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Sequential Inverse Optimal Control of
Discrete-Time Systems

Sheng Cao, Zhiwei Luo and Changqin Quan

Abstract—This paper presents a novel sequential inverse op-
timal control (SIOC) method for discrete-time systems, which
calculates the unknown weight vectors of the cost function in
real time using the input and output of an optimally controlled
discrete-time system. The proposed method overcomes the lim-
itations of previous approaches by eliminating the need for the
invertible Jacobian assumption. It calculates the possible-solution
spaces and their intersections sequentially until the dimension
of the intersection space decreases to one. The remaining one-
dimensional vector of the possible-solution space’s intersection
represents the SIOC solution. The paper presents clear conditions
for convergence and addresses the issue of noisy data by clarifying
the conditions for the singular values of the matrices that relate
to the possible-solution space. The effectiveness of the proposed
method is demonstrated through simulation results.

Index Terms—Inverse Optimal Control, Sequential Calcula-
tion, Promised Calculation Step

I. INTRODUCTION

The standard optimal control problem concerns finding the
state and input trajectories for a dynamical system. In this
regard, the inverse optimal-control (IOC) approach is generally
employed to obtain the weighting parameters of the cost
function using the input/output data generated by optimal
control.

In many fields, such as robotics [1], biological systems [2]
[3] and marketing systems [4], the optimization of the systems’
behavior has been studied using the IOC method.

In [1], a method is proposed to estimate the cost function of
human operators for human-robot interaction control. The IOC
method was utilized in [5] to analyze the route choices of taxi
drivers. To evaluate the cost combination of human motion,
in [6], the IOC method was utilized to analyze the reaching
movement of the human arm. Furthermore, biological behavior
has been modeled as an inverse linear quadratic regulator
problem, and an adaptive method was proposed to model and
analyze human reach-to-grasp behavior by [7].

As mentioned in the literature, there are two main groups
of IOC. One has a hierarchy structure that updates the cost
function in the higher stage while the forward optimal-control
problem is repeatedly solved in the lower stage to minimize
the evaluation function between the original data and the
generated data. In [8], where the IOC problem is formulated
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by another form (the inverse-reinforcement-learning method),
cost weights are adjusted to better evaluate the observation-
feature values and maximize the entropy of the trajectory-
probability distribution. When considering the IOC problem
as a special bilevel optimal-control problem [9], where the
lower level is the optimal control problem and the upper
level is the inversion problem, the IOC problem has been
considered for simple dynamical models [10]. To analyze
locomotion movements, the authors of [3] proposed a bilevel
optimization method based IOC method. In [11], mathematical
programs with complementary constraints in the context of the
IOC method are discussed for the application of locomotion
analysis. In [12], the bilevel optimization problem for IOC is
transformed into a single-level problem, and a globally optimal
solution is computed. Although these methods are effective
and have been utilized in many applications, such as human-
motor behavior analysis, robot navigation, and autonomous
driving, they require significant computational costs in the
lower stage to repeatedly verify the updated cost function.

Conversely, the second class of IOC research focus on solv-
ing this problem by exploiting several optimality equations,
such as Pontryagin’s maximum principle-based equations [13],
and Euler–Lagrange equations [2]. In [14], a linear combina-
tion of feature functions with unknown weight parameters was
formulated to approximate the original optimal cost function.
In [15], the recovery of the weight parameters of the finite-
horizon, discrete-time optimal control was considered. For
practical applications, it is important to obtain the cost weights
in real time. In [16], a method is proposed for the online
calculation of discrete-time IOC in both finite and infinite
horizons; however, it requires the invertibility condition of a
Jacobian. In addition, the convergence of the cost weights has
not been theoretically investigated.

Control Lyapunov Function (CLF) based IOC is an essential
paradigm in control theory, where a stabilizing feedback is
designed first and then shown to be optimal for a cost function.
In recent years, there have been numerous contributions to
address the limitations of CLF-based IOC. The Extended
Kalman Filter (EKF) has been utilized in some studies to
construct a CLF [17], [18]. Furthermore, some researches have
applied CLF-based IOC to non-linear inverse optimal control
problems [19]. Additionally, some works have developed data-
driven non-linear stabilization schemes utilizing the Koopman
operator [20], and focused on learning simple polynomial
CLFs from counterexamples and demonstrations for non-linear
dynamical systems [21]–[23]. Despite these advancements, no-
table limitations of CLF-based IOC method persist, including
the inability to explicitly specify a clear optimal cost function



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023 2

and the difficulty in selecting and adjusting parameters, which
often requires extensive experience and expert knowledge.

Moreover, the problem of noisy data is a source of concern
in IOC research. The authors of [24] analyzed the IOC
problem for discrete-time finite-horizon LQR as an optimiza-
tion problem and proved that the solution to the problem
is statistically consistent. They utilized the data from multi-
observations to complete the offline IOC method. In [25],
building on the work of [24], the authors recast the IOC
problem as the identification of a parameterized causal and
anti-causal mixed system exited by boundary conditions. They
clarified sufficient identifiability conditions for the unknown
parameters in terms of the system model. Besides, the studies
[26], [27] also emphasize the consideration of data noise.
Although the aforementioned methods are effective in tackling
problems of noise for the offline IOC problem of discrete-time
finite-horizon LQR, it is still necessary to consider the noisy
problem in the IOC method in the (1) online calculation and
(2) nonlinear system’s IOC method.

This paper proposes a novel SIOC method to address the
issues mentioned above. The method recovers the cost function
of an optimal control problem from input/output data acquired
step-by-step, and solves the inverse optimal control problem
sequentially with a promised convergence speed. By assuming
the positivity of a Jacobian, this method is applicable even
if the invertible Jacobian assumption required in [16] is not
satisfied. Most importantly, the method clarifies the conditions
for the convergence of the weight estimation in every step,
which can be utilized in the analysis of real applications.
On the other hand, in this study, the noisy data problem is
considered for the online recovery of the cost-weight vector.
We also analyze the effect of noisy data on the possible-
solution space and propose a one step selection method of
the possible-solution space for the noisy case using noisy data
from multiobservations. Contribution of this research comes
from three aspects.

• The first contribution is the promised solution’s calcula-
tion speed and the conditions that enable it. We discuss
the conditions for the decrease in the dimension of the
intersection space. Consequently, if any of the conditions
listed (Theorem 1) is satisfied, the dimension of the
intersection of the solution’s space will decrease in each
step, allowing us to obtain solutions within a promised
number of steps. This is beneficial for applications that
require high-speed calculations.

• The second is the establishment of a sequential IOC
method without utilizing the invertible Jacobian assump-
tion in [16]. Notably, although the invertible Jacobian
assumption is widely used in the solution of the forward
finite and infinite horizon optimal control of the discrete
system, as highlighted in ( [28]), some necessary condi-
tions are proposed to apply the method for the system
dynamics even if the invertible Jacobian assumption is
not satisfied.

• The third is the development of an efficient method
for tackling the noisy data problem in the online IOC
calculation. If we have prior knowledge of the maximum
error value, we can analyze the effect of the error on

the possible-solution space in our method and propose
two conditions for selecting the possible-solution space.
Simulation results show that this method is effective.

II. PROBLEM FORMULATION

Consider the dynamics of a discrete system

xk+1 = f(xk, uk), (1)

where f(:, :) : Rn × U → Rn is a continuously differentiable
function, xk = [x1k, ..., x

n
k ]

T ∈ Rn represents the system
states, uk = [u1k, ..., u

m
k ]T ∈ U denotes the control input

of the system belonging to a closed, bounded and convex
constrained set U ⊆ Rm. x[0,K] denotes the state sequence
{xk : 0 ≤ k ≤ K} and u[0,K] denotes control input sequence
{uk : 0 ≤ k ≤ K}.

In the standard optimal control problem, we design the
optimal control input u∗[0,K] and obtain a series of optimal
state x∗[0,K] to minimize the following cost function, subject to
dynamics (1) (Upperscript ∗ stands for the optimal condition.).

