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Chapter 1

Introduction

The Painlevé equations are second-order differential equations whose only movable singularities are poles.
One of the important characteristics of the Painlevé equations is that they can be derived from the isomon-
odromic deformations of systems of linear differential equations. For example, the Painlevé VI equation
is the isomonodromic deformation equation of a rank two linear system with four regular singularities.

Another way to obtain the Painlevé equations is by using the theory of rational surfaces. The notion
of the spaces of initial conditions for the Painlevé equations was introduced by K. Okamoto [Ok1]. H.
Sakai [Sa] characterized the good compactification of spaces of initial conditions as a certain projective
rational surface and classified them according to some affine root systems. In his framework, the second
order discrete Painlevé equations are the dynamical systems generated by the action of the translation
part of the corresponding affine Weyl group on the family of rational surfaces and the Painlevé equations
appear as a limit of the translation part. Saito-Takebe-Terajima [STT] also characterized the spaces
of initial conditions and classified them. In their framework, the Painlevé equations arise from certain
deformations of rational surfaces.

Moduli spaces of meromorphic connections connect the isomonodromic deformation and the space of
initial conditions. The equations of the isomonodromic deformations can be geometrically understood as
an algebraic vector field on the moduli space of meromorphic connections by Riemann-Hilbert correspon-
dence. In particular, we can regard the moduli space of meromorphic connections as a space of initial
conditions of the equation determined by the isomonodromic deformation. Giving a coordinate on the
moduli space of meromorphic connections leads to giving an explicit description of the higher dimensional
Painlevé equations and characterizing the space of initial conditions for them.

Moduli spaces of meromorphic connections are mainly studied in the case of rank two logarithmic
connections on the projective line. The first purpose in this thesis is to give an example of the moduli
space of logarithmic connections with rank > 3. Specifically, we provide an explicit description of the
moduli space of rank three logarithmic connections over P! with three poles, considering its relation to
the difference Painlevé equation. The second purpose is to give a Darboux coordinate on the moduli
space of logarithmic connections over the curve with higher genus.

1.1 The moduli space of connections and difference Painlevé
equations

First, we consider the higher rank case. The moduli space of parabolic logarithmic connections of rank r
and degree d on the smooth irreducible projective curve C' with n distinct points has dimension 2r%(g —
1) + nr(r — 1) + 2. In particular, the moduli space has the even dimension. The dimension of the moduli
space is two if and only if (g,n,r) = (0,4,2),(0,3,3),(1,n,1). So we focus on the case (g,n,r) = (0, 3, 3).

Rank three logarithmic connections over P! with three poles do not admit nontrivial isomonodromic
deformations. However it is known that discrete deformations of those connections give rise to the
difference Painlevé equation associated to A(Ql)*—surfaces. Here an Aél)*—surface is a surface with a unique
effective anti-canonical divisor and is obtained by blowing up P2? at three points on each three lines
meeting in a single point, i.e. blowing up at nine points in total. So the moduli spaces of rank three
logarithmic connections over P! with three poles can be identified with the spaces of initial conditions
of the difference Painlevé equation, i.e. Aél)*—surfaces. D. Arinkin and A. Borodin [AB] proved that
the moduli space of a certain type of difference connections over P! for generic parameters, which is a
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geometric interpretation of difference equations, is isomorphic to the surface obtained by removing the
effective anti-canonical divisor from an Agl)*—surface. They pointed out that the moduli space of the type
of difference connections is isomorphic to the moduli space of rank three logarithmic connections over P!
with three poles by the Mellin transform. P. Boalch [Bo] considered the relation between Aél)*—surfaces
and the moduli spaces of logarithmic connections from the perspective of quiver variety and symmetry.
The moduli space of rank 3 logarithmic connections on the trivial bundle over P! with 3 poles is identified
with the Kronheimer’s FEs-type ALE space, which is obtained by blowing up P? at 6 points on the smooth
locus of a cuspidal cubic. Boalch explained how to obtain an Aél)*—surface from the Kronheimer’s Fg-
type ALE space, that is, how to pratially compactify the moduli space of logarithmic connections on the
trivial bundle to get the full moduli space of logarithmic connections of degree zero. On the other hand,
they did not explicitly mention the correspondence between each logarithmic connection and the points
on an Agl)*—surface. A. Dzhamay and T. Takenawa [DT] provided a coordinate on a Zariski open subset
of the moduli space of logarithmic connections by introducing rational parameters of Fuchsian systems
of the spectral type 111,111,111 and described the difference Painlevé equation. To obtain the whole of
the moduli space of parabolic logarithmic connections, we must also consider connections on nontrivial
bundles. In this thesis, we provide normal forms of a-stable rank three parabolic ¢-connections over P!
with three poles by the apparent singularity and its dual parameter (see Section 4.5), and prove that the
moduli space of a-stable rank three parabolic ¢-connections over P! with three poles for arbitrary local
exponents is isomorphic to an Aél)*—surface by using the normal forms.
Put

Ty = {(t1,t2,t3) € (P)? | t; # t; for i # j},
N(vi,v9,v3) = {(vi;) € C? | vio+vin +vig=wv;,1 <i <3},

where v1,v9,v3 € C and vy + vy +v3 € Z. Take t € T3 and v € N(v1,v9,v3). Let M (vy,v0,v3) —
Ts x N(v1,v9,v3) (tesp. M$(vi,v9,v3) — T3 X N(v1,v2,v3)) be the family of moduli spaces of a-
stable v-parabolic connections (resp. ¢-connections), whose fiber M (¢, v) (resp. M (t,v)) at (¢,v) €
T3 x N(v1,v9,v3) is the moduli space of a-stable v-parabolic connections (resp. ¢-connections) over
(P1,t). The existence of M$(v1,va,v3) is proved in [[IS1] and that of M (v, v9,v3) in Chapter 3. Let
S be the family of A(Ql)*—surfaces parametrized by T3 x N(0,0,2) defined in section 4.1.

