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Abstract. A privilege escalation attack by memory corruption based
on kernel vulnerability has been reported as a security threat to operat-
ing systems. Kernel address layout randomization (KASLR) randomizes
kernel code and data placement on the kernel memory section for attack
mitigation. However, a privilege escalation attack will succeed because
the kernel data of privilege information is identified during a user process
execution in a running kernel. In this paper, we propose a kernel data
relocation mechanism (KDRM) that dynamically relocates privilege in-
formation in the running kernel to mitigate privilege escalation attacks
using memory corruption. The KDRM provides multiple relocation-only
pages in the kernel. The KDRM selects one of the relocation-only pages
and moves the privilege information to the relocation-only pages when
the system call is invoked. This allows the virtual address of the privi-
lege information to change by dynamically relocating for a user process.
The evaluation results confirmed that privilege escalation attacks by user
processes on Linux could be prevented with KDRM. As a performance
evaluation, we showed that the overhead of issuing a system call was up
to 149.67%, and the impact on the kernel performance score was 2.50%,
indicating that the impact on the running kernel can be negligible.

1 Introduction

Memory corruption countermeasures in the operating system (OS) kernel are
paramount. In particular, privilege escalation attack and security-feature dis-
abling attacks use memory corruption of kernel data [3,7].

In this regard, kernel address space layout randomization (KASLR) randomly
places kernel code and data on the kernel memory at kernel startup as a coun-
termeasure against memory corruption attacks. KASLR makes it challenging to
identify the virtual address of the kernel data to be attacked and reduces the
possibility of kernel data tampering due to memory corruption. However, the
virtual address of kernel data (e.g., privilege information) on the kernel memory
is fixed in the running kernel, which poses the following problem.

Privilege information illegal modification
Assume that an attacking user process has identified the virtual address of
the privilege information to be attacked in a running kernel [8].
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Fig. 1: Overview of the KDRM

The privilege information can be tampered with by an attack exploiting the
kernel vulnerability. Therefore, an attacker can conduct a privilege escalation
attack.

This paper proposes a kernel data relocation mechanism (KDRM) that allows
dynamic relocation of privilege information in the kernel memory to provide the
kernel with resistance to attacks against privilege escalation attack. The KDRM
can be applied to a running kernel with KASLR to improve the attack resistance
of the kernel.

Figure 1 provides an overview of the proposed KDRM. The KDRM forces the
user process to relocate privilege information when a system call is issued. The
relocation of kernel data contains privilege information that makes it challenging
to identify the virtual address of privilege information.

The KDRM allocates multiple relocation-only pages (4 KB) for each user
process in the kernel memory and uses them to store privilege information to be
protected. When a system call is issued, the privilege information to be protected
is replicated to a randomly selected relocation page, and the reference to privilege
information to be protected is changed to the replicated page. Then, the original
page is temporary unmapped by KDRM for the tampering protection in the
kernel memory. The virtual address of privilege information in the running kernel
is dynamically changed by changing the page and protected by unmapping the
page where the privilege information is stored each time a system call is issued.

In the proposed approach, the difficulty in identifying the virtual address
of privilege information depends on its size to be relocated and the number of
relocation-only pages. When the relocation target is 256 bytes (8 bits) and one
relocation-only page (4 KB, 12 bits) is set as one page, the privilege information
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Table 1: Types and effects of kernel vulnerability [1]
Item Description

Type

Missing pointer check Lack of pointer variable verification
Missing permission check Lack of permission verification
Buffer overflow Overwriting of the stack or heap space
Uninitialized data Lack of initialization at variable creation
Null deference Access to Null variable
Divide by zero Zero dividing calculation
Infinite loop Occurrence of the infinite loop process
Data race / deadlock Occurrence of race condition or deadlock
Memory mismanagement Inconsistent allocation of memory allocation and free
Miscellaneous Other wrong implementations

Effect

Memory corruption Modification of kernel data
Policy violation Miss implementation of access control decision
Denial of Service Forcing kernel to stop running
OS information leakage Information leakage from uninitialized data variables

can be protected from brute force attacks in the range of 4bits (see section 6.7
for details).