C(xk, uk, q) =

K∑
k=0

qTF (xk, uk), (2)

where F (xk, uk) is a feature vector function defined as

F (xk, uk) = [FT
XU , F

T
U ]T ∈ Rnf . (3)

Here, the terminal step K can be K < ∞ or K →
∞. The vector, q = [qTxu, q

T
u ]

T ∈ Rnf represents cost
weights, in which vector qxu ∈ Rnxu represents a weight
vector with respect to xk and uk, and vector FXU =
[Fxkuk(1), . . . , Fxkuk(nxu)]

T ∈ Rnxu . The scalar Fxkuk(i) rep-
resents the i-th feature function related to xik and uik. qu ∈ Rnu

denotes the weight vector accounting for the control input
uk, while FU = [Fuk(1), . . . , Fuk(nu)]

T ∈ Rnu represents the
feature function purely related to uk. It is assumed that the
norm, ||q|| = 1, is fixed and known priorly. The total number
of features nf satisfies nf = nxu + nu.

In our problem, we assume that x[0,K] as well as u[0,K]

constitutes a solution to minimize (2) for system dynamics (1).
The objective of this research is to realize the online estimation
of the cost weight vector q in cost function (2), i.e., to calculate
vector q online for the given system state xk and the control
input uk without the storage and batch processing. The time
horizon K is known priorly.

III. SEQUENTIAL IOC FOR THE NOISE FREE CASE

In this section, we introduce the maximum principle for the
finite and infinite horizon, optimal-control problems, which
is applicable when any conditionf provided in Assumption 1
is satisfied. Based on the introduced maximum principle, we
propose a sequential IOC method.
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A. Maximum principle for the finite and infinite horizon
optimal-control problems

The Hamiltonian function associated with the optimal -
control problems given by (1) and (2) is defined as

Hk(xk−1, uk−1, λk, q) = qTF (xk−1, uk−1)

+ λTk f(xk−1, uk−1), (4)

where λk ∈ Rn (k > 0) denotes the co-state vector.
The column vectors of the partial derivatives

of the Hamiltonian with respect to xk−1 and
uk−1 are ∇xHk(xk−1, uk−1, λk, q) ∈ Rn and
∇uHk(xk−1, uk−1, λk, q) ∈ Rm, respectively.

Assumption 1. The partial derivative of the dynamics satisfies
any of the following two conditions for all k ≥ 0:

(A)
∂f

∂xk
is invertible.

(B)
∂f

∂xk
satisfies the following positivity condition:

∂fnj (xk, uk)

∂xni

k

≥ 0 ∀ni, nj ∈ 1, . . . , n where ni ̸= nj ,

(5)
∂fnj (xk, uk)

∂x
nj

k

> 0 ∀nj ∈ 1, . . . , n, (6)

where fnj represents the nj-th element of function f(xk, uk)
and xni

k represents ni-th element of vector xk.

In [28] (Theorem 2.2 and Theorem 2.6), it has been
shown that both the assumptions of Jaocbian’s invertibility
(Assumption 1.(A)) and positivity (Assumption 1.(B)) can be
used to establish Pontryagin’s maximum principles in both
finite and infinite horizon discrete-time optimal control prob-
lems. These assumptions are especially necessary for infinite
horizon problems. While the previous study [16] of online
IOC assumed Jacobian’s invertibility to establish the discrete-
time maximum principle, this assumption may not hold for
some system dynamics. Therefore, the Jacobian’s positivity
assumption (condition) is proposed in [28] as an alternative to
the invertible assumption (condition). For example, it suffices
to consider the case where ∂fnj (xk,uk)

∂x
ni
k

= 1 for all ni, nj to

see that Assumption 1.(B) is fulfilled and ∂f
∂xk

is not invertible
since its rank is equal to 1.

In addition, as in [16], the inactive constraint times of the
control input are defined as:

Definition 1. Given the control input, uk, for k > 0,

κk ≜ {0 ≤ k ≤ l : uk ∈ int(U)} (7)

is defined as the set when the control constraints are inactive.
Here l represents time larger than 0, and int(U) denotes the
interior of the inactive control constraint set, U .

Based on [16], [28], [29] and [30], for the above assump-
tions and definition, the following lemma holds.

Lemma 1. Suppose that the optimal-control problems defined
by (1) and (2) are solved by trajectories x[0,K] and u[0,K] and
if the assumption of (A) or (B) holds, then there exist co-state

vectors λ0, . . . , λK that satisfy the combined Pontryagin’s
maximum principle as

F̄T
x(k−1)q + f̄Tx(k−1)λk = λk−1 (8)

for all 0 ≤ k ≤ K with λK+1 = 0 if K < ∞, and λK+1

undefined if K → ∞, and

F̄T
u(k−1)q + f̄Tu(k−1)λk = 0 (9)

for all k ∈ κk, where κk denotes the inactive constraint times
up to and including time K.

Here, F̄x(k) =
∂F

∂xk
, F̄u(k) =

∂F

∂uk
, f̄x(k) =

∂f

∂xk
and

f̄u(k) =
∂f

∂uk
. The co-state λk varies in backward recursion

in discrete-time optimal control.

Proof. Generally, (8) and (9) can be obtained by calculating
the gradients of (2) for (1) using (4) with respect to the vectors
xk and uk, respectively. The brief proof of this lemma for the
assumption is given in [16](Lemma 1) by using the results
of [29] (Proposition 3.3.2) and [30] (Theorem 2). It is also
satisfied for assumption (B), as is proven in [28](Theorem
2.6).

B. Construction of the Sequential IOC method

If the optimal control problems of (1) and (2) are solved
by ( x[T0,Tf ], u[T0,Tf ]) which are the solutions to (8) and (9),
then by considering (9) in steps k and k − 1 and substituting
(8) in step k, we have

Hksk = 0, (10)

where Hk =

[
f̄Tu(k−1)f̄

T
x(k) F̄T

u(k−1) + f̄Tu(k−1)F̄
T
x(k)

f̄Tu(k) F̄T
u(k)

]
and

sk =

[
λk+1

q

]
, by considering (8), a backward recursive

relation from sk to sk−1 can be formulated as follows

Mksk = sk−1, (11)

where Mk is defined as Mk =

[
f̄Tx(k) F̄T

x(k)

0nf×n Inf

]
∈

R(n+nf )×(n+nf ).
Here, Inf

∈ Rnf×nf denotes the unit matrix and 0nf×n ∈
Rnf×n denotes the matrix where all the elements are zero.
Notably, (10) holds only when k, k − 1 ∈ κk and (11) holds
always even if k /∈ κk.

Thus, by introducing all historical Mi(i = h, . . . , k) with h
denoting step h ≤ k , it is easy to backward calculate sh of
step h with

M̄h:ksk = sh, (12)

where M̄h:k denotes a matrix defined as M̄h:k =
∏k

l=h+1Ml.
and it satisfies the forward recursion as M̄h:k = M̄h:k−1Mk.

Since vector sh contains the cost-weight vector, q, as well
as the co-state λh+1, our goal of constructing the online IOC
changes to finding vector sh based on the finite forward steps
of k.
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From (10), it is known that sk locates in the null space of
Hk, and sk can be calculated as follows:

sk = (IN −H+
k Hk)rk, (13)

where rk ∈ RN denotes an arbitrary vector and H+
k represents

the pseudo inverse matrix of Hk.
For step i in the duration from step h (T0 ≤ h < k) to

k (T0 < k ≤ Tf ), we have

Φh(i)ri = M̄h:iΘiri = sh, (14)

where Φh(i) = M̄h:i(IN −H+
i Hi) = M̄h:iΘi with h ≤ i ≤ k

and Θi = IN −H+
i Hi.

Here, the column vector space of Φh(i) can be denoted
as ΓΦh(i)

= span(Φh(i)) for h ≤ i ≤ k, where span(:
) denotes the span of the matrix. From (14), we have
si ∈ ΓΦh(i)

for h ≤ i ≤ k. Therefore, the spaces of
ΓΦh(h)

, . . . ,ΓΦh(k)
are the possible-solution spaces, and the

intersection of these possible-solution spaces is defined as
ΓΩh:k

= ΓΦh(h)
∩ · · · ∩ ΓΦh(k)

.
Thus, we have sh ∈ ΓΩh:k

, which implies that vector sh
exists and always belongs to the intersection subspace.

To obtain sh, it is necessary to discuss the decrease in the
dimension of ΓΩh:k

as k increases.