Theorem 1.1.1. (Theorem 4.1.1) Take o = (a; ;)1<i,j<3 such that 0 < o; ; < 1 for any 1 < 4,5 < 3.

(1) There exists an isomorphism M$(0,0,2) — S over T3 x N'(0,0,2). In particular, for each (¢t,v) €
T5 x N(0,0,2), the fiber M$(¢,v) is isomorphic to an Agl)*—surface )

(2) Let Y be the closed subscheme of M$(0,0,2) defined by the conditions A3¢ = 0. Then Y is reduced
and the natural morphism

M5(0,0,2) — M$(0,0,2)\ Y, (E,V,L)— (E,E,id,V,l,L)

is an isomorphism. Moreover for each (t,v) € T3 x N(0,0,2), the fiber Y(; ., is the anti-canonical
divisor of M$(t,v).

1.2 Moduli spaces of parabolic bundles and parabolic connec-
tions

Second, we consider the higher genus case. Let C be an irreducible smooth projective curve of genus g
over the field of complex numbers C, and let t = {t1,...,%,} be a set of n distinct points on C. Let



M®*(v, (L, VL)) be the moduli space of rank two a-stable v-parabolic logarithmic connections over (C, t)
with fixed determinant (L, V). The moduli space of parabolic connections has the canonical symplectic
structure, and providing a Darboux coordinate of such a moduli space is important from the viewpoint
of the isomonodromic deformation. There are two main approaches to giving a Darboux coordinate. One
is to use the apparent singularities and their dual parameters. Okamoto [Ok2] described Hamiltonian
systems of the Garnier systems, which are obtained from the isomonodromic deformation of rank 2
connections on P!, by using the apparent singularities and their dual parameters. Iwasaki [Iw] proved
that the moduli space of S Ls-connections on a Riemann surface of any genus can be locally written by the
apparent singularities and their dual parameters as an analytic space and provided Hamiltonian systems
of the equations obtained from the isomonodromic deformation in the case of higher genus, which is a
generalization of Okamoto’s result. Arinkin-Lysenko [AL], Oblezin [Ob], Inaba-Iwasaki-Saito [IIS2] and
Komyo-Saito [KS] give an explicit description of the moduli space of parabolic connections on P! as an
algebraic variety. The other approach is to analyze the apparent singularities and underlying parabolic
bundles. Loray-Saito [LS] provided an explicit description of the moduli space in the case of g = 0 in this
way. Specifically, they proved that a Zariski-open subset of the moduli space of parabolic connections on
P! is isomorphic to a Zariski-open subset of the product of a projective space and the moduli space of
parabolic bundles. Fassarella-Loray [FL] and Fassarella-Loray-Muniz [FLM] investigated the geometry
of the moduli space in the case of ¢ = 1. In this thesis, we describe the Zariski-open subset of the
moduli space M*(v, (L, V)) for a certain parabolic weight « in the case g > 2 by using the apparent
singularities and underlying parabolic bundles, which is a generalization of Loray-Saito’s result.

In order to state the description of the Zariski-open subset of the moduli space precisely, we introduce
some notations. Let v = (v, ])zj)ln be a collection of complex numbers satisfying > -, (v;0+vi,1) = —d.
Let & = {@; 1,2} 1<i<n be a collection of rational numbers such that for all i = 1,...,n, 0 < a;1 <
a;2 < 1. Let (L, V) be a pair of a line bundle on C' with deg L = d and a logarithmic connection V,
over L which has the residue data res;, (V) = v; 0 + 141 for each i. Let M*(v, (L, Vy)) be the moduli
space of rank 2 a-stable v-parabolic connections over (C,t) whose determinant and trace connection are
isomorphic to (L, V). Inaba [In] showed that M*(v, (L, V1)) is a smooth irreducible variety if

g=1ln>2o0rg>2n>1. (1.1)

By elementary transformations, we can change degree d freely. When d = 2g — 1, by the theory of
apparent singularities [SS], we can define the rational map

App: M*(v,(L,Vy)) - — PH(C,L ® Qu(D)).
The map which forgets connections induces a rational map
Bun: M*(v,(L,Vy)) -+ — P*(2,L).

Let Vo and M*(v, (L, V1))° be the open subsets of P*(2,L) and M*(v, (L, V1)), respectively, defined
in Subsection 5.1.1 . From Proposition 5.1.5, we obtain an open immersion Vo — PH(C, L~(-D)).
Let ¥ C PHY(C,L ® Q4(D)) x PHY(C,L~'(—D)) be the incidence variety. Then the following theorem
holds.