Suppose that a user process performing a privilege escalation attack executes
vulnerable kernel code that can be used in an arbitrary memory corruption
attack. In that case, an attempt to tamper with privilege information can occur.
However, the KDRM makes it challenging to locate the exact virtual address
of privilege information. Therefore, tampering with privilege information occurs
the page fault. In particular, tampering fails, and privilege escalation attacks are
prevented.

The research contributions in this paper are as follows:

1. To mitigate memory corruption attacks, we designed and implemented a
security mechanism that enables the dynamic relocation of privilege infor-
mation when a system call is issued. We implemented the KDRM on Linux,
which is resistant to privilege escalation attacks.

2. We confirmed that the KDRM could prevent privilege escalation against
user processes that attempt privilege escalation attacks. In this regard, the
impact of the KDRM on user process and kernel operation was evaluated.
The results showed that the overhead to the kernel when issuing system calls
ranged from 102.88% to 149.67%, and the impact on the kernel performance
score was 2.50%.

2 Memory Corruption Vulnerability

Kernel vulnerabilities are mis-implementations that can be used to attack the
kernel. Table 1 lists a classification of 10 types of kernel vulnerabilities and
summarizes the effect of four types of attacks using kernel vulnerabilities [1].

The KDRM is a countermeasure against memory corruption attacks that
exploit kernel vulnerabilities related to pointers and variables. A memory cor-
ruption attack is an attack that attempts to write an arbitrary virtual address in
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1 // From Linux kernel v5 .18.2
2 // include/linux/sched.h
3 struct task_struct {
4 ...
5 const struct cred __rcu *cred;
6 ...
7 }
8 // include/linux/cred.h
9 struct cred {

10 ...
11 /* real UID of the task */
12 kuid_t uid;
13 /* real GID of the task */
14 kgid_t gid;
15 ...
16 }
17 // include/linux/uidgid.h
18 typedef struct {
19 // typedef __kernel_uid32_t uid_t;
20 // typedef unsigned int __kernel_uid32_t ;
21 uid_t val;
22 } kuid_t;
23 typedef struct {
24 // typedef __kernel_gid32_t gid_t;
25 // typedef unsigned int __kernel_gid32_t ;
26 gid_t val;
27 } kgid_t;

Fig. 2: Structures related to user ID in Linux[4]

the kernel memory. If the memory area to be attacked is rewritable, the attack
target is overwritten by memory corruption.

Privilege Escalation Attack: For privilege escalation attacks, a kernel vul-
nerability that takes privilege management omissions to forcibly call kernel code
that performs privilege modification operations [14,15,16] and memory corrup-
tion attacks has been reported [17].

The attacker attempts a privilege escalation attack that targets kernel data
concerning user process privilege information, which is placed in the kernel mem-
ory. As a precondition for a successful privilege escalation attack, the virtual
address of the kernel data that stores privilege information must be correctly
specified as the attack target. After that, an attacker attempts to tamper with
the kernel data that stores privilege information. Furthermore, the attacker can
change the user ID of a user process to an administrator user in the case of a
memory corruption attack.

Privilege Information: The attack target was kernel data related to privilege
information. Figure 2 illustrates the structure definition of user ID in Linux.
The task_struct structure in Linux manages user processes and stores privilege
information. Line 5 shows that the privilege information is stored in the cred

structure that manages the user process. The user ID is stored in the variable
uid of the kuid_t structure on line 12, which is included in the cred structure
on lines 9 through 16. The kuid_t structure has variable val of uid_t on lines
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18 through 22. In a privilege escalation attack, the variable val of the uid of
the kuid_t structure is rewritten to the user ID (0) of the root.

3 Threat Model

Attack Target Environment: The threat model in this study considered an
attacker attempting a memory corruption via a kernel vulnerability. The attack
target environment, assumed as the threat model, is summarized as follows:

– Attacker: Runs a user process with general user privileges. In the user pro-
cess, the attacker executes the attack code, calls vulnerable kernel code and
attempts a memory corruption attack.