Proposition 1. If ΓΩh:i−1
⊈ ΓΦh(i)

, the dimension of the
intersection ΓΩh:i

will be decreased; that is,

dim(ΓΩh:i−1
) > dim(ΓΩh:i

), (15)

where ΓΩh:i
means ΓΩh:i

= ΓΦh(h)
∩ · · · ∩ ΓΦh(i)

Proof. It is clear that, for any vector space, ΓΦh(i)
and ΓΦh(j)

,

dim(ΓΦh(i)
∩ ΓΦh(j)

) ≤ dim(ΓΦh(i)
), (16)

The equality sign holds when ΓΦh(i)
⊆ ΓΦh(j)

.
Since ΓΩh:i

= ΓΩh:i−1
∩ ΓΦh(i)

, we have

dim(ΓΩh:i
) ≤ dim(ΓΩh:i−1

), h < i < K. (17)

The equality sign holds when ΓΩh:i−1
⊆ ΓΦh(i)

.
Therefore, if ΓΩh:i−1

⊈ ΓΦh(i)
, the dimension of ΓΩh:i

will
decrease as k increases.

From Proposition 1, it is clear that with the increase in
the step, at some step instant kf , the rank of the common
intersection subspace of ΓΦh(h)

, . . . ,ΓΦh(kf )
becomes one and

this unique intersection is sh.
Here, we give the main result to clarify the condition for

the decrease in the dimension of intersection space ΓΩh:i
.

Theorem 1. Under Assumption 1 (A), if any of the following
two conditions is satisfied, then ΓΩh:i−1

⊈ ΓΦh(i)
.

(a)
• f̄T

u(j̄)
∀h ≤ j ≤ i− 1 is full rank.

• F̄T
u(i) is full rank.

(b)
• dim(f̄Tu(j)) < m ∀h ≤ j ≤ i− 1.
• F̄T

u(i) is full rank.
•

i−1∑
j=h

dim(null(f̄Tu(j))) < Nz(i)

where Nz(i) denotes the dimension of the null space of
ΓΦh(i)

and dim(:) denotes the dimension of the column
vector space of the matrix.

Proof. The proof of this theorem is shown in Appendix.

Therefore, if condition (a) or (b) of Theorem 1 is satisfied,
the dimension of the intersection of the possible-solution space
will decrease in every step.

C. Calculation of vector sh
1) Calculation of the Intersection Space: Here, Ωs is the

matrix related to the intersection of the possible-solution
spaces, which is initialized in step h and is updated in every
cycle.

From ΓΩh:i−1
∩ΓΦh(i)

= null(null(ΓΦh(i)
)∪null(ΓΩh:i−1

)),
we can calculate Ωs by

Ωs = Ωh:i = null(Yh(i)), (18)

where Yh(i) = [null(Ωh:i−1)
T ,null(Φh(i))

T ]T can be repre-
sented by singular-value decomposition by Yh(i) = WΛV T .
W and V are unitary matrices, Λ is a rectangular diagonal
matrix with non-negative values on the diagonal.

When dim(ΓΩh:i
) = 1, Ωs becomes vector Vn, which is the

row vector of V related to the smallest singular-value of Λ.
From Yh(i)sh = 0, it is clear that sh may maintain the same
direction with Vn or −Vn. From the fact that right sh can
make the cost function be positive while using −sh instead of
sh make the cost function become negative on the contrary,
sh can be selected as

sh =

{
Vnap, C(xk, uk, q̂) ≥ 0,

−Vnap, C(xk, uk, q̂) < 0,
(19)

where q̂ = [Vnap]n+1:n+nf
is the vector constructed by the

(n + 1)-th element to the (n + nf )-th element of vector
Vnap, ap = ||q||

||[Vn]n+1:n+nf
|| , [Vn]n+1:n+nf

denotes the vector
constructed by the (n+1)-th element to the (n+nf )-th element
of Vn, and the ||q|| is known prior. Here, we use a previously
known norm of q to scale Vn to obtain a unique and right-cost
weight vector.

2) Calculation with Control Constraints: When control
constraints exist, the calculation procedure is designed as
follows

ΓΩh:i
= ΓΩh:i−1

∩ ΓΦh(i)
, ui ∈ int(U) & ui−1 ∈ int(U),

Reinitialize ΓΩh:i
, ui ∈ int(U) & ui−1 /∈ int(U),

Skip the Step, Otherwise.
(20)

We halt the calculation when the control constraint is active
and reinitialize, restart the IOC calculation when it is inactive.
The high calculation speed of our method makes it possible to
quickly complete the IOC calculation after the active duration
of the control constraints so that it is not necessary to store the
data of the duration before the control constraints are active
[16].

The total calculation in the noise-free case is shown in
Algorithm 1.
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Algorithm 1 Online implementation(Noise-free case)
Input: xi, ui, ||q||
Output: sh

Initialization :
1: Compute a Hh and Φh(h).
2: Initialize matrix Ωs = Φh(h) which represents the inter-

section of possible-solution spaces.
LOOP Process

3: for i = h+ 1 to K do
4: if ui ∈ int(U) then
5: if ui−1 /∈ int(U) then
6: Calculate Φh(i) and reinitialize Ωs = Φh(i)

7: Continue.
8: end if
9: Calculate Φh(i), null(Φh(i)) and null(Ωs).

10: Calculate ΓΩs ∩ ΓΦh(i)
by constructing the matrix

Yh(i) = [null(Φh(i))
T ,null(Ωs)

T
]T and compute the

null space of Yh(i). Here, ΓΩs
denotes the vector

space of Ωs.
11: if rank(Yh(i)) < N − 1 then
12: Update Ωs = null(Yh(i))
13: end if
14: if (rank(Yh(i)) = N − 1) then
15: Ωs is decreased to a vector with Ωs = null(Yh(i)).
16: Get the unique solution following (19).
17: end if
18: end if
19: end for
20: return sh

IV. WHEN NOISE EXISTS

When measurement noise or numerical errors exist, the
noisy-system state, x̂, and control input, û, introduce errors
into the calculation of Φh(i), resulting in the deviation of
the calculated possible-solution space from the correct result.
Here, we also introduced a method for tackling this problem.

First, in this research, we assume that the noise of the
measured x̂ and û satisfies the following conditions:

||x̃|| = ||x− x̂|| ≤ ϵx

||ũ|| = ||u− û|| ≤ ϵu (21)

where ϵx and ϵu are two positive scalars. Furthermore, we
introduce the following assumption of the system dynamics
and feature function.

Assumption 2. Function f̄u(k), f̄x(k), F̄u(k), F̄x(k) satisfy

||f̄u(k) − ˆ̄fu(k)||F ≤ ψf
u||(uk − ûk)|| ≤ ψf

uϵu

||f̄x(k) − ˆ̄fx(k)||F ≤ ψf
x ||(xk − x̂k)|| ≤ ψf

xϵx

||F̄u(k) − ˆ̄Fu(k)||F ≤ ψF
u ||(uk − ûk)|| ≤ ψF

u ϵu

||F̄x(k) − ˆ̄Fx(k)||F ≤ ψF
x ||(xk − x̂k)|| ≤ ψF

x ϵx (22)

where symbols ˆ̄fu(k),
ˆ̄fx(k),

ˆ̄Fu(k) and ˆ̄Fx(k) denote the terms
with noises and || : ||F denotes the Frobenius norm, and
ψf
u ,ψf

x ,ψF
u and ψF

x represent the positive scalars.

In practical applications, the parameters ψf
u , ψf

x , ψF
u , and

ψF
x represent the degree of influence of the disturbances in the

system input uk and system state xk on the system dynamics
equations f̄u(k), f̄x(k), F̄ u(k), and F̄ x(k). They quantify the
weight of input and state disturbances in the system dynamics
equations and feature functions, which is crucial for designing
robust controllers and evaluating system performance. In or-
der to determine the values of these parameters, one would
typically rely on prior knowledge about the system, such
as the system’s sensitivity to disturbances in its input and
state variables. This information can be obtained from system
identification or previous experimental data.

Using the noisy data, (10) and (11) can be expressed as
follows:

Ĥksk = ehk

M̂ksk = sk−1 + emk (23)

where Ĥk =

[
ˆ̄fTu(k−1)

ˆ̄fTx(k)
ˆ̄FT
u(k−1) +

ˆ̄fTu(k−1)
ˆ̄FT
x(k)

ˆ̄fTu(k)
ˆ̄FT
u(k)

]
and

M̂k =

[
ˆ̄fTx(k)

ˆ̄FT
x(k)

0nf×n Inf

]
respectively.