Theorem 1.2.1. (Theorem 5.1.6 and Proposition 5.1.11) Under the condition (1.1), assume that d =
291, 2" vio#0and Y i (a;2 — ;1) < 1. Then the map

App x Bun: M*(v,(L,V1))? — (PH°(C,L ® QL(D)) x Vp) \ &
is an isomorphism. Hence, the rational map
App x Bun: M*(v,(L,V1)) --- = |L® Q&(D)| x P*(2,L)
is birational. Moreover, App and Bun are Lagrangian fibrations.

From the above theorem, we wonder whether App x Bun is birational in general. So, we investigate
App x Bun in the case of rank three parabolic logarithmic connections over P! with three poles.

Let (E,l.) be a parabolic bundle and V be a v-logarithmic connection over (E,[,). All Av-logarithmic
A-connections over (E,l,) are of the form AV + ®, where ® is a parabolic Higgs field over (E,l.). So
the space of all isomorphim classes of Av-logarithmic A-connections over (E,l,) is P(CV @ H) and it can
be regarded as a compactification of the space of all v-logarithmic connections over (FE,l.). Here H is



the space of all parabolic Higgs fields over (E,l,). Let P“(3,—2) be the moduli space of rank three w-
stable parabolic bundles with degree —2 over (P!, ¢) and M¥(t,v)% be the moduli space of Av-parabolic
A-connections over (P!, ¢) whose underlying parabolic bundles are w-stable, that is,

Mz (8, v)° :={(\ E,V, L) [ (B, L) € P*(3,=2)} / ~.

Here the w-stability is a special case of the a-stability. Analyzing P*(3,—2), we obtain the following
theorem.

Theorem 1.2.2. (Theorem 5.2.2) Assume that 2/9 < w < 1/3. Then we have

MW (t 1,\0 P! x P! vig+vao+rse#0
MY (t,v)0 = ; ) ,
#(Ev) { P(Opr @ Op1(—2)) vi0+ o0 +v30=0.

Let V; be a Zariski open subset of P¥(3,—2) defined in the Subsection 5.2.3. The following shows
that App X Bun is not birational in general.

Corollary 1.2.3. (Proposition 5.2.5) Assume that 2/9 < w < 1/3 and 14,0+ v20 + V3,0 # 0. Then the
morphism
App x Bun: Bun ' (Vp) — P! x 1

is finite and its generic fiber consists of three points.

1.3 Outline of this paper

Chapter 2 contains a summary of parabolic bundles and parabolic connections.

In Chapter 3, we construct of the moduli space of parabolic ¢-connections. This construction is
essentially due to Inaba-Iwasaki-Saito [IIS1] and Inaba [In].

In Chapter 4, we will prove Theorem 1.1.1. First, we analyze underlying vector bundles of a-stable
parabolic connections under the assumption of Theorem 1.1.1. Second, we define the apparent singularity
of parabolic ¢-connections. We can see that the apparent singularity of parabolic ¢-connections with
rank ¢ = 1 is not uniquely determined. So we consider pairs of a parabolic ¢-connection and a subbundle.
Then the apparent map is defined on moduli space M$(t,v) of such pairs. Third, we define a morphism
@: ]\/4?‘@7 v) — P(Q3.(D(¢)) ® Op1) by using the apparent singularity and its dual parameter. Fourth,
we provide a normal form of parabolic ¢-connections. By using this form we prove the smoothness of
Fg(t, v). Finally we prove Theorem 1.1.1 through ¢ and the normal forms. In appendix, we describe
the moduli space of rank three parabolic Higgs bundles on P! with three poles. We extend the Hitchin
map to a map from the moduli space of v-parabolic ¢-Higgs bundles to a natural compactification of the
Hitchin base, and we determine the singular fibers of the extended Hitchin map when v = 0.

Chapter 5 is divided into two sections. In first section, we study the Zariski-open subset of moduli
spaces of rank two parabolic connections for certain parabolic weights. Firstly, we provide the distin-
guished open subset 1} of the moduli space of parabolic bundles. Secondly, we introduce the apparent
map. The apparent map was defined in general genus and rank by Saito and Szabé [SS]. Thirdly, we
prove the first assertion of Theorem 1.2.1. This proof is based on the proof of Theorem 4.3 in [LS]. We
also give another proof that App x Bun is birational. Finally, we show that App and Bun are Lagrangian
fibrations. Second section is devoted to the case of rank three parabolic logarithmic connections over
P! with three poles. First, we consider the moduli space of w-stable parabolic bundles. We determine
the type of w-stable parabolic bundles and investigate a wall-crossing phenomenon. Second, we show
Theorem 1.2.2 by writing down a v-parabolic connection and a parabolic Higgs field. Moreover, we inves-
tigate the relation between two moduli spaces M&(t,v) and MY (¢,v)°. Finally, we study the morphism
App x Bun.



Chapter 2

General theory

2.1 Parabolic bundles

Let C be an irreducible smooth projective curve over C and ¢ = (¢;)1<i<n be n distinct points of C.

