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Highlights

Highlights:

1. The objective of this work is to exploit the performance of the non-local sparse principal component
analysis (NLS-PCA) method for speckle noise filtering in coherent optical techniques.

2. The study shows that the proposed NLS-PCA method performs very well for speckle noise filtering and edge
preservation at low computational complexity.

3. It is concluded that the method for speckle noise filtering is effective and could be established as a powerful
speckle-noise filtering tool for optical imaging techniques.
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Abstract

Speckle-noise filtering is an extensive and key process in coherent interferometric techniques to obtain
important and accurate information from the recorded interferogram or fringe pattern. The speckle-noise
inherent to these interferograms, recorded by digital image sensors in these optical techniques, is eliminated
by an appropriate image processing method. Since the beginning and further development of these
techniques, a wide variety of speckle noise filtering methods and techniques have been proposed. The present
research work aims to exploit the performance of the non-local sparse principal component analysis (NLS-
PCA) method for speckle noise reduction as applied to the interferometric fringe patterns obtained from
digital holographic and digital speckle pattern interferometric techniques. The performance of the NLS-PCA
is evaluated on numerical simulations using different types of speckle fringe patterns resulting in the method
being highly effective in filtering the speckle noise and providing superior results evaluated in terms of peak
signal-to-noise ratio (PSNR), structural similarity index (SSIM), Edge preservation Index (EPI), and
Equivalent Number of look (ENL), in comparison to widely known methods such as windowed Fourier
transform method, Lee filter, Weiner filter. Furthermore, the proposed method maintains the finer details and
preserves the fringe edges effectively. The performance of the NLS-PCA method is also demonstrated on
experimental speckle fringe patterns and digital holograms.

Keywords: Speckle noise; Digital speckle pattern interferometry; Digital holography; Principal component
analysis.

1. Introduction

Laser-based optical imaging including microscopy [1-13] and measurement techniques [ 14-22]
are the incontestable vital tools that have become increasingly important for various scientific,
engineering, and industrial applications. Interferometric techniques including digital
holography (DH) [23], digital speckle pattern interferometry (DSPI) [24], and shearography
[25] are widely used optical measurement techniques based on coherent imaging systems.

Unfortunately, the resultant fringe patterns carry high-frequency speckle noise due to the
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coherence nature of the light source (i.e. a laser) used in these techniques. The presence of
speckle noise affects fine details and edges which limits the contrast resolution and adds
ambiguity to the measurements. In short, speckle noise degrades the visual evaluation and
makes diagnosis inaccurate and more difficult. The analysis of these recorded fringe patterns
for the determination of physical measurands requires a speckle noise filtering step in order to
obtain a high-quality phase map, consequently, for the efficient physical measurand precision.
Therefore, in these techniques, the speckle noise filtering step is always needed before data
processing. The main challenge in speckle filtering is to preserve all the fine details and the

edges of the processed images/fringe patterns.

A variety of speckle noise filtering techniques have been proposed in diverse research fields
such as speckle metrology [26], medical imaging [27], and synthetic aperture radar (SAR)
imaging [28]. Generally, speckle noise filtering techniques are categorized as hardware-based
and software-based approaches [26]. However, a software-based approach (i.e. based on image
processing) is considered to be an efficient and economical way of speckle noise reduction in
optical techniques. The speckle noise filtering methods, based on the image processing
approach, can further be classified mainly into spatial-domain, transform-domain, and hybrid
methods. Each method has advantages and limitations, as we have discussed in detail in our
previous paper [26]. The field of fringe pattern filtering by image processing is always an active
research area aiming to propose and improve the existing methods to provide superior results

with high quality and information preservation at the edges.

Over the years, a large variety of methods and approaches has been published on speckle
filtering is introduced. Boumbach et al. [29] Introduced an approach based on the use of several
recorded holograms of the same specimen for the reconstructed phase map quality

improvement. Whereas, Rong et al. [30] proposed another approach where multiple off-axis



holograms are recorded using a circularly polarized illumination beam and a rotating linearly
polarized reference beam, and the speckle noise is removed in the reconstructed images by
averaging these fields. Zhou and Li exploited the bidimensional empirical mode decomposition
for DSPI fringe denoising [31]. Xiao et al. [32] introduced an improved variational mode
decomposition for DSPI phase map denoising, in this work, the authors proposed an adaptive
mode threshold method to process the obtained optimal mode components given after the
variational mode decomposition of the input DSPI phase map. Kemao [33] introduced a
frequency-based method package called windowed Fourier transform for DSPI fringe
despeckling and analysis. Other researchers as Yassine et al. [34], Ning et al. [35] introduced a
wavelet transforms-based approach, this approach gives accurate results according to the
mother wavelet and the scale of decomposition. In the same context, Zada et al. [36] proposed
an approach that combines wavelets transform and monogenic signal called monogenic
wavelets transform. Another efficient method called Block Matching 3D introduced by Dabov
etal. [37]1n 2006 is recognized as the state of the art in image processing, this method combines
efficient denoising techniques and synthesizes the most major advances that occurred in recent
years. Tounsi et al. [38,39] exploited in detail the power of nonlocal mean and its adaptive

related kernels for denoising speckle fringes.