Here, since the existence of noise will affect Φ̂h(i) =
ˆ̄Mh:iΘ̂i at each step for (h ≤ i < k), sh will not belong

to the column vector space of Φ̂h(i) and the direction of the
final estimated cost-weight vector will deviate from the correct
result.

To solve this problem, we adjust the calculation of the
possible-solution space by selecting an appropriate method to
replace the original calculation method of Θi and null(Φh(i))
in each step in the noise-free case. With the following method,
this goal is achieved in three steps:

• Based on Ĥk and the range of the noise error, we calcu-
late matrix, TĤk

, which spans a vector space containing
sk.

• We utilize TĤk
and M̂k to calculate matrix Φ̂h(k) and

subsequently calculate the matrix TΦ̂h(k)
which may span

a vector space containing sh.
• We calculate the intersection of spaces spanned by TΦ̂h(k)

(h ≤ i ≤ k) obtained in each step.
1) Method of tackling the effect of noises on Ĥk: From

(23) and Hksk = 0, we have

Ĥksk = ehk = H̃ksk (24)

where H̃k = Hk − Ĥk. By performing singular-value decom-
position (SVD) of matrix Ĥk, we have

Ĥk =WĤk
ΛĤk

V T
Ĥk

with two unitary matrices WĤk
and VĤk

and a rectangular
diagonal singular-value matrix, ΛĤk

.
Here, it is clear that the existence of the H̃k term affects

the estimation result; as such, sk will not lie in the null space
of Ĥk. We analyze the condition of the Frobenius norm of H̃k

in the following lemma first.
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Lemma 2. The Frobenius norm of H̃k is bounded and satisfies
the following:

||H̃k||F ≤
√
β1 + β2 (25)

where

β1 =2ψf2
u ϵ2uTr(

ˆ̄fTx(k)
ˆ̄fx(k))

+ ψf2
x ϵ2xTr(

ˆ̄fTu(k−1)
ˆ̄fu(k−1)) + ψf2

u ϵ2u

β2 =2ψF2
u ϵ2u + 3ψF2

x ϵ2xTr(
ˆ̄FT
x(k)

ˆ̄Fx(k))

+ 3ψF2
x ϵ2xTr(

ˆ̄fTu(k−1)
ˆ̄fu(k−1)) + ψF2

u ϵ2u

Proof. From the definitions of Hk and Ĥk, H̃T
k H̃k can be

represented as

H̃T
k H̃k =

[
h1 h0
hT0 h2

]
(26)

where h1 = ( ˆ̄fx(k)
˜̄fu(k−1) +

˜̄fx(k)
ˆ̄fu(k−1))(

˜̄fTu(k−1)
ˆ̄fTx(k) +

ˆ̄fTu(k−1)
˜̄fTx(k)) + ˜̄fu(k)

˜̄fTu(k) and h2 = ( ˜̄Fu(k−1) +
ˆ̄Fx(k)

˜̄fu(k−1) + ˜̄Fx(k)
ˆ̄fu(k−1))(

˜̄FT
u(k−1) + ˜̄fTu(k−1)

ˆ̄FT
x(k) +

ˆ̄fTu(k−1)
˜̄FT
x(k)) +

˜̄Fu(k)
˜̄FT
u(k).

Then, from (21) and (22), we have

Tr(h1) ≤2ψf2
u ϵ2uTr(

ˆ̄fTx(k)
ˆ̄fx(k))

+ ψf2
x ϵ2xTr(

ˆ̄fTu(k−1)
ˆ̄fu(k−1)) + ψf2

u ϵ2u = β1 (27)

Tr(h2) ≤2ψF2
u ϵ2u + 3ψF2

x ϵ2xTr(
ˆ̄FT
x(k)

ˆ̄Fx(k))

+ 3ψF2
x ϵ2xTr(

ˆ̄fTu(k−1)
ˆ̄fu(k−1)) + ψF2

u ϵ2u = β2
(28)

Since Tr(H̃T
k H̃k) = Tr(h1) + Tr(h2), we have

||H̃k||F =

√
Tr(H̃T

k H̃k) ≤
√
β1 + β2 (29)

where Tr(:) represents the trace of the matrix.

Based on the above condition of Lemma 2, we attempt to
derive a condition of singular-value relating to the appropriate
column vectors in VĤk

, which can be utilized to build a
subspace that always contains sk.

Theorem 2. If the following condition of the j-th singular-
value of Ĥk is satisfied,

Λj

Ĥk
>

1

ϵv

√
β1 + β2 (30)

where ϵv is a positive scalar. The corresponding V j

Ĥk
satisfies

V jT

Ĥk

sk
||sk||

< ϵv

Proof. First, since VĤk
is a full rank matrix, a vector, r̂ck,

will always exist such that sk = VĤk
r̂ck. Here, since we

attempted to calculate the intersection of the possible-solution

space obtained in each step, if the matrices spanning these
spaces are all full rank, the dimension of the intersection
space will not decrease and the estimation of the cost weight
will not be completed. Therefore, it is required to select an
appropriate subspace of the column vector space spanned by
VĤk

containing vector sh at each step and finally calculate the
intersection of these vector spaces to obtain the result.

From (24), we have Tr(sTk Ĥ
T
k Ĥksk) = Tr(sTk H̃

T
k H̃ksk).

Furthermore, we get

Tr(sTk VĤk
ΛT
Ĥk

ΛĤk
V T
Ĥk
sk) = Tr(H̃T

k H̃ksks
T
k ) (31)

Using sk = VĤk
r̂k, we obtain the inequality formulated below:

Tr(ΛT
Ĥk

ΛĤk
r̂okr̂

oT
k ) = Tr(H̃T

k H̃kr̂
o
kr̂

oT
k ) ≤ Tr(H̃T

k H̃k)

(32)

where r̂ok = V T
Ĥk
sk/||sk|| is the unit vector of r̂k. Here,

although we cannot determine the exact value of r̂ok , each
element of unit vector r̂ok can be regarded as the score eval-
uating the relation between vector sk/||sk|| and each column
vector of VĤk

(orthogonal, parallel, otherwise). When the j-th
element (∀j ≤ N ) of r̂ok satisfies ||r̂jok || = V jT

Ĥk
sk/||sk|| = 0,

V jT

Ĥk
has no relation with sk, and the corresponding j-th

diagonal element in matrix ΛT
Ĥk

ΛĤk
will not have any effect

on Tr(ΛT
Ĥk

ΛĤk
r̂okr̂

oT
k ). Here, we design a set, T1, of the

diagonal elements of ΛĤk
as follows:

{T1 : Λj

Ĥk
| r̂jok = V jT

Ĥk
sk/||sk|| ≤ ϵv}

where the positive scalar ϵv is a threshold that can be appro-
priately selected.

Since ΛT
Ĥk

ΛĤk
is a diagonal matrix, we can rewrite

Tr(ΛT
Ĥk

ΛĤk
r̂okr̂

oT
k ) as

Tr(ΛT
Ĥk

ΛĤk
r̂okr̂

oT
k ) =

N∑
j=1

ΛjT

Ĥk
Λj

Ĥk
[r̂okr̂

oT
k ]j ≤ Tr(H̃T

k H̃k)

(33)

where [:]j represents the j-th diagonal element of the matrix.
All [r̂okr̂

oT
k ]j satisfy 0 < [r̂okr̂

oT
k ]j ≤ 1 .

Thus, from (33), it is clear that any Λj

Ĥk
satisfying Λj

Ĥk
>

1
ϵv

√
Tr(H̃T

k H̃k) =
1
ϵv

√
β1 + β2 is the possible singular-value

corresponding to the column vector V j

Ĥk
, making V jT

Ĥk
sk <

ϵv||sk||.

Theorem 2 shows that all the column vectors of VĤk

corresponding to the diagonal elements of ΛĤk
that satisfy

the condition Λj

Ĥk
> 1

ϵv

√
β1 + β2 have little correlation with

the vector sk. All the column vectors in VĤk
that satisfy

V jT
Ĥk
sk ≥ ϵv||sk|| are related to the diagonal elements of ΛĤk

that satisfy the condition Λj

Ĥk
≤ 1

ϵv

√
β1 + β2.

