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Hiroshi HOSOMI. Systems Analysis of Life Sustained Functions by Bleeding. 
Kobe J. Med. Sci. 18, 79-96, June 1972--The complexity of living systems makes 
selection either a construction of discrete subsystems studied in detail or an overall 
analysis of a large part of the system. The former leads to an increase in the complexity 
of the abstract system. In this paper it will be shown that large subsystems functionally 
isolated by an input variable, bleeding volume, can be analysed as relatively simple 
abstract systems which enable an accurate prediction of the behavior of the life sustaining 
systems. Static, transient and frequency characteristics were obtained by a relation 
between an input and an output. A backward path gain played an important role on 
the hyperbolical change of an open loop gain against bleeding volume with every regard 
to constancy of a forward path gain. When time constant obtained from the transient 
response of the system was 13 sec., it responded like a first order system, but in a case 
of 8 sec., it behaved like an underdamped system. Thus, time constant is an index of 
conformability and stability of the systems. The systems under study were quite stable by 
the aid of Bode 'plots and Nyquist plots obtained from frequency analysis. Due to an 
unknown condition of the biological '.systems, the 'systems showed a characteristics of a 
second order system or a first order lead-lag system. A possibility was discussed that 
made a negative feedback system behave like a positive feedback performance by changing 
the backward path gain or time constant. 

INTRODUCTION 

Even if we paid a relevant attention to a number of measurable attributes of each 
object which was a part of a whole, we could not estimate the behavior of the whole. 
However, when we set a definite purpose for the whole and assume some sorts of 
interaction between such objects and relations between the attributes of each object, 
we could express the behavior as a well defined mathematical formula. The mathe­
matical, but not physical, identity of the attributes of an object and the relations 
between them introduce a concept-a system, which is an abstract entity associated 
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with a set of attributes or variables and a set of relations. 1•2 •17 > Of particular impor­

tance in biological systems are the optimal conditions of the internal environment for 

sustaining the life against the external disturbances.1• 2 •29 > The concept of control 

or regulation is implicit in the above mentioned constancy of the internal environ­

ment but has not yet developed into an explicit formulation. In the physical 

sciences, feedback concept and its mathematical expression have been realized in 

analysis and synthesis for systems of different hardware. Success of the applicatioi:i 

of the same law to various systems which comprised different attributes of different 

physical objects, stimulated the application of control theory to fresh fields of study 

-to the biological systems.s,s,10,14,1s,10,20,24,21> 

In the biological systems, we can assume some sort of purpose in its be­

havior and it can be said that the biological systems could exist by regulating itself 

to be in an optimum condition for achieving the purpose. 1•2•29 > Assuming life­

sustaining as the purpose of the biological systems, the subsystems should be co­

ordinated and cooperated each other toward the purpose constructing a functional 

hierarchy, and the subsystems achieve life-sustaining as a whole. 

A difficult problem in systems analysis of the biological object may be isola­

tion of a subsystem or decomposition of a very large and complex system in sub­

systems that is suitable for study. The complexity of biological systems makes se­

lection of the subsystem inevitable, but there is no standard unit or level to decom• 

pose the biological systems. Under these situations morphological entity, such as 

cells, organs and a chain of organs, may serve to determine the size of the subsystem. 

This method of decomposition, however, seems to be little contribution to simplifying 

or representing the whole system as a mathematical model or an abstract system, 

as was the case of Guyton's model of the long term regulation of the circulation.10> 

This is an aspect of systems analysis in which a discrete subsystem is studied in 

high degree of detail. Another aspect is an overall analysis of a large part of the 

systems, by which relatively simple abstract systems and a preliminary mathematical 

model are obtained, as is the case of Grodins' representation of a mathematical 

model for the cardiovascular dynamics. 7 • 8 > McAdam provided computer simulation 

of the Grodins' model in a sense of feedback mechanisms.16 > Up to date, there 

are many studies from the point of view of the application of control theory to 

the circulatory system5 , 7 ,s,io,ii,16 •21 •22•28 •25 • 26 > and to a part of the circulatory 

system during hemorrhage. 4•6
•
9

• 15 > Sagawa showed a regular and intense oscillation 

of the systemic arterial blood pressure, by lowering the mean level of the cerebral 

perfusion pressure, and explained that changing the parameter made the system 

unstable. 2 ~• 26 l However, there are few reports concerning the systems characteristics 

of the circulatory system as a large subsystem involved in the life sustaining systems. 