The purpose of this work is to adopt the non-local sparse principal component analysis (NLS-
PCA) method with some significant modifications and use it for the filtering of speckle noise
in DSPI and DH. The method was introduced by Salmon et al. [40] for Poisson noise removal
in 2014. The principal component analysis (PCA) method gained a great interest in image
processing, specifically in image filtering. The general idea of the PCA denoising-based method
is to transform the original dataset into a PCA domain preserving only the most important
principal components, i.e., this time the noise and any trivial information can be removed. The

first exploitation of the PCA for image filtering was realized by Muresan and Parks [41], in
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which the authors proposed a spatially adaptive PCA-based speckle noise filtering procedure.
The schema used by Muresan and Parks is realized on noise filtering by using a moving window
to compute the local statistics from which the PCA matrix is estimated. However, the filtering
procedure is applied directly to the PCA transformation to the noisy image without any data
selection, and this makes some residual noise and visual artifacts appear in the filtered image.
Lv et al. [42] introduced a novel approach called multilinear PCA (MPCA) to denoise multi-
frame optical coherence tomography (OCT) data. In this method, the nonlocal similar 3D
blocks extracted from the data are first grouped using the k-means clustering method in order
to well preserve local image features. After that, the MPCA transform is performed on each
group and the transform coefficients are shrunk to remove speckle noise. Finally, the filtered
OCT volume is obtained by inverse MPCA transform and aggregation. A new hybrid speckle
noise filtering method, based on Undecimated Dual-Tree Complex Wavelet Transform (UDT-
CWT) and non-local Principal Component Analysis (PCA) with local pixel grouping (LPG-
PCA) on SAR images, is proposed by Ramin Farhadiani et al. [43]. Furthermore, different
variants of PCA methods have become widespread in image filtering techniques including
patch-based PCA [44], patch-based global PCA (PGPCA) [45], and patch-based hierarchical

PCA [46] , to name a few.

The above gives an updated account of the NLS-PCA method for speckle noise filtering in
DSPI and DH. The second and third sections present a detailed explanation of the filtering
concept of NLS-PCA, and the fourth section will focus on the principal findings and results
obtained from filtering using numerical simulation and experimentally obtained speckle fringe

patterns and a digital hologram of a dice.

2. Principal component analysis (PCA)



Consider an image patch e’ in the image and n—/ most similar nonlocal image patches €/, with
j=2,3,...,n, can be found in the entire image (called a search window). Then, group these

vectors into a matrix £ which is expressed as:

1 2 n
€ ¢ €
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which is called the sample vector of e;.

The mean value of E; is computed as:
1< )
#=—=2 E()) (3)
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The sample vector is centralized as

E=E-p=d ¢ . ] @

i
where e/ =e/ — ..

Accordingly, the centralized matrix of E is
— [—=Tr —T —r 7
E =[El E .. E } (5)
where 7' is the transpose operator. Finally, the co-variance matrix of the centralized dataset is
calculated as
1 ==r

Q=-EE (6)



The goal of PCA is to find the orthonormal transformation matrix P to de-correlate E,ie.,
F = PE, so that the co-variance matrix of F is diagonal. Since the co-variance matrix € is
symmetrical, it can be written as:

Q= DAD” (7)

where © =[0, 0, @5 ..0,,] is the mxm orthonormal eigenvector matrix and

A=diag{2,2,,....4,}is the diagonal eigenvalue matrix with 424, >..24, . The terms

@1 0y B3 ... 0., and 4,4,,.., 4, are the eigenvectors and eigenvalues of Q. By setting P =®",

E can be de-correlated. An important property of the PCA is that it fully de-correlates the
original dataset £ . Generally speaking, the energy of a signal will concentrate on a small subset
of the PCA-transformed dataset, while the energy of noise will evenly spread over the whole

dataset. Therefore, the signal and noise can be better distinguished in the PCA domain.