Therefore, we select the nv column vectors in VĤk
cor-

responding to the diagonal elements of ΛĤk
that satisfy the

condition Λj

Ĥk
≤ 1

ϵv

√
β1 + β2, which makes it possible for

V j

Ĥk
to satisfy V jT

Ĥk
sk ≥ ϵv||sk||. We can then construct a new
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matrix TĤk
with nv columns and find a vector r̂k such that

TĤk
satisfies the following inequality:

||sk − TĤk
r̂k|| ≤

√
1− ϵ2vnv||sk||, (34)

where ϵ2vnv ≤ 1 according to the conditions ||TT
Ĥk
sk|| ≥

ϵ2vnv||sk|| and ||TT
Ĥk
sk|| ≤ ||V T

Ĥk
sk|| = ||sk||.

In practice, the degree of correlation between sk and the
column vectors in TĤk

can be estimated using the threshold
of

√
1− ϵ2vnv||sk||, allowing us to choose suitable values

for ϵv and nv to ensure a satisfactory degree of correlation.
Therefore, we can utilize TĤk

to replace Θk in the calculation.
2) Method of tackling the effect of noise in Φ̂h(k): In the

noisy case, due to the noise on ˆ̄Mh:k in step k, (12) becomes

ˆ̄Mh:ksk = sh + erMk (35)

where erMk = ˜̄Mh:ksk. Furthermore, by representing sk using
Theorem 2’s result, we have

erMk ≈ ˜̄Mh:kTĤk
r̂k (36)

and the calculation of Φh(i) in the noisy case can be formulated
as follows:

Φ̂h(k)r̂k = ˆ̄Mh:kTĤk
r̂k ≈ sh + erMk (37)

Therefore, after performing SVD in the noise case (37), we
have

Φ̂h(k) =WΦ̂h(k)
ΛΦ̂h(k)

V T
Φ̂h(k)

Furthermore, from the result of Theorem 2, the formula for
calculating of Φh(i) can be expressed as

Φ′
h(k)r̂k = M̄h:kTĤk

r̂k ≈ sh (38)

It is clear that the remaining effect originates from the noise
term, ˜̄Mh:k = M̄h:k − ˆ̄Mh:k.

We propose a lemma to clarify this effect below.

Lemma 3. The Frobenius norm of matrix || ˜̄Mh:k||F is
bounded and satisfies the following condition.

|| ˜̄Mh:k||F ≤ γk (39)

where γk = (|| ˆ̄Mk||F + bk)γk−1 + bk|| ˆ̄Mh:k−1||F , bk =√
Tr( ˜̄fTx(k)

˜̄fx(k) +
˜̄FT
x(k)

˜̄Fx(k)) =

√
ψf
xϵx + ψF

x ϵx and γ1 =

||M̃1||F = bk

Proof. First, from the definition of Mk, it obtains

M̃k =

[
˜̄fx(k)

˜̄Fx(k)

0nf×n 0nf

]
(40)

From this equation, we have

||M̃k||F ≤
√
Tr( ˜̄fTx(k)

˜̄fx(k) +
˜̄FT
x(k)

˜̄Fx(k)) = bk

Since ˜̄Mh:k = M̄kM̄h:k−1 − ˆ̄Mk
ˆ̄Mh:k−1,

|| ˜̄Mh:k||F = ||M̄k
˜̄Mh:k−1 +

˜̄Mk
ˆ̄Mh:k−1||F

≤ ||M̄k||F || ˜̄Mh:k−1||F + || ˜̄Mk||F || ˆ̄Mh:k−1||F
(41)

where ||M̄k||F ≤ || ˆ̄Mk||F + || ˜̄Mk||F .
Then, we have

|| ˜̄Mh:k||F ≤ γk = (|| ˆ̄Mk||F + bk)γk−1 + bk|| ˆ̄Mh:k−1||F
(42)

The following part is proposed to clarify the condition
of singular-value of Φ̂h(k), whose related column vector in
WΦ̂h(k)

is the possible null space of Φ̂′
h(k).

Theorem 3. The singular-value of Φ̂h(k), corresponding to

||ZT
Φ′

h(k)
W j

Φ̂h(k)
|| ≥ ϵa

lies in the set that

Λj

Φ̂h(k)
≤ 1

ϵa

√
γkN (43)

where ZΦ′
h(k)

denotes the null space of the column space of
Φ′

h(k) as ZΦ′
h(k)

= null(Φ′
h(k)) and ϵa is a positive scalar.

Here, ||ZT
Φ′

h(k)
W j

Φ̂h(k)
|| indicates that the projection of the

j-th column vector of WΦ̂h(k)
on the null space of Φ′

h(k) is
larger than ϵa.

Proof. First, from (37) , and (38), we have

ZT
Φ′

h(k)
Φ̂h(k) = ZT

Φ′
h(k)

˜̄Mh:kTĤk
, (44)

By performing SVD on Φ̂h(k), we have Φ̂h(k) =
WΦ̂h(k)

ΛΦ̂h(k)
V T
Φ̂h(k)

. Thus, from (44), we have

Tr(ΛT
Φ̂h(k)

WT
Φ̂h(k)

ZΦ′
h(k)

ZT
Φ′

h(k)
WΦ̂h(k)

ΛΦ̂h(k)
)

=Tr(TT
Ĥk

˜̄MT
h:kZΦ′

h(k)
ZT
Φ′

h(k)

˜̄Mh:kTĤk
) (45)

where r̂ok = r̂k/||r̂k|| is a unit vector. Since pΦ̂h(k)
= V T

Φ̂h(k)
r̂ok

is a unit vector, the left hand side of this equation satisfies

Tr(ΛT
Φ̂h(k)

WT
Φ̂h(k)

ZΦ′
h(k)

ZT
Φ′

h(k)
WΦ̂h(k)

ΛΦ̂h(k)
)

≤Tr(ΛT
Φ̂h(k)

ΛΦ̂h(k)
WT

Φ̂h(k)
ZΦ′

h(k)
ZT
Φ′

h(k)
WΦ̂h(k)

) (46)

Each column vector in ZΦ′
h(k)

and WΦ̂h(k)
can be

represented as ZΦ′
h(k)

= [n1, ..., njs ] and WΦ̂h(k)
=

[W 1
Φ̂h(k)

, ...,WN
Φ̂h(k)

], it is clear that j-th diagonal element of

matrix ΛT
Φ̂h(k)

WT
Φ̂h(k)

ZΦ′
h(k)

ZT
Φ′

h(k)
WΦ̂h(k)

ΛΦ̂h(k)
can be cal-

culated as ((W jT

Φ̂h(k)
n1)

2 + · · · + (W jT

Φ̂h(k)
njs)

2)Λj2

Φ̂h(k)
where

Λj

Φ̂h(k)
represents the j-th diagonal element in ΛΦ̂h(k)

. Here,

value of (W jT

Φ̂h(k)
n1)

2 + · · · + (W jT

Φ̂h(k)
njs)

2 evaluates the

relation between column vector W j

Φ̂h(k)
and null space of

Φ̂h(k). When (W jT

Φ̂h(k)
n1)

2 + · · · + (W jT

Φ̂h(k)
njs)

2 = 0,

it represents that W j

Φ̂h(k)
is completely not in the null

space of Φ′
h(i) and Λj

Φ̂h(k)
have no effects on the value of

Tr(ΛT
Φ̂h(k)

ΛΦ̂h(k)
WT

Φ̂h(k)
ZΦ′

h(k)
ZT
Φ′

h(k)
WΦ̂h(k)

).
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Moreover, for the left hand side of (45), we have

Tr(TT
Ĥk

˜̄MT
h:kZΦ′

h(k)
ZT
Φ′

h(k)

˜̄Mh:kTĤk
)

≤ Tr(TĤk
TT
Ĥk

˜̄MT
h:kZΦ′

h(k)
ZT
Φ′

h(k)

˜̄Mh:k)

≤ || ˜̄Mh:k||2FN2 = γkN
2 (47)

Therefore, the right-hand side of(45) satisfies

Tr(ΛT
Φ̂h(k)

WT
Φ̂h(k)

ZΦ′
h(k)

ZT
Φ′

h(k)
WΦ̂h(k)

ΛΦ̂h(k)
)

≤ γkN
2 (48)

which indicates that∑
j

Λj2

Φ̂h(k)
[WT

Φ̂h(k)
ZΦ′

h(k)
ZT
Φ′

h(k)
WΦ̂h(k)

]j ≤ γkN
2. (49)

where maximum value of each [WT
Φ̂h(k)

ZΦ′
h(k)

ZT
Φ′

h(k)
WΦ̂h(k)

]j

is one and∑
j

[WT
Φ̂h(k)

ZΦ′
h(k)

ZT
Φ′

h(k)
WΦ̂h(k)

]j ≤ N − 1

.
Here, from (49), when

[WT
Φ̂h(k)

ZΦ′
h(k)

ZT
Φ′

h(k)
WΦ̂h(k)

]j ≥ ϵ2a

we have

Λj

Φ̂h(k)
≤ 1

ϵa

√
γkN.