The author intended to decompose the life sustaining systems by bleeding to 

obtain a quantitative representation of the relations of cause and effect and t.o c;l~­

vise a controllable model for extension of life. The abstract system isolated by b.le; 

eding from the whole system represents a particular aspect of life sustaining. 0th.er 

each subsystem decomposed by the other procedures or by the other input varia­

bles, f. i. infusion of water, hypercapnia, autonomic unbalance etc, is a representa­

tive of the other particular aspects or a functionally isolated unit of the life sus-
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taining systems. Ranges and grades of the isolated unit to an input function may 
or may not reflect the state of whole systems at that situation. 

In the biological systems non-linearities are common and this is a trouble­
some problem for the analysis, because there is no general applicable method by 
which the non-linear systems can be described. Therefore, non-linearities must be 
avoided by any means. One of strategies to overcome these problems is small­
signal-analysis which yields acceptable results as linearized systems as illustrated by 
Stark and Sherman28 ) and Sagawa. 25 l 

Another valuable method for linearization is a careful choice of time unit used 
in analysis with respect to the time spent at each activity. Decomposition by input 
functions and time constants were the main procedures used in this paper to line­
arize system non-linearities. Having isolated a suitable subsystem, an approach to 
describe input-output relation by the use of transfer functions is a relatively easy 
and suitable technique for biologists, this paper is concerned with this approach. 
As the biological systems, however, tend to be multi-input-output systems, an alter­
native method which identifies a number of input and output variables by a sto­
chastic or matrix method is necessitated. 

METHODS 

Experimental Animals and Surgical Procedures 

The experiments were carried out on 37 adult cats of both sexes, weighing be­
tween 2.0 and 4.0 kg. After anesthetizing by the intra peritoneal injection of Sodium 
peiltobarbital (Abbott) in a dose of 35 mg/kg body weight, cats were fixed on an 
operation table on their back and tracheotomized for the endotracheal intubation. 
During the experiments, the cats breathed room air spontaneously via the inserted 
tube. Through the whole experiments, a care was taken to maintain the rectal tem­
perature ,it about 37°C, using an electric jacket in air conditioned room. After 
.idministration of 5 mg/kg body weight of Heparin, the blood pressure in the right 
common carotid artery was recorded with a pressure transducer (Statham P23AA 
transducer, Statham, Hato Rey, Puerto Rico). For preparing a vascular by-pass, the 
abdominal aorta was ligated between the renal and the inferior mesenteric artery or 
a distance of 2-3 cm below the inferior mesenteric artery, leaving every branches of 
the aorta intact, and two cannulae were placed in the abdominal aorta just above 
and below the ligation for both directions. These cannulae were connected to the 
driving machine which generated input functions arbitrally. Thus, blood from the 
upper aorta flew to the lower aorta through the by-pass. 

Experimental Apparatus and Data Acquisition 

The experimental apparatus to generate step or sinusoidal changes in the 
bleeding volume were designed and constructed by the author. The apparatus used 
for frequency analysis consisted of an induction motor (1/4 Hp. Hitachi), a variable 
speed modulator (Miki-Pulley, model LK-110 and Zero-Max, model JK2), a gear 
reducer box (gear ratios; 1/3, 2/3, 3/3 and 4/3) and a syringe. The gear reducer 
was Jinked to the syringe via a crank shaft which transformed cyclic motion to 
to-and-fro motion. The syringe was connected to the vascular by-pass with two 
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silicone valves. The amplitude and the frequency of the driving function were 

modulated by changing length of the crank shaft and circling speed of the turn 

table, respectively. For obtaining step function a shaft connected to a syringe was 

manipulated by hand. The driving function was transformed to electric signals by a 

slide resistance attached to the shaft. 