Definition 2.1.1. A quasi-parabolic bundle of rank r and degree d is a pair (E,l. = {l;«}i<i<n)
consisting of the following data:

(1) E is a vector bundle on C of rank r and degree d and,
(2) U« is a filtration E|y, =402 -+ 2 lir—1 2Ly =0

Definition 2.1.2. We say that two quasi-parabolic bundles (E,l.), (E,!.) are isomorphic to each other
if there is an isomorphisms o: E — E’ such that oy, (l; ;) = li;for1<i<mand1<j<r-1

Let o = {OKUH%EZ be a set of rational numbers satisfying 0 < a;1 < -+ < a;, < 1 for each

i=1,...,nand a;; # ay j for (i,7) # (', 5).

Definition 2.1.3. A quasi-parabolic bundle (FE,l,) is said to be a-semistable (resp. a-stable) if for any
nonzero subbundle F' C F, the inequality

deg F+ 3701 375y agg dim((Fle, Nlij—1)/(Fle, Nli ) < deg B+ 370, 30 i
rank F' (resp.<) rank F/

(2.1)

holds.

Let P ¢ (r,d) denote the moduli space of a-semistable quasi-parabolic bundles over (C,t) of rank r
and degree d.

Theorem 2.1.4. (Mehta and Seshadri [Theorem 4.1 [MS]]). The moduli space P ,(r,d) is an irre-

ducible normal projective variety of dimension 7?(g—1) +nr(r —1)/2+1. Moreover, if (E, l.) is a-stable,
then P i (r,d) is smooth at the point corresponding to (£, ).

Let Pic?C be the Picard variety of degree d, which is the set of isomorphism classes of line bundles
of degree d on C. Then we can define the morphism

det: P 4y (d) — Pic’C, (E, L) — det E,
where det E = \" E. For each L € Pic’C, set

P(oé',t)(ra L) = {(E,l*) S P(oé’t)(d) | det £/ ~ L}

2.2 Parabolic \-connections
Put D(t) =t; + -+ +t,. We take v = (Vi7j)é§;§7:71 € C™ and A € C.

Definition 2.2.1. A v-parabolic A-connection of rank r and degree d is a collection (E, V, 1, = {l; « }1<i<n)
consisting of the following data:



(1) E is a vector bundle on C of rank r and degree d,

(2) V: E —» E®QL(D(t)) is a logarithmic A-connection, i.e. V(fs) = s @ Mdf + fV(s) for any
f€0¢,s € E, and

(3) i« is a filtration Ely, =l;0 2 --- 2 l; -1 2 l;» = 0 satisfying (ves;, (V) — v; ;id)(l; ;) C l; j+1 for
1<i<nand0<j<r-—1.

When A =1, a A-connection is a connection. When A = 0, a A-connection is a Higgs bundle.

Proposition 2.2.2. (Fuchs relation) Let (E,V,l.) be a v-parabolic connection of rank r and degree d.
Then we have

n r—1
> vij+ad=0.
i=1 j=0
For a integer d, we put
] n r—1
Nor(d) = S (i)0550 1 €CT [ DD wiy+d=0
i=1 j=0

Let us fix v = (Vi,j)(ljéé‘éz_l S Nmr(d)
Definition 2.2.3. We say that two wv-parabolic A-connections (E,V,l.),(E,V’,1,) are isomorphic to

each other if there is an isomorphisms o: E -~ E’ such that the diagram

E Y E®QL(D(t))

| [

E Y E'®QL(D(t))

is commutative and oy, (l; ;) = l;jj forl<i<nand1<j<r-—1.
Let ¢ = {oz”}}%gf be a set of rational numbers satisfying 0 < a;1 < -+ < a;, < 1 for each
i=1,...,nand a; ; # oy y for (i,7) # (7', §).
Definition 2.2.4. A wv-parabolic A-connection (E,V,l,) is said to be a-stable (resp. a-semistable) if
for any nonzero subbundle F' C E satisfying V(F) C F ® QL(D(t)), the inequality
deg '+ 370, 375y iy dim((Fle, Nl j—1)/(Fle, 0l j)) . degBE+ Dt D1 i
rank F’ (resp. <) rank F/

holds.

Let ]\ng,n be a smooth algebraic scheme which is a smooth covering of the coarse moduli space of

n pointed irreducible smooth projective curves of genus g over C and take a universal family (C,t) =
(C,t1,...,tn) over My .

Theorem 2.2.5. (Theorem 2.1 [In]) There exists a relative fine moduli scheme

S, (B d) — My x Ny i (d)

of a-stable parabolic connections of rank r and degree d, which is smooth and quasi-projective. The fiber

M(‘Z z )(T, v) over (z,v) € ]\Zlg)n X N, »(d) is the moduli space of a-stable v-parabolic connections over

(Cs,t,) whose dimension is 2r2(g — 1) 4+ nr(r — 1) + 2.
2.3 Parabolic ¢-connections

Definition 2.3.1. For v € N, ,.(d), a v-parabolic ¢-connection of rank r and degree d over (C,t) is a
collection (Ey, Ey, ¢, V, 1V = {lg}j}lgi@, 1?2 = {lj(-iz}lgjgn) consisting of the following data:

(1) E; and Ej are vector bundles on C' of rank r and degree d,



(2) l;k*) is a filtration Ej|;

=i o oW =0fork=1,2and i =1,.

s

(3) ¢: By — E5 is a homomorphism such that ¢y, (l(l)) C l( forany 1 <i<nand1<j<r-—1,and
(4) V: Ey = By ® QL(D(t)) is a logarithmic ¢—connect10n, ie. (fs) = ¢(s) @ df + fV(s) for any
f € Oc,s € Ey, and V satisfies that (res;,V — Vi7j¢ti)(l£}j)) C l”+1 for any 1 < i < n and
0<3<r—1.
Consider the case where F1 = Es and ¢ = Aid for A € C. When A\ = 1, the parabolic ¢-connection is
a parabolic A-connection because lgl) = liz) by the condition (3). On the other hand, when A = 0, the
parabolic ¢-connection is not a parabolic Higgs bundle in general.

