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Abstract   

Speckle-noise filtering is an extensive and key process in coherent interferometric techniques to obtain 
important and accurate information from the recorded interferogram or fringe pattern. The speckle-noise 
inherent to these interferograms, recorded by digital image sensors in these optical techniques, is eliminated 
by an appropriate image processing method. Since the beginning and further development of these 
techniques, a wide variety of speckle noise filtering methods and techniques have been proposed. The present 
research work aims to exploit the performance of the non-local sparse principal component analysis (NLS-
PCA) method for speckle noise reduction as applied to the interferometric fringe patterns obtained from 
digital holographic and digital speckle pattern interferometric techniques. The performance of the NLS-PCA 
is evaluated on numerical simulations using different types of speckle fringe patterns resulting in the method 
being highly effective in filtering the speckle noise and providing superior results evaluated in terms of peak 
signal-to-noise ratio (PSNR), structural similarity index (SSIM), Edge preservation Index (EPI), and 
Equivalent Number of look (ENL), in comparison to widely known methods such as windowed Fourier 
transform method, Lee filter, Weiner filter. Furthermore, the proposed method maintains the finer details and 
preserves the fringe edges effectively. The performance of the NLS-PCA method is also demonstrated on 
experimental speckle fringe patterns and digital holograms. 

Keywords: Speckle noise; Digital speckle pattern interferometry; Digital holography; Principal component 
analysis.  

1. Introduction 

Laser-based optical imaging including microscopy [1-13] and measurement techniques [14-22] 

are the incontestable vital tools that have become increasingly important for various scientific, 

engineering, and industrial applications. Interferometric techniques including digital 

holography (DH) [23], digital speckle pattern interferometry (DSPI) [24], and shearography 

[25] are widely used optical measurement techniques based on coherent imaging systems. 

Unfortunately, the resultant fringe patterns carry high-frequency speckle noise due to the 
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coherence nature of the light source (i.e. a laser) used in these techniques. The presence of 

speckle noise affects fine details and edges which limits the contrast resolution and adds 

ambiguity to the measurements. In short, speckle noise degrades the visual evaluation and 

makes diagnosis inaccurate and more difficult. The analysis of these recorded fringe patterns 

for the determination of physical measurands requires a speckle noise filtering step in order to 

obtain a high-quality phase map, consequently, for the efficient physical measurand precision. 

Therefore, in these techniques, the speckle noise filtering step is always needed before data 

processing. The main challenge in speckle filtering is to preserve all the fine details and the 

edges of the processed images/fringe patterns. 

A variety of speckle noise filtering techniques have been proposed in diverse research fields 

such as speckle metrology [26], medical imaging [27], and synthetic aperture radar (SAR) 

imaging [28]. Generally, speckle noise filtering techniques are categorized as hardware-based 

and software-based approaches [26]. However, a software-based approach (i.e. based on image 

processing) is considered to be an efficient and economical way of speckle noise reduction in 

optical techniques. The speckle noise filtering methods, based on the image processing 

approach, can further be classified mainly into spatial-domain, transform-domain, and hybrid 

methods. Each method has advantages and limitations, as we have discussed in detail in our 

previous paper [26]. The field of fringe pattern filtering by image processing is always an active 

research area aiming to propose and improve the existing methods to provide superior results 

with high quality and information preservation at the edges. 

