered. A previous study indicated that
heavy rain can disrupt 2.4GHz Wi-Fi signals, leading to
interruptions [22]. Additionally, it is important to consider
that humidity and temperature changes can cause RSSI
fluctuations in real-world environments, with variations of up
to ±5 dBm. Given these factors, it is essential to verify the
impact of these specific extreme conditions on WiFi signal
integrity by empirically evaluating them in actual situations.
We leave this to future work.

VI. CONCLUSION
This study presents a new RSSI-based outdoor localization
method. The method transforms the localization problem into
an optimization problem using an optimization algorithm to
minimize the RMSE between the measured RSSI value and
the predicted RSSI value to obtain the coordinates of the
target location for localization. All simulations were based on
an outdoor environment and used a two-ray ground-reflection
model as the transmission model.

Overall, in evaluating different optimization algorithms in
random positions, the SA and GD performed poorly. The GA,
MFASA, FA, and PSO can obtain satisfactory localization
errors. Among them, the smallest positioning result error of
1.1 meters was obtained using MFASA. In contrast, MFASA
performs the highest positioning result in random waypoints
but GA has the best performance.

Considering that different scenes have different propaga-
tion models, we believe that by replacing the propagation
model, this method can also be applied to solve the problem
of indoor localization or localization in other scenes. In future
studies, we will use real data using this method to evaluate
the practicality of the scheme. In addition, considering the
influence of the environment on the RSSI, the positioning
accuracy and stability of the system may need to be further
improved by using fusion with other sensors or positioning
techniques.
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