– Kernel: Contains kernel vulnerabilities that can be used for memory cor-
ruption attacks, allowing user processes to call vulnerable kernel code. No
security mechanisms other than access control functions are applied to user
processes.

– Kernel Vulnerability: Specify an arbitrary virtual address of kernel data and
achieve a memory corruption attack. Receive the virtual address and over-
written data of the attack target from the user process and tamper the kernel
data of the attack target.

– Attack target: The attack target is kernel data placed on the kernel memory.
The attack target stores user process privilege information.

Attack Scenario: In the assumed attack scenario, the attacker attempts a
memory corruption attack against the kernel. In particular, the attacker executes
an arbitrary user process as a normal user. The user process invokes vulnerable
kernel code to perform memory corruption attacks that can overwrite the kernel
data using arbitrary data.

For example, in a privilege escalation attack, an attacker identifies the po-
sition of the kernel data containing the privilege information of a user process.
Subsequently, the attacker overwrites the privilege information of the user ID to
administrative privilege.

4 The Design of The Approach

4.1 Requirement

The KDRM dynamically relocates protected kernel data during kernel operation.
The design aims to satisfy the following requirements:

RQ1: The assumed attack is privilege information modification by a memory
corruption attack through a kernel vulnerability during the execution of
a system call.

RQ2: Relocation control of protected kernel data on the kernel is transparent
to user processes.

RQ3: To make it difficult to identify the relocation position of privilege infor-
mation.
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Fig. 3: Design overview of the KDRM

4.2 Concept

The design concepts of the KDRM are defined as follows:

– Concept 1: The protected kernel data relocation handling its performed in
the kernel to mitigate attacks from user processes and make it challenging
to detect countermeasures.

– Concept 2: The KDRM is designed to mitigate attacks on the protected
kernel data relocation handling so that user processes and kernel operations
are unaffected.

4.3 Protected Kernel Data Relocation Challenge

The design outline of the KDRM is shown in Figure 3. Based on the design
concepts of the KDRM and to satisfy the requirements, multiple relocation-only
pages are provided as relocation destinations of kernel data to be protected in the
kernel on the kernel memory. In addition, a list of kernel data to be protected,
a list of relocation-only pages, and a list of system calls that are excluded from
relocation handling by the KDRM.
Protection Kernel Data: In the KDRM, the protected kernel data to be relo-
cated on the kernel memory. The protected kernel data is privilege information
that is created at the time of user process creation.
Relocation-only Page: In the KDRM, the relocation-only page is kernel page
to which the protected kernel data is relocated. The KDRM provides multiple
relocation-only pages on the kernel memory.
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Table 2: Protected kernel data and Exclusion system call list

(a) Kernel data to be protected in the KDRM
implementation

Item Description

Protected kernel data

User ID (e.g., uid, euid,
fsuid, and suid)

Group ID (e.g., gid, egid,
fsid, and sgid)

(b) A system call that performs authoriza-
tion operation that exempts the realization
method

Item Description

Exclusion systemcall list

execve, setuid, setgid,
setreuid, setregid,
setresuid, setresgid,
setfsuid, setfsgid

Relocation Handling: The relocation handling of the protected kernel data in
the KDRM is performed before and after the execution of the system call.

– Before system call execution: Protected kernel data is relocated to a relocation-
only page and temporary unmapped the original kernel data from kernel
memory.

– After executing the system call: The protected kernel data on the relocation-
only page is moved to the original kernel data location.

In the KDRM, the relocation destination of protected kernel data is selected
randomly from a list of relocation-only pages before executing the system call.
The virtual address of the protected kernel data after relocation changes within
a specific range, making it difficult to specify the virtual address.

5 Implementation

5.1 Implementation Overview

Linux on the x86 64 CPU architecture was assumed to be the environment for
implementing the scheme. An overview of the implementation, the KDRM cre-
ates a new page and placed for each user process to make the privilege informa-
tion of the kernel data to be protected. While processing of the implementation
method, the page storing the privilege information is replicated to a randomly
selected relocation-only page before the execution of the system call, and the
virtual address of the privilege information is changed.