Over the years, a large variety of methods and approaches has been published on speckle 

filtering is introduced. Boumbach et al. [29] Introduced an approach based on the use of several 

recorded holograms of the same specimen for the reconstructed phase map quality 

improvement. Whereas, Rong et al. [30] proposed another approach where multiple off-axis 
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holograms are recorded using a circularly polarized illumination beam and a rotating linearly 

polarized reference beam, and the speckle noise is removed in the reconstructed images by 

averaging these fields. Zhou and Li exploited the bidimensional empirical mode decomposition 

for DSPI fringe denoising [31]. Xiao et al. [32] introduced an improved variational mode 

decomposition for DSPI phase map denoising, in this work, the authors proposed an adaptive 

mode threshold method to process the obtained optimal mode components given after the 

variational mode decomposition of the input DSPI phase map. Kemao [33] introduced a 

frequency-based method package called windowed Fourier transform for DSPI fringe 

despeckling and analysis. Other researchers as Yassine et al. [34], Ning et al. [35] introduced a 

wavelet transforms-based approach, this approach gives accurate results according to the 

mother wavelet and the scale of decomposition. In the same context, Zada et al. [36] proposed 

an approach that combines wavelets transform and monogenic signal called monogenic 

wavelets transform. Another efficient method called Block Matching 3D introduced by Dabov 

et al. [37] in 2006 is recognized as the state of the art in image processing, this method combines 

efficient denoising techniques and synthesizes the most major advances that occurred in recent 

years. Tounsi et al. [38,39] exploited in detail the power of nonlocal mean and its adaptive 

related kernels for denoising speckle fringes.  

The purpose of this work is to adopt the non-local sparse principal component analysis (NLS-

PCA) method with some significant modifications and use it for the filtering of speckle noise 

in DSPI and DH. The method was introduced by Salmon et al. [40] for Poisson noise removal 

in 2014. The principal component analysis (PCA) method gained a great interest in image 

processing, specifically in image filtering. The general idea of the PCA denoising-based method 

is to transform the original dataset into a PCA domain preserving only the most important 

principal components, i.e., this time the noise and any trivial information can be removed. The 

first exploitation of the PCA for image filtering was realized by Muresan and Parks [41], in 
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which the authors proposed a spatially adaptive PCA-based speckle noise filtering procedure. 

The schema used by Muresan and Parks is realized on noise filtering by using a moving window 

to compute the local statistics from which the PCA matrix is estimated. However, the filtering 

procedure is applied directly to the PCA transformation to the noisy image without any data 

selection, and this makes some residual noise and visual artifacts appear in the filtered image. 

Lv et al. [42] introduced a novel approach called multilinear PCA (MPCA) to denoise multi-

frame optical coherence tomography (OCT) data.  In this method, the nonlocal similar 3D 

blocks extracted from the data are first grouped using the k-means clustering method in order 

to well preserve local image features. After that, the MPCA transform is performed on each 

group and the transform coefficients are shrunk to remove speckle noise. Finally, the filtered 

OCT volume is obtained by inverse MPCA transform and aggregation. A new hybrid speckle 

noise filtering method, based on Undecimated Dual-Tree Complex Wavelet Transform (UDT-

CWT) and non-local Principal Component Analysis (PCA) with local pixel grouping (LPG-

PCA) on SAR images, is proposed by Ramin Farhadiani et al. [43]. Furthermore, different 

variants of PCA methods have become widespread in image filtering techniques including 

patch-based PCA [44], patch-based global PCA (PGPCA) [45], and patch-based hierarchical 

PCA [46] , to name a few.   

The above gives an updated account of the NLS-PCA method for speckle noise filtering in 

DSPI and DH. The second and third sections present a detailed explanation of the filtering 

concept of NLS-PCA, and the fourth section will focus on the principal findings and results 

obtained from filtering using numerical simulation and experimentally obtained speckle fringe 

patterns and a digital hologram of a dice.  

2. Principal component analysis (PCA) 
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Consider an image patch e1 in the image and n−1 most similar nonlocal image patches ej, with 

j = 2, 3,…,n, can be found in the entire image (called a search window). Then, group these 

vectors into a matrix E which is expressed as: 

 

 

       (1) 

 

 

where 𝑒𝑖
𝑗is the jth entry of vectorized image patch i. The jth row of the sample matrix E is denoted 

by 

1 2 ... n
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which is called the sample vector of ei.  