Definition 2.3.2. We say that two v-parabolic ¢-connections (Ey, Fa, ¢, V, lil), 12 ), (E17 EL, ¢\ V', 1 1 l/(2))
are isomorphic to each other if there are isomorphisms o : F; — E] and o5: Es AR E} such that the
diagrams

B 25 B, B —Y By ® QL(D)
Ull ldz U1i J,‘m@id
E, %, B, B Y B2 QL(D)

commute and (ak)ti(ll(’kj)) = l;(f) fork=1,2,1<i<nand 0<j<r-—1.

Remark 2.3.3. Assume that r = 2. Given a parabolic ¢-connection (El,Eg,¢ v, l(l l(2 ), we obtain
a parabolic ¢-connection in the sense of Definition 2.5 in [IIS1] by forgetting 1Y, However we can not
canonically obtain parabolic ¢-connections in this paper from parabolic ¢-connections in [IIS1]. For
example, let (E,{li}1<i<n) be a rank 2 parabolic bundle over (C, (t1,...,t,)) with the determinant L
and ®: E - E® QL(t1 + -+~ + t,) be a parabolic Higgs bundle of rank 2. Let us fix an isomorphism
0: N2E 5 L. We put By = Ey = FE and 11(1) =1; for 1 <i < n. Take a point t,,11 € C\ {t1,...,tn}.

Let lfllll C Elt,., be a one dimensional subspace and ¥ be the composite

ESEQQL(ti+ - +ty) > E@QL(tL+ - +tn + tngr)-
Then (Ey, E2,0,%, ¢, {IV}1<i<,11) becomes a parabolic ¢-connection in the sense of [IIS1]. However

1(2)1 C Eslt, ., is not uniquely determined by (FEy, E2,0, ¥, ¢, {I}1<icpi1)-

rL+1
Let v be a positive integer. Take a set of rational numbers o = {a(k)}]f<11<2n 1<j<, satisfying 0 <
ozgﬁ) <a(k)<1f0rk;—1 2andi=1,...,n, andagcj #ai,k);, for (i,7) # (¢, 7).

Definition 2.3.4. A v-parabolic ¢-connection (E1, Fs, ¢, v,zS}), lg)) is a-stable (resp. a-semistable) if
for any subbundles Fy C Ey, F C Es, (F1, F») # (0,0) satisfying ¢(F1) C Fy and V(F)) C Fa@Q5(D(¢)),
the inequality
n r 1 1) 2 2
deg Iy + deg Fa(—v) + 21:1 Zj 1 Ej)dg_] (F1) + Zl 1 Z] 1 EJ) Ej)(F2)
rank F + rank F5
_ deg Byt deg Ba(—y) + S0 35y ol i) (By) + S50 305 o)) (Bs)
(resp. <) rank Fy + rank Fo

holds, where d\*)(F) = dim(Fl,, n1{")_,)/(F|;, n1{")) for a subbundle F ¢ By and for k = 1,2.

Take a universal family (C,t) = (C,t1,...,t,) over Mg,n and put D =¢; +---+1t, . Then D is an
effective Cartier divisor which is flat over M, g.n- For simplicity of notation, we use the same character D
to denote the pull back of D by the projection C x N — C, where N := N, .(d). Let % j C Cx My, x N
be the section defined by

My x N Cx My x Ny (2, (r)oZ150 1) & (Vigs @, (k) oS50 1)-

Definition 2.3.5. We define the moduli functor Mg‘ 11 (t,7,d) of the category of locally noetherian
~ g,n

schemes over My , X N to the category of sets by

ME " (,r,d)(S) = {(E1, B2, ¢, V1 19)}/ ~,

C/Nyn

where S is a locally noetherian scheme over Mg’n x N and



(1) E4, Ey are vector bundles on (C x N)g := (C x N) X1, . xar S such that for any geometric point s
of S, rank (E1)s = rank (E3)s = r and deg(F1)s = deg(Fs)s = d,

(2) for each k = 1,2, Ey|,), = A lz(,]?q 2 l;’? = 0 is a filtration by subbundles,

7,,0 -

(3) ¢: By — Es is a homomorphism such that ¢(fi)s(lz(',1j)) C ll(?j) for each k = 1,2, 1 < i < n and
1<53<r—1,

(4) V: By —» Ey ® Q%CX./\/)S/S(DS) is a relative logarithmic ¢-connection such that (res,) ,V —
(Di,j)sqﬁ(gi)s)(l(l)) C lf2]+1 foreach k=1,2,1<i<nand0<j<r—1,

(5) for any geometric point s of S, the parabolic ¢-connection ((E1)s, (E2)s, $s, Vs, (L(kl))s, (h@)s) is
a-stable.

In Chapter 3, we prove the following theorem.

