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Metabolomic profiling 
of cancer‑related fatigue involved 
in cachexia and chemotherapy
Yuki Okinaka 1,2, Susumu Kageyama 1, Toshiyuki Goto 2,5, Masahiro Sugimoto 3,4, 
Atsumi Tomita 3, Yumi Aizawa 3, Kenichi Kobayashi 1, Akinori Wada 1, Akihiro Kawauchi 1 & 
Yosky Kataoka 2,5*

Patients with advanced cancer are frequently burdened with a severe sensation of fatigue called 
cancer‑related fatigue (CRF). CRF is induced at various stages and treatments, such as cachexia and 
chemotherapy, and reduces the overall survival of patients. Objective and quantitative assessment 
of CRF could contribute to the diagnosis and prediction of treatment efficacy. However, such studies 
have not been intensively performed, particularly regarding metabolic profiles. Here, we conducted 
plasma metabolomics of 15 patients with urological cancer. The patients with and without fatigue, 
including those with cachexia or chemotherapy‑induced fatigue, were compared. Significantly lower 
concentrations of valine and tryptophan were observed in fatigued patients than in non‑fatigued 
patients. In addition, significantly higher concentrations of polyamine pathway metabolites were 
observed in patients with fatigue and cachexia than in those without cachexia. Patients with 
exacerbated fatigue due to chemotherapy showed significantly decreased cysteine and methionine 
metabolism before chemotherapy compared with those without fatigue exacerbation. These findings 
suggest that plasma metabolic profiles could help improve the diagnosis and monitoring of CRF.

Patients with advanced cancer are frequently burdened with a severe sensation of fatigue called cancer-related 
fatigue (CRF). Approximately 75% of patients with metastatic cancer and 70–100% with cachexia experience 
 CRF1–3. Cancer treatments, including radiation and chemotherapy, were also found to induce CRF in 80–84% 
of  patients1. CRF significantly interferes with physiological function through physical, emotional, and cognitive 
exhaustion in  patients4 and reduces their quality of  life5,6. For example, among patients with cancer complaining 
of fatigue during chemotherapy, 91% showed difficulty with leading normal lives and 88% were forced to alter 
their daily  routines7. Furthermore, CRF often interferes with treatment completion, which reduces the overall 
survival of  patients7,8. Thus, CRF is a critical problem for the treatment and well-being of patients with cancer; 
however, it is not well understood.

Questionnaire-based CRF assessments, such as the Numerical Rating  Scale9, Brief Fatigue  Inventory10, Cancer 
Fatigue  Scale11, and 13-item Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F)12, have been 
used to evaluate CRF in patients. However, a gap between such subjective evaluations by patients and physicians 
is often  observed13, which prevents treatment optimization. Owing to such inadequate and controversial CRF 
 assessments14, the development of more objective methods for evaluating CRF is required.

Elevated serum levels of inflammatory and anti-inflammatory cytokines, including interleukin 6, tumor 
necrosis factor-α, and interleukin 1 receptor antagonist, have been reported in patients with  CRF15–17. Serum 
C-reactive protein (CRP) levels have also been reported to be associated with CRF in patients or survivors 
of testicular, breast, or other advanced  cancers18–20. However, inconsistent results have been reported for 
 cytokines18,21,22 and  CRP17,23.

Non-inflammatory molecules have also been identified as potential CRF biomarkers. Lower serum hemo-
globin and albumin levels have been reported in patients with  CRF24,25. Another report demonstrated a moderate 
association between CRF and hemoglobin levels, but not with  albumin26. However, hemoglobin level was no 
longer a significant predictor when the effect of inflammation was  removed27. These reports indicate that hemo-
globin is not a reliable CRF biomarker. Thus, effective biomarkers for CRF are yet to be identified.
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Studies on the pathophysiology of fatigue have revealed characteristic alteration in  metabolism28,29, variations 
in microbial  species30, and dysfunction of the neuro-immuno-endocrine  system31,32. Metabolome analysis was 
conducted in patients with myalgic encephalomyelitis/chronic fatigue syndrome (CFS). Fatigue-induced animal 
models showed similar plasma metabolic profiles. Significant changes in intermediate metabolite concentra-
tions in the tricarboxylic acid (TCA) and urea cycles were  observed29. A fatigued rat model showed decreased 
energy metabolism in response to changes in the urea cycle and amino acids, including branched-chain amino 
acids (BCAAs)28. These findings suggest that blood metabolites are effective biomarkers of fatigue. Recently, 
metabolomic analyses have been used to identify CRF biomarkers. Metabolic pathways involved in glutathione, 
glutamine, and glutamate metabolism are associated with CRF in patients with colorectal  cancer33 and those 
involved in sphingolipid metabolism, histidine metabolism, and cysteine and methionine metabolism in patients 
with various  carcinomas34.

Patients with cancer often suffer from CRF under cachexia or various treatments, including  chemotherapy3. A 
previous study using animal models of cancer- and chemotherapy-induced cachexia reported similar alterations 
in plasma metabolic profiles during the TCA cycle and β-oxidation35. However, no metabolic profiling studies 
have been conducted on patients with CRF considering such conditions including cachexia or chemotherapy. In 
this study, we performed both questionnaire-based CRF assessment and plasma metabolome analysis in patients 
with urological cancers, including urothelial and prostate cancer. This study analyzed the metabolic profiles of 
patients with CRF and cachexia. The relationship between chemotherapy-related fatigue and metabolic profiles 
was also analyzed.