The mean value of Ei is computed as: 
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The goal of PCA is to find the orthonormal transformation matrix P to de-correlate E , i.e., 

F PE , so that the co-variance matrix of F is diagonal. Since the co-variance matrix   is 

symmetrical, it can be written as: 

T       (7) 

where Ф = [∅1 ∅2 ∅3 … ∅𝑚] is the m×m orthonormal eigenvector matrix and 

 1 2, ,..., mdiag     is the diagonal eigenvalue matrix with 1 2 ... m     . The terms 

∅1 ∅2 ∅3 … ∅𝑚 and 1 2, ,..., m    are the eigenvectors and eigenvalues of  . By setting TP   ,

E  can be de-correlated. An important property of the PCA is that it fully de-correlates the 

original dataset E . Generally speaking, the energy of a signal will concentrate on a small subset 

of the PCA-transformed dataset, while the energy of noise will evenly spread over the whole 

dataset. Therefore, the signal and noise can be better distinguished in the PCA domain. 

3. Non-local sparse principal component analysis filtering method (NLS-PCA) 

The entire procedure of the NLS-PCA filtering is summarized in Figure 1. The procedure begins 

with the creation of a small noisy image called a patch (of size h) according to the principle of 

the non-local means (NLM) algorithm [38], [39], [47]. Then, the clustering step consists of 

creating a number of clusters of patches. The clustering step is based on a geometrical 

partitioning of the image and it is a robust approach that avoids dissimilar regions in the image: 

for this method, the clustering step is performed in the patches domain which remains in the 

non-local approach. The clusters defined by 𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑁  in the figure below are the 

segmented patch image intensities. 

The third step deals with the filtering of clusters, the approach of filtering employs an adopted 

PCA for speckle noise filtering. The filtering of the clusters consists of the following steps: 
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 Learning an orthogonal basis from the noisy clusters by performing PCA and 

decomposing these noisy clusters on this basis.  

 The denoised clusters are obtained by thresholding all small coefficients in the 

representation of the noisy clusters on a learned basis. This procedure is similar to 

wavelets filtering [34]. 

The fourth step deals with the fusion of the denoised clusters in order to obtain the denoised 

patches. Once the collection of patches is denoised, it will be reprojected into the pixel 

domain and reconstructs the final denoised fringe pattern. The reprojection creates the 

passage from the patches to spatial domains. 

 
Fig. 1. Visual summary scheme of the NLS-PCA speckle noise removing method. 

 
There are various techniques to reproject information from patches to pixels, a detailed 

description is provided in our previous work [39]. In this study, we use a uniform average of 

all the good patch candidates [39]. 
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4. Results and Discussions 

The performance of NLS-PCA method for speckle noise filtering is performed first on 

computer-simulated speckle fringe patterns and then on experimentally recorded data. The 

simulated speckle fringe patterns are generated following the method reported by Barj et al. in 

[48]. The simulated fringe patterns are shown in Fig. 2 which are simulated with a resolution 

of 256×256 on a scale of 256 gray levels, and for different fringe densities (with fringe numbers: 

5, 8, 11, 16, 26). In interferometric measurements, the high density of fringes (more fringes) 

results from more changes occurring in the test object and it may induce high noise in the 

measuring signal and makes analysis more difficult. Therefore, the varying fringe densities are 

very important for studying the performance of a filtering method because the high fringe 

density affects noise reduction and as a consequence the accuracy of the fringe analysis. There 

may require to optimize some parameters of a filtering method for high-density and low-density 

fringes. So, in the proposed method, the first step is to fix the same parameters for both methods 

(Non-Local Sparse-PCA and Non-Local-PCA), and implement the filtering. The principal 

parameters are the patch width denoted by h and the number of clusters denoted by c, generated 

by the K-means method which is an unsupervised machine learning algorithm for clustering 