5.2 Protected Kernel Data

In the implementation method, a kernel page (4 KB) is created to store the
protected kernel data as the privilege information of the user process.

Table 2a lists the privilege information of the protection target. During the
operation period of the user process, each kernel page (4 KB) is subject to
relocation handling.
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5.3 Relocation kernel page

In the implementation, a certain number of relocation-only pages are allocated at
kernel startup to reduce the load during user process creation. The alloc_pages
function is used for allocating relocation-only pages. Multiple relocation-only
pages (4 KB) (e.g., 10) are allocated when a user process was created. In addition,
the remove_pagetable function is used for the unmapping original kernel page
from the kernel page table that is the variable pgd of current.

A specific range of virtual addresses in the kernel memory can be used as re-
location destinations for privilege information by allocating multiple relocation-
only pages to each user process. In addition, the relocation-only page can be
randomly selected, making it difficult to identify the virtual address of the relo-
cation destination.

5.4 Relocation Handling

Relocation control of kernel data that stores privilege information is performed
by using a list of relocation-only pages and a list of exempted system calls as
follows:
1. Hooks system calls invocations by user processes.
2. Determine if the system call number is included in the list of exempted

system calls.

(a) For exempt system calls: privilege information is not relocated.
(b) For other than exempt system calls: privilege information is relocated.

i. Randomly selects a relocation-only page from the list of relocation-
only pages as the relocation destination for privilege information.

ii. Duplicate the kernel data storing the privilege information to the
relocation-only page by page.

iii. Change the reference from the privilege information in the kernel to
the replication destination.

iv. Unmap the privilege information of the original kernel page from the
kernel page table.

3. Continue execution of the system call.
4. Terminate system call.

KDRM restores the privilege information of the original kernel page to the
kernel page table after the termination of other than exempt system calls.
Page Fault Handling: An attempt to illegally overwrite kernel data that con-
tain privilege. The page fault handler’s handle_page_fault function catches a
privilege escalation attack. The Linux kernel can know the referenced virtual ad-
dress at the page fault. The implementation method compares the virtual address
of the privilege information before relocation handling. As the page fault occurs,
a SIGKILL is sent to the target user process with the function force_sig_info

when considered an illegal write.
Protected Kernel Data Relocation Exemptions: Depending on the type
of kernel data to be protected, reference or write failures to kernel data due to
relocation in the kernel might affect the kernel and user process operations.
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In particular, the KDRM allows the user to specify in advance which system
calls are exempted from relocation for each protected kernel data to avoid affect-
ing the kernel and user processes. Moreover, KDRM uses these system calls to
determine whether the relocation handling is applicable. The kernel data to be
protected is not relocated when the specified exempted system call is executed.

In the implementation, the writing to privilege information may cause page
faults; Thus, system calls that explicitly write to privilege information are man-
aged as a list of exemptions in Table 2b, which summarizes the system calls that
operate the privilege information.

6 Evaluation

6.1 Evaluation Purpose

We evaluated the kernel with KDRM to investigate the security capability, the
overhead to kernel processing, and the attack difficulty by relocating kernel data.
The evaluation contents are listed as follows:

1. Privilege escalation attacks security assessment
We evaluated whether the kernel with KDRM can prevent privilege escala-
tion attacks by introducing kernel vulnerabilities that can be used for mem-
ory corruption.

2. Performance evaluation in kernel operation
We used benchmarking software to calculate the kernel performance score
with KDRM.

3. Performance evaluation in issuing system calls
Using benchmark software, we measured the overhead of relocating kernel
data before and after issuing system calls on a kernel with KDRM.

4. Attack difficulty assessment with kernel data relocation
The granularity of randomization of virtual addresses by the relocation of
kernel data using KDRM was compared with KASLR to evaluate the attack
difficulty.