Results
We analyzed FACIT-F fatigue scores and plasma metabolomic profiles of 15 patients with urological cancer. 
Patient demographics are shown in Table 1. Of the five patients in the cachexia group, three had urothelial 
cancer and two had prostate cancer, and the other 10 patients in the non-cachexia group had urothelial cancer. 
All patients in the non-cachexia group (10 patients) received chemotherapy; nine patients received a regimen 
including a platinum antitumor agent (gemcitabine plus cisplatin or gemcitabine plus carboplatin) and one 
patient received gemcitabine plus paclitaxel. Of the 15 patients, 10 were classified into the fatigued group and 
five into the non-fatigued group based on the questionnaire-based CRF assessment. All patients with cachexia 
were included in the fatigued group. The primary endpoint of this study was to assess the metabolic profiles of 
patients with CRF. In addition to the primary endpoint, the secondary endpoint involves revealing the metabo-
lome profile before chemotherapy in both the groups experiencing exacerbated fatigue and not.

Metabolites involved in cancer‑related fatigue (comparison 1)
In this study, liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS) was used to successfully 
identify and quantify 151 metabolites in plasma samples collected from the patients with CRF. We compared 
the plasma metabolite concentrations between the fatigued group, including the cachexic (five patients) and 
non-cachexic patients (five patients), and the non-fatigued group (five patients) to clarify the influence of CRF 
on the metabolites (Fig. 1). A hierarchical clustering heatmap analysis provided an overview of the concentra-
tion patterns among these three groups (Fig. 2a). Each sample was clearly clustered into each group. Principal 
component analysis (PCA) showed a larger variety in the metabolomic profile of the fatigued group than that 
of the non-fatigued group (Fig. 2b).

Volcano plots revealed 13 plasma metabolites with significant differences between the fatigued and non-
fatigued groups (Fig. 2c). Of these, 11 showed higher concentrations and two showed lower concentrations in 
the fatigued group than in the non-fatigued group (P < 0.05, Mann–Whitney U test). The metabolites with higher 
concentrations in the fatigued group were N1,N12-diacetylspermine, N1-acetylspermidine, N1,N8-diacetylsper-
midine, N8-acetylspermidine, 2-hydroxyglutarate, 7-methylguanine, 1-methyladenosine, N-acetylglucosamine, 

Table 1.  Participants’ characteristics. GEM Gemcitabine, CDDP Cisplatin, CBDCA Carboplatin, PTX 
Paclitaxel.

Characteristic

Non-cachexia Cachexia

Non-fatigued (n = 5) Fatigued (n = 5) Fatigued (n = 5)

Age (years)

 Median 62 70 67

 Range 57–76 66–82 50–70

Sex (n) (male/female) 5/0 4/1 5/0

Diagnosis (n)

 Urothelial cancer 5 5 3

 Prostate cancer 0 0 2

Metastasis (yes/no) 4/1 5/0 5/0

Chemotherapy

 GEM/CDDP 4 2

 GEM/CBDCA 1 2

 GEM/PTX 0 1
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glyoxylate, N6-acetyllysine, and malate. The metabolites with lower concentrations in the fatigued group were 
valine and tryptophan. In comparing the two groups, Cohen’s d values exceeded 0.8 for all comparisons except 
N1,N12-diacetylspermine (Cohen’s d = 0.56) and N1-acetylspermidine (Cohen’s d = 0.62). Note that N6-acetyllysine 
and tryptophan showed significantly different concentrations in the fatigued/non-fatigued groups, with Q-value, 
i.e., false discovery rate (FDR)-corrected P-value (Table 2 and Supplementary Fig. S1). The leucine concentration 
was also lower in the fatigued group than in the non-fatigued group (P = 0.055) (Table 2).

Partial least squares-discriminant analysis (PLS-DA) was conducted to evaluate the discrimination ability 
of the overall metabolomic data between the two groups (Fig. 2d). The fatigued group was separated from the 
non-fatigued group in this analysis. Metabolites that contributed to discrimination were ranked with high vari-
able importance in projection (VIP) scores (Fig. 2d). Metabolic pathway-based analysis showed that tryptophan 
metabolism contributed the most to the differences observed between the two groups (Fig. 2e). The concen-
trations of six metabolites in the tryptophan metabolic pathway were observed in the fatigued/non-fatigued 
groups (Fig. 2f). These findings indicate that patients with CRF have different metabolomic profiles than in 
those without CRF.

In the fatigued group, five patients with cachexia were included. Thus, we compared metabolites between 
the fatigued group without cachexia and the non-fatigued group due to the exclusion of the impact of cachexia 
on plasma metabolites (Supplementary Fig. S2). Concentrations of N-acetylglucosamine and N6-acetyllysine 
were higher in the fatigued group without cachexia than in the non-fatigued group. Valine, leucine, and tryp-
tophan concentrations remained lower even in the fatigued group without cachexia, as shown in the fatigued 
group containing patients with cachexia (Supplementary Fig. S2a). Calculating Cohen’s d values for all of these 
metabolites showed values exceeding 0.8. PLS-DA was used to evaluate the discrimination ability of the overall 
metabolomic data between the two groups (Supplementary Fig. S2b). The fatigued group without cachexia was 
also separated from the non-fatigued group by using the calculated VIP scores (Supplementary Fig. S2b). As with 
the previous result including the cachexia group, the metabolic pathway-based analysis showed that tryptophan 
metabolism contributed most potently to the difference observed between the two groups (Supplementary 
Fig. S2c). The concentrations of six metabolites in the tryptophan metabolic pathway in the fatigue without 