(the symbol ‘K’ defines the number of pre-defined clusters that need to be created in the 

process). The parameter h is related to the NLM approach and its value affect directly the quality 

of denoising [38]. We have taken h=5 and varied the number of created clusters (e.g., c=50; 

c=70; c=100) with 15 iterations. The 15 iterations were found to be sufficient as the decrease 

in the background noise value is negligible beyond 15 iterations which were checked by 

comparing the SNRs for different iterations. The SNR for a filtered image for 15 iterations, 20 

iterations, and 25 iterations are 3.22, 3.35, and 3.46, respectively.  In addition, if the iteration 

number increase, the computational complexity increases without any significant improvement 

in terms of SNR.  
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The obtained filtering results for each cluster number for both methods (NLS-PCA, top row, 

and NL-PCA, bottom row) are presented in Figure 3 (for c=50), Figure 4 (for c=70), and Figure 

5 (for c=100). Also, the filtered results of different methods are quantitatively evaluated based 

on the local zones corresponding to the red rectangle regions in the filtered images in Figs. 3-

5. For quantitative appraisal, image quality metrics must be used to show the performance of 

the method. Peak signal-to-noise ratio (PSNR), Structural SIMilarity index (SSIM), edge 

preservation index (EPI), and equivalent number of looks (ENL) [49] are four important metrics 

for the evaluation of fringe pattern filtering quality [26]. 

 
Fig. 2. Simulated speckle fringe patterns with different fringe densities where the fringe number increases from 

left to right from 5, 8, 11, 16 to 26. 

  
Fig. 3. Denoised speckle fringe pattern and their corresponding zooms of the red rectangle region 

for c=50 using NLS-PCA (top two rows) and NL-PCA (bottom two rows). 
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Fig. 4. Denoised speckle fringe pattern and their corresponding zooms of the red rectangle region 

for c=70 using NLS-PCA (top two rows) and NL-PCA (bottom two rows). 
 

 
Fig. 5. Denoised speckle fringe pattern and their corresponding zooms of the red rectangle region 

for c=100 using NLS-PCA (top two rows) and NL-PCA (bottom two rows). 
 

The PSNR computes the peak signal-to-noise ratio between the perfect clean and the denoised 

fringe pattern and the higher PSNR value indicates a better quality of noise removal. is defined 
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as the ratio between the maximum possible power of a signal and the power of filtered noise 

and is given by: 

   
2

10( , ) 10log
( , )out

out

LPSNR f f
MSE f f

 
  

 
      (8) 

where L=28-1=255 is the maximum possible value of the image pixels when pixels are represented using 

8-bits per sample; and MSE(fout, f) represents the mean square error between noised and denoised 

speckled fringe correlation defined as: 

    
2

1 1

1( , ) ( , ) ( , )
.

N M

out out
i j

MSE f f f i j f i j
N M  

       (9) 

where f is the original image value at pixel (i,j), fout  the denoised image, and M, N represents the image 

size. 

The SSIM metric compares two input images (the perfect clean fringe pattern and the denoised 

fringe pattern) by extracting three features from these input images: luminance, contrast, and 

structure.  

  
  
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1 2
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( , ) out out

out out

f f f f
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C C

  
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 


   
              (10) 

where µ𝑓𝑜𝑢𝑡  and  µ𝑓 represent the mean intensity of the denoised and noised image respectively, 

𝜎𝑓𝑜𝑢𝑡 and 𝜎𝑓 represent the standard deviation of denoised and noised images, respectively, 𝜎𝑓𝑜𝑢𝑡𝑓 

is the correlation coefficient between the two input images f and fout, and C1 = k1L, C2 = k2L are 

two constants [where k1 = 0.01 and k2 = 0.03, L is the dynamic range of the pixel-values 

(typically this is 2number of bits per pixel-1)]. The values of SSIM are within the range [0,1] where the 

value of 1 indicates that the two (input and output) images are perfectly similar and the value 

of 0 means that the two images are very different. The third metric is EPI, measuring the ability 

of any filtering algorithm to preserve and maintain details at edges. The expression of EPI is: 
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The values of EPI are in the range [0,1] where the value of 1 means that the filtering method 

preserves perfectly the edges. 