With the selection of high ϵa ≤ 1, vector W j

Φ̂h(k)
exhibits a

high correlation with the null space of Φ′
h(k).

Here, we utilize data from multiple observations {x̂, û}is ,
where is = 1 : Ξs denotes the multiple samples of data for
one original set of system states and control input pairs {x, u}.
Online measurement can be conducted using different sensors.

From Theorem 3, we select W j,is
Φ̂h(k)

∀j ≤ N corresponding

to Λj,is
Φ̂h(k)

≤ 1
ϵa

√
γkN for constructing subspace T is

Φ̂h(k)
with

each observations. Here, the superscript is denotes that the
matrix is obtained using the data of {x̂, û}is .

Thus, to replace the calculation of null(Φh(k)) in Algorithm
1 to tackle the noises, we select T is

Φ̂h(k)
using

ΓT o
Φ̂h(k)

= ΓT 1
Φ̂h(k)

∩ · · · ∩ ΓT is
Φ̂h(k)

(50)

with calculating

T o
Φ̂h(k)

= null(
[
null(T 1

Φ̂h(k)
)T . . . null(T is

Φ̂h(k)
)T

]
) (51)

where ΓT is
Φ̂h(k)

represents the column vector space of matrix

T 1
Φ̂h(k)

.
The total calculation in noisy case is shown in Algorithm

2.

Algorithm 2 Online implementation(Noise case)
Input: {xi, ui}is , ||q||
Output: sh

Initialization :
1: Compute His

h and Φis
h(h) using {x, u}is and reconstruct

T 1
Φ̂h(k)

, . . . , T is
Φ̂h(k)

.
2: Initialize matrix Ωs = T o

Φ̂h(h)
following (51) which

represents the intersection of possible-solution spaces.
LOOP Process

3: for i = h+ 1 to K do
4: if ūi ∈ int(U) then
5: if ūi−1 /∈ int(U) then
6: Calculate T o

Φ̂h(i)
and reinitialize Ωs = T o

Φ̂h(i)

7: Continue.
8: end if
9: Calculate T o

Φ̂h(i)
, null(T o

Φ̂h(i)
) and null(Ωs).

10: Calculate ΓΩs
∩ ΓT o

Φ̂h(i)

by constructing the matrix

Yh(i) = [null(T o
Φ̂h(i)

)T ,null(Ωs)
T
]T and compute the

null space of Yh(i). Here, ΓΩs
denotes the vector

space of Ωs.
11: if rank(Yh(i)) < N − 1 then
12: Update Ωs = null(Yh(i))
13: end if
14: if (rank(Yh(i)) = N − 1) then
15: Ωs is decreased to a vector with Ωs = null(Yh(i)).
16: Get the unique solution following (19).
17: end if
18: end if
19: end for
20: return sh

3) Calculation with Control Constraints: When there exist
control constraints and noise in data, we replace the calculation
procedure for the control constraints with

ΓΩh:i
= ΓΩh:i−1

∩ ΓT o
Φ̂h()

, ūi ∈ int(U) & ūi−1 ∈ int(U),
Reinitialize ΓΩh:i

, ūi ∈ int(U) & ūi−1 /∈ int(U),
Skip the Step, Otherwise.

(52)

where ūi represents the mean value of the control input of the
multiple data series {x, u}is .

V. SIMULATION EXAMPLES

We perform several simulations in different cases to verify
the effectiveness of our method.

To ensure the reproducibility of the calculation process, we
reinitialize a new IOC calculation cycle in all simulations after
obtaining a result in step i. This also allows us to verify the
performance of the algorithm under different initial conditions,
as the initial state at the start of each new calculation cycle of
SIOC will be different from the previous one.
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A. Simulation 1: Comparison with [16]
This section illustrates our method with simulation in the

settings of nonlinear system. The system dynamics are

xk+1 = f(xk) +Buk, (53)

where xk ∈ R3, uk ∈ R2, f(xk) ∈ R3×1, and B ∈ R3×2. We
select f(xk) and B as

f(xk) =

sin(x1k)sin(x2k)
sin(x3k)

 , B =

 1 0
0 1
0.5 −0.5


where xjk denotes the j-th element in vector xk. The initial
value of xk, denoted as x0, is selected as [0.38,−0.02, 0.19]T .

The cost function selected in the simulations is

V (x, t) =

∞∑
k=0

1

2
(xTkQxxk + uTkQuuk), (54)

where Qx is a diagonal matrix with its diagonal elements as
vector qx = [0.0006, 0.0002, 0.002]T , and Qu is also a diag-
onal matrix with its diagonal elements as vector qu = [1, 1]T .
Here, we suppose that the norm of vector q = [qTx , q

T
u ]

T

selected as 1.4142 is known prior.
Here, the diagonal matrix ∂f(xk)

xk
with cos(xik)∀1 ≤ i ≤ 3

on its diagonal position satisfies the invertible assumption.
We recover the cost weights in (56) and compared the

simulation results with the results of [16] according to two
aspects: the number of time steps required to recover the cost
weight vectors in each cycle (Figs. 1 and 2) and the recovery
error of the cost weights (Figs. 3 and 4).

Figure 1. Steps performed in our method for simulation 1 are shown here.
The orange line shows the variation of the dimension of the possible-solution
space during the IOC cycles. When the dimension decreases to one, it indicates
that the cost weights vector has been successfully calculated, and a new IOC
cycle starts. The blue cycles show the total number of steps taken in one IOC
cycle.

Figure 2. Steps performed in method of [16] for simulation 1 are shown here.
The meaning of the lines is the same as in Fig. 1.

Figure 3. Recovery errors of simulation 1 by our method are shown here.
The blue circles represent the recovery error in each IOC cycle.

Figure 4. Recovery errors of simulation 1 by [16] are shown here. The
meaning of the lines is the same as in Fig. 3.

Fig. 1 shows the result of the step performed in our method,
while Fig. 2 shows the result in [16]. The horizontal axes in
both figures represent the total steps during the simulations.
The dotted blue line is the end of each cycle while its height
related to the left vertical axis is the number of steps spent in
each IOC cycle. The red lines in these two figures represent the
dimension variation of the intersection of the possible-solution
spaces whose value relates to the right vertical axis.

The result in Fig. 1 shows that the dimension of ΓΩh:i

decreases in every step in each calculation cycle and that the
maximum number of steps in one cycle is 1. Compared with
our result, the dimension of the possible-solution spaces in
[16], does not decrease continually. As a result, the number
of steps of one cycle for [16] in Fig. 2 is always larger than
that in our method.

Figs. 3 and 4 show the recovery error of both methods cal-
culated by e = ||q̂− q|| where q̂ denotes the estimation vector
of q. From these two figures, it is clear that the estimation
error of our method is minor. Therefore, our proposed method
can effectively improve the calculation speed while preserving
the recovery accuracy of IOC.

B. Simulation 2: When Jacobian is not invertible
In simulation 2,

xk+1 = Axk +Buk, (55)

where A and B are selected as A =

 0.9 1.8 0
0.13 0.26 0
0.38 0.76 1

,B =0.0284 0.0142
0.0020 0.0010
0.0056 −0.0028

.
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Here, the system matrix, A, does not satisfy the Jacobian’s
invertibility assumption, but it satisfies the Jacobian’s positiv-
ity assumption. In this case, [16] cannot be applied. The cost
function selected in the simulation is

V (x, t) =

∞∑
k=0

1

2
(xTkQxxk + uTkQuuk), (56)

where Qx is a diagonal matrix with its diagonal elements as
vector qx = [1, 4, 2]T , and Qu is a diagonal matrix with its
diagonal elements as vector qu = [3, 1]T . Here, we suppose
that the norm of vector q = [1, 4, 2, 3, 1]T selected as 5.5678
is known prior.