Figure 1.  Study design. (a) Patients were divided into non-fatigued (n = 5) and fatigued (n = 10) groups using 
the 13-item Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F) scores. Further, patients in 
the fatigued group were divided into non-cachexia (n = 5) and cachexia (n = 5) groups using the definition of the 
cachexic condition. Two types of comparison in plasma metabolomic profiles were conducted: comparison 1, 
non-fatigued group vs. fatigued group; comparison 2, non-cachexia group vs. cachexia group. (b) All patients 
without cachexia underwent chemotherapy. Those patients were divided into exacerbated (n = 5) and non-
exacerbated (n = 5) groups using the change in FACIT-F fatigue scores observed before and after chemotherapy. 
Comparison in plasma metabolomic profiles was conducted between the exacerbated fatigue group vs. the non-
exacerbated fatigue group (comparison 3).
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cachexia/non-fatigued groups are shown in Supplementary Fig. S2d. These results indicate that valine, leucine, 
tryptophan, N-acetylglucosamine, and N6-acetyllysine metabolites still showed different concentrations between 
the patients with CRF and those without CRF, even if the impact of cachexia was excluded.

Metabolites involved in cachexia (comparison 2)
We compared plasma metabolite concentrations between the cachexia (five patients) and non-cachexia groups, 
including fatigued (five patients) and non-fatigued patients (five patients), to clarify the influence of cachexia on 
these metabolites (Fig. 1). PCA demonstrated a deviation in the metabolomic profile of the non-cachexia group 
from that of the cachexia group (Fig. 3a). Metabolites showing significantly different plasma concentrations 
between the cachexia and non-cachexia groups are shown in volcano plots (Fig. 3b). Metabolites showing higher 
concentrations in the cachexia group compared with those in the non-cachexia group were as follows: N1,N12-
diacetylspermine, N1-acetylspermidine, N1,N8-diacetylspermidine, N8-acetylspermidine, N-acetylputrescine, cys-
tathionine, S-adenosylmethionine, 5′-methylthioadenosine, N6,N6,N6-trimethyllysine, N6-acetyllysine, pipecolate, 
2-hydroxyglutarate, isocitrate, and symmetric dimethylarginine (SDMA). Additionally, the cachexia group had 
higher concentrations of 1-methyladenosine, 7-methylguanine, 3-aminoisobutanoate, and glyoxylate. Meanwhile, 
the cachexia group showed lower concentrations of adenosine 5′-monophosphate, inosine 5′-monophosphate 
(IMP), guanosine, citrulline, arginine, ornithine, nicotinamide, and indole acetate. In all of these metabolites, the 
Cohen’s d values exceeded 0.8. Note that N1,N12-diacetylspermine, N1-acetylspermidine, N1,N8-diacetylspermi-
dine, N8-acetylspermidine, cystathionine, 5′-methylthioadenosine, isocitrate, SDMA, 1-methyladenosine, IMP, 

Figure 2.  Plasma metabolites in the fatigued and non-fatigued groups. (a) Hierarchical clustering heatmap 
analysis of plasma metabolomic data. Metabolite concentrations were normalized by dividing each 
concentration value with the average concentration measured across all patients. Higher concentrations 
compared with that of the average were represented in red, lower concentrations in blue, and concentrations 
similar to that of the average represented in white. (b) Score plot of principal component analysis (PCA) of 
plasma metabolite. The contribution ratio of PC1 and PC2 were 26.5% and 17.8%, respectively. Red represents 
the fatigue group and green the non-fatigue group. (c) Volcano plots showing differences in metabolite 
concentrations between the fatigued and non-fatigued groups. The X- and Y-axes indicate the  log2 fold change 
(fatigued/non-fatigued) and −  log10 P-values (Mann–Whitney U test), respectively. (d) Score plots of partial 
least squares-discriminant analysis (PLS-DA) (left-hand figure). The X- and Y-axes indicate the first and second 
components. Quantile normalization was performed on each sample, followed by autoscaling of the metabolite 
concentrations to eliminate sample-dependent bias. Red represents the fatigue group and green the non-fatigue 
group. Variable importance in projection (VIP) scores showing the top 15 metabolites (right-hand figure). 
Higher concentrations compared with that of the average were represented in red and lower concentrations in 
blue. (e) Metabolic pathway-based analysis showing the top 25 enriched metabolite sets. The color intensity 
represents P-values, whereas the size of the circles represents the enrichment ratio. (f) Box plots of each 
metabolite concentration in the tryptophan metabolic pathway. Horizontal lines of the box indicate 0, 25, 50, 
75, and 100% of the data. The Y-axis indicates metabolite concentrations (μM). *P < 0.05, **P < 0.01 (Mann–
Whitney U test).
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and guanosine showed significantly different concentrations in the cachexia/non-cachexia groups with Q-value 
(Supplementary Fig. S3).