Systemic arterial blood pressure was measured by a pressure transducer con­

nected to a cannula inserted into the right common carotid artery. The driving 

function and the systemic arterial blood pressure were recorded on a pen-recorder 

( Yokogawa, model 3047) and conveyed to a digital computer (Nihondenshi, model 

JRA-5). 

Data Processing 

Input and output measures were processed by an on-line system of the digi­

tal computer. Some of the programs, which were written in FORTRAN language 

for JRA-5, were programmed by the author. 12•13 l Two kinds of analog signals, 

the input and the output functions to and from the biological systems were fed to 

an analog to digital converter and stored for later processing. 

When considering the amplifier feedback control system and the transient re­

sponse to a step input as shown in Fig. 1-A and 1-B, a number of the static char­

acteristics of a system, such as open loop gain factor, forward path gain factor and 

backward path gain factor, could be determined from the value of the maximum 

deviation (y0 ) and the steady state error (yoo) in the transient response. 18l At the 

moment indicated with an arrow 1 in Fig. 1-B, a backward path element has not 

yet been in activity, therefore, the block diagram in this instant can be expressed 

as shown in Fig. 1-C. Then, the input-output relation can be defined as follows: 

........................................................................... © 

where kg is a forward path gain, Xo is an input and Yo is an output. On the 

contrary, at the moment indicated with an arrow 2 in Fig. 1-B, since a backward 

path element has been in full activity, the systems have reached an entirely new 

steady state. The block diagram in this situation can be represented as shown in 

Fig. 1-D, and the relation between the input and output variables can be defined 

as follows: 

.................................................................. ® 

Substituting the equation © into the equation @, and solving for kgh, we obtain 

kgh= -~ -1 
Yoo ' 

where kgh is the open loop gain. The backward path gain or the negative feed­

back gain in this case is defined as follows : 

h= ( y1::-- - --y
1
~--) Xo. 

In the case of response as shown in Fig. 1-B, making y 0 and y .. 1 and O, respec­

ti".ely, a transient part y(t) of any step response can be normalized and defined as 

follows: 
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@ X(t} Xo ti 
------ -- --------- ----- .,_ 

Y• 

I I 
1 2 

© Xo rn---Y• 

Fig. 1 A : a block diagram of an amplifier feedback control system, B: a schema­
tic representation of step response, C : a block diagram .. desi'.gna~d-, at, the 
moment when step function was given and the feedback loop had never 
been in activity, D: a block diagram with a feedback loop when the systems 
was in full activity. x(t): an input function, y(t): an output function, kg ; 
a forward path gain, h ; a backward path gain, xo : the value of x(t) at 
arrow 1 and 2, Yo and yoo: the value of y(t) at arrow 1 and 2, respectively. 

y (t) - Yoo = f(t) 
Yo - Yoo , 

where f(t) is the nondimensionalized response. If a system is a first order one, f(t), 
is given as follows: 

where r: is a time constant. The most believable value of r: in /(t) was estimated' 
by the least squares method. r: is an index of a conformability of a system. If a 
system is a second order one, a plotted pattern of f(t) will give a clue of a stability 
of the systems. 

The amplitudes of input, i.e. the bleeding volume used in the experiment,. 
were 5 ml to 45 ml by 5 ml intervals. 

In the case of the frequency analysis, the data acquisition was started after 
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the initial transients had decayed. Sampling time was about one fiftieth of each 
input. Ten cycles of both the input and the output function were sampled and 
calculated the logarithmic measures of the ratio of input to output amplitudes in db, 
and the angular differences or phase shift as a function of the input frequency. To 
avoid the non-linearities of the systems, the input amplitude used or the bleeding 
volume was restricted to about 0.2% of the body weight. The range of the fre­
quencies of the input used in this experiment was from 0.26 to 9.0 radians/sec. 

RESULTS 

To study the characteristics of the life sustaining systems, a step or a sinus­
oidal change of bleeding volume was used as an input. The static and the tran­
.sient characteristics of the systems were obtained from the static and the transient 
-component of a step response, respectively. The dynamic characteristics were ob­
tained by a frequency analysis . 