The ENL of an image is defined as: 

2

2( ) f

f

ENL f



                                                              (12) 

The ENL computes the ratio between the mean gray level of the image and the standard 

deviation, The larger the ENL value, the smoother the image. 

The three presented metrics are computed for each cluster number c. Table 1 and Table 2 

summarize the computed metrics values for NLS-PCA and NL-PCA methods, respectively, and 

Fig. 6 depicted these metrics values in graphical representation.  

 
Table 1: Performance of NLS-PCA filtering method 

  Fringe number PSNR SSIM EPI ENL 
 
 
 
 
 
 

NLSPCA 

 
h=5; c=50 

5 26.5 0.93 0.99 6.22 
8 16.74 0.89 0.98 5.46 

11 14.98 0.82 0.98 8.08 
16 19.03 0.85 0.97 14.62 
26 18.33 0.82 0.98 14.62 

 
h=5; c=70 

5 20 0.84 0.98 11.33 
8 18.89 0.89 0.98 7.26 

11 10.57 0.58 0.98 9.52 
16 19.92 0.87 0.97 15.42 
26 18.02 0.80 0.98 14.73 

 
h=5; 

c=100 

5 20.07 0.86 0.99 11.6 
8 16.15 0.86 0.99 6.35 

11 17.19 0.87 0.99 8.45 
16 12.38 0.50 0.95 18.26 
26 11.62 0.55 0.97 16.30 

 
Table 2: Performance of NL-PCA filtering method  

  Fringe number PSNR SSIM EPI ENL 
 
 
 
 
 
 
 

NLPCA 

 
h=5; c=50 

5 14.52 0.61 0.91 3.8 
8 13.27 0.66 0.89 3.74 

11 13.02 0.70 0.87 3.57 
16 14.02 0.76 0.84 3.35 
26 12.30 0.69 0.82 3.13 

 
h=5; c=70 

5 11.73 0.55 0.90 3.58 
8 13.80 0.67 0.88 3.6 

11 12.74 0.69 0.86 3.44 
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16 12.63 0.72 0.83 3.42 
26 10.55 0.68 0.80 4.09 

 
h=5; 

c=100 

5 13.44 0.58 0.89 3.5 
8 12.05 0.61 0.87 3.52 

11 13.60 0.70 0.85 3.58 
16 13.36 0.73 0.82 3.37 
26 10.94 0.62 0.79 4.5 
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Fig. 6. Performance of NLSPCA and NLPCA in terms of PSNR (top graphs), SSIM (first middle graphs), EPI 
(second middle graphs), and ENL (bottom graphs) for different c values. Data were taken from tables 1 and 2.   

The performance of some other speckle fringe pattern filtering methods such as the Lee filter, 

Windowed Fourier transform and Weiner filter is compared with the proposed method in terms 

of the tree metrics (PSNR, SSIM, and EPI) and presented in table 3. The parameters for these 

methods are: Lee filter (Window size 7*7); WFT (Default parameters in the Matlab Code 

written by Prof. Q. Kemao based on his work) and Weiner filter (Window size 7*7). From the 

obtained values of these metrics (by comparing values in Table 1 and Table 3), it can be 

concluded that the NLS-PCA method is more effective and feasible for speckle noise filtering. 