PLS-DA was used to evaluate the discriminatory ability of the overall metabolomic data between the two 
groups (Fig. 3c). In this analysis, the cachexia group was separated from the non-cachexia group. Additionally, 
we identified metabolites with high VIP scores (Fig. 3c). The metabolic pathway-based analysis showed that 
methionine metabolism and spermidine and spermine metabolism contributed significantly to the differences 
observed between the two groups (Fig. 3d). Concentrations of 11 metabolites in methionine metabolism and 
spermidine and spermine metabolism were observed in the cachexia/non-cachexia groups (Fig. 3e). The cachexia 
group exhibited a unique metabolomic profile.

Although all patients underwent CRF in the cachexia group, only five showed CRF in the non-cachexia group. 
Thus, we compared metabolites between the cachexia and non-cachexia groups with CRF due to the exclusion of 
the impact of CRF on plasma metabolites (Fig. 4). A hierarchical clustering heatmap analysis revealed the relative 
abundance of metabolites between the two groups (Fig. 4a). PCA demonstrated a deviation in the metabolomic 
profile of the cachexia group compared with that of the non-cachexia group with CRF (Fig. 4b). The cachexia 
group showed higher concentrations compared with those of the non-cachexia group with CRF in eight metabo-
lites, including N8-acetylspermidine, N1,N8-diacetylspermidine, N1-acetylspermidine, N1,N12-diacetylspermine, 
cystathionine, 5′-methylthioadenosine, SDMA, and 1-methyladenosine. Meanwhile, the cachexia group showed 
lower concentrations in three metabolites, including IMP, guanosine, and citrulline (Fig. 4c). In all of these 
metabolites, the Cohen’s d values exceeded 0.8. The concentrations of these metabolites showed no significant 
differences from the FDR-corrected P-value of the PLS-DA, which evaluated the discrimination ability of the 
overall metabolomic data between the two groups (Fig. 4d). The cachexia group was separated from the non-
cachexia group with CRF in this analysis. Moreover, metabolites with high VIP scores were identified (Fig. 4d). 
Metabolic pathway-based analysis showed that methionine metabolism and spermidine and spermine metabo-
lism contributed significantly to the differences observed between the two groups, similar to that of the analysis 
of the cachexia and non-cachexia groups containing non-fatigued patients (Fig. 4e). The concentrations of 11 
metabolites in methionine metabolism and spermidine and spermine metabolism are shown in the cachexia/
non-cachexia with CRF groups in Fig. 4f. Among the patients with CRF, the cachexia group showed different 
profiles from those of the non-cachexia group.

Metabolites involved in chemotherapy‑induced cancer‑related fatigue (comparison 3)
In this study, 10 patients underwent chemotherapy, and the impact of chemotherapy on fatigue sensation was 
analyzed. FACIT-F fatigue scores before and after a series of chemotherapy sessions showed that five patients 
suffered from exacerbated fatigue after chemotherapy (exacerbated group) whereas the other five patients did not 
(non-exacerbated group) (Fig. 1). These chemotherapy-induced changes in the FACIT-F fatigue scores were not 
associated with the scores before chemotherapy (Fig. 5a). We compared the plasma metabolites before and after 
chemotherapy in both the exacerbated and non-exacerbated groups to identify metabolites that may predict the 

Table 2.  Blood metabolite levels between the non-fatigued and fatigued groups. S.D. and F.C. indicate 
standard deviation and fold change, respectively. a Fatigued/non-fatigued. b P-values for each metabolite were 
calculated using the Mann–Whitney U test. c Q-value indicates the P-value corrected by false discovery rate.

Metabolites

Non-fatigued Fatigued

F.C.a P-valueb Q-valuecAverage S.D. Average S.D.