.Static characteristics 

An attempt was made in this section to determine the final steady state of 
the system or the complete equilibrium state of all actions and forces to a sudden 
,bleeding approximated to a step function. 

Fig. 2 illustrates two kinds of static responses to the step functions. The 
-open loop gain, the forward path gain and the backward path gain or the feedback 
.gain were processed by on-line system of computer, and the results were plotted 
against the bleeding volume as shown in Fig. 3. The curves illustrated in this 
figure seem to be an exponential function, of the type A exp(-at). A is the initial 
value and 1/ a is the time constant of the function. The mathematical representa­
tion in this case was as follows : 

kgh = 23 exp (-0.0BBBV), 

where BV was the bleeding volume. The forward path gain was less than l and 
remained unchanged ("' - 6 in Fig. 3), compared with the backward path gain 
(o-o in Fig. 3) which showed similar curve to that of the open loop gain (.~-.a. 
in Fig. 3) . 

. Dynamic characteristics 
transient performance 

This section is concerned with an example of the characteristics of the tran­
.sient component (the time dependent response) in systems response to a step-wise 
.sudden bleeding. 

Fig. 4 shows the nondimensionalized portrayals of the step responses illus­
trated in Fig. 2. The following first order function can be fitted to the nondimension­
.alized curve (o-o) as shown by the dotted line (.a.•••.a.) in Fig. 4-A, 
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Fig. 2 Examples of· step responses 

10 

upper tracing ; time in seconds, middle tracing ; a positional change of a 
piston in the syringe indicating a sudden bleeding or a step input function, 
lower tracing; changes in the systemic arterial blood pressure, A : a first 
order type response, B; a second order type response. Bleeding volume 
was 5 ml in A and 6 ml in B. Dead time was negligible in both cases. 

20 30 40 

Bleeding Volume 8V<mll 

50 

Fig. 3 Static characteristics 
Bleeding volume versus an open loop 
gain (.a.), a backward path gain ( O ), 
and a forward path gain (I:,), when 
the forward path gain in 5 ml bleeding 
was made 1. The broken line is plots 
of an empirical equation kgh=23 exp 
( -0.088 BV), obtained from experi­
mental date of the open loop gain 
(kgh) by the least squares method. 
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1,0 
1.0 

® 

0,5 

. 
• 

o H..;!~. ""+-.:--r-~~~-~:dlo-, ... 0-1 
(HC) 

-0.5 

Fig. 4 Nondimensionalized representation of step responses shown in Fig. 2. The 
smooth line (o) in A corresponds to A in Fig. 2 and the dotted line (e) 
in B to B in Fig. 2. A : the dotted line (.a,) is plots of the equation 
of f(t) = exp ( -0.07 t), the broken line ( 6) is plots of the equation of 
f(t) = exp ( -0.17t) (0.17t+l), the former fits better than the latter. 
B: the smooth line is plots of the equation of /(t)=exp (-0.112 t) sin (tr:/8 
t+tr:/2). 

Therefore, r (time constant) was 13±1 sec. On the other hand, if the nondimension­
alized curve is considered as a second order critically damped response, which is 
portrayed by the broken line ( L,- - to,) in Fig. 4-A as plots of the following function, 

f(t) = exp (-0.17 t) (0.17 t + 1). 

This equation indicates that the natural frequency (wn) is 0.17 and the damping 
factor (C) is 1. It can be clearly seen that the dotted line fits better than the 
broken line. 

The dotted line (• .. ·•) in Fig. 4-B is plots of the nondimensionalized repre­
sentation of the step response unexpectedly obtained from the other cats as shown in 
Fig. 2-B. This nondimensionalized curve seems to be an underdamped response 
and could be expressed as follows : 

f (t) = exp (- 0.112 t) sin ( +t + -;~), 

where wn=0.56, C=0.2, and the equation was portrayed by the smooth line (-) 

in Fig. 4-B. 
Dead time was too small to be considered as seen in Fig. 2. 
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- frequency analysis 

The relationship between the bleeding volume and the open loop gain or the 
bleeding volume and the backward path gain is non-linear, as illustrated in Fig. 3. 
In a case in which the relation between the performance of the systems and the 
input function to the systems is non-linear, frequency analysis can not strictly be 
applied to that systems. A linear approximation should be employed for such systems. 
The amplitude of the sinusoidal change of the bleeding volume was made small 
enough, then, the systems can be treated as a linear system within a limited 
range, and the frequency analysis can be applied. 