Theorem 2.3.6. (1) There exists a fine moduli scheme M (t,r,d) of M, (t,r,d). If o is

C/Mg,n C/Mgy.n
generic, then Mg‘/M (t,r,d) is projective over ngn x N.
(2) Assume that aglj) = 0452]) =: ;] forany 1 <i<nand1<j<r. Then the set

Uisom 1= {(El,EQ,QS V, Z(l) l )) € Mg‘/M (t,7,d) | ¢ is an isomorphism}

is a Zariski open subset of M C/M (t,r, d) and it is just a moduli space of a’-stable parabolic
connections M"‘/ (t, r,d), where o’ = {a; ; g;éf

2.4 Elementary transformations of parabolic ¢-connections

Let (F4, E2,¢,V, l&l), liz)) be a v-parabolic ¢-connection of rank r and degree d over (C,t). Let us fix
integers 1 <p <nand 0 < g <r. Put E} :=ker(E, — Ek|tp/l,(,12) for k = 1,2. Then Ej, is a locally free
sheaf of rank r and degree d — ¢, ¢ induces a homomorphism ¢’: F; — Ef and V induces a logarithmic
¢-connection V': B — Eb @ QL(D(t)). Put

Iy i#p
(k) . (k . .
ZZ(] T ( Z() )|tp (qﬁj) 1=Dp, OSJ Sr—q
k k . .
é)| (lz()]) T-Q—q/lé#;) Z:p77‘*qg]§7",
Vij i #p
Vij = Vig+i i=p, 0<j<r—q—1

Vigortg+1 i=p, r—q<j<r—1,
where
L(0) 709
0 — By(~t,) = Ep 23 1F) — 0.
Then (Ef, E}, ¢', V', e )) be a v/-parabolic ¢-connection of rank r and degree d — g over (C, t). This

correspondence 1nduces a morphism

t,rd) — MY (£,r,d—q), (E1, B, 6, V, 1019 — (B}, By, ¢/, V', IV 1®)

elmy, o M2, - e/,

C/Mg n

of functors. Here o' is a suitable parabolic weight. Let b, be a morphism of functors defined by tensoring
with (Oc¢(tp), d), ie.

by: MZ, (B d) — ME o (Er dotr), (By Bz, 6, V00, 07) v (B1 B2, 6,V 10, 12)0(0c (1), d).
Then we can see that

by, oelmy ,_40elm, , =id, elm,,o0b,oelm,,_, =id.

So elm,, 4 is an isomorphism. Hence we can freely change degree.



Chapter 3

Construction of the moduli space of
parabolic ¢p-connections

In this chapter we construct the moduli space of parabolic ¢-connections. The construction is based on
[IIS1] and [In]. For propositions and theorems without proofs, please refer to these papers.

3.1 Parabolic A} -triples

Let D be an effective Cartier divisor on C. We define an O¢-bimodule structure on A}D = Oc ®
(Q(D()))Y by

(a,0)f := (fa+ (v.df), fv), fa,v):= (fa, fv)

for a, f € Oc and v € (Q5(D))Y, where (, ): (Q5(D))Y x QL(D) — Oc is the canonical pairing. Let
¢: E1 — FE5 be a homomorphism of vector bundles on C and V: EF; — Es ® Qlc(D) be a ¢-connection.
We define ®: AL ®oy E1 — Es by ®((a,v)®s) = ag(s)+ (v, Vs). Then we can easily see that ® becomes
a left Oc-homomorphism. Conversely, let ®: A}D ®oyx E1 = Ey be a left Oc-homomorphism. We define
a homomorphism ¢: Ey — Es by ¢(s) = ®((1,0) ® s). Let V: E; — Fy ® Q4 (D) be a map satisfying
((0,0)®s) = (v, Vs) for any v € (Q4(D))Y and s € E;. Then V is uniquely determined and V becomes
a ¢-connection. The above correspondence is inverse each other.

Definition 3.1.1. A parabolic AL-triple is a collection (E1, Eq, ®, Fi(E1), Fi(E2)) consisting of the
following data:
(1) E; and E5 are vector bundles on C of rank r and degree d.
(2) F.(Ey) is a filtration Ey, = F1(Ex) D Fo(Ex) D -+ D Fy,(Ex) D Fi,41(Ex) = Ex(—D) for k =1, 2.
(3) ®: AL ®o, F1 — E» is a left Oc-homomorphism.
Remark 3.1.2. A parabolic AL-triple in [IIS1] is a collection (Ey, E2, ®, F.(E;)) consisting of vector
bundles E1, FEs, a left Oc-homomorphism ®: A}j ® E1 — E5 and a filtration F,(F;) of F;. So forgetting

a filtration F,(Es) of a present parabolic AL-triple (E1, Eo, ®, F.(E1), Fi(E3)), we obtain a parabolic
A} -triple (B4, Es, @, F,.(F1)) in their sense.