3. Non-local sparse principal component analysis filtering method (NLS-PCA)

The entire procedure of the NLS-PCA filtering is summarized in Figure 1. The procedure begins
with the creation of a small noisy image called a patch (of size /) according to the principle of
the non-local means (NLM) algorithm [38], [39], [47]. Then, the clustering step consists of
creating a number of clusters of patches. The clustering step is based on a geometrical
partitioning of the image and it is a robust approach that avoids dissimilar regions in the image:
for this method, the clustering step is performed in the patches domain which remains in the
non-local approach. The clusters defined by P!, P?,P3,..,PN in the figure below are the

segmented patch image intensities.

The third step deals with the filtering of clusters, the approach of filtering employs an adopted

PCA for speckle noise filtering. The filtering of the clusters consists of the following steps:



» Learning an orthogonal basis from the noisy clusters by performing PCA and
decomposing these noisy clusters on this basis.

» The denoised clusters are obtained by thresholding all small coefficients in the
representation of the noisy clusters on a learned basis. This procedure is similar to
wavelets filtering [34].

The fourth step deals with the fusion of the denoised clusters in order to obtain the denoised

patches. Once the collection of patches is denoised, it will be reprojected into the pixel

domain and reconstructs the final denoised fringe pattern. The reprojection creates the

passage from the patches to spatial domains.

Input noisy
image

Generation of patches

Collection of patches

Clustering

Pl PZ P3 PN

Denoising clusters

Pl P2l (P3| .. |PY
Fusion
___________________ .
. . I 1
Collection of denoised patches —» \ |
)

— N deno:sed patches
Reprojection | 00 Sm o s o s s s s s ===

) 7N
Denoised
image >
N/

Fig. 1. Visual summary scheme of the NLS-PCA speckle noise removing method.

There are various techniques to reproject information from patches to pixels, a detailed
description is provided in our previous work [39]. In this study, we use a uniform average of

all the good patch candidates [39].



4. Results and Discussions

The performance of NLS-PCA method for speckle noise filtering is performed first on
computer-simulated speckle fringe patterns and then on experimentally recorded data. The
simulated speckle fringe patterns are generated following the method reported by Barj et al. in
[48]. The simulated fringe patterns are shown in Fig. 2 which are simulated with a resolution
0f 256256 on a scale of 256 gray levels, and for different fringe densities (with fringe numbers:
5, 8, 11, 16, 26). In interferometric measurements, the high density of fringes (more fringes)
results from more changes occurring in the test object and it may induce high noise in the
measuring signal and makes analysis more difficult. Therefore, the varying fringe densities are
very important for studying the performance of a filtering method because the high fringe
density affects noise reduction and as a consequence the accuracy of the fringe analysis. There
may require to optimize some parameters of a filtering method for high-density and low-density
fringes. So, in the proposed method, the first step is to fix the same parameters for both methods
(Non-Local Sparse-PCA and Non-Local-PCA), and implement the filtering. The principal
parameters are the patch width denoted by / and the number of clusters denoted by ¢, generated
by the K-means method which is an unsupervised machine learning algorithm for clustering
(the symbol ‘K’ defines the number of pre-defined clusters that need to be created in the
process). The parameter 4 is related to the NLM approach and its value affect directly the quality
of denoising [38]. We have taken 42=5 and varied the number of created clusters (e.g., ¢=50;
c=70; c=100) with 15 iterations. The 15 iterations were found to be sufficient as the decrease
in the background noise value is negligible beyond 15 iterations which were checked by
comparing the SNRs for different iterations. The SNR for a filtered image for 15 iterations, 20
iterations, and 25 iterations are 3.22, 3.35, and 3.46, respectively. In addition, if the iteration
number increase, the computational complexity increases without any significant improvement

in terms of SNR.



The obtained filtering results for each cluster number for both methods (NLS-PCA, top row,
and NL-PCA, bottom row) are presented in Figure 3 (for ¢=50), Figure 4 (for ¢=70), and Figure
5 (for ¢=100). Also, the filtered results of different methods are quantitatively evaluated based
on the local zones corresponding to the red rectangle regions in the filtered images in Figs. 3-
5. For quantitative appraisal, image quality metrics must be used to show the performance of
the method. Peak signal-to-noise ratio (PSNR), Structural SIMilarity index (SSIM), edge
preservation index (EPI), and equivalent number of looks (ENL) [49] are four important metrics

for the evaluation of fringe pattern filtering quality [26].

Fig. 2. Simulated speckle fringe patterns with different fringe densities where the fringe number increases from
left to right from 5, 8, 11, 16 to 26.