Tryptophan 50.6 2.92 34.9 7.72 0.69 0.0027 0.10

N-Epsilon-Acetyllysine 0.393 0.0267 0.546 0.0681 1.4 0.0027 0.10

7-Methylguanine 0.133 0.0130 0.259 0.103 1.9 0.0047 0.10

N1-Acetylspermidine 0.0489 0.0138 0.354 0.605 7.2 0.0047 0.10

1-Methyladenosine 0.144 0.0135 0.234 0.0742 1.6 0.0080 0.11

N8-Acetylspermidine 0.047 0.00716 0.0922 0.0380 2.0 0.0080 0.11

Glyoxylate 44.7 4.06 59.4 14.3 1.3 0.017 0.20

N-Acetylglucosamine 0.0282 0.0171 0.0653 0.0291 2.3 0.019 0.20

2-Hydroxyglutarate 3.79 1.87 7.91 4.31 2.1 0.028 0.23

N1, N8-Diacetylspermidine 0.00843 0.00160 0.0249 0.0188 3.0 0.028 0.23

Valine 221 29.7 177 49.5 0.80 0.032 0.23

Malate 14.7 4.04 27.3 18.6 1.9 0.032 0.23

N1, N12-Diacetylspermine 0.00527 0.00100 0.126 0.267 23.8 0.040 0.26

Leucine 142 26.3 107 42.5 0.75 0.055 0.32

Isocitrate 12.5 2.16 20.5 9.6 1.6 0.055 0.32

Taurine 26.1 5.74 20.4 5.69 0.8 0.075 0.32

Lysine 95.2 6.90 81.5 14.9 0.86 0.075 0.32

Citrate 56.5 16.0 96.8 50.0 1.7 0.075 0.32

Pipecolate 2.14 0.639 4.94 4.85 2.3 0.075 0.32

AMP 3.04 1.09 2.02 0.71 0.66 0.075 0.32
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occurrence of chemotherapy-induced CRF. We identified differences in the concentrations of metabolites before 
chemotherapy between the two groups, and the results are presented below. Hierarchical clustering heatmap anal-
ysis was used to visualize the metabolite patterns between the exacerbated and non-exacerbated groups (Fig. 5b). 
PCA was conducted to determine the distribution of metabolomic profiles between the two groups (Fig. 5c). The 
PCA revealed a higher variety in metabolic profiles in the non-exacerbated group than in the exacerbated group 
(Fig. 5c). There were four metabolites, such as cysteine, cystathionine, choline, and 5′-methylthioadenosine, 
showing significantly different plasma concentrations between the exacerbated and non-exacerbated groups, as 
shown in the volcano plots (Fig. 5d). The Cohen’s d values for all four metabolites were above 0.8. The concentra-
tions of these metabolites showed no significant differences with the P-value corrected via FDR. Furthermore, 
the concentrations of the four metabolites were not altered by chemotherapy in either group.

PLS-DA was used to evaluate the discrimination ability of the overall metabolomic data between the two 
groups (Fig. 5e). The exacerbated group was separated from the non-exacerbated group in this analysis. In 
addition, we identified metabolites with high VIP scores (Fig. 5e). Metabolic pathway-based analysis showed 
that taurine and hypotaurine metabolism and homocysteine degradation contributed significantly to the differ-
ences observed between the two groups (Fig. 5f). The concentrations of the two metabolites in homocysteine 
degradation are shown in the exacerbated/non-exacerbated groups in Fig. 5g. The exacerbated group showed a 
significant decrease in the levels of four metabolites because of chemotherapy, including lactate, citrate, citrul-
line, and trimethylamine N-oxide. This group exhibited a significant increase in urea levels after chemotherapy. 
There were no significant changes in the metabolite levels after chemotherapy in the non-exacerbated group; 
however, the exacerbated group exhibited specific metabolic changes. These findings indicate the possibility of 
predicting fatigue exacerbation due to chemotherapy before its implementation.

Figure 3.  Plasma metabolites in the cachexia and non-cachexia groups. (a) Score plot of the principal 
component analysis (PCA) of plasma metabolites. Contribution ratio of PC1 and PC2 were 93.4% and 2.8%, 
respectively. Red represents the cachexia group and green the non-cachexia group. (b) Volcano plots showing 
differences in individual metabolite concentrations between the cachexia and non-cachexia groups. The X- and 
Y-axes indicate the  log2 fold change (cachexia/non-cachexia) and −  log10 P-values (Mann–Whitney U test), 
respectively. (c) Score plots of partial least squares-discriminant analysis (PLS-DA) (left-hand figure). The X- 
and Y-axes indicate the first and second components. Quantile normalization was performed on each sample, 
followed by autoscaling of the metabolite concentrations to eliminate sample-dependent bias. Red represents 
the cachexia group and green the non-cachexia group. Variable importance in projection (VIP) scores showing 
the top 15 metabolites (right-hand figure). Higher concentrations compared with that of the average were 
represented in red and lower concentrations in blue. (d) Metabolic pathway-based analysis showing the top 25 
enriched metabolite sets. The color intensity represents P-values, whereas the size of the circles represents the 
enrichment ratio. (e) Box plots of each metabolite concentration in methionine metabolism and spermidine 
and spermine biosynthesis. Horizontal lines of the box indicate 0, 25, 50, 75, and 100% of the data. The Y-axis 
indicates metabolite concentrations (μM). C., cachexia group; N.C., non-cachexia group. *P < 0.05, **P < 0.01 
(Mann–Whitney U test).
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Discussion
CRF has a negative impact on many patients with advanced cancer. However, objective biomarkers of CRF, 
including those by cachexia and chemotherapy, have not been developed. In the present study, we performed 
metabolomic analyses of the plasma obtained from patients with and without CRF, including those with cachexia 
or chemotherapy-induced CRF. To the best of our knowledge, this is the first study to analyze the metabolic 
profiles of CRF by such causes.

Valine, a BCAA, and tryptophan, an intermediate metabolite of the nicotinamide adenine dinucleotide 
(NAD) synthesis  pathway36, in the plasma showed lower concentrations in the fatigued group than in the non-
fatigued group (Fig. 2). Such a decrease in BCAAs has also been reported in a previous study on cancer-induced 
cachexia in experimental  animals35. Notably, even after excluding the impact of cachexia, the fatigued group 
showed decreased levels of BCAAs, such as valine, leucine, and tryptophan (Table 2). A previous study reported 
a decrease in BCAAs in muscles and mental  fatigue37,38. Tryptophan is an important metabolite in the NAD 
synthesis pathway. NAD+ is an essential cofactor for mitochondrial energy  production39. It was reported that 
the levels of adenosine 5′-triphosphate in the liver and skeletal muscles were significantly decreased in fatigued 
models in  rats28. Such decreases in plasma BCAAs and tryptophan levels in the fatigued group of patients in the 
present study might indicate a functional deterioration in muscle synthesis and mitochondrial energy produc-
tion. Although diet and eating habits influenced the serum metabolome containing amino  acids40,41, we did not 
analyze usual eating habits. Future research demands a detailed examination of diet and eating habits.