Definition 3.1.3. A parabolic AL-triple (Ef, B}, @', F.(E), F.(E})) is said to be a parabolic Al-
subtriple of (El,Eg,(I),F*(El)7F*(E2)) if Ei C Fq, Eé C FEs, ' = CI)|A1D®OXE17 Fz(Ei) - Fz(El)
and FZ(Eé) - E(E2)

For each k = 1,2, let %) = {ﬁi(k)}lgiglk be a collection of rational numbers with 0 < Bik) <-e <
M <1,
k

Definition 3.1.4. For a parabolic AL-triple (Ey, Es, ®, F.(E1), Fi(Es)), we put

_deg E1(—D) + deg E>(—D) — ydeg Ox (1)rank Es
- rank F; + rank Ey

:U’,B((ElvE% ¢7F*(E1)7F*(E2))) :

+

S B length Fy(Ey) /Foy (By) + 212, %) length Fi(Ey) [ Fiy o (Es)

rank Fy + rank Fy

10



Definition 3.1.5. A parabolic A},-triple (E1, Eo, ®, F\.(E1), Fi.(E2)) is B-stable if for any nonzero proper
parabolic subtriple (E}, E}, @' F.(E}), Fx(ES)) of (Ey, B2, ®, F.(E1), Fiu(E2)), the inequality

,uﬁ((Eiv Eév (plv F*(Ei)vF*(Eé))) < :uﬁ((Ela E27 (Da F*(El)v F*(EQ)))
holds.

3.2 Properties of the moduli functor

Let S be a connected noetherian scheme and wg: X — S be a smooth projective morphism whose
geometric fibers are irreducible smooth curves of genus g. Let D C X be a relative effective Cartier
divisor for mg.

Definition 3.2.1. We define the moduli functor Mg’/ﬁs(r, d,d; = {dgl)}ggigll,dg = {dl@)}QSiglz) of the
category of locally noetherian schemes over S to the category of sets by

MEE(rd,dy,do)(T) = {(Er, B, @, Fu(Eu), Fu(E2))}/ ~

where T is a locally noetherian scheme over S and

(1) Ey, E5 are vector bundles on X Xxg T such that for any geometric point s of T, rank (E;)s =
rank (E2)s = r and deg(E1)s = deg(F2)s = d,

(2) @: A}:)/S ® Ey — E5 is a homomorphism of left Ox x j7-modules,

(3) For each k = 1,2, Ey, = Fi(Ex) D -+ D F,(Ex) D Fi,+1(Ex) = Ex(—Dr) is a filtration of F; by
coherent subsheaves such that each Ey/F;(Ey) is flat over T and for any geometric point s of T'
and 2 < i < I, length (Ey,/Fi(Ey))s = d™,

(4) for any geometric point s of T', the parabolic A}, -triple ((E1)s, (E2)s, @5, Fu(E1)s, Fu(E2)s) is 8-
stable.

Proposition 3.2.2. The family of geometric points of /\/lg’/%v(r, d,d;,d3) is bounded.

Proposition 3.2.3. Put ,Bl(llzrl = [31(22)“ =1 and 61(@ = ﬂi(i)l—ﬂi(k) fork =1,2and 1 < ¢ <. There exists
an integer mg such that for any geometric point (Ey, Fa, ®, Fi.(E1), Fi(E2)) of ./\/lg’/g(r, d,dy,ds)(K),

the inequality
(1)h0 E (2)h0 E - Iy (1)h0 F (B lo (2)h0 F E .
1 (E1(m)) + 6 (Ey(m—7)) + 21 € (Fia (B1)(m))) + 22521 € (Fit1(E3)(m — 7))
rank Ef + rank E),
_ BB (B(m) + B R (Bay(m — ) + Tk, 1O (Figa () (m) + 302 7D (Figa (Ba) (m — 7))
rank F + rank Es

holds for any proper nonzero parabolic A}, -subtriple (Ef, By, ®, F,(E}), Fi.(EY)) of (B, By, @, F\(E1), Fi.(E3))
and any integer m > mg.

Proposition 3.2.4. Let T be a noetherian scheme over S and (E1, Es, @, F.(E1), Fi.(E3)) be a flat family
of parabolic AlDT /T—triples on X xg T over T. Then there exists an open subscheme T of T such that

T°(K)={se€T(K) | (E1, E2,®,F,(E1), F\(E3)) ® k(s) is B-stable.}

for any algebraically closed field K.

3.3 Construction of the moduli spaces

We introduce a proposition and a lemma.

Proposition 3.3.1. (EGA III (7.7.8), (7.7.9) or [AK] (1.1)) Let f: X — S be a proper morphism of
noetherian schemes, and let I and F' be two coherent Ox-modules with F' flat over S. Then there exist
a coherent Og module H(I, F') and an element h(I, F') of Homx (I, F ®s H(I, F)) which represents the
functor

M +—— Homx (I, F ®os M)
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defined on the category of quasi-coherent Og-modules M, and the formation of the pair commutes with
base change; in other words, the Yoneda map defined by h(I, F')

Yy }IOIIIT(I‘I(I7 F)T, M) — Homy,. (IT, F®og M)
is an isomorphism for every S-scheme T and every quasi-coherent Op-module M.

Lemma 3.3.2. (Lemma 4.3 [Yo]) Let f: X — S be a proper morphism of noetherian schemes and let
¢: I — F be an Ox-homomorphism of coherent Og-modules with F' flat over S. Then there exists a
unique closed subscheme Z of S such that for all morphism ¢g: T'— S, ¢*(¢) = 0 if and only if ¢ factors
through Z.