;3«-" . “A:‘,t 3 il p " P - 4 : ; p o " - 2 ’. . 7
Fig. 3. Denoised speckle fringe pattern and their corresponding zooms of the red rectangle region
for ¢=50 using NLS-PCA (top two rows) and NL-PCA (bottom two rows).
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Fig. 4. Denoised speckle fringe pattern and their corresponding zooms of the red rectangle region
for ¢=70 using NLS-PCA (top two rows) and NL-PCA (bottom two rows).
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Fig. 5. Denoised speckle fringe pattern and their corresponding zooms of the red rectangle region
for ¢=100 using NLS-PCA (top two rows) and NL-PCA (bottom two rows).

The PSNR computes the peak signal-to-noise ratio between the perfect clean and the denoised
fringe pattern and the higher PSNR value indicates a better quality of noise removal. is defined
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as the ratio between the maximum possible power of a signal and the power of filtered noise

and is given by:

PSNR(f.., f)=10log,, [sz)j (8)

where L=28-1=255 is the maximum possible value of the image pixels when pixels are represented using
8-bits per sample; and MSE(fou, f) represents the mean square error between noised and denoised
speckled fringe correlation defined as:

221G~ 1 )] 9)

i=l j=1

1
MSE(f o /) = =Nl
where fis the original image value at pixel (i,j), four the denoised image, and M, N represents the image
size.
The SSIM metric compares two input images (the perfect clean fringe pattern and the denoised
fringe pattern) by extracting three features from these input images: luminance, contrast, and
structure.

(2%;”, M+ G ) (20f;,u,f + C2)
(,ujz;m +,u; +C, )(O‘;t + Gj% + Cz)

SSIM (i f) = (10)

where s and i represent the mean intensity of the denoised and noised image respectively,

oy,... and oy represent the standard deviation of denoised and noised images, respectively, a7 ;

is the correlation coefficient between the two input images f'and fou;, and C;= k1L, C>= koL are
two constants [where k; = 0.01 and k> = 0.03, L is the dynamic range of the pixel-values
(typically this is 2numberofbitsperpixel 1)1 The values of SSIM are within the range [0,1] where the
value of 1 indicates that the two (input and output) images are perfectly similar and the value
of 0 means that the two images are very different. The third metric is EPI, measuring the ability

of any filtering algorithm to preserve and maintain details at edges. The expression of EPI is:

11
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The values of EPI are in the range [0,1] where the value of 1 means that the filtering method

EPI(f o f) = (11)

preserves perfectly the edges.

The ENL of an image is defined as:

ENL(f)="% (12)

2
v
The ENL computes the ratio between the mean gray level of the image and the standard

deviation, The larger the ENL value, the smoother the image.

The three presented metrics are computed for each cluster number c. Table 1 and Table 2
summarize the computed metrics values for NLS-PCA and NL-PCA methods, respectively, and

Fig. 6 depicted these metrics values in graphical representation.

Table 1: Performance of NLS-PCA filtering method
Fringe number PSNR SSIM EPI ENL

5 26.5 0.93 099 622
h=5; =50 8 16.74 0.89 098  5.46

11 14.98 0.82 0.98 8.08

16 19.03 0.85 097  14.62

26 18.33 0.82 098  14.62

5 20 0.84 098 1133

NLSPCA  p=5; =70 8 18.89 0.89 0.98 7.26
11 10.57 0.58 098  9.52

16 19.92 0.87 097 1542

26 18.02 0.80 098  14.73

5 20.07 0.86 0.99 11.6

h=5; 8 16.15 0.86 099 635

=100 11 17.19 0.87 099 845

16 12.38 0.50 0.95  18.26

26 11.62 0.55 097  16.30

Table 2: Performance of NL-PCA filtering method
Fringe number PSNR SSIM EPI ENL

5 14.52 0.61 0.91 3.8
h=5; =50 8 13.27 0.66 0.89 3.74

11 13.02 0.70 0.87 3.57

16 14.02 0.76 0.84 3.35

26 12.30 0.69 0.82 3.13

5 11.73 0.55 0.90 3.58

h=5; =70 8 13.80 0.67 0.88 3.6

NLPCA 11 12.74 0.69 0.86 3.44

12



16 12.63 0.72 0.83 342
26 10.55 0.68 0.80 4.09
5 13.44 0.58 0.89 3.5
h=5; 8 12.05 0.61 0.87 3.52
=100 11 13.60 0.70 0.85 3.58
16 13.36 0.73 0.82 3.37
26 10.94 0.62 0.79 4.5
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Fig. 6. Performance of NLSPCA and NLPCA in terms of PSNR (top graphs), SSIM (first middle graphs), EPI
(second middle graphs), and ENL (bottom graphs) for different ¢ values. Data were taken from tables 1 and 2.