Fig. 5 and 6 are the records of the system response when sinusoidal waves 
with different frequencies passed through a system. Measures of gain (in db) and 
phase shift (in degree) which were calculated with the digital computer, were 

,,,,...,,. 

1A 3.3 

@ 

■ 

s.s 4.3 1.45 

.......... ,...., 

' / I 'J J ', 

' '' /1 ( , . , I 

; ' 'J 

VvVVv'\/v '\/\ (\ 1G 
' V [., 

....... 
1,1 1.0 0.7 

FREQUENCYCradl'NC) 

,...__.,osrc 

/\(\/\J\ 

1,1 o.s 

FREQUENcY ( rod/NC) 

Fig. 5 Amplitude attenuation and phase shift of a sinusoidal wave passed through a 
system. upper tracing: time in seconds, middle tracing: sinusoidal changes of 
bleeding volume, lower tracing: changes in the systemic arterial blood 
pressure. A and B were taken from different cats. 

Kobe J. Med. Sci. 18, 79-96, 1972 87 



@ 

~ -·~ 

\
·\\'1,·._)1 
i'i1H\ 

. ~ .~ ,, ,, " 
,~.V/,,IJ//1/IJ,/IA ii':';,Uij 

••• Z.4 

® 

Jfl'f!''.l!/'''ll 

.. 1,i1,iil1\i111\ 

4.4 3.5 

H. HOSOMI 

~ 

11.r,1, ' '\j\/\J\ v ·; '] 'J 

N\P! \fvl\J\ 

t.3 0.6 

FREQUENCY Crad/secl 

i ' ,1 
/ '\ \ 'I, 

·; J 
' ' ' 

·,j ,J 

1.ss o.s 5 
FREQUENCY(rad/sec) 

t----tttSEC 

j '·JV\J\ 

f~ 

...... 
0.35 

t---1 t t SEC 

IV\f\, 

0.24 

Fig. 6 Amplitude attenuation and phase shift of a sinusoidal wave passed through 
a system. The explanation for each curve is the same as the legend to Fig. 5. 

plotted against logarithmic frequency (in radians/sec.), thus the Bode diagrams 

were portrayed as shown in A in Fig.7, 8, 9 and 10. 

The upper halves of the figures showed a frequency dependent nature of the 

amplitude ratio or gain of the systems, and the lower halves showed that of the 

phase shift between input function and output function. Bode diagrams shown in 

Fig. 7-A and 8-A revealed that the systems under study were a second order 

system. In Fig. 7-A, the break frequencies were 1.6 and 3.6 radians/sec., so , 1 and 

r:i were 0.625 and 0.278, respectively. Measures of , 1 and , 2 obtained from the 

diagram in Fig. 8-A were 0.625 and 0.161, respectively. Therefore, the transfer 

functions of both cases were expressed as follows : 

k 
(0.625s + 1) (~0-.2-78~s-+-iT 

and 
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... 
% 
)> 
U> 

"' en.· 
i 
-I 

I 

!@ 
0 

15 

20 

:1 
-90° 

Ir, 

'-", 

r---;\ \ 
'" . ":\ ' . 

~\ 

\ 

' 0.1 1 (1.6) (6.2) 10 

1att11 I 

-18 

-15 

O.t 1 10 
FREQUENCY !radlsecl 

Fig. 8 Bode plots (A) and Nyquist plots (B) in the case of Fig. 5-B. Break 
frequencies are 1.6 and 6.2. 

Kobe J. Med. Sci. 18, 79-96, 1972 

o• 

89 



.. 
::c 
► 

"' "' 

90 

Cl 
!: 

@ 
0 

z 10 
ii: 
!!: 

15 

20 

60 . 
. 