Let P(m) = rdxm + d+ r(1 — g) where dx = degOx_(1) for s € S. We take an integer my in
Proposition 3.2.3. We may assume that for any m > mq, h*(F;(E1)(m)) = hE(Fj(E2)(m —~)) = 0 for
k>01<i<li+1,1<j<ly+1, and F;(Ey)(mo), F;j(E2)(mo — ) are generated by their global

sections for any geometric point (Eq, Fa, ®, Fi(E1), Fi(E2)) of Mg’g(r, d,d;,d2) by Proposition 3.2.2.

Put n; = P(mg) and ny = P(mg — 7). Let V1, V5 be free Og-modules of rank nj, ng, respectively. Let
QW be the Quot-scheme QUOt\IZ(@OS(me)/X/S and V] ® OXQu) (—mg) — &1 be the universal quotient

sheaf. Let Q?) = Qu0t€2®os(7mo+,y)/x/s and V2 ® OXQ(2> (—mo + v) — &2 be the universal quotient
) a®
sheaf. Put dl(lli_l = dl(:-)u =rn. For k =1,2 and 2 < i <[+ 1, let ng) = Quotgz/x@m/@

F;(Ek) C &k be the universal subsheaf. We define @ as the maximal closed subscheme of

w and
2 X "t XQm Ql(llj_l x Q5 Xge) " Xge Ql(jil
such that there exist filtrations

(£1)Q ® Oxq(=Dq) = Fi,+1(&1)g C F1,(€1)q C -+- C Fa(&1)q C Fi(é1)q = (&1)q

and
(£2)Q ® Oxq(—=Dq) = Fi,11(E2)q C Fi,(E2)q C - -+ C Fa(&2)q C Fi(€2)q = (&2)q-

By Proposition 3.3.1 there exists a coherent sheaf H on ) such that for any noetherian scheme 7" over @
and for any quasi-coherent Op-module F, there exists a functorial isomorphism

HomT(HTa‘F) = HomXT(A%)/S Rox (gl)Tv (SQ)T Qor ]:)

Let V' = SpecSym o, (H), where Sym o, (H) is the symmetric algebra of # on Q. Then the homomor-
phism R
®: Aps ®ox (E)v — (E2)v

corresponding to the natural homomorphism Hy — Oy is the universal homomorphism. Put

s . (Vi)s = HO((£1)s(mo)), (Va)s — HO((E2)s(mo — 7)) are isomor-
i = {s €V ‘ phisms, and ((&£1)s, (Eoz)s,‘i)S,F*(El)S,F*(EQ)s)Ois ,;—stable } :

By Proposition 3.2.4, R® is a open subscheme of V. For y € R* and vector subspaces V/ C V; and
Vy C Vo, let E1(V{,V3,y) be the image of V/ ® Ox(—mp) — (&1)y and E5(V{, V3, y) be the image of
A})/s @V ®@ Ox(—mg) & V5 ® Ox(—mo +7) — (€2)y. Since the family

F= {(E(‘/l/7vv2/7y)17E(‘/1,7‘/2/ay)2) | y e RSaVll C Vlv‘/Ql C Vv2}
is bounded, there exists an integer m; > mg such that for all m > m; and all members (E(V{, V3, y)1, E(V{,V5,y)2) €

F,
Vi @ H*(Ox, (m)) — H*(E(V{, V3, y)1(m + mo))

and

Vi ® H(Ox, (mo+m—v) @ Ap, @ Ox,(=mq)) ® Vs ® H*(Ox, (m)) = H(E(V{,V3,y)2(mo +m — 7))
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are surjective, H*(Ox, (mo +m —7) ® AlDy ® Ox,(—mg)) = 0,H (Ox,(m)) = 0 for i > 0, and the
inequality

1
(v + r;)dx{hO(El(mo)) +hO(By(mo =) = Y eVdl) Z e<2>d§2+>1}

i=1

51
- 2rdx{h°<E1<mo>> 1By (mo 7)) = D el (0 (B4 (mo)) — h°(Fia (Bf)(mo)))

l2
= Y P (1 (B3tmo = 7)) = W(Fya(B5)ma — 1) }
j=1
Iy
m~! (dim Vi +dim ¥ = 3 S Vd, Z P, ) (@imVy + dim V3 - x(Ei(mo) — x(E3(mo ~ 7))
=1
(3.1)

holds for (0,0) & (V{,V3) & (V1)y, (Va)y), where By = E(V{, V3, y)y, and Fiy1(Ey) = B 0 Fip1(Ex)y for
kE=1,2and 1 < i <[,. We note that the left hand side of (3.1) is positive since mg is an integer in
Proposition 3.2.3. The composite

e AlD/S ® Oxpo (—mo) — All_‘)/S ® (&1)Rs = (&2)Rs
induces a homomorphism
Vi @ W1 ® Ogs — (mRs)«(E2(mo + m1 — ¥)gs),

where Wy = (75)«(Ox(mo +m1 — ) ® A}D/S ® Ox(—myp)) and 7rs: Xgs := X xg R® — R® be the
projection, and the quotient Vo ® Ox . (—mo + ) — (€2) g+ induces a homomorphism

Vo ®@ Wa @ Ops — (7Rs)«(E2(mo + m1 — 7)Rrs)
where Wy = (75)+(Ox(m1)). These homomorphism induce a quotient bundle
(V1 QWi Vo® WQ) ® Ops —> (WRS)*(gg(mo +mq — ’}/)Rs). (32)