Table 3: Performance of Lee filter, WFT and Weiner filter. 
 Fringe number PSNR SSIM EPI 

 

Lee filter 

5 19.22 0.85 0.98 
8 19.37 0.88 0.97 

11 16.54 0.86 0.96 
16 18.71 0.83 0.92 
26 14.26 0.62 0.88 

 

WFT 

5 16.86 0.82 0.92 
8 17.10 0.87 0.91 

11 16.94 0.89 0.91 
16 17.98 0.81 0.87 
26 17.06 0.79 0.88 

 

Weiner filter 

5 15.84 0.67 0.91 
8 16.34 0.74 0.91 

11 15.00 0.74 0.89 
16 15.94 0.59 0.80 
26 10.22 0.45 0.55 

 

The superior performance of NLS-PCA as compared to NL-PCA is confirmed by the four 

computed metrics (see Table 1, Table 2, and Figure 6). This performance is due to the sparsity 

approach attached to the PCA technique. It is known that the classic PCA has major practical 
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and theoretical drawbacks when it is applied to high-dimensional data [50] (two-dimension in 

this case). The principal loading components are typically nonzero which makes it difficult to 

interpret them and identify the important variables. To overcome this drawback, the sparsity 

approach formulates the PCA as a regression-type optimization problem and consequently 

obtains sparse loading by imposing the lasso or elastic net penalty on the regression coefficients 

[51]. The sparsity approach reduces the time of filtering. The time taken by each method to 

execute the process of denoising is computed as reported in table 4. The NLS-PCA performs 

filtering between 3 to 5 seconds for the different input speckle fringe patterns presented in 

Figure 1, whereas, the NL-PCA approach performs filtering between 11 and 15 seconds. 

Table 4: Computational time of different denoising methods 
Denoising method Time of computation (s) 

NLPCA (c=20) 22.6 
NLPCA (c=70) 18.2 

NLPCA (c=100) 13.5 
NLSPCA (c=20) 3.75 
NLSPCA (c=70) 3.3 
NLSPCA (c=100) 3 

Lee filter 6.9 
Weiner filter 8.4 

WFT 9.3 

Furthermore, the important parameters in the proposed NLSPCA method are c (number of 

clusters) and h (patch size). The obtained results and the quantitative appraisal are realized for 

different values of these parameters (c and h) for denoising implementation using the proposed 

NLSPCA method. We evaluated the PSNR and the SSIM of the obtained results by NLSPCA 

for h = {5;10;15;20} and c = {10,20,30,….,100}. The two plots shown in Figure 7 represent 

the effect of the two parameters on denoising performance. Therefore, to obtain the best filtering 

results, their parameters need to be optimized for a particular input noisy image. 
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Fig 7: Performance of NLSPCA in terms of PSNR and SSIM for several patch sizes and number of clusters. 

To illustrate the performance of the NLS-PCA method for speckle noise filtering when 

experimental data are processed, we analyzed a real recorded speckle fringe pattern and a two-

dice image reconstructed from an experimentally recorded digital hologram. The performance 

of the NLS-PCA is evaluated on the experimentally obtained interferograms by the DSPI [24] 

and DH [52] setups. The experimental setups of the DSPI and DH are depicted schematically 

in Figs. 8 and Figs. 9, respectively. In DSPI, the He–Ne laser (power 15 mW) is split into 

reference and object beams by the beam splitter, BS1. The object beam is expanded by a beam 

expander, BE, which illuminates the surface of the object under study and produces the speckle 

field. The speckled image is formed on the image sensor [CCD sensor, 640 pixels×640 pixels; 

pixel size − 9 μm] by the imaging lens, L. The reference beam is spatially filtered by the spatial 

filter, SF, and collimated by the collimator, C, before interfering with the object beam at the 

beam combiner, BS2. The speckle interferogram formed by the combination of object and 

reference beams was recorded. Two speckle interferograms corresponding to the two different 

states of the object are recorded in DSPI and then subtracted to obtain the DSPI fringes. Figure 

10(a) shows a processed DSPI fringe pattern. 
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Fig. 8: Schematic of the DSPI setup [24]. 

 

 
Fig. 9: Schematic of the digital holography reflection setup based on the Mach–Zehnder interferometer, modified 

from [52]. 