The performance of some other speckle fringe pattern filtering methods such as the Lee filter,
Windowed Fourier transform and Weiner filter is compared with the proposed method in terms
of the tree metrics (PSNR, SSIM, and EPI) and presented in table 3. The parameters for these
methods are: Lee filter (Window size 7*7); WFT (Default parameters in the Matlab Code
written by Prof. Q. Kemao based on his work) and Weiner filter (Window size 7*7). From the
obtained values of these metrics (by comparing values in Table 1 and Table 3), it can be

concluded that the NLS-PCA method is more effective and feasible for speckle noise filtering.

Table 3: Performance of Lee filter, WFT and Weiner filter.
Fringe number PSNR SSIM EPI

5 19.22 0.85 0.98

8 19.37 0.88 0.97

Lee filter 11 16.54 0.86 0.96
16 18.71 0.83 0.92

26 14.26 0.62 0.88

5 16.86 0.82 0.92

8 17.10 0.87 0.91

WFT 11 16.94 0.89 0.91
16 17.98 0.81 0.87

26 17.06 0.79 0.88

5 15.84 0.67 0.91

8 16.34 0.74 0.91

Weiner filter 11 15.00 0.74 0.89
16 15.94 0.59 0.80

26 10.22 0.45 0.55

The superior performance of NLS-PCA as compared to NL-PCA is confirmed by the four
computed metrics (see Table 1, Table 2, and Figure 6). This performance is due to the sparsity

approach attached to the PCA technique. It is known that the classic PCA has major practical

14



and theoretical drawbacks when it is applied to high-dimensional data [50] (two-dimension in
this case). The principal loading components are typically nonzero which makes it difficult to
interpret them and identify the important variables. To overcome this drawback, the sparsity
approach formulates the PCA as a regression-type optimization problem and consequently
obtains sparse loading by imposing the lasso or elastic net penalty on the regression coefficients
[51]. The sparsity approach reduces the time of filtering. The time taken by each method to
execute the process of denoising is computed as reported in table 4. The NLS-PCA performs
filtering between 3 to 5 seconds for the different input speckle fringe patterns presented in

Figure 1, whereas, the NL-PCA approach performs filtering between 11 and 15 seconds.

Table 4: Computational time of different denoising methods
Denoising method  Time of computation (s)

NLPCA (¢=20) 22.6
NLPCA (¢=70) 18.2
NLPCA (¢=100) 13.5
NLSPCA (¢c=20) 3.75
NLSPCA (¢c=70) 3.3

NLSPCA (¢c=100) 3
Lee filter 6.9
Weiner filter 8.4
WEFT 9.3

Furthermore, the important parameters in the proposed NLSPCA method are ¢ (number of
clusters) and 4 (patch size). The obtained results and the quantitative appraisal are realized for
different values of these parameters (c and /) for denoising implementation using the proposed
NLSPCA method. We evaluated the PSNR and the SSIM of the obtained results by NLSPCA
for h = {5;10;15;20} and ¢ = {10,20,30,....,100}. The two plots shown in Figure 7 represent
the effect of the two parameters on denoising performance. Therefore, to obtain the best filtering

results, their parameters need to be optimized for a particular input noisy image.
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Fig 7: Performance of NLSPCA in terms of PSNR and SSIM for several patch sizes and number of clusters.

To illustrate the performance of the NLS-PCA method for speckle noise filtering when
experimental data are processed, we analyzed a real recorded speckle fringe pattern and a two-
dice image reconstructed from an experimentally recorded digital hologram. The performance
of the NLS-PCA is evaluated on the experimentally obtained interferograms by the DSPI [24]
and DH [52] setups. The experimental setups of the DSPI and DH are depicted schematically
in Figs. 8 and Figs. 9, respectively. In DSPI, the He—Ne laser (power 15 mW) is split into
reference and object beams by the beam splitter, BS1. The object beam is expanded by a beam
expander, BE, which illuminates the surface of the object under study and produces the speckle
field. The speckled image is formed on the image sensor [CCD sensor, 640 pixelsx640 pixels;
pixel size — 9 um] by the imaging lens, L. The reference beam is spatially filtered by the spatial
filter, SF, and collimated by the collimator, C, before interfering with the object beam at the
beam combiner, BS;. The speckle interferogram formed by the combination of object and
reference beams was recorded. Two speckle interferograms corresponding to the two different
states of the object are recorded in DSPI and then subtracted to obtain the DSPI fringes. Figure