Exercise-induced fatigue in the central nervous system has been reported to be related to the concentration 
of serotonin in the  brain42. Serotonin concentration in the brain is affected by the ratio of tryptophan to BCAAs 

Figure 4.  Plasma metabolites in the cachexia and non-cachexia groups with fatigue groups. (a) Hierarchical 
clustering heatmap analysis of plasma metabolomic data. Metabolite concentrations were normalized by 
dividing each concentration value with the average concentration measured across all patients. Higher 
concentrations compared with that of the average were represented in red, lower concentrations in blue, and 
concentrations similar to that of the average represented in white. (b) Score plot of the principal component 
analysis (PCA) of plasma metabolites. Contribution ratio of PC1 and PC2 were 88.7% and 5.7%, respectively. 
Red represents the cachexia group and green the non-cachexia with fatigue group. (c) Volcano plots showing 
differences in metabolite concentrations between the cachexia and non-cachexia with fatigue groups. The 
X- and Y-axes indicate the  log2 fold change (cachexia/non-cachexia with fatigue) and –log10 P-values (Mann–
Whitney U test), respectively. (d) Score plots of partial least squares-discriminant analysis (PLS-DA) (figure on 
the left). The X- and Y-axes indicate the first and second components. Quantile normalization was performed 
on each sample, followed by autoscaling of the metabolite concentrations to eliminate sample-dependent bias. 
Red represents the cachexia group and green the non-cachexia with fatigue group. Variable importance in 
projection (VIP) scores showing the top 15 metabolites (right-hand figure). Higher concentrations compared 
with that of the average were represented in red and lower concentrations in blue. (e) Metabolic pathway-based 
analysis showing the top 25 enriched metabolite sets. The color intensity represents P-values, whereas the size 
of the circles represents the enrichment ratio. (f) Box plots of each metabolite concentration in methionine 
metabolism and spermidine and spermine biosynthesis. Horizontal lines of the box indicate 0, 25, 50, 75, and 
100% of the data. The Y-axis indicates metabolite concentrations (μM). C., cachexia group; N.C., non-cachexia 
with fatigue group. *P < 0.05, **P < 0.01 (Mann–Whitney U test).
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in the blood; a decrease in BCAAs increases the transfer of tryptophan to the brain, resulting in the increase 
in serotonin concentration in the  brain43,44. Oral administration of BCAAs in rats decreased both tryptophan 
and serotonin levels in the brain 1 h after  administration45. In addition, in human subjects, ingestion of BCAAs 
increases plasma BCAA concentrations and improves mental  fatigue46. In the present study, BCAA concentra-
tions were lower in patients with fatigue, indicating the possibility that BCAA intake may improve CRF.

In this study, the concentration of metabolites of the polyamine metabolic pathway, including N1,N12-dia-
cetylspermine, N1-acetylspermidine, N1,N8-diacetylspermidine, acetylspermidine, and N-acetylputrescine47, 
were higher in the cachexia group than in the non-cachexia group, both with and without fatigue. Polyamine 
metabolism is associated with cancer progression. It has been previously reported that spermine, a metabolite of 
the polyamine metabolic pathway, is upregulated in colorectal cancer patients with  CRF33. In addition, salivary 
polyamines have been reported as potential biomarkers for the diagnosis of pancreatic and colorectal  cancer48,49. 
The polyamine metabolic pathway is an important regulator of cellular proliferation and differentiation, and 
the disruption of polyamine homeostasis leads to oncogenic  pathophysiology50. Polyamine metabolism is coor-
dinately regulated by the proto-oncogene, MYC, particularly in proliferative tissues, and is further augmented 
in many cancer cells harboring hyperactivated  MYC51,52. The inhibition of ornithine decarboxylase, one of the 
rate-limiting enzymes in the polyamine metabolic pathway, suppressed cancer aggressiveness in an in vitro 
 study53. Spermidine/spermine N1-acetyltransferase 1 (SAT1), the rate-limiting enzyme in polyamine catabolism, 
was reported to elevate cancer aggressiveness by stimulating the expression of DNA damage response pathways 
and cell cycle regulatory genes in an in vitro  study54. Spermine oxidase, an enzyme responsible for converting 

Figure 5.  Plasma metabolites in the exacerbated and non-exacerbated groups in chemotherapy. (a) The 
13-item Functional Assessment of Chronic Illness Therapy-Fatigue (FACIT-F) subscale scores. Grey broken 
lines indicate data in the non-exacerbated group (n = 5) and black bold lines indicate those in the exacerbated 
group (n = 5). (b) Hierarchical clustering heatmap analysis of the plasma metabolomic data. Metabolite 
concentrations were normalized by dividing each concentration value with the average concentration measured 
across all patients. Higher concentrations compared with those of the average were represented in red, lower 
concentrations in blue, and concentrations similar to that of the average represented in white. (c) Score plot of 
the principal component analysis (PCA) of plasma metabolites. Contribution ratio of PC1 and PC2 were 96.9% 
and 1.5%, respectively. Red represents the exacerbated group and green the non-exacerbated group. (d) Volcano 
plots showing differences in metabolite concentrations between the exacerbated and non-exacerbated groups. 
The X- and Y-axes indicate the  log2 fold change (exacerbated/non-exacerbated) and −  log10 P-values (Mann–
Whitney U test), respectively. (e) Score plots of partial least squares-discriminant analysis (PLS-DA) (left-hand 
figure). The X- and Y-axes indicate the first and second components. Quantile normalization was performed on 
each sample, followed by autoscaling of the metabolite concentrations to eliminate sample-dependent bias. Red 
represents the exacerbated group and green the non-exacerbated group. Variable importance in projection (VIP) 
scores showing the top 15 metabolites (right-hand figure). Higher concentrations compared with that of the 
average were represented in red and lower concentrations in blue. (f) Metabolic pathway-based analysis showing 
the top 25 enriched metabolite sets. The color intensity represents P-values, whereas the size of the circles 
represents the enrichment ratio. (g) Box plots of each metabolite concentration in homocysteine degradation. 
Horizontal lines of the box indicate 0, 25, 50, 75, and 100% of the data. The Y-axis indicates metabolite 
concentrations (μM). E., exacerbated group; N.E., non-exacerbated group.
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spermine to spermidine, actively contributes to colorectal cancer tumorigenesis, serving as an independent 
prognostic factor for colorectal cancer in vitro55.