Moreover, the control-constraint problem is also considered:
U ≜ {uki ≥ −0.2 ∀i} where uki denotes the i-th element of
uk

Figure 5. Steps performed in our method for simulation 2 are shown here.
The meaning of the lines is the same as in Fig. 1.

Figure 6. Recovery errors of simulation 2 by our method are shown here.
The meaning of the lines is the same as in Fig. 3.

Figure 7. Comparison of original trajectories (system states and control
inputs) with the trajectories using recovered cost weights

Fig. 5 shows the calculation steps in every cycle, which
is 1. Here, similarly to the result obtained in simulation 1,

the variation in the dimension of the possible-solution spaces
verifies Theorem 1, and the variation in the dimension of
the possible-solution spaces after the activation of the control
constraints shows that the proposed algorithm is effective for
handling the control constraint problem.

Fig. 6 shows the estimation error in this simulation. Even
when A is rank deficient and control constraints exist, the
errors in all cycles are still extremely small, which shows that
the proposed method can effectively recover the required cost
weights with considerable accuracy.

Fig. 7 shows a comparison between the original trajecto-
ries of system states and control inputs and the trajectories
generated using the recovered cost weights. The red and blue
lines in the figure are identical, indicating that the recovered
cost weights can be used to replicate the original optimal
trajectories. This demonstrates the potential of our method to
be further applied in demonstration tasks.

C. Simulation 3: Verification of SIOC under different condi-
tions

In Simulation 3, we conducted a comprehensive evaluation
of the proposed SIOC method under different initial condi-
tions and system dynamics. Specifically, we simulated 1000
different linear systems with randomly generated initial states
(x0) and system matrices (A and B). All system settings A
and B used in our simulations were randomly generated using
the MATLAB function rand(3, 3) for A and rand(3, 2) for
B and the initial states were generated using 10× rand(3, 1).
For each system, we applied the SIOC method and evaluated
its performance in recovering the cost weights. Fig. 8 shows
the recovery errors of the SIOC method performed with
1000 different system dynamics and initial states. The results
demonstrate that the recovery errors are consistently very small
(average error of 4.0312×10−15), indicating the effectiveness
of our method.

Figure 8. Verification of SIOC under different conditions (1000 different
system dynamics and initial conditions)

D. Simulation 4: When there exists noise

Due to the decaying property of the state sequence and the
stationary property of the measurement noise, the signal-to-
noise ratio (SNR) is defined as
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SNR = 10log

Tr[cov(

[
xtF
utF

]
)]

Tr[cov(

[
x̃tF
ũtF

]
)]

(57)

where tF represents the time index at which the IOC cal-
culation is terminated. To verify the effectiveness of our
method, we performed simulations at several noise levels. In
simulations at each noise level, we performed simulation 100
times with different system dynamics. Here, we performed
simulations on linear systems with A ∈ R3×3 and B ∈ R3×2

randomly selected using matlab function rand(). The initial
state is randomly selected, and noises at different SNRs are
generated following the standard Gaussian distribution.

Fig. 9 shows the comparison results between our method
and that in [16] with SNR = values of 20,65,94,191 and
238 respectively. There are 100 results in comparison study of
each SNR’s settings. In the simulations, the estimation error
is evaluated by relative-estimation error, defined as ||ŝh−sh||

||sh|| .

Figure 9. Comparison of our method (blue points) with the method in [16]
(red points) under noisy conditions. (1) SNR=20,65,94,191,238 (2) There are
100 simulation samples in each selection of SNR

From Fig. 9, it is clear that in our method, the relative-
estimation errors decrease along with the increase in the SNR,
indicating that this noise-tackling method can be utilized in
the noise-free case. Moreover, a comparative study with the
method in [16], revealed that our SIOC method considering
noises is more robust in each setting of SNR.

Therefore, from simulations 1 and 2, it is verified that the
proposed method can solve the online IOC problem even for
the systems that are not applicable in [16]. Our method effec-
tively improves the calculation speed of IOC. From simulation
4, it is evident that the proposed method can effectively tackle
the noise problem, which is not considered in the previous
online IOC study.

VI. DISCUSSION

A. Computation Complexity

The computational complexity of our method in one step is
O(3(n + nf )

3 + (n + nf )n
′2 + (n + nf )(n + nf + n′)2) in

the noise-free case, where n′ is the dimension of the possible-
solution space and it decreases as the step number increases.
The computational complexity of our method does not contain
horizon K, it is typically less than that in [15], wherein

the horizon K was contained in the computation-complexity
calculation. Conversely, the computational complexity of [16]
is O((n+ nf )

3 +m(n+ nf )
2) in one step.

Figure 10. Calculation time in one step under different conditions (1000
different system dynamics and initial conditions): our method versus previous
method [16]

We conducted simulations using 1000 different system
settings and initial states, and compared the calculation time
of our method with that of the previous method. The results,
presented in Fig. 10, show that while our method has a slightly
longer calculation time in one step than the previous method
[16] on average, it is more stable, with less variability in the
calculation time across the different system settings and initial
states. Notably, our method requires fewer computational
steps, and therefore, the choice of the method with lower total
computational complexity may depend on the specific case.

B. Importance of the sequential calculation of the IOC method

This paper proposed a sequential inverse optimal control
IOC method that derives the conditions of the possible-solution
space and tackling method for noisy data.

The first advantage of SIOC is that it saves computational
time. This is a significant advantage for programs that require
real time computing.

Secondly, there is no assurance that the cost weights will
remain constant across all the previously well-selected feature
functions while studying the complex dynamic movements.
In [31], the authors suggested a method for calculating the
multiphase cost weights based on window shifts, and when
using this method to study complex motions, the length of the
window must be minimized to recover the cost weight with
multiphase changes in high precision. In this case, our SIOC
method can be used to reduce the length of the window.

Additionally, the high calculation speed of the SIOC strat-
egy helps to lessen the impact of noise. Notably, achieving
noise reduction in the analysis of the observations from dif-
ferent steps is challenging, and this process must be completed
for the calculation of each different IOC method. The impact
of noise increases with the accumulated data step by step. The
method proposed introduces a calculation method for the IOC
with a minimum number of steps, and this high calculation
speed helps to reduce the effect of noisy data on the final
cost-weight estimates.
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C. Future Work

Although the problem of sequential IOC has been solved in
this study considering the calculation speed and noisy data, the
algorithm still requires improvement in the following areas.

(1) It is possible to further improve the noisy-tackling ability
in the sequential IOC method. Since this method has a high
convergence speed, we can start an IOC calculation cycle
at each step and obtain time-series groups of solutions. By
theoretically analyzing the result in each calculation cycle and
considering the effect of the multiphase cost weight, it may
be possible to further enhance the precision of the estimation
result. We will also address the matter of special system
dynamics in real-world application examples where the system
states exhibit insensitivity to changes in cost weights. This
insensitivity magnifies the effect of noise on the accuracy of
the IOC calculation in noisy scenarios.

(2) It is also required to discuss the selection of the feature
function. To analyze the complex nature behavior, the selection
of the feature function will highly affect the approximation re-
sults. Additionally, the aforementioned problem of multiphase
cost weights is highly related to the selection of the feature
function.

(3) In addition, while the SIOC method proposed in this
study solves the online recovery of the cost function, further
investigation could be undertaken to develop effective and
efficient algorithms for online tuning of the control input,
especially crucial in control problems where minimizing a
specific cost function is challenging or selecting suitable cost
weights poses difficulties.