10(a) shows a processed DSPI fringe pattern.
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Fig. 8: Schematic of the DSPI setup [24].
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Fig. 9: Schematic of the digital holography reflection setup based on the Mach—Zehnder interferometer, modified

from [52].
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The denoising performance of these methods is also verified on the two-dice image, numerically
reconstructed from the experimentally recorded digital hologram from a phase-shifting Mach—
Zehnder type digital holographic (DH) setup (as obtained from an open-access database [52]).
The recording setup of DH comprises a Mach—Zehnder type interferometer working in the
reflection mode. In the experimental setup, a laser beam of a wavelength of 632.8 nm and power
of SmW is used. The laser beam is divided into the object and reference beams by using a beam
splitter, BS1, and spatially filtered (by SF; and SF>) and collimated by the collimators (C). The
beam reflected from the object and the clean reference beam are combined by using another
beam splitter, BS, and form a digital hologram, recorded by an image sensor. Each hologram
is a combination of four phase-shifted interference patterns that are sequentially recorded, with
a constant phase step of @2, adjusted by a computer-controlled piezo-electric mirror in the
reference beam. From the recorded digital holograms, the real and virtual object waves can be

reconstructed if the diffraction of the reference wave is carried out by numerical methods.

Figures 10(a) and 11(a) show the experimental data from the DSPI and DH, respectively.
Figures 10(b-f) and 11(b-f) present the resulting filtered images using the NLS-PCA, NLPCA,
Lee filter, Weiner filter, and WFT, respectively. Since there are no reference images for these
experimentally obtained images, therefore, the equivalent number of looks (ENL) is computed

for all the images [Fig. 10(a-f) and Fig. 11(a-f)].

(2) (b) (©)
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(d) (e) 3]
Fig. 10. Results of filtering for real DSPI fringes. (a) Original image, (b-f) denoised image using NLSPCA,
NLPCA, Lee filter, Weiner filter, and WFT, respectively.

(d) (e) ®
Fig. 11. Results of filtering for two-dice image reconstructed from the experimentally recorded digital
hologram. (a) Original image, (b-f) denoised image using NLSPCA, NLPCA, Lee filter, Weiner filter, and WFT,
respectively.

Fig. 12 shows a plot of the computed ENL values for the different filtering methods
implemented for the two experimental data. The computed ENL values demonstrate the
filtering capability of the NLS-PCA method. According to the histogram shown in Fig. 12, the
superiority of the NLSPCA method is confirmed in comparison to other filtering techniques on

the experimental data.
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Fig. 10. ENL values plots for different filtering methods
5. Conclusion

The present research aims to examine the performance of the nonlocal sparse principal
component analysis (NLS-PCA) for speckle noise reduction as applied to optical
interferometric techniques. The study has shown that NLS-PCA performs very well and is able
to obtain excellent speckle noise removal and edge preservation at low computational
complexity when compared with the NL-PCA approach and some state-of-the-art methods from
speckle fringe patterns and holographic images. The numerical simulation shows that a patch
size of 5 and cluster numbers of 70 are the two principal parameters that significantly remove
the speckle noise from the fringe patterns. The NLS-PCA method performs very well and
preserves the fine details in all images including the closed fringes and at all levels of noise.
Overall, based on the obtained results, it can be concluded that NLS-PCA method for speckle
noise filtering is effective and could be established as a powerful speckle-noise filtering tool

for optical imaging techniques.
Funding

Osamu Matoba acknowledges the support of a Grant-in-Aid for Scientific Research from the

Japan Society for the Promotion of Science (20H05886).

20



References

1.

2.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Kim, Myung K. "Principles and techniques of digital holographic microscopy." SPIE reviews 1.1 (2010):
018005.

Kumar, Manoj, et al. "Common-path multimodal three-dimensional fluorescence and phase imaging system."
Journal of biomedical optics 25.3 (2020): 032010.

Kemper, Bjorn, et al. "Investigation of living pancreas tumor cells by digital holographic microscopy." Journal
of biomedical optics 11.3 (2006): 034005.

Quan, Xiangyu, et al. "Three-dimensional stimulation and imaging-based functional optical microscopy of
biological cells." Optics letters 43.21 (2018): 5447-5450.

Park, YongKeun, et al. "Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact
red blood cells." Optics letters 34.23 (2009): 3668-3670.