CCD
La

se
r

BS1

BS2

SF

BE
C

L

M1

M2

M3

O
bj

ec
t

BS – Beam splitter; BE – Beam expander; C – Collimator; 
L – imaging lens; M – Mirror; SF – Spatial filter

Aperture

L
A
S
E
R

SF1
CM1

PZT M2

BS1

CMOS

Mi – Mirrors, BSi – Beam Splitter, SFi – Spatial Filters, C – Collimator

BS2

SF2

C

Object



18 
 

The denoising performance of these methods is also verified on the two-dice image, numerically 

reconstructed from the experimentally recorded digital hologram from a phase-shifting Mach–

Zehnder type digital holographic (DH) setup (as obtained from an open-access database [52]). 

The recording setup of DH comprises a Mach–Zehnder type interferometer working in the 

reflection mode. In the experimental setup, a laser beam of a wavelength of 632.8 nm and power 

of 5mW is used. The laser beam is divided into the object and reference beams by using a beam 

splitter, BS1, and spatially filtered (by SF1 and SF2) and collimated by the collimators (C). The 

beam reflected from the object and the clean reference beam are combined by using another 

beam splitter, BS2, and form a digital hologram, recorded by an image sensor. Each hologram 

is a combination of four phase-shifted interference patterns that are sequentially recorded, with 

a constant phase step of 𝜋∕2, adjusted by a computer-controlled piezo-electric mirror in the 

reference beam. From the recorded digital holograms, the real and virtual object waves can be 

reconstructed if the diffraction of the reference wave is carried out by numerical methods. 

Figures 10(a) and 11(a) show the experimental data from the DSPI and DH, respectively. 

Figures 10(b-f) and 11(b-f) present the resulting filtered images using the NLS-PCA, NLPCA, 

Lee filter, Weiner filter, and WFT, respectively. Since there are no reference images for these 

experimentally obtained images, therefore, the equivalent number of looks (ENL) is computed 

for all the images [Fig. 10(a-f) and Fig. 11(a-f)].  

     
 (a) (b) (c) 
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 (d) (e) (f) 

Fig. 10. Results of filtering for real DSPI fringes. (a) Original image, (b-f) denoised image using NLSPCA, 
NLPCA, Lee filter, Weiner filter, and WFT, respectively. 

 

         
(a)                                              (b)                                                       (c) 

         
  (d) (e) (f) 

 Fig. 11. Results of filtering for two-dice image reconstructed from the experimentally recorded digital 
hologram. (a) Original image, (b-f) denoised image using NLSPCA, NLPCA, Lee filter, Weiner filter, and WFT, 

respectively. 

Fig. 12 shows a plot of the computed ENL values for the different filtering methods 

implemented for the two experimental data. The computed ENL values demonstrate the 

filtering capability of the NLS-PCA method. According to the histogram shown in Fig. 12, the 

superiority of the NLSPCA method is confirmed in comparison to other filtering techniques on 

the experimental data. 
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Fig. 10. ENL values plots for different filtering methods  

5. Conclusion 

The present research aims to examine the performance of the nonlocal sparse principal 

component analysis (NLS-PCA) for speckle noise reduction as applied to optical 

interferometric techniques. The study has shown that NLS-PCA performs very well and is able 

to obtain excellent speckle noise removal and edge preservation at low computational 

complexity when compared with the NL-PCA approach and some state-of-the-art methods from 

speckle fringe patterns and holographic images. The numerical simulation shows that a patch 

size of 5 and cluster numbers of 70 are the two principal parameters that significantly remove 

the speckle noise from the fringe patterns. The NLS-PCA method performs very well and 

preserves the fine details in all images including the closed fringes and at all levels of noise. 

Overall, based on the obtained results, it can be concluded that NLS-PCA method for speckle 

noise filtering is effective and could be established as a powerful speckle-noise filtering tool 

for optical imaging techniques. 
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