6.2 Evaluation Environment

The evaluation device was used for security evaluation and performance eval-
uations. The evaluation device was an Intel(R) Xeon(R) W-2295 (3.00 GHz,
18 cores, 32 GB memory) running Debian 11.3, Linux kernel 5.18.2. We imple-
mented the KDRM in Linux kernel 5.18.2 with 248 lines of code for nine files.
Furthermore, we added 32 lines of kernel vulnerabilities that can be used for
memory corruption for security evaluation to three files and implemented the
PoC code in 134 lines.

6.3 Kernel Vulnerability

The following system calls were introduced to evaluate the security capability of
KDRM:
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Fig. 4: Results of Preventing Privilege Elevation Attacks Using the KDRM.

– Original system call 1: Original system call 1 identifies the virtual address
of the kernel data (e.g., the privilege information of the user process), then
returns it to the user process.

– Original system call 2: Original system call 2 takes two arguments. The first
argument is the virtual address, and the second is the overwritten data.
Execution of the original system call 2 attempts to overwrite kernel data of
the specified virtual address. A privilege escalation attack is possible if the
first argument is the virtual address of the privilege information of the user
process and the second argument is root ID (e.g., 0).

6.4 Privilege Escalation Attacks Security Assessment

As a security assessment, the attacking user process uses the original system call
1 to identify the virtual address of the privilege information and then attempts
a privilege escalation attack using the original system call 2.

Figure 4 shows the attack prevention results of KDRM when a user process
executes a privilege escalation attack.

In the attacking user process, line 2 displays the privilege information of the
user process. The value of uid is 1,000, which confirms that the user is a normal
user. In line 4, it calls the original system call 1 to specify the virtual address of
the kernel data storing the privilege information.

In line 5, the user executes the original system call 2, a privilege escalation
attack. In the kernel, line 8 shows the virtual address of the kernel data con-
taining the privilege information. Lines 13 and 14 indicate the range of virtual
addresses of the relocation-only page. In lines 15 and 16, KDRM moves the ker-
nel data that stores the privilege information to the relocation-only page. The
virtual address is changed before executing the original system call 2.

In line 18, an attempt is made to overwrite the virtual address specified by
the original system call 2. A page fault with error number 2 is caught in line
19. This indicates a violation of writing to the page for the virtual address. The
writing target is the previous virtual address of privilege information.
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Table 3: UnixBench compile performance of implementation

Vanilla kernel Implementation

Dhrystone 2 4450.50 4440.50 (0.22%)
Double-Precision Whetstone 1557.54 1552.92 (0.30%)
Execl Throughput 1193.23 1187.14 (0.52%)
File Copy 1024 bufsize 4122.08 3997.08 (3.03%)
File Copy 256 bufsize 2790.40 2698.60 (3.29%)
File Copy 4096 bufsize 7401.80 7192.62 (2.82%)
Pipe Throughput 2109.68 2041.04 (3.25%)
Pipe-based Context Switching 806.02 785.34 (2.57%)
Process Creation 1019.10 1017.92 (0.12%)
Shell Scripts (1 concurrent) 2485.20 2456.13 (1.17%)
Shell Scripts (8 concurrent) 2298.00 2294.36 (0.16%)
System Call Overhead 1771.08 1620.68 (8.49%)
System Benchmarks Index Score 2195.16 2140.24 (2.50%)

6.5 Overhead of Kernel Performance

To evaluate the performance of the kernel, UnixBench version 5.1.3 was run
five times on the Linux kernel before and after KDRM was applied, and the
performance score was calculated from the average values.

Table 3 lists the UnixBench performance score of each running kernel for
numerical computation, file copy, process processing, and system calls. Higher
score values indicate high performance. From Table 3, the KDRM had most neg-
ligible impact on the score of 0.12% for Process Creation and the most significant
impact on the score of 8.49% for System Call Overhead. The overall impact on
the performance score was 2.50%.

6.6 Overhead of Kernel Processing

In KDRM, the privilege information is to be protected when a system call is
performed. In the evaluation, we ran the benchmark software LMbench version
3.0-a9 10 times on a Linux kernel before and after applying KDRM. We calcu-
lated the overhead from the average value of the system call.