Kumar, Manoj, et al. "Digital holographic multimodal cross-sectional fluorescence and quantitative phase
imaging system." Scientific Reports 10.1 (2020): 1-13.

Park, YongKeun, Christian Depeursinge, and Gabriel Popescu. "Quantitative phase imaging in biomedicine."
Nature photonics 12.10 (2018): 578-589.

Kumar, Manoj, et al. "Single-shot common-path off-axis digital holography: applications in bioimaging and
optical metrology." Applied Optics 60.4 (2021): A195-A204.

Nehmetallah, Georges, and Partha P. Banerjee. "Applications of digital and analog holography in three-
dimensional imaging." Advances in Optics and Photonics 4.4 (2012): 472-553.

Kumar, Manoj, et al. "Single-shot common-path off-axis dual-wavelength digital holographic microscopy."
Applied Optics 59.24 (2020): 7144-7152.

Quan, Xiangyu, et al. "Multimodal microscopy: fast acquisition of quantitative phase and fluorescence imaging
in 3D space." IEEE Journal of Selected Topics in Quantum Electronics 27.4 (2020): 1-11.

Kumar, Manoj, et al. "Measurement of initial displacement of canine and molar in human maxilla under
different canine retraction methods using digital holographic interferometry." Optical Engineering 57.9 (2018):
094106.

Kumar, Manoj, Gufran Sayeed Khan, and Chandra Shakher. "Measurement of elastic and thermal properties
of composite materials using digital speckle pattern interferometry." SPECKLE 2015: VI International
Conference on Speckle Metrology. Vol. 9660. SPIE, 2015.

Osten, Wolfgang, Torsten Baumbach, and Werner Jiiptner. "Comparative digital holography." Optics letters
27.20 (2002): 1764-1766.

Sheridan, John T., et al. "Roadmap on holography." Journal of Optics 22.12 (2020): 123002.

Kumar, Manoj, et al. "Measurement of strain distribution in cortical bone around miniscrew implants used for
orthodontic anchorage using digital speckle pattern interferometry." Optical Engineering 55.5 (2016): 054101.
Kumar, Manoj, Varun Kumar, and Chandra Shakher. "Measurement of temperature and temperature
distribution in diffusion flames using digital speckle pattern interferometry." Eleventh International Conference
on Correlation Optics. Vol. 9066. SPIE, 2013.

Kumar, Manoj, and Chandra Shakher. "Measurement of hygroscopic strain in deodar wood during convective
drying using lensless Fourier transform digial holography." Optical Micro-and Nanometrology VI. Vol. 9890.
SPIE, 2016.

Kumar, Manoj, and Chandra Shakher. "Experimental characterization of the hygroscopic properties of wood
during convective drying using digital holographic interferometry." Applied optics 55.5 (2016): 960-968.
Kumar, Manoj, Kumresh Kumar Gaur, and Chandra Shakher. "Measurement of material constants (Young's
modulus and Poisson's ratio) of polypropylene using digital speckle pattern interferometry (DSPI)." Journal of
the Japanese Society for Experimental Mechanics 15.Special Issue (2015): s87-s91.

Kumar, Manoj, and Osamu Matoba. "2D full-field displacement and vibration measurements of specularly
reflecting surfaces by two-beam common-path digital holography." Optics Letters 46.23 (2021): 5966-5969.
Picart, Pascal, et al. "2D full field vibration analysis with multiplexed digital holograms." Optics express 13.22
(2005): 8882-8892.

Schnars, Ulf, and Werner Jiptner. "Direct recording of holograms by a CCD target and numerical
reconstruction." Applied optics 33.2 (1994): 179-181.

Kumar M. Some novel applications of digital speckle pattern interferometry and digital holographic
interferometry. Diss. 2016.

Kumar, Manoj, and Chandra Shakher. "Measurement of temperature and temperature distribution in gaseous
flames by digital speckle pattern shearing interferometry using holographic optical element." Optics and Lasers
in Engineering 73 (2015): 33-39.

21



26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

Kumar, Manoj, et al. "Speckle denoising techniques in imaging systems." Journal of Optics 22.6 (2020):
063001.

Sagheer, Sameera V. Mohd, and Sudhish N. George. "A review on medical image denoising algorithms."
Biomedical signal processing and control 61 (2020): 102036.

Singh, Prabhishek, et al. "A Review on SAR Image and its Despeckling." Archives of Computational Methods
in Engineering 28.7 (2021): 4633-4653.

Baumbach, Torsten, et al. "Improvement of accuracy in digital holography by use of multiple holograms."
Applied Optics 45.24 (2006): 6077-6085.