VII. CONCLUSION

A sequential method for discrete-time IOC is presented in
this paper to realize the online estimation of cost weights for
either finite or infinite horizon optimal control in cases with
significant data noise. This method calculates the possible-
solution space of the IOC and sequentially calculates the
intersection of all solution spaces in each step. The conditions
for the decrease in dimension of the intersection space in the
noise-free case are clarified first. When the dimension of the
possible-solution space decreases to one, the remaining vector
in the intersection space is the required solution of the cost
weight of the IOC. In the noise case, an adjusted calculation of
the possible-solution space is proposed based on the analysis
of the noise effect. Finally, simulation results illustrate that the
sequential IOC algorithm is effective, has a high convergence
speed, and can sequentially tackle the problem of noisy data.
More theoretical studies on the influences of the feature
function selection on the solution spaces should be conducted
for practical applications.
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VIII. APPENDIX
PROOF OF THEOREM 1

Proof. If ΓΩh:i−1
⊆ ΓΦh(i)

, we have null(ΓΩh:i−1
) ⊇

null(ΓΦh(i)
), indicating that a full rank matrix ξ =[

ξh . . . ξj . . . ξi−1

]
∈ RNz(i)×

∑i
j=h Nz(j) , exists, which

satisfies the equation below, where Nz(j) ∀h ≤ j ≤ i denotes
the dimension of the null space of ΓΦh(j)

.

ξΩ̄h:i−1 = null(Φh(i))
T (58)

where Ω̄h:i−1 =


null(Φh(h))

T

null(Φh(h+1))
T

...
null(Φh(i−1))

T


It also means that

ξΩ̄h:i−1Φh(i) = 0Nz(i)×Np(i) (59)

where Np(i) ≤ N is the dimension of the vector space of
Φh(i). 0Nz(i)×Np(i) ∈ RNz(i)×Np(i) represents the zero matrix.
Row vector space of ξΩ̄h:i−1 is an orthogonal complement to
the column vector space of Φh(i).

Here, under Assumption 1 (A) and from the definition of
M̄h:j , we know that M̄h:j ∀h ≤ j ≤ i − 1 is invertible, it
obtains

HjM̄
−1
h:jΦh(j) = 0Nz(i)×Np(i),

Since Φh(j) = M̄h:jΘj and row vector space of Hj is the
orthogonal complement vector space of Θj , it can get that
column vector space of matrix M̄−T

h:j H
T
j is the null space of

column vector space of Φh(j). (59) can be satisfied if and only
if there exists a nonzero matrix ξo satisfies

ξoΩ̄
′
h:i−1Θi = 0Nz(i)×Np(i), (60)

where

Ω̄′
h:i−1 =


HhM̄h+1:i

...
HjM̄j+1:i

...
Hi−1Mi


and

ξoΩ̄
′
h:i−1 = ξΩ̄h:i−1M̄h+1:i.

Since M̄h+1:i is full rank, we have

rank(ξoΩ̄
′
h:i−1) = rank(ξΩ̄h:i−1M̄h+1:i) = rank(ξΩ̄h:i−1)

rank(Θi) = rank(Φh(i))

Due to that ξΩ̄h:i−1 is an orthogonal complement to the
column vector space of Φh(i) that

rank(ξΩ̄h:i−1) + rank(Φh(i)) = N,

we have

rank(ξoΩ̄
′
h:i−1) + rank(Θi) = N. (61)

From (61) and (60), it is known that the row vector space of
ξoΩ̄

′
h:i−1 is an orthogonal complement to the vector space of

Θi, meaning that matrix ξs, exists, which satisfies

[
ξs Ii

]


HhM̄h+1:i

...
HjM̄j+1:i

...
Hi−1Mi

Hi


= 0Nz(i)×N (62)

where Ii ∈ RNz(i)×Nz(i) is a unit matrix.
(62) also means that dimension of the null space of the

column vector space of



HhM̄h+1:i

...
HjM̄j+1:i

...
Hi−1Mi

Hi


should be at least Nz(i).

Here, Hi can be represented as

Hi =

[
H(i)1 H(i)2

H(i)3 H(i)4

]
=

[
f̄Tu(i−1)f̄

T
x(i) F̄T

u(i−1) + f̄Tu(i−1)F̄
T
x(i)

f̄Tu(i) F̄T
u(i)

]
(63)

and from the definition of Hj and M̄j+1:i, HjM̄j+1:i ∀h ≤
j ≤ i− 1 can be represented as

HjM̄j+1:i =

[
H(j)1 H(j)2

H(j)3 H(j)4

]
(64)

where

H(j)1 = f̄Tu(j−1)f̄
T
x(j) . . . f̄

T
x(i)

H(j)2 =F̄T
u(j−1) +

i∑
l=j

(f̄Tu(l̄)

l−1∏
l̄=j−1

f̄Tx(l̄−1))F̄
T
x(l)

H(j)3 = f̄Tu(j)f̄
T
x(j+1) . . . f̄

T
x(i)

H(j)4 = F̄T
u(j) +

i∑
l=j+1

(f̄Tu(l̄)

l−1∏
l̄=j

f̄Tx(l̄−1))F̄
T
x(l)

From the structure of Hi, Hi−1Mi, . . . ,HhM̄h+1:i, it is
known that H(i)1 = H(i−1)3,H(i)2 = H(i−1)4 and for any
j > h, we always have H(j)1 = H(j−1)3,H(j)2 = H(j−1)4.
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(62) can be satisfied if and only if there exist a matrix ξ̄
that can satisfy the equation below.[

ξ̄ Ii
]
H̄h:i = 0Nz(i)×Np(i) (65)

where H̄h:i =



H(h)3 H(h)4

...
...

H(j)3 H(j)4

...
...

H(i−1)3 H(i−1)4

H(i)3 H(i)4


and

[
ξ̄ Ii

]
=

[
ξ̄h . . . ξ̄j . . . ξ̄i−1 Ii

]
. It is also known that dimen-

sion of null space of column vectors in H̄h:i should be at least
Ns(i).

Here, right hand side of H̄h:i can be rewritten as one form
as 

H(h)4

...
H(j)4

...
H(i−1)4

H(i)4


= H̄uh:i

H̄xh:i

where

H̄uh:i
=



F̄T
u(h) f̄T

u(h̄) . . . . . . . . . f̄T
u(h)

∏i−1
l̄=h

f̄T
x( ¯l−1)

...
...

. . .
...

...
...

F̄T
u(j) 0 . . . f̄T

u(j) . . . f̄T
u(j̄)

∏i−1
l̄=j

f̄T
x( ¯l−1)

...
...

...
...

. . .
...

F̄T
u(i−1) 0 . . . 0 . . . f̄T

u( ¯i−1)

F̄T
u(i) 0 . . . 0 . . . 0



and H̄xh:i
=



I
F̄T
x(h)

...
F̄T
x(j)

...
F̄T
x(i−1)


. From (65), it is known that (65)

can be satisfied only if
[
ξ̄ I

]
H̄uh:i

H̄xh:i
= 0Nz(i)×n.

Here, since H̄uh:i
H̄xh:i

=


...
...

F̄T
u(i)

 is not a zero ma-

trix,
[
ξ̄ I

]
H̄uh:i

H̄xh:i
= 0Nz(i)×n only happens when[

ξ̄ I
]
H̄uh:i

= 0.
Based on the derivation above, it is known that
(a)When f̄u(j) ∀h ≤ j ≤ i− 1 are all full rank that

Dim(f̄Tu(j)) = m ∀h ≤ j ≤ i− 1

where Dim(:) represents the dimension of the column vector
space of the matrix, and F̄u(i) is full rank. From the structure
of matrix H̄uh:i

, H̄uh:i
is also full rank, indicating that there

exist no ξ̄ make
[
ξ̄ I

]
H̄uh:i

= 0Nz(i)×(n−h+1+m). Finally,
it is indicating that ξs let (62) is not satisfied and ξ let (58) is
not satisfied. Therefore,

ΓΩh:i−1
⊈ ΓΦh(i)

in this case.
(b) When Dim(f̄Tu(j)) < m ∀h ≤ j ≤ i − 1 and F̄u(i)

is full rank, from the structure of matrix H̄uh:i
, dimension of

null space of column vector space of H̄uh:i
satisfies

Dim(null(H̄uh:i
)) =

i−1∑
j=h

Dim(null(f̄Tu(j))) (66)

Since the dimension of the null space of the column vectors
in H̄h:i should be at least Ns(i), when Dim(H̄uh:i

) calculated
in (66) satisfies Dim(H̄uh:i

) < Ns(i), ξ̄ make (65) is not
satisfied. Furthermore, ξs let (62) is not satisfied and ξ let
(58) is not satisfied. Therefore,

ΓΩh:i−1
⊈ ΓΦh(i)

in this case.
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