30 

. 

. 

. 

. 
-90 

11.1 

11.1 

H. HOSOMI 

. JC'\ 

r-...... f", 

~--
'. I~ 

N 
' 

~-

"' ® 

~ 
(2.11 10 

I'-
I' 

I' 

~ 

~ 

""" . ~ 
i' 

'~ 

10 

FREQUENCY(rad/secl 

Fig. 9 Bode plots (A) and Nyquist plots (B) in the case of Fig. 6-A. Break frequency 
is 2.1. 

® 
0 

~ 10 

z 

~ 15 

20 

25 

&o" 

. 
30 

I 

.,1 

i . 

. 

0., 

. 

11.1 

rw ,~. 
~--. 

" 1\,, 
''°I'. 

• 1(1.2) 

:--I'- ! 

~ ... 
' 

1·~ i-

--~ 

1 
FREQUENCY (rad/sec> 

I' • 
' 

I• 

" • I'~ 

I ! 
I 

I ! 

i 

. ' 
t,, 
' 

® 

10 

10 

Fig. 10 Bode plots (A) and Nyquist plots (B) in the case of Fig. 6-B. Break frequency 
is 1.2. 

Kobe J. Med. Sci. 18, 79-96, 1972 



SYSTEMS ANALYSIS OF LIFE SUSTAINED FUNCTIONS 

k 
(0.625s + 1) (0.161s + 1) , 

where k was a constant and the product of all frequency independent terms in the 
loop. Fig. 9-A and 10-A, which were the Bode diagrams representation of Fig. 6-A 
and B showed the characteristics of a first order system. -r was 0.476 and 0.83, re­
spectively. The frequency dependent nature of the phase shift in the both cases 
showed the nature of a lead-lag filter, especially when w (angular frequency) was 
less than 1 radian/sec., the phase lag was positive. 

To evaluate the stability of the systems, the Nyquist diagrams were plotted. 
B in Fig. 7, 8, 9 and 10 show the Nyquist diagrams of Fig. 5 and 6. All of the 
Nyquist diagrams showed that the systems under study were of high degree of sta­
bility in the usual case. 

DISCUSSION 

One of the familiar but vague concepts is the life susta1mng systems, which 
may be defined on the assumptions that the total life activity is an integrated whole 
of each activity, or is composed of a number of separable autoregulatory systems 
which could be decomposed by an application of suitable input functions. On the 
basis of this assumption bleeding was chosen as input functions to decompose the 
whole systems and to identify the state of the subsystem in terms of the state varia­
bles or a transfer function. In this concern, it was a first necessary step for me to 
find the state variables which expressed a state of subsystem of the life sustaining 
systems. The main purpose of the present study was to establish a way to pursue 
such parameters which would be useful in the future to control or to observe the 
whole systems for extension of the life. 

Static characteristics 

The solution of a linear differential equation with constant coefficients can be 
divided into two parts, i.e., the transient component and the steady state component. 
The static characteristics of a system are the measure of the latter. 

The value of the open loop gain in the steady state of the decomposed sub­
system changes hyperbolically against bleeding volume as shown in Fig. 3. Because 
the change of the forward path gain is negligibly small, the backward path gain 
1s to be changed exponentially depending on the bleeding volume, as the 
forward path gain times the backward path gain makes the open loop gain. 
The biological systems, in a hemorrhage, will behave to restore the systemic 
arterial blood pressure to its original level for sustaining the life. If the open loop 
gain of the systems is large, the steady state error is minified, therefore, it could 
be said that the system is better in an accuracy. As the decay of the open loop 
gain as a function of the bleeding volume was relatively steeper, we had to find 
any method to avoid the dangerous deviation of the subsystem. Control theory 
indicated that the magnitude of the steady state error depended upon the values of 
the system parameters. I have not yet established a method to change these para­
meters at will and to control the systems to be in an ideal state. However, it is 
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certain that these parameters, especially the open loop gain and the backward path 
gain would be relevant indexes when we find a means to an end. 