In the study of chemotherapy-induced CRF, metabolites of cysteine and methionine metabolism, including 
cysteine, cystathionine, choline, and 5′-methylthioadenosine, showed lower concentrations before chemotherapy 
in the exacerbated fatigue group than in the non-exacerbated group (Fig. 5). Cysteine and methionine metabo-
lism have been reported to be unique to patients with cancer and  fatigue39. Further, the plasma metabolite levels 
of cysteine and methionine metabolic pathways were lower in patients with CFS and Gulf War  illness56,57. Plasma 
cysteine and methionine levels also decreased after mental fatigue loading in healthy  volunteers38. Interestingly, 
oxidative stress levels are elevated in patients with CFS and in fatigued animal  models58, and N-acetylcysteine, 
an N-acetyl derivative of the natural amino acid, cysteine, has efficient antioxidant  activity59,60. Our results sug-
gest that oxidative stress is associated with CRF, including chemotherapy-induced fatigue, and that metabolites 
associated with antioxidation are expected to alleviate CRF.

Our results also showed that plasma citrulline levels before chemotherapy tended to be lower in the exacer-
bated group than in the non-exacerbated group (P = 0.056), and the plasma ornithine/citrulline ratio tended to be 
higher in the exacerbated group (P = 0.056). Plasma citrulline levels were reported to be lower in fatigued  rats28. 
Furthermore, a previous study on patients with CFS reported that the ornithine/citrulline ratio was significantly 
higher than that in healthy  controls29. If a higher ratio is involved in low detoxification capability in the liver, 
exacerbated CRF during chemotherapy might be induced by low detoxification.

In this study, all patients with cachexia (100%), four with non-cachexia and fatigue (80%), and two with non-
cachexia without fatigue (40%) died during the observation period. The median times to death were 18, 271, and 
477 days, respectively. Patients who died in the non-cachexia group had higher plasma putrescine levels than in 
those who had survived (P = 0.029). However, the levels of other plasma metabolites of the polyamine metabolic 
pathway did not differ significantly. Patients who died in the non-cachexia group had lower plasma cysteine levels 
than in those who had survived. These findings suggest that plasma levels of putrescine and cysteine are potential 
prognostic indicators, even in the pre-cachexia stage. Therapeutic intervention in the cysteine and methionine 
metabolic pathways may prolong patient survival times.

This study has several limitations. First, the sample size in this study was small and only conducted for uro-
logical cancer. Although some metabolomic analyses yielded consistent results even under FDR correction, no 
metabolites showed significant differences under FDR correction in the comparison between the fatigue-exac-
erbated and non-exacerbated chemotherapy groups, likely because of the small sample size. Based on the results 
of this study, large-scale, multicenter trials should be performed. Second, the subjects in this study included 14 
males and one female, and we could, therefore, not investigate differences in metabolic profiles associated with sex 
differences. Third, we standardized the time of plasma collection before breakfast but did not analyze usual eating 
habits. However, given these limitations, the present study provides an essential information resource for CRF.

In conclusion, this study revealed the different metabolic profiles in patients with CRF due to other causes, 
including cachexia and chemotherapy. Therefore, these metabolites may serve as cause-oriented biomarkers of 
CRF. Such metabolic profiles provide the possibility of treating and/or preventing CRF in the process of cancer 
progression and improving prognosis through the intake of metabolites.

Methods
Ethics statement
This study was approved by the Ethics Committees of Shiga University of Medical Science (permission number: 
R2017‐110) and RIKEN (permission number: K2019-014) and conducted following the Declaration of Helsinki. 
Informed consent was obtained in written from all the participants included in the studies. All research was 
performed in accordance with the relevant guidelines and regulations.

Subjects
The subjects in this study were 15 patients with advanced urological cancer who underwent anticancer treatment 
at the Shiga University of Medical Science Hospital from 2017 to 2020. All data in this study were obtained from 
five patients with and 10 without cachexia. Patients classified as having cachexia were defined as in a previous 
 report61: patients showing weight loss of more than 5% a month, those showing a body mass index less than 
20 kg/m2 and weight loss of more than 2% a month, or those showing sarcopenia and weight loss of more than 
2% a month, as well as a life expectancy of fewer than three months (Supplementary Fig. S3). All non-cachectic 
patients received chemotherapy during the study.

Inclusion criteria required patients with urological cancer, all of whom were either diagnosed with cachexia 
or undergoing chemotherapy due to advanced cancer at Shiga University of Medical Science Hospital. Exclusion 
criteria included patients who could not answer the questionnaire owing to mental illness or retardation and 
those who were under 20 years of age. Patients with congenital or acquired metabolic disorders affecting the 
metabolome analysis data were also excluded.