Table 4a lists the results of the performance evaluation. In LMbench, the
number of system call invocations differs for each evaluation item: fork+/bin/sh
is 54 times, fork+execve is 4 times, fork+exit is 2 times, open/close is 2 times,
and the others are once.

6.7 Attack Difficulty Assessment by Kernel Data Relocation

A comparison of KDRM and the attack difficulty of Linux KASLR [13,5] is
summarized in Table 4b. The randomization granularity of the virtual address
was expressed in terms of entropy [19]. Moreover, 32 bits of Linux KASLR are
randomized in 2 MB (21 bits) units, 512 MB (29 bits) has 8 bits of entropy, and
1 GB (30 bits) has 9 bits of entropy. In Table 4b, the relocation target is 256
bytes, 8 bits, and the relocation-only pages (4KB, 12 bits) are 1, 64, and 4096
pages with 4, 10, and 16 bits of entropy.
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Table 4: Overhead and randomization entropy comparison

(a) Overhead of KDRM on the Linux kernel (µs)

System call Vanilla kernel Implementation Overhead

fork+/bin/sh 434.2899 446.8079 12.5180 (102.88%)
fork+execve 101.2726 129.0260 27.7534 (127.40%)
fork+exit 89.9990 94.8672 4.8682 (105.41%)
open/close 1.1642 1.4920 0.3278 (128.16%)
read 0.1177 0.1599 0.0422 (135.85%)
write 0.0908 0.1359 0.0451 (149.67%)
fstat 0.1484 0.1953 0.0468 (131.60%)
stat 0.5265 0.6979 0.1714 (132.55%)

(b) The comparison of randomization entropy

Type Entropy Range Align Size

Linux
8 bits 512 MB (29 bits) 2 MB (21 bits)

KASLR 32 bits
Linux

9 bits 1 GB (30 bits) 2 MB (21 bits)
KASLR 64 bits
KDRM 4 bits 4 KB (12 bits) 256 byte (8 bits)
KDRM 10 bits 256 KB (18 bits) 256 byte (8 bits)
KDRM 16 bits 16 MB (24 bits) 256 byte (8 bits)

The number of attack attempts required for successful memory corruption by
a brute-force attack is 1

2n−1 times for n bits entropy if the virtual address is not
changed during the attack attempts. If the virtual address can be randomized
for each attack attempt, it is 2n times [19]. Because Linux KASLR randomizes
virtual addresses only at startup, the number of attack attempts, the result is 1

2n

times. Moreover, KDRM can randomize the virtual address of the kernel data
at each system call of the user process; thus, number of attack attempts is 2n

times for n bits entropy.

7 Discussion

7.1 Evaluation Consideration

Evaluating the resistance to memory corruption attacks confirmed that the ker-
nel with KDRM can mitigate privilege escalation attacks. When implementing
KDRM, kernel data of privilege information is designated as a protection target,
relocated, unmapped, and restored in the running kernel. Thus, making virtual
address identification of the privilege information difficult.

The performance evaluation results show that the KDRM slightly affects the
numerical calculations and process operations. However, the KDRM has a high
overhead for processes requiring system calls, such as file copying. As a factor
of overhead, we considered the processing time required to duplicate, unmap,
and restore the protected kernel data after issuing the system call. The results
confirmed that the stability of the kernel operation was not affected through
performance evaluation.

7.2 Approach Consideration

Design and Implementation: The design of KDRM allows the relocation
of protected kernel data at each system call issued to be transparent to user
processes. We specified the user process privilege information stored in the kernel
data at the time of user process creation because the privilege information is a
target of privilege escalation attacks by memory corruption. To protect kernel
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data other than privilege information, investigate the writing location for each
kernel data and consider the related system calls.

System calls involving changes in privilege information are excluded from the
application of KDRM to minimize the impact of KDRM on the kernel operation.
In addition, if the kernel data to be protected exceeds the page size (4KB),
or if many references in the kernel exist, the applicability of KDRM must be
considered for performance impact.
Attack Difficulty: In the KDRM, the number of attack attempts against the
protected kernel data is 2n for n bits entropy. The attack cost is increased to
make the memory corruption attack more challenging.