Guyton and Crowell studied the hemorrhagic shock and explained it as results 
of a positive feedback phenomenon.11 > Another situation, however, might result in 
the same catastrophe, in which the system was brought to be unable to possess 
the activity margin of the backward path element, i.e., the system lost the feedback 
loop. A response of the system without a feedback loop is directly proportional to 
an input. In such a system, there is no way to influence the disturbance variables, 
then, the response would often get beyond the limit of life. If an enough activity 
margin in the initial stage decreases quickly during the response, the system 
would suffer from shock in various grades corresponding to the gain margin. 
Therefore, if the activity margin of the backward path element could be controlled 
by any means, the hemorrhagic shock could be induced or subsided at will. 

Transient characteristics 

For single input-output linear systems as linearized subsystems in this case, 
the identification problem is relatively straightforwarded by determining the transfer 
function through the transient analysis. As a nondimensionalized response shows 
only transient component, it makes easy to calculate the time constant of the 
response. The time constant of every response in a cat to recover from a lowered 
arterial blood pressure was about 13± 1 sec. In this case the time constant may be 
an index of a speed of a process in which the backward path element is activated 
and reaches to the state of full activity from zero-state. As the time constant did 
not change depending on bleeding volume, the speed of the process for the back­
ward path element to be in full activity was almost unchanged in every bleeding 
event in a cat. A large time constant means that it takes much time for the systems 
to recover from a state of hypotension, and vice versa. In a system with a small 
time constant, however, the system returns fast to its initial state and the recovery 
process does not stop there, so that an overshoot would appear. An example shown 
in Fig. 2-B is probably the case mentioned above. The time constant, therefore, 
determines a conformability and a stability of the system. 

Frequency analysis 

The frequency analysis is performed on the basis of comparison of the ampli­
tude and phase differences between a sinusoidal input and output. The differences 
may be attributed to the number of integrators and differentiators within the system. 
Differentiation of a sine wave produces, as well known, a positive phase shift or a 
phase lead and integration has the opposite effect or a phase lag. The results obtained 
by the frequency analysis could be portrayed graphically by the Nyquist or the Bode 
diagrams in general. In the case of the analysis of the living systems the Bode plots, 
which suggest the order of the system, are more appropriate because the living 
systems are stable in normal conditions. On the other hand, in abnormal or boundary 
situations stability is an important consideration and the Nyquist plots are more 
useful. In these connections both diagrams are plotted in this paper. 

As dead time (L) in the system under study can be regarded negligible as 
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illustrated in Fig. 2, the delay time, exp (-sL) becomes 1. A slope of an asymptote at 
high frequency in the Bode plots as illustrated in Fig. 7 and 8 is related to the 
order of the systems. The variation of log amplitude ratio as a function of log w 
at a high frequency range is represented by a straight line having a slope -1 for the 
first order system, which intersects the frequency axis at 1/-r. For the first order 
system, the phase angle increases to -45° at the break frequency and reaches an 
asymptote of -90° at infinite frequency. On the basis of above statements it 1s 
easy to determine the order of the system and represent the transfer function of 
each system decomposed by bleeding as shown in the section of results, 

A diagram in which a gain and a phase shift are plotted on a polar coordi­
nates, is the Nyquist diagram, and it gives an intuitive knowledge on a gain margin 
and a phase margin as a quantitative index of a stability. If the plotted line crosses 
the negative real axis to the left of the critical point of unit gain, the system is. 
unstable. Fig. 7-B and 8-B are the Nyquist diagrams of Fig. 7-A and 8-A, respectively. 
It can be said that the systems in this group are stable. 

The other group illustrated in Fig. 9 and 10, showed a characteristic of a 
first order and lead-lag system. Therefore, as above mentioned, the systems may­
have differential elements as well as integrators. The differential elements were speci­
fied in case that their effects were accentuated at low frequencies because of being 
unable to adapt due to the time constant at high frequencies. The Nyquist diagrams 
of this group portrayed in Fig. 9-B and 10-B show that the systems are firm and stable. 