Fatigue severity assessment
We assessed fatigue severity in all subjects using the FACIT-F measure. The FACIT-F is a 13-item measure that 
evaluates self-reported fatigue and its impact on daily activities and functions (http:// www. facit. org). FACIT-F has 
been reported to be reliable and valid for assessing fatigue severity in patients with diseases, including  cancers62. 
In this study, the FACIT-F data were obtained from all subjects in the morning (before breakfast). Following 
previous  reports42,62, patients with a total score < 43 were classified as those with fatigue and that ≥ 43 as those 
without fatigue. All non-cachexic patients underwent a series of chemotherapy with gemcitabine and cisplatin, 
carboplatin, or paclitaxel and received the scheduled regimens. FACIT-F data were obtained on the first and 

http://www.facit.org
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on seventh days of a period of chemotherapy. The median value of decreased FACIT-F scores by chemotherapy 
was employed for dividing the patients into the exacerbated (≥ the median value: 7 ± 12.4) and non-exacerbated 
groups (< the median value) of fatigue.

Metabolomic analysis
Plasma samples were collected from all patients before breakfast on the same day after answering the question-
naires and immediately stored in a freezer at − 80 °C until measurement. For metabolome analysis, positively 
and negatively charged metabolites extracted from plasma samples were quantified according to a previously 
reported  method63. For the positive and negative ion metabolite, 10 μL plasma sample was mixed with 90 μL 
methanol containing 1 μM camphor-10-sulfonic acid and 1.5 μM of each standard compound  (d8-spermine, 
 d8-spermidine,  d6-N1-acetylspermidine, d3-N1-acetylspermine, d6-N1,N8-diacetylspermidine, d6-N1,N12-diace-
tylspermine, hypoxanthine-13C2,15N, and 1,6-diaminohexane). Following centrifugation at 20,380×g for 10 min 
at 4 °C, 90 μL supernatant was transferred to a fresh tube and vacuum-dried. The sample was mixed with 10 μL 
of 90% methanol and 190 μL water containing 20 μM of each standard (sulfanilic acid and methionine sulfone) 
and thereafter vortexed and centrifuged at 20,380×g for 10 min at 4 °C. Finally, 1 μL of the samples was used 
for an LC-TOF-MS.

The conditions used for the 1290 Infinity LC system and G6230B TOF-MS measurement equipment (Agilent 
Technologies, Santa Clara, CA, USA) and how raw data were processed using Agilent MassHunter Qualita-
tive Analysis software (version B.08.00; Agilent) were as previously  reported64. We also analyzed 151 standard 
compounds containing metabolites to determine linearity between the peak areas of the metabolites. Raw data 
were analyzed using typical LC-TOF-MS data  processing65. The corresponding metabolite-derived peaks were 
detected in each sample. The peak areas were integrated and divided by those of the internal standards to elimi-
nate fluctuations in MS sensitivity. By evaluating the quantification quality, we confirmed that most of the peak 
areas were in the linearity range and treated peaks smaller than the lower linearity limit as non-detected peaks. 
The absolute concentration of each metabolite was calculated based on the ratio of these values in plasma and 
standard mixtures.

Data and statistical analyses
Data analyses and visualization were conducted using MetaboAnalyst (ver. 5; https:// www. metab oanal yst. ca/). 
The heatmap visualized the Z-score values of the metabolite concentrations. Data were aligned with clustering 
using the Ward method and elucidation distance. PCA showed the first and second principal components (PC1 
and PC2) with contribution ratios as score plots. Each plot indicates one sample and the 95% confidence interval 
is indicated by colored circles. Volcano plots were used to visualize the differences between the two groups. The 
X- and Y-axes show the  log2 fold change of averaged concentrations and −  log10 of the P-value (Mann–Whitney U 
test). Each plot represented a single metabolite. Metabolites above the horizontal line (Y > 1.3) indicate P < 0.05. 
PLS-DA was conducted to evaluate the discrimination ability of the overall metabolomic data between the two 
groups. The VIP scores were calculated for each metabolite. Metabolites with higher VIP values contributed 
significantly to the discrimination of the given groups. Pathway-level differences between the two groups were 
evaluated via enrichment analysis using the small-molecule pathway database (https:// www. smpdb. ca/). The 
metabolite concentration was converted to a Z-score for PLS-DA and enrichment analyses.

The Mann–Whitney U test was used for unpaired, two-group comparisons. A P < 0.05 was considered signifi-
cant for all tests. Considering multiple independent tests, the FDR using the Benjamini–Hochberg method was 
used for P-value correction. The horizontal bars in the box plots indicate 25%, 50%, and 75% of the data. The 
whiskers indicate 5% and 95%, respectively, and the external data are plotted. These analyses were conducted 
using GraphPad Prism software (v.9.5.1; GraphPad Software, San Diego, CA, USA).

Cohen’s d was a statistical measure used to quantify the size of the difference between two groups. A Cohen’s 
d value exceeding 0.8 indicated a substantial effect size. A Cohen’s d value was calculated by taking the difference 
between the means of the two groups and dividing it by a pooled standard deviation.

Data availability
The data sets generated during the current study are available from the corresponding author on reasonable 
request.
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