However, the n bit entropy increases or decreases depending on the size of
the kernel data to be protected and the number of relocated pages. Thus, it is
necessary to consider the difficulty of identifying virtual addresses and calcu-
lating the attack cost of memory corruption attacks depending on the type of
kernel data.

7.3 Limitation of KDRM

The KDRM does not prevent vulnerable kernel code calls or illegal memory
writes. CFI verifies the order of code calls and prevents unauthorized code calls.
The Memory Protection Key (MPK) enables the CPU to limit writes on a page-
by-page basis [10]. Therefore, we believe that combining CFI and MPK with
KDRM can improve the attack resistance of the kernel.

7.4 Portability

The KDRM relies on managing the kernel memory per page to protect kernel
data and the privilege information per user process. FreeBSD builds and manages
the kernel memory using page tables and assigning privilege information to each
user process [6]. We also believe that the KDRM can be implemented as a
portability feature for FreeBSD.

8 Related Work

Running Kernel Protection: KASLR changes the kernel data and the virtual
address of the kernel code to mitigate kernel memory corruption attacks [19].
Adelie proposes a method for extending KASLR to 64-bit and applying it to
device drivers [18]. A method has also been proposed to apply KASLR to a
guest OS from a virtual machine monitor [9].
Prevention Malicious Code Injection: As an attack prevention technique in
the kernel, exclusive page frame ownership allows exclusive page allocation for
the kernel and user processes [11]. KCoFI enables the kernel to apply control flow
integrity (CFI), treating asynchronous processing as an exception and preventing
incorrect code execution through code call order checking [2].
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Table 5: Comparison of kernel data protection methods

Feature KASLR [19] KCoFI [2] KDRM

Protection target kernel code & data kernel data privilege information
Implementation Memory layout randomization Verifying control flow Data relocation
Limitation Kernel booting Asynchronous Relocation number

Kernel Attack Surface Reduction: As an attack surface minimization tech-
nique that removes attackable areas of the kernel, kRazor makes availability
decisions on a per-kernel code basis during user process execution [12]. KASR
places only the kernel code and data necessary for user process execution in
memory space [20].

8.1 Comparison

Table 5 compares the proposed method with the previous studies [19,2].
In particular, KASLR changes the virtual address used for the kernel data

access and kernel code calls at each kernel boot to make attacks more difficult
[19]. In contrast, the virtual address locations of kernel code and kernel data do
not change during kernel startup. The virtual address of kernel code or kernel
data can be identified by a side-channel attack and used for the attack [8]. The
KDRM performs kernel data relocation by using multiple relocation-only pages
(4KB). The KDRM can be applied to a running kernel, and in combination with
KASLR, it can improve its resistance to attacks.

KCoFI runs the kernel on its architecture and can verify the call order of
asynchronous processing [2]. CFI is effective in preventing illegal code calls. In
contrast, applying CFI to all kernel code calls in order increases the overhead.
The KDRM features kernel data relocation and does not suppress attacks. Com-
bined with CFI, the KDRM can prevent attacks when CFI is circumvented.

9 Conclusion

In this paper, we propose a KDRM that can relocate kernel data (e.g., privilege
information) in the kernel memory to mitigate memory corruption attacks. The
KDRM has multiple relocation-only pages, and privilege information is repli-
cated to one of the randomly selected relocation-only pages. It ensures that
allowing the placement of privilege information is changed dynamically and pro-
tected from privilege escalation. The KDRM can be used together with KASLR
in the running kernel. In particular, identifying privilege information and privi-
lege escalation attack is more challenging.

The evaluation results showed that privilege escalation attacks by user pro-
cesses could be prevented. In the overhead evaluation, the kernel load when issu-
ing system calls ranged from 102.88% to 149.67% with a kernel performance score
of 2.50%. The attack difficulty evaluation of the kernel data relocation in KDRM
indicates that this approach required more attack attempts than KASLR.
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