Decomposition of systems 

In studying the hierarchic systems comprised the coordinated and cooperated 
subsystems, it is necessary to decompose the systems into some units. Decomposition 
of the biological systems has often been done with a knife, and many workers. 
observed a purified or simplified function on the isolated organ or a chain of organs. 
This method is to decompose the systems mainly due to its anatomical structure. 
implicitly assuming as if a set of elements with anatomical structure equals that 
with a functional structure, it may be called a hard decomposition or an anatomical 
decomposition. Many researchers will be in a dilemma that a functional unit 
localizes in an anatomical unit. On the other hand, if one considers the biological 
systems are not defined as a set of objects with an anatomical element, but with a 
functional structure, one could decompose the set of objects with regard to the same 
functional relation. When we set an input and an output to the biological systems. 
the measures under observation would be derived by the means that the biological 
systems decompose their functional hierarchy by themselves. If a researcher uses an 
unsuitable input or output, he would obtain a fragment of the system which has 
no relation between other parts of the system in any means. Pavlov decomposed 
the brain functions and integrated them as a whole on the basis of his dynamical 
doctrins, using a bell ring as an input variable and a salivary secretion as an 
output variable in a dog. But he did not actually dissect the brain with a knife to 
observe the modes of responses of the individual nerve cell which was an anatomical 
structural unit, because he thought that a function did not reside in some restricted 
units in the brain, but that a function was a manifestation of relation between 
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excitatory and inhibitory states. Such isolation methods of a set of states can be 
called a soft decomposition or a functional decomposition by input functions. It 
can be assumed from the behavior of the isolated subsystem that the functional 
decomposition cuts across the systems through the hierarchic coordination level. 

Each functional unit comprised in the biological systems has own proper bio­
logical time process which gives a pattern to a response of a functional unit to an 
input function. The time in the biological systems could be measured as a time 
constant in a domain of physical time. It could be regarded that functional units 
concerned to the same response have almost the same time constant, so they can 
cooperate each other. By selecting the time constant, a group of cooperated func­
tional units can be isolated. Such a decomposition of the systems can be called a 
time constant decomposition. In this experiment, both a functional and a time 
constant decomposition were the main isolation procedures applied to systems 
.analysis. Organs which construct a functionally decomposed system or a system 
decomposed by a time constant can not be described in terms of anatomy or classic 
physiology, because the present aim of this paper is to discuss the performance of 
.abstract or mathematical models as a subsystem of the life sustaining systems. 

SUMMARY 

On the basis of assumption that it was the biological systems that endeavoured 
to maintain the life sustained functions in the optimal conditions as a whole, the 
characteristics of the subsystems which were functionally decomposed by application 
of input variables and by restriction with time constant were investigated and obtained 
the abstract models. 
(1) The open loop gain was hyperbolically changed against bleeding volume and 
expressed as follows ; 

kgh = 23 exp (-0.088 EV). 
(2) It was the backward path gain that played an important role on the hyperboli­
cal change of the open loop gain, because of the constancy of the forward path gain. 
(3) In one group, time constant of the response to a step input was about 13 sec. 
The nondimensionalized response showed a characteristics of a stable and first order 
system and was defined as follows ; 

f (t) =exp(--__!~ t) 13 ± 1 . 

(4) In the other group, time constant was 8 sec. The response showed an under­
-damped nature of a second order system and was expressed as follows ; 

J(t) = exp (- - 8~!-1- t) sin ( ; t +--f- ). 
(5) Using a frequency analysis, the Bode diagram and the Nyquist diagram were 
plotted. The systems were quite stable. An example of the type of transfer func­
tions was shown as follows ; 

k 

C\ s + 1 ) C\ s + 1 ). 
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(6) There was a group possessing the form of a first order and lead-lag nature. 
In this group, a differential element was included in the systems and showed prime 

effects in a frequency less than 1 radian/sec. 

(7) A possibility of the production of a hemorrhagic shock by changing parameters 
in the negative feedback system was discussed. 

(8) A biological propriety of the functional decomposition and the time constant 
decomposition was also discussed. 
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