Rong, Lu, et al. "Speckle noise reduction in digital holography by use of multiple polarization holograms."
Chinese Optics Letters 8.7 (2010): 653-655.

Zhou, Yi, and Hongguang Li. "Adaptive noise reduction method for DSPI fringes based on bi-dimensional
ensemble empirical mode decomposition." Optics express 19.19 (2011): 18207-18215.

Xiao, Qiyang, Jian Li, and Zhoumo Zeng. "A denoising scheme for DSPI phase based on improved variational
mode decomposition." Mechanical Systems and Signal Processing 110 (2018): 28-41.

Kemao, Qian. "Two-dimensional windowed Fourier transform for fringe pattern analysis: principles,
applications and implementations." Optics and Lasers in Engineering 45.2 (2007): 304-317.

Yassine, Tounsi, Siari Ahmed, and Nassim Abdelkrim. "Speckle noise reduction in digital speckle pattern
interferometry using Riesz wavelets transform." 2017 International Conference on Advanced Technologies for
Signal and Image Processing (ATSIP). IEEE, 2017.

Ning, Xueling, et al. "Fast phase denoising using stationary wavelet transform in speckle pattern
interferometry." Measurement Science and Technology 31.2 (2019): 025205.

Zada, Sara, et al. "Contribution study of monogenic wavelets transform to reduce speckle noise in digital
speckle pattern interferometry." Optical Engineering 58.3 (2019): 034109.

Dabov, Kostadin, et al. "Image denoising with block-matching and 3D filtering." Image processing: algorithms
and systems, neural networks, and machine learning. Vol. 6064. SPIE, 2006.

Tounsi, Yassine, et al. "Speckle noise reduction in digital speckle pattern interferometric fringes by nonlocal
means and its related adaptive kernel-based methods." Applied Optics 57.27 (2018): 7681-7690.

Tounsi, Yassine, et al. "Speckle denoising by variant nonlocal means methods." Applied optics 58.26 (2019):
7110-7120.

Salmon, Joseph, et al. "Poisson noise reduction with non-local PCA." Journal of mathematical imaging and
vision 48.2 (2014): 279-294.

Muresan, D. Darian, and Thomas W. Parks. "Adaptive principal components and image denoising."
Proceedings 2003 International Conference on Image Processing (Cat. No. 03CH37429). Vol. 1. IEEE, 2003.
Lv, Hongli, et al. "Speckle noise reduction of multi-frame optical coherence tomography data using multi-
linear principal component analysis." Optics Express 26.9 (2018): 11804-11818.

Farhadiani, Ramin, Saeid Homayouni, and Abdolreza Safari. "Hybrid SAR speckle reduction using complex
wavelet shrinkage and non-local PCA-based filtering." IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 12.5 (2019): 1489-1496.

Alkinani, Monagi H., and Mahmoud R. El-Sakka. "Patch-based models and algorithms for image denoising: a
comparative review between patch-based images denoising methods for additive noise reduction." EURASIP
Journal on Image and Video Processing 2017.1 (2017): 1-27.

Zhang, Lei, et al. "Two-stage image denoising by principal component analysis with local pixel grouping."
Pattern recognition 43.4 (2010): 1531-1549.

Deledalle, Charles-Alban, Joseph Salmon, and Arnak S. Dalalyan. "Image denoising with patch based PCA:
local versus global." BMVC. Vol. 81.2011.

Buades, Antoni, Bartomeu Coll, and Jean-Michel Morel. "Non-local means denoising." Image Processing On
Line 1 (2011): 208-212.

Barj, E. M., et al. "Speckle correlation fringes denoising using stationary wavelet transform. Application in the
wavelet phase evaluation technique." Optics & Laser Technology 38.7 (2006): 506-511.

Brunet, Dominique, Edward R. Vrscay, and Zhou Wang. "On the mathematical properties of the structural
similarity index." IEEE Transactions on Image Processing 21.4 (2011): 1488-1499.

Johnstone, Iain M., and Arthur Yu Lu. "On consistency and sparsity for principal components analysis in high
dimensions." Journal of the American Statistical Association 104.486 (2009): 682-693.

Qi, Xin, Ruiyan Luo, and Hongyu Zhao. "Sparse principal component analysis by choice of norm." Journal of
multivariate analysis 114 (2013): 127-160.

Bernardo, Marco V., et al. "Holographic representation: Hologram plane vs. object plane." Signal Processing:
Image Communication 68 (2018): 193-206.

22



Conflict of Interest

Declaration of interests

XiThe authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

[OThe authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:





