
Kobe University Repository : Kernel

PDF issue: 2025-06-22

Monitoring of multiple fish species by
quantitative environmental DNA metabarcoding
surveys over two summer seasons

(Citation)
Molecular Ecology Resources,24(1):e13875

(Issue Date)
2023-10-13

(Resource Type)
journal article

(Version)
Accepted Manuscript

(Rights)
© 2023 John Wiley & Sons Ltd.
This is the peer reviewed version of the following article: [Wu, L., Osugi, T.,
Inagawa, T., Okitsu, J., Sakamoto, S., & Minamoto, T. (2024). Monitoring of multiple
fish species by quantitative environmental DNA metabarcoding surveys over two summer…
seasons. Molecular Ecology Resources, 24, e13875], which has been published in final
form at https://doi.org/10.1111/1755-0998.13875. This article may be used for non-
commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-
Archived Versions. This article may not be enhanced, enriched or otherwise transformed
into a derivative work, without express permission from Wiley or by statutory rights
under applicable legislation. Copyright notices must not be removed, obscured or
modified. The article must be linked to Wiley’s version of record on Wiley Online
Library and any embedding, framing or otherwise making available the article or pages
thereof by third parties from platforms, services and websites other than Wiley Online
Library must be prohibited.

(URL)
https://hdl.handle.net/20.500.14094/0100489497

Wu, Luhan ; Osugi, Tomonori ; Inagawa, Takashi ; Okitsu, Jiro ;
Sakamoto, Shogo ; Minamoto, Toshifumi



1 
 

Monitoring of multiple fish species by quantitative environmental DNA metabarcoding 1 

surveys over two summer seasons 2 

Running title: Quantitative eDNA metabarcoding of fish 3 

 4 

Luhan WU1*, Tomonori OSUGI2, Takashi INAGAWA3, Jiro OKITSU3, Shogo SAKAMOTO3, 5 

Toshifumi MINAMOTO1 6 

 7 

1 Graduate School of Human Development and Environment, Kobe University: 3-11, 8 

Tsurukabuto, Nada-ku, Kobe City, Hyogo 657-8501, Japan 9 

2 Water Resources Environment Center: 2-14-2, Kouji-machi, Chiyoda-ku, Tokyo 102-0083, 10 

Japan 11 

3 OYO Corporation: 275, Nishikata-Ishibatake, Miharu Town, Fukushima 963-7722, Japan 12 

 13 

* Corresponding author 14 

Luhan WU 15 

Graduate School of Human Development and Environment, Kobe University: 3-11, 16 

Tsurukabuto, Nada-ku, Kobe City, Hyogo 657-8501, Japan 17 

wuluhan12358@outlook.com 18 

+81-78-803-7991 (Tel/Fax) 19 

 20 

  21 



2 
 

Abstract 22 

Periodic monitoring can provide important information for the protection of endangered fish, 23 

sustainable use of fishery resources, and management of alien species. Previous studies have 24 

attempted to monitor fish using non-invasive environmental DNA (eDNA) technology, 25 

generally employing quantitative PCR (qPCR) to quantify the eDNA concentration. However, 26 

the throughput was limited. High-throughput metabarcoding technology can detect the DNA of 27 

multiple species simultaneously in a single experiment but does not provide sufficient 28 

quantification. In this study, we applied a quantitative metabarcoding approach to 29 

simultaneously quantify the eDNA concentration of an entire fish assemblage in a small 30 

reservoir over two summer seasons. Traditional surveys were also conducted to investigate the 31 

individuals of fish. The eDNA concentrations were quantified using quantitative metabarcoding, 32 

and the fish species detected using this approach were highly consistent with the results of 33 

traditional fish monitoring. A significant positive relationship was observed between the eDNA 34 

concentration and fish species abundance. Seasonal changes in fish community structure were 35 

estimated using eDNA concentrations, which may reveal the activity seasons of different fish. 36 

The eDNA concentrations of different fish species peaked at different water temperatures, 37 

reflecting the differential responses of fish species to this environmental factor. Finally, by 38 

detecting outlier eDNA concentrations, the spawning activities of 13 fish species were 39 

estimated, 12 of which were roughly consistent with the current knowledge of fish spawning 40 

periods. These results indicate that quantitative eDNA metabarcoding with dozens of sampling 41 

times is useful for the simultaneous ecological monitoring of multiple fish species. 42 
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Introduction 45 

Ecological monitoring of changes in fish community structure, fish distribution associated with 46 

environmental variables, and the time and location of spawning activities can provide important 47 

information for the protection of endangered fish (Chollett et al., 2020), sustainable use of 48 

fishery resources (King et al., 2009; Erisman et al., 2017), and management of alien species 49 

(Jackson et al., 2004). Traditional methods involved ecological surveys of fish include visual 50 

inspection and electrofishing (Copp and Peňáz, 1988). However, visual surveys are time-51 

consuming and generally inefficient (Rowland, 1999), whereas electrofishing can harm fish and 52 

may interfere with their natural spawning activities (Snyder, 2003). A non-invasive method that 53 

can efficiently monitor fish spawning activities would be a valuable tool for the management 54 

of aquatic biodiversity. 55 

Environmental DNA (eDNA) encompasses the DNA of all organisms present in environmental 56 

samples, including microbial, meiofaunal, and macrobial taxa (Rodriguez‐Ezpeleta et al., 2021). 57 

The eDNA technique is a non-invasive method that is widely used in ecological surveys. The 58 

technology involved only requires the collection of DNA in water for analysis; therefore, it has 59 

the advantage of greatly reducing the cost and labor required for field investigations while 60 

avoiding damage to the environment and interference with the natural activities of organisms 61 

(Thomsen and Willerslev, 2015) and may be a powerful tool for resource managers for long-62 

term resource monitoring (Mize et al., 2019). The eDNA technique has been commonly used 63 

to monitor fish (Jerde et al., 2011; Takahara et al., 2013), amphibians (Ficetola et al., 2008; 64 

Pilliod et al., 2013), crustaceans (Tréguier et al., 2014; Wu et al., 2018), reptiles (Hunter et al., 65 
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2015; Davy et al., 2015), birds (Ushio et al., 2018a), mammals (Foote et al., 2012; Ushio et al., 66 

2017), and aquatic plants (Scriver et al., 2015, Fujiwara et al., 2016). 67 

Spawning is the basis for population establishment and development. Monitoring the timing 68 

and location of spawning activities can improve our understanding of fish ecology and provide 69 

important information for fish conservation and management (Scott et al., 2006). The use of 70 

eDNA techniques for non-invasive investigation of fish spawning sites and spawning times is 71 

gaining attention (Spear et al., 2015). External fertilization of fish results in the release of a 72 

large number of sperm and eggs into the water during spawning, resulting in a sharp rise in 73 

eDNA concentration and nuclear eDNA/mitochondrial eDNA ratio in a short period of time 74 

(Bylemans et al., 2017; Tsuji & Shibata, 2021; Wu et al., 2022). This allows the eDNA approach 75 

to accurately monitor the daily fish spawning activities. A previous study attempted to estimate 76 

fish spawning activity by investigating high eDNA concentrations and ratios using quantitative 77 

polymerase chain reaction (qPCR; Wu et al., 2023). The use of qPCR to quantify DNA 78 

concentrations is common for environmental samples (Doi et al., 2017; Langlois et al., 2021); 79 

however, the quantitative performance of this method may be affected by inhibition (Lance & 80 

Guan, 2020), and a single qPCR experiment can only quantify a single target species, with 81 

repeated experiments required to target multiple species.  82 

Metabarcoding techniques are widely used in multi-species studies to avoid repetition (Miya et 83 

al., 2015; Nakagawa et al., 2018). PCR is performed using universal primers combined with 84 

high-throughput sequencing to detect multiple target species simultaneously. Metabarcoding 85 

provides species information for a single experiment. However, amplification bias can exist 86 
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between species, and the uneven distribution of sequencing reads among different samples 87 

makes it impossible to quantify the resultant data. Previous studies used metabarcoding to 88 

investigate fish species composition based on relative abundance (Bagley et al., 2019; Xie et 89 

al., 2021). Another study used the peak relative abundance calculated from metabarcoding reads 90 

to estimate fish spawning activity (Di Muri et al., 2022). However, the relative abundance was 91 

affected by the combined effects of eDNA released by all detected species, and the validity of 92 

using relative abundance to estimate spawning activity requires verification. Therefore, further 93 

exploration is needed to develop efficient eDNA methods for simultaneous monitoring of the 94 

spawning activities of multiple fish. 95 

Quantification can be achieved by adding internal standard DNAs to the metabarcoding 96 

approach and converting the sequencing reads into copy numbers (Ushio et al., 2018b). This 97 

method can simultaneously quantify multiple species with a higher efficiency than traditional 98 

metabarcoding and species-specific qPCR. Some studies have adopted this method to measure 99 

the copy numbers of multiple species (Tsuji et al., 2022a; Nakagawa et al., 2022) with 100 

significant positive relationships identified between eDNA concentrations and abundance 101 

among species (Tsuji et al., 2022b), but this approach has rarely been applied to long-term field 102 

surveys (Ushio et al., 2022). Another study showed a very high variance in the number of reads 103 

sequenced from similar amounts of DNA, preventing accurate quantification (Fernández et al., 104 

2018). These contrasting experimental results necessitate further verification of the quantitative 105 

effectiveness of this method. eDNA concentration is affected by biomass, and previous studies 106 

have used qPCR to determine eDNA concentrations and estimate fish biomass (Lacoursière‐107 
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Roussel et al., 2016; Doi et al., 2017). Therefore, the effectiveness of quantitative 108 

metabarcoding can be verified by comparing it with data obtained from traditional surveys. 109 

Subsequently, the eDNA concentration data obtained using this method can be used to estimate 110 

changes in the fish community structure and spawning activity. 111 

In the present study, a quantitative metabarcoding approach was used to simultaneously 112 

quantify the eDNA concentrations of multiple fish species in a small freshwater reservoir in 113 

Japan over two summer seasons. The data were then combined with a method used in a previous 114 

study to estimate the spawning activity of multiple fish species in the reservoir. We try to 115 

compare among fish species to look for general patterns in fish abundance, and then looking 116 

within fish species to look for patterns in spawning activity. The three main research objectives 117 

were: 1) to monitor the changes in eDNA concentrations of multiple fish species using 118 

quantitative metabarcoding and compare them with the results of traditional surveys to help 119 

validate the method of quantitative metabarcoding; 2) investigate fish species composition and 120 

changes in fish-specific eDNA concentrations with environmental variables; and 3) estimate 121 

the spawning activities of multiple fish species using quantitative data. 122 

 123 

Materials and Methods 124 

The survey sites were located in the Hebisawagawa front reservoir, which has a total area of 125 

approximately 44,000 m2, in the Miharu Reservoir in Fukushima Prefecture, Japan (Figure 1). 126 

This front reservoir is connected to the main reservoir by a channel with a width of 5 m and a 127 

depth of 5 m and is isolated during the summer season (June 11th to October 10th) when the 128 
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water level is low. Traditional and eDNA surveys were conducted to investigate individual 129 

counts and eDNA concentrations in fish, respectively. All eDNA samples were collected in a 130 

previous study that attempted to establish a method for monitoring fish spawning activity based 131 

on eDNA data obtained via species-specific qPCR (Wu et al., 2023); therefore, the details of 132 

the sampling sites, measures to prevent cross contamination, and DNA extraction are only 133 

briefly described here. In the present study, this method was applied to quantitative 134 

metabarcoding data to monitor the spawning activities of multiple fish species simultaneously. 135 

 136 

Traditional surveys 137 

The traditional surveys were conducted in the Hebisawagawa front reservoir between 2007 and 138 

2010. A partition net with a mesh size of 10 mm was installed to isolate the front reservoir from 139 

the main reservoir during periods of high water levels. The fish were captured using the partition 140 

and fixed nets. A partition net was employed using the drawdown operation of the main 141 

reservoir when the water level was lowered in preparation for summer floods. The fixed net 142 

procedure was performed in two stages. In the first stage, the drawdown operation was used to 143 

catch fish in the enclosed area when the water level dropped and the shallows dried. Nets with 144 

a mesh size of 10 mm were installed at two locations to surround a 1.5 m water depth range in 145 

the shallow area of the reservoir shoreline. The total enclosed area was approximately 7,500 m2. 146 

In the second stage, the valve at the bottom of the front reservoir was opened to drain the water 147 

by 1.5 m to enable fish to be captured in the fixed net. The captured fish were placed in 148 

continuously aerated buckets and released after the survey. The traditional surveys were 149 
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permitted by Fukushima Prefecture (Special permission No. 19-5 for 2007, No. 20-3 for 2008, 150 

No. 21-9 for 2009 and No. 22-5 for 2010). Owing to the limitations of the research program, 151 

traditional surveys were conducted only between 2007 and 2010. Although the survey data were 152 

old, the ecology of the target reservoir was relatively stable, and the composition of fish species 153 

did not change significantly. In addition to the above surveys, the 2019 traditional survey data 154 

were obtained from the River Environmental Database (Ministry of Land, Infrastructure, 155 

Transport and Tourism, 2022) and used to complement the traditional survey data. In contrast 156 

to the traditional surveys from 2007–2010, the 2019 survey was conducted using cast nets, gill 157 

nets, and other methods. 158 

 159 

eDNA sampling and extraction 160 

Water samples were collected weekly from three sites (MHS1–MHS3; Figure 1) from March 161 

26 to August 13, 2019, and March 3 to August 25, 2020. A benzalkonium chloride solution (1 162 

mL, 10% mass/volume) was immediately added to water samples to prevent DNA degradation 163 

(Yamanaka et al., 2017). A total of 141 samples (47 weeks at two years × three sites) were 164 

collected. Water temperature (WT), pH, and electrical conductivity (EC) were recorded during 165 

water sample collection. The samples were then filtered until clogging (up to 1 L) using two 166 

0.7 μm pore size 47 mm glass-fiber filters (GF/F; GE Healthcare Japan, Tokyo, Japan). 167 

Ultrapure water (1 L) was filtered as a negative control, yielding 47 filtered negative controls. 168 

The filters were stored at −25 °C until DNA extraction. 169 

Total DNA was extracted using a DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany) 170 
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according to the method recommended by the eDNA Society (Minamoto et al., 2021). Briefly, 171 

two filters for each sample were combined in a single Salivette tube (Sarstedt, Nümbrecht, 172 

Germany). Buffer AL (400 μL) and Proteinase K (40 μL) were mixed as lysis solutions and 173 

added to the filters. The filters were incubated at 56 °C for 30 min and centrifuged at 5,000 × g 174 

for 3 min to collect eDNA. TE buffer (220 μL) was added to the filters and re-centrifuged at 175 

5,000 × g for 1 min to increase the DNA yield. The DNA was purified according to the 176 

manufacturer’s instructions. Total DNA was eluted in 100 μL AE buffer and stored at −25 °C 177 

until paired-end library preparation. 178 

 179 

Paired‐end library preparation 180 

Five different internal standard DNAs were designed and prepared as described previously 181 

(Ushio et al., 2022). The MiFish-U primer set (forward:5′-ACA CTC TTT CCC TAC ACG 182 

ACG CTC TTC CGA TCT NNN NNN GTC GGT AAA ACT CGT GCC AGC-3ʹ and 183 

reverse:5′-GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC TNN NNN NCA TAG 184 

TGG GGT ATC TAA TCC CAG TTT G-3′) was used to amplify the hypervariable region of 185 

mitochondrial 12S rRNA gene (Miya et al., 2015). Two PCRs were performed to amplify the 186 

DNA of the target region and to add sequencing primers. 187 

In the first-round PCR (1st PCR), each 12 μL PCR mixture contained 6.0 μL 2 × KAPA HiFi 188 

HotStart ReadyMix (Roche, Basel, Switzerland), 0.36 μL of each primer with 300 nM final 189 

concentration, 1.0 μL template DNA, 1.0 μL internal standard DNA mix containing 40, 20, 10, 190 

5, and 1 copy per reaction and 3.28 μL pure water. The thermal cycling profile was as follows: 191 
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an initial 3 min denaturation at 95 °C, 40 cycles of 98 °C for 20 s, 65 °C for 15 s, and 72 °C for 192 

15 s, with a final extension at 72 °C for 5 min. PCR negative controls with internal standard 193 

DNAs were used for each 1st PCR run to monitor contamination during the experiments. 194 

Because these samples were verified to be free from contamination by qPCR in a previous study 195 

(Wu et al. 2023), only seven of the 47 filtering negative controls were selected for 196 

experimentation. Four replicates were performed for each sample, and a negative control was 197 

used to minimize PCR dropouts. In total, 152 samples (141 samples [47 sampling times × three 198 

sites], seven filtering negative controls, and four PCR negative controls) were treated. For each 199 

sample, the 1st PCR products of the replicates were pooled and size-selected for 200–400 bp 200 

using SPRIselect (Beckman Coulter, Brea, CA, USA) according to the manufacturer’s 201 

instructions. The concentrations of the size-selected amplicons were quantified using a Qubit 202 

fluorometer 3.0 (Thermo Fisher Scientific, Waltham, MA, USA) with a Qubit dsDNA HS assay 203 

kit, and then diluted to 0.1 ng/μL with sterilized distilled H2O. All diluted products were frozen 204 

at −25 °C until second-round PCR (2nd PCR). 205 

The 2nd PCR was performed by adding Illumina P5/P7 adaptor sequences and 8-bp index 206 

sequences to both ends of the amplicon. Each 12 μL PCR mixture contained 6 μL of 2 × KAPA 207 

HiFi HotStart ReadyMix, 2 μL of each primer with 300 nM final concentration, 1 μL of diluted 208 

1st PCR product, and 1 μL of pure water. The thermal cycle profile was as follows: an initial 3 209 

min denaturation at 95 °C, 12 cycles of 98 °C for 20 s and 72 °C for 20 s, and a final extension 210 

at 72 °C for 5 min. All 2nd PCR products had different indices; therefore, every 38 products 211 

were mixed into a single tube as a library for a total of four libraries. The libraries were purified 212 
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and size-selected (approximately 370 bp) using E-Gel SizeSelect 2% (Thermo Fisher Scientific). 213 

The size distribution of the purified libraries was determined using an Agilent 2100 Bioanalyzer 214 

(Agilent, Santa Clara, CA, USA). Finally, the four libraries were diluted to 1 nM with sterilized 215 

distilled H2O and sequenced respectively on the iSeq 100 platform (Illumina, San Diego, CA, 216 

USA) with iSeq 100 i1 Reagent v2 (Illumina) for 2 × 150 bp pair-ends according to the 217 

manufacturer’s instructions. On average, approximately 80,000 reads were assigned to each 218 

sample to ensure that sufficient reads were assigned. Four iSeq runs were conducted. 219 

 220 

Data preprocessing and taxonomic assignment 221 

Raw iSeq data were preprocessed using USEARCH v11.0.667 (Edgar 2010) to generate zero-222 

radius operational taxonomic units (ZOTUs) according to the steps described by Sakata et al. 223 

(2020) with modifications. The “fastq_mergepairs” command was used to merge the paired-224 

end reads; “fastx_truncate” to remove the primer sequences; “fastq_filter” to remove low-225 

quality reads with an expected error rate of > 1% (Edgar & Flyvbjerg, 2015) and short reads < 226 

140 bp; “fastx_uniques” to dereplicate the reads and remove singletons; “unoise3” to generate 227 

ZOTUs, with chimeras and ZOTUs of less than eight reads removed; “otutab” to generate the 228 

ZOTU table under 97% identity threshold, and “usearch_global” to compare the ZOTUs to the 229 

local database to determine the internal standards with a sequence identity of > 98.5% (two 230 

nucleotide differences allowed) to the reference sequences and a query coverage of ≥ 90%. 231 

Finally, the ZOTUs were compared to the NCBI nr/nt database using BLASTN under the same 232 

conditions to perform taxonomic assignments. 233 
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The DNA copy numbers were calculated from the sequence reads according to the method 234 

described by Ushio et al. (2018b). Briefly, linear regression with an intercept set to zero was 235 

performed to examine the relationship between sequence reads and the copy numbers of the 236 

internal standard DNAs for each sample. Sequence reads of non-standard fish DNA were 237 

converted to copy numbers by dividing the number of iSeq sequence reads by the sample-238 

specific regression slope. Each PCR negative control corresponded to a portion of the sample, 239 

and copy numbers in the PCR negative controls were subtracted from the corresponding 240 

samples to remove contaminants. The copy number per filter volume (copies/L filter volume) 241 

was calculated as the eDNA concentration based on the filtration volume of each sample. Owing 242 

to the absence of research on the limit of quantification in quantitative eDNA metabarcoding, 243 

eDNA concentrations of less than one copy/L were denoted as zero copies/L (approximately 244 

equal to discarding fewer than four reads of ZOTUs per sample). Fish species detected only 245 

once in 141 samples were excluded. 246 

 247 

Data analysis 248 

A phylogenetic tree based on the neighbor-joining method was constructed to demonstrate the 249 

relationship between different fish species and the potential associations between this 250 

relationship and fish species composition. Because eDNA concentrations are affected by fish 251 

biomass (Doi et al., 2017), the quantification performance of quantitative metabarcoding can 252 

be verified by the correlation between abundance and eDNA concentrations across different 253 

fish species. In 2019, the eDNA concentrations of the same fish species from different sites and 254 
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months were summed and a linear regression model was used to evaluate the relationship 255 

between fish eDNA concentration and the number of individual fish obtained from traditional 256 

surveys. Data from multi-year eDNA and traditional surveys were also summed and analyzed. 257 

Due to the presence of heteroskedasticity, robust standard errors were calculated by 258 

heteroskedasticity-consistent covariance matrix estimator (HC2 estimator) for all linear 259 

regressions model (MacKinnon & White, 1985; Samii & Aronow, 2012). Permutational 260 

multivariate analysis of variance (PERMANOVA) using Bray–Curtis dissimilarity was 261 

performed to test for statistical differences in fish eDNA composition between samples from 262 

different months, years, and sites, with 9,999 permutations. A permutation test for the 263 

homogeneity of multivariate dispersions was performed to check the consistency of the 264 

dispersion. The eDNA concentration varied greatly from sample to sample and from fish to fish. 265 

To alleviate this variation, concentration data were log-transformed based on natural logarithms 266 

before calculating the Bray–Curtis dissimilarity, and all data were +1 to avoid 0 values. Because 267 

nonmetric multidimensional scaling (NMDS) contains random processes, Bray–Curtis based 268 

principal coordinate analysis (PCoA) was performed to demonstrate differences in fish eDNA 269 

composition between samples, and “lingoes” method was chosen as correction for negative 270 

eigenvalues (Legendre & Anderson, 1999). Generalized additive models (GAMs) were fitted 271 

to the ordination axis scores for the environmental variables (water temperature, pH, and EC), 272 

and the smoothed surfaces were plotted over the PCoA using the “ordisurf” command to show 273 

the variation of environmental variables between samples (Deveautour et al., 2022). 274 

Although different fish species may respond differently to environmental variables, they should 275 
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have similar responses to at least some variable gradients, and modeling each fish species 276 

separately would lead to loss of this shared information. Therefore, based on the assumption of 277 

nonlinearity between fish eDNA and environmental factors, a hierarchical generalized additive 278 

model (HGAM) was used to estimate the changes in fish eDNA concentration with 279 

environmental variables, and data with 0 copies were not included in the analysis. The model 280 

structure was designed as a global smoother plus fish-level smoothers that have the same 281 

wiggliness (Pedersen et al., 2019): log(Copy) ~ s(WT,m=2) + s(WT,Fish,bs=“fs”,m=2) + 282 

s(pH,m=2) + s(pH,Fish,bs=“fs”,m=2) + s(EC,m=2) + s(EC,Fish,bs=“fs”,m=2) + 283 

s(Site,Year,bs=“re”). “s()” means a smooth term, “bs” indicating the smoothing basis to use, 284 

“fs” means factor smooth interactions, “re” means random effect, “m” means the order of the 285 

penalty for this smooth term. Restricted maximum likelihood (REML) was used to select the 286 

smoothing parameter (Wood, 2011). This model builds global response curves for eDNA to 287 

environmental variables and provides fish-specific response curves for each fish species with 288 

an additional smooth term by specifying bs=“fs”. Random effects between different sites and 289 

years were also considered in the model by specifying bs=“re”. 290 

The spawning activity of the fish species was estimated according to a previously described 291 

method (Wu et al., 2023). In brief, the data were grouped by site and year, and the fish were 292 

considered to have spawned if the eDNA concentration was greater than the 3rd quartile + 293 

1.5×interquartile range. However, despite meeting the above conditions the target species do 294 

not spawn at water temperatures exceeding 30 °C; therefore, no spawning activity was 295 

considered in such condition. Based on the spawning/no spawning data obtained by the above 296 
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method, another HGAM with binomial distributions was generated as follows: spawning ~ 297 

log(copy) + log(copy)*Fish + s(WT,m=2) + s(WT,Fish,bs=‘fs’,m=2). REML was also used. 298 

The model was then used to predict spawning probability based on eDNA sample data. A 299 

previous study verified the feasibility of this method by comparing it with the traditional method 300 

(Wu et al., 2023). PERMANOVA and PCoA were applied using the vegan package (Oksanen 301 

et al., 2022), HGAMs using the mgcv package (Wood, 2006), robust standard errors using the 302 

estimatr package (Blair et al., 2022) and the phylogenetic tree and other graphs were created 303 

using the ggtree (Yu, 2022) and ggplot2 (Wickham, 2016) packages. All analyses were 304 

performed using R (version 4.2.1; R Core Team, 2022). 305 

 306 

Results 307 

The iSeq paired-end sequencing of the 152 samples (141 samples [47 sampling times × three 308 

sites], seven filtering negative controls, and four PCR negative controls) yielded a total of 309 

12,630,140 reads, of which 12,288,756 (97.3%) passed the merging processes and 10,771,744 310 

(85.3%) passed the quality control processes. Subsequently, 657 ZOTUs were generated after 311 

denoising, and 12,055,551 (95.5%) reads were matched to the ZOTUs (>97% identity). Finally, 312 

11,558,502 (91.5%) reads of 42 ZOTUs were assigned to standard DNA and fish taxa (>98.5% 313 

identity). Of the 11,558,502 reads, 4,342,992 were non-standard fish iSeq reads (37.6%), and 314 

4,334,000 (99.8%) of these were from fish DNAs in field samples, while 8,992 (0.2%) were 315 

from negative controls. The median adjusted R2 value for the 152 linear regressions generated 316 

by the internal standard DNAs was 0.987, and most of the adjusted R2 values were above 0.96. 317 
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The specific distributions are shown in Figure S1. The detailed results of the linear regression 318 

are shown in Table S1. Residual analysis was used to demonstrate the reliability of the linear 319 

regression (Figure S2). The copy number of the four PCR-negative controls accounted for 320 

approximately 0.03% of that of all samples and filtered negative controls, and that portion of 321 

the copy number was removed from the corresponding samples and filtered negative controls. 322 

The average copy number ratio of the seven filtered negative controls to the corresponding 323 

sample copy number was 0.46%, which could be considered negligible contamination. 324 

Therefore, no additional treatment was performed for the copy numbers in the filtered negative 325 

controls. There were 779 data points equal to zero copies/L, and 1,336 data points greater than 326 

zero copies/L in the final dataset, of which 869 were within the range of the standards, 422 were 327 

below the range, and 45 were above the range. 328 

Fifteen fish species were detected in 2019 and 2020 using the quantitative eDNA metabarcoding 329 

approach (Figure 2). The traditional survey results for 2007, 2008, 2009, 2010, and 2019 330 

showed the presence of 19 fish species (6,700 individuals; Figure 2, Table S2). A total of 20 331 

species of fish were detected using the two methods, and the dominant species belonged to the 332 

Cyprinidae and Centrarchidae families. Traditional and eDNA surveys detected an average of 333 

13.4 and 14.5 fish species per year, respectively. Ctenopharyngodon idella was only detected 334 

using the eDNA approach, and single individuals of Tridentiger brevispinis, Oncorhynchus 335 

masou, two individuals of Rhynchocypris steindachneri, three individuals of Anguilla japonica, 336 

and ten individuals of Rhodeus ocellatus were detected using the traditional approach. Anguilla 337 

japonica was also detected using the eDNA approach, but was removed from the data because 338 
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it was detected only once in 141 eDNA samples. Except for extremely rare fish, all species were 339 

detected by the quantitative eDNA metabarcoding approach, including Rhinogobius sp., 340 

Gymnogobius urotaenia, Micropterus salmoides, Lepomis macrochirus, Silurus asotus, 341 

Misgurnus anguillicaudatus, Tribolodon hakonensis, Zacco platypus, Carassius sp., Carassius 342 

cuvieri, Cyprinus carpio, Hemibarbus barbus, Gnathopogon elongatus, and Pseudorasbora 343 

parva. The changes in eDNA concentrations over time for the eight fish species with the highest 344 

eDNA concentrations are shown in Figure S3. Linear regression was used to evaluate the 345 

relationship between eDNA concentration and the number of individual fish investigated using 346 

traditional surveys. The results of the 2019 eDNA and traditional surveys showed a statistically 347 

significant positive correlation between the eDNA copy numbers and fish abundance (p = 0.023, 348 

adjusted R2 = 0.202, Figure 3, Table S3). Multi-year merged data from two years of eDNA 349 

surveys and five years of traditional surveys also showed a statistically significant relationship 350 

(p = 0.028, adjusted R2 = 0.3; Figure S4, Table S3). 351 

PERMANOVA results showed that the fish community structure estimated by eDNA 352 

concentration was significantly different between months (R2 = 0.104, p < 0.001), and the 353 

differences between sampling sites (R2 = 0.018, p = 0.007) and years (R2 = 0.015, p < 0.001) 354 

were minimal but also significant. The results of the pairwise comparisons showed that the 355 

difference in fish community structure was smaller between March–April and July–August (R2 356 

= 0.053, adjusted p = 0.036; R2 = 0.053, adjusted p = 0.048; Table S4), and no significant 357 

difference was found between the June–July period (R2 = 0.029, adjusted p = 0.578; Table S4). 358 

The PCoA results showed a changing trend in fish eDNA composition in various months and 359 
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the fish species that induced these changes (Figure 4a). A scree plot of the eigenvalues is shown 360 

in Figure S5. The permutation test for the homogeneity of multivariate dispersions showed 361 

variance heterogeneity among samples from different months (p < 0.001), and paired 362 

comparisons showed that the dissimilarity between samples from March and April was larger 363 

than that from May to August (Figure S6), which may exaggerate the difference between 364 

samples from different months. The dominant fish species were C. carpio, C. cuvieri and other 365 

species of the Carassius genus in March and April; C. idella, S. asotus, G. urotaenia, G. 366 

elongatus and M. anguillicaudatus in May; M. salmoides, L. macrochirus, P. parva and H. 367 

barbus from June to August (Figure 4a). The GAM results for the PCoA axis and environmental 368 

variables showed that the change in the eigenvalue of the axis could explain the variation in 369 

water temperature (deviance explained = 51.8%, p < 0.001), pH (deviance explained = 25.3%, 370 

p < 0.001), and EC (deviance explained = 14.3%, p = 0.002) between samples to some extent. 371 

The diagnostic information for this part of the GAMs is shown in Figures S7–S9. 372 

Changes in fish eDNA concentrations with environmental variables were fitted using HGAM. 373 

The deviance explained by the HGAM was 47.2%. The modeling outcomes are presented in 374 

Table 1, and the results of the basis dimension (k) checking and residual analysis are presented 375 

in Table S5 and Figure S10, respectively. Figure 5 shows the relationship between the fish-376 

specific eDNA concentrations and environmental variables. The plots without data points are 377 

shown in Figure S11. Water temperature, pH, and EC significantly affected the changes in fish 378 

eDNA concentration, with the influence of water temperature and pH showing different trends, 379 

whereas the influence of EC exhibited no statistical difference among the fish species (Table 1). 380 
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The eDNA concentrations of different fish species peaked at different water temperatures: T. 381 

hakonensis, C. cuvieri, C. carpio, G. elongatus at 10–20 °C; and G. urotaenia, L. macrochirus, 382 

Z. platypus, H. barbus and P. parva at 20–30 °C (Figure 5). The variation in eDNA 383 

concentration with pH differed slightly among the various fish species, and showed a decreasing 384 

trend for all fish species at pH values above 8.5 (Figure 5). The eDNA concentrations in all fish 385 

species showed a uniform downward trend with increasing EC (Figure 5). 386 

By detecting outliers in the eDNA data, the spawning activities of 13 of the 15 fish species were 387 

estimated. Of the 141 samples, S. asotus and C. idella were detected four and 19 times, 388 

respectively, and spawning activities could not be estimated because of the failed identification 389 

of outlier values. The outcomes and residual analyses of the HGAM model used to predict 390 

spawning probability are shown in Table S6 and Figure S12. The estimated spawning activities 391 

of G. urotaenia using eDNA concentrations were inconsistent between the two years, with 392 

outlier values mainly concentrated in June and July in 2019, whereas those in 2020 were mainly 393 

concentrated in March and April (Figure 6). The spawning activities of all fish species except 394 

G. urotaenia were similar to those of the fish spawning period recorded by the Research 395 

Institute of Environment, Agriculture and Fisheries, Osaka Prefecture 396 

(http://www.kannousuiken-osaka.or.jp/zukan/) (Figure 6, dashed box). According to the results 397 

of traditional surveys, Rhinogobius sp. and Carassius sp. are mainly composed of Rhinogobius 398 

kurodai and Carassius auratus langsdorfii; therefore, the spawning periods of these two fish 399 

species were determined. 400 

 401 

http://www.kannousuiken-osaka.or.jp/zukan/
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Discussion 402 

An eDNA survey was conducted at three sites in the Hebisawagawa front reservoir over two 403 

summer seasons. A quantitative metabarcoding approach was used to quantify the eDNA 404 

concentrations of 15 fish species in 141 samples. The results of the survey showed that the fish 405 

species detected by the quantitative eDNA metabarcoding approach were highly consistent with 406 

the historical results of traditional surveys. The relationship between the eDNA concentrations 407 

of different fish species detected by quantitative metabarcoding and the number of individual 408 

fish recorded by traditional surveys was statistically significant, demonstrating that the 409 

quantitative metabarcoding approach has a certain quantitative performance. Simultaneous 410 

measurement of eDNA concentration in multiple fish species allowed the variations in fish 411 

eDNA composition within different samples to be revealed using PCoA. The relationships 412 

between eDNA concentration and environmental variables in 15 fish species were analyzed 413 

using HGAM. The spawning activities of the 13 fish species were estimated by detecting 414 

outliers in the eDNA data. Most of the estimated spawning activities were consistent with 415 

recognized fish spawning periods, demonstrating the potential of long-term quantitative eDNA 416 

metabarcoding to simultaneously monitor the spawning activities of multiple fishes. 417 

 418 

Quantitative metabarcoding 419 

Residual analysis of the linear regression generated from the internal standard DNA revealed 420 

heteroscedasticity in the model (Figure S2). However, heteroscedasticity does not affect the 421 

expectation of a parameter (MacKinnon & White, 1985). Therefore, it can be considered that 422 
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the method of converting fish DNA reads to copy numbers using the slope of linear regression 423 

is still feasible. It should be noted that, in the process of calculating the fish DNA copy number, 424 

approximately 35% of the data points exceeded the regression limit, and we assumed that the 425 

data beyond the regression limit remained linear, which could lead to inaccurate results. 426 

Although the total number of fish species detected by eDNA and traditional surveys was not 427 

identical, the difference was mainly caused by very rare fish species, such as T. brevispinis, O. 428 

masou, and R. steindachneri (Figure 2). The average number of fish species detected by the two 429 

methods in a single survey was similar, confirming that the two survey methods have similar 430 

detection capabilities for fish species (Keck et al., 2022). The relative abundance calculated 431 

from fish eDNA concentration was not completely consistent with that calculated from the 432 

number of individual fish in traditional surveys (Figure 2). L. macrochirus had a high relative 433 

abundance in the traditional survey but a low value in the eDNA survey, whereas C. Cuvieri 434 

showed the opposite trend (Figure 2). The rate of eDNA release and number of mitochondria 435 

contained in a single cell may vary among fish species (Charitonidou et al., 2022), leading to 436 

differences in the relationship between individual numbers and eDNA copy numbers across 437 

species. The time interval between eDNA surveys and traditional surveys and the natural 438 

changes in fish community structure may also explain this change. Electrofishing is a common 439 

practice in the Miharu Reservoir for controlling the number of M. salmoides and L. macrochirus, 440 

and manual intervention may also be an important factor affecting this change. The differences 441 

between eDNA and traditional surveys also imply that the two approaches have different 442 

species sensitivities. eDNA is not always the best approach (Ulibarri et al., 2017); however, it 443 
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can be considered that the complementarity of the two approaches can provide enriched 444 

information for ecological management (Euclide et al., 2021). There was a significant positive 445 

correlation between eDNA concentrations and fish abundance for both the 2019 data (Figure 3) 446 

and the multi-year merged data (Figure S4). This indicated the feasibility of using quantitative 447 

metabarcoding to simultaneously estimate eDNA concentrations in multiple fish species. For 448 

the 2019 data, the adjusted R2 value of the linear regression was lower than that calculated using 449 

the multi-year merged data. This may be because the aggregated data from the multiyear 450 

surveys moderated the data volatility. Another study showed that different markers produce 451 

different amplification biases (Fernández et al., 2018). Although the MiFish primers used in 452 

this study were checked to some extent by Ushio et al. (2018b) to ensure interpretability of the 453 

quantitative results, further validation is required. Although there was a significant positive 454 

correlation between the eDNA concentration and fish abundance, the adjusted R2 value of the 455 

model was not high. The residuals of the model may have originated from differences in eDNA 456 

release rates among fish species or from PCR bias, making it difficult to accurately estimate 457 

fish abundance from eDNA concentrations (Danziger et al., 2022; Lacoursière-Roussel et al., 458 

2016). However, it can still be considered a good complement to traditional surveys, and can 459 

provide information for ecological investigations from a molecular perspective. The model will 460 

be further improved in the future with increased understanding. 461 

 462 

Fish species composition, eDNA concentration, and environmental variables 463 

The reservoir ecosystem is relatively closed compared to flowing waters and sea areas. 464 
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Therefore, although the results of PERMANOVA showed differences in fish community 465 

structure in different months, this cannot be simply attributed to changes in fish biomass. For 466 

eDNA released into the water by different fish, the diffusion and decomposition caused by water 467 

flow and other environmental factors may have an impact. However, we believe that the rate of 468 

eDNA release by fish is not constant; more active fish may release more eDNA, and fish activity 469 

may be an important factor affecting the eDNA composition. Therefore, the differences in fish 470 

community structure in different months, calculated by eDNA concentration, may reflect the 471 

activities of fish, such as migration and spawning (Thalinger et al., 2019; Bylemans et al., 2017). 472 

Because all eDNA samples were collected from shallow water areas, it was not possible to 473 

examine the local changes in population structure caused by fish migration between shallow 474 

water and deep water; therefore, changes in fish community structure between months can be 475 

considered as changes in fish activity in shallow water areas, whereby C. carpio, C. cuvieri, 476 

and other fishes of the Carassius genus are mainly active in March and April; T. hakonensis, C. 477 

idella, S. asotus in April and May; and M. salmoides and L. macrochirus in June, July, and 478 

August (Figure 4a). The fish community structures in June and July were similar (Figure 4a), 479 

indicating that these two months had comparable composition of active fish. When the water 480 

temperature was low, most fish were inactive in shallow water areas and the eDNA 481 

concentration decreased, resulting in a reduction in detection efficiency. This may explain the 482 

large dissimilarity between the samples collected in March and April. Therefore, the eDNA-483 

based fish species composition can be interpreted as changes in fish activity driven by 484 

environmental variables (Figure 4b, c, d).  485 
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Water temperature affects the distribution of fish (Stefan et al., 1996), and fish eDNA 486 

concentrations vary with water temperature (Figure 5), reflecting the differential responses of 487 

fish species to water temperature. The eDNA concentration of some fish species, such as M. 488 

salmoides and Carassius sp., increased with higher water temperatures but did not show a 489 

downward trend, which may be related to the life history of the fish. In Miharu Reservoir, M. 490 

salmoides juveniles swarm in large numbers near the lakeshore, which could cause a sharp 491 

increase in the local eDNA concentration. The water samples in this study were collected from 492 

the shoreline area, and sampling during periods of high water temperature may reflect juvenile 493 

swarming. To a certain extent, pH and EC reflect water quality, and the change in the eDNA 494 

concentrations of fish species with pH reflects their pH preferences. In this study, the pH 495 

fluctuation range was small; therefore, the eDNA concentration of most fish species did not 496 

show a significant peak with a change in pH (Figure 5). EC significantly affected fish eDNA 497 

concentrations, but the change in this concentration with EC was not statistically different 498 

among the fish species (Table 1), which may indicate that some underlying water quality 499 

changes affected fish activity. The deviation explained by the HGAM based on environmental 500 

variables was only 47.2%, implying that the model was still subject to a large uncertainty and 501 

could be further explained by other environmental variables. Although the k checking of the 502 

model shows that k may be too low, the effective degrees of freedom (edf) does not increase 503 

substantially even when k was increased (Table S5), therefore, the model can be considered to 504 

have sufficient k (Wood, 2017). 505 

 506 
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Fish spawning activities 507 

The spawning activities of the 13 fish species were simultaneously estimated using quantitative 508 

eDNA metabarcoding (Figure 6). Most of the estimated activity dates were within the 509 

recognized fish spawning period, suggesting that quantitative eDNA metabarcoding has the 510 

potential to provide useful information for characterizing the spatial and temporal nature of fish 511 

spawning in reservoirs. The spawning activities of Carassius sp., C. cuvieri, and C. carpio 512 

occurred mainly in April and May, and July, forming two spawning periods. This may be 513 

because C. cuvieri and C. carpio can spawn multiple times (Fernández-Delgado, 1990). The 514 

estimated spawning activities of some L. macrochirus, M. anguillicaudatus, Carassius sp., and 515 

H. barbus occurred later than the common spawning period, which may have been caused by 516 

climatic differences or swarming of the juveniles after hatching. The estimated spawning 517 

activities of G. urotaenia varied widely between the two years, and the results for 2019 deviated 518 

from the recognized spawning period. Historical records from traditional surveys have shown 519 

that the number of G. urotaenia individuals in the Hebisawagawa front reservoir is low. The 520 

weekly water sampling schedule may have failed to capture the eDNA concentration peaks 521 

caused by spawning activity, and the eDNA detected in 2019 may have been derived from G. 522 

urotaenia juveniles rather than from spawning activities. Therefore, for fish species with few 523 

individuals, more frequent sampling is required to ensure the accurate monitoring of spawning 524 

activity. It is important to note that eDNA concentrations are driven by multiple factors such as 525 

abundance, spawning, spreading, and degradation (Barnes & Turner, 2016; Bylemans et al., 526 

2017). The processes and variables affecting eDNA concentrations are complex. Therefore, 527 
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although high eDNA concentrations have the potential to indicate fish spawning activities, the 528 

influence of other confounding factors should be considered when interpreting the results. 529 

Previous studies have shown that the large amount of sperm released during spawning leads to 530 

a sharp increase in the nuclear DNA/mitochondrial DNA ratio, owing to the low sperm 531 

mitochondrial content (Bylemans et al., 2017; Wu et al., 2022). Therefore, it is also possible to 532 

estimate fish spawning activity by developing universal primers for fish nuclear DNA and 533 

calculating nuclear DNA/mitochondrial DNA ratios. Significant differences in the monitoring 534 

results of spawning activities at different sites imply that fish populations are not uniformly 535 

distributed in the reservoir and that high concentrations of eDNA released from spawning 536 

activities are confined to their release sites. This implies that monitoring fish spawning activity 537 

using eDNA requires intensive spatial sampling. It can be assumed that this uneven distribution 538 

also affects other eDNA-based surveys such as fish community structure and biomass surveys. 539 

In eDNA surveys with small sample sizes, the ecological significance may be misinterpreted 540 

because of sampling differences, and reasonable conclusions may not be drawn because of large 541 

differences between samples. Therefore, when conducting ecological surveys of water bodies 542 

using eDNA, intensive sampling at both the spatial and temporal scales is necessary to obtain 543 

more accurate conclusions. Such intensive sampling increases the workload of subsequent 544 

molecular analyses and the need for techniques, such as quantitative metabarcoding, to improve 545 

efficiency. 546 

In conclusion, quantitative metabarcoding was used to simultaneously measure eDNA 547 

concentrations in multiple fish species. The results showed that this method can achieve species 548 
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detection capabilities similar to those of traditional surveys and provides quantitative 549 

capabilities compared to general metabarcoding. Based on the eDNA concentration calculated 550 

by this method, the fish species composition within samples and the relationship between the 551 

fish-specific eDNA concentration and environmental variables were estimated to further our 552 

understanding of fish ecology. By using the outliers of the eDNA data proposed in a previous 553 

study, the spawning activities of 13 fish species were estimated, with 12 species showing 554 

activities roughly consistent with the documented spawning period of fish. These results show 555 

that long-term quantitative eDNA metabarcoding has the potential to be applied in simultaneous 556 

ecological investigations of multiple fish species. The study of problems with amplification 557 

bias and exceeding the limit of quantification can help further improve the reliability of this 558 

technique. 559 
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Figure Legends 821 
 822 
Figure 1. Map of the sampling sites within the Hebisawagawa front reservoir. 823 
 824 
Figure 2. Phylogenetic tree based on the neighbor-joining method and the relative abundance 825 
of 20 fish species. Relative abundance represents species composition across a given year and 826 
survey type. 827 
 828 
Figure 3. Linear regression to test the correlation between the eDNA concentration and 829 
individual numbers of fish from the 2019 eDNA survey and the traditional survey. Each point 830 
represents a different species of fish. Shading = 95% confidence interval based on robust 831 
standard errors calculated by heteroskedasticity-consistent covariance matrix estimator (HC2 832 
estimator). 833 
 834 
Figure 4. Principal coordinate analysis (PCoA) with fitted generalized additive model (GAM) 835 
surfaces overlaid to illustrate the relationships between fish species composition and 836 
environmental variables. Shaded = 80% confidence ellipse; DE = deviance explained. G. 837 
urotaenia = Gymnogobius urotaenia; M. salmoides = Micropterus salmoides; L. macrochirus = 838 
Lepomis macrochirus; S. asotus = Silurus asotus; M. anguillicaudatus = Misgurnus 839 
anguillicaudatus; T. hakonensis = Tribolodon hakonensis; Z. platypus = Zacco platypus; C. 840 
idella = Ctenopharyngodon idella; C. cuvieri = Carassius cuvieri; C. carpio = Cyprinus carpio; 841 
H. barbus = Hemibarbus barbus; G. elongatus = Gnathopogon elongatus; P. parva = 842 
Pseudorasbora parva. 843 
 844 
Figure 5. Relationships between fish-specific eDNA concentration and environmental variables. 845 
The x-axis represents environmental variables. The y-axis represents the linear predictor of 846 
component smooth functions. Points represent partial residuals. Shading = 95% confidence 847 
interval. G. urotaenia = Gymnogobius urotaenia; M. salmoides = Micropterus salmoides; L. 848 
macrochirus = Lepomis macrochirus; S. asotus = Silurus asotus; M. anguillicaudatus = 849 
Misgurnus anguillicaudatus; T. hakonensis = Tribolodon hakonensis; Z. platypus = Zacco 850 
platypus; C. idella = Ctenopharyngodon idella; C. cuvieri = Carassius cuvieri; C. carpio = 851 
Cyprinus carpio; H. barbus = Hemibarbus barbus; G. elongatus = Gnathopogon elongatus; P. 852 
parva = Pseudorasbora parva. 853 
 854 
Figure 6. Spawning probabilities estimated by eDNA concentration. The outliers of eDNA 855 
concentration were used to establish a hierarchical generalized additive model (HGAM), and 856 
then the model was used to predict the spawning probability based on the eDNA sample data. 857 
The x-axis represents sampling time. The y-axis represents years and sites. The dashed box 858 
refers to the fish spawning period recorded by the Research Institute of Environment, 859 
Agriculture and Fisheries, Osaka Prefecture. G. urotaenia = Gymnogobius urotaenia; M. 860 
salmoides = Micropterus salmoides; L. macrochirus = Lepomis macrochirus; M. 861 
anguillicaudatus = Misgurnus anguillicaudatus; T. hakonensis = Tribolodon hakonensis; Z. 862 
platypus = Zacco platypus; C. cuvieri = Carassius cuvieri; C. carpio = Cyprinus carpio; H. 863 
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barbus = Hemibarbus barbus; G. elongatus = Gnathopogon elongatus; P. parva = 864 
Pseudorasbora parva. 865 



Table 1. Results of the hierarchical generalized additive model used to estimate the 
changes in fish eDNA concentration with environmental variables 

  edf p-value 

s(WT) 2.799 0.038 * 

s(WT,Fish) 32.581 <0.001 *** 

s(pH) 2.765 0.031 * 

s(pH,Fish) 14.704 <0.001 *** 

s(EC) 1.001 <0.001 *** 

s(EC,Fish) 0.721 0.392 

s(Site,Year) 4.749 <0.001 *** 

Significance level: *** <0.001; ** < 0.01; * <0.05 
WT = water temperature; EC = electrical conductivity; 
s() = a smooth term; edf = effective degrees of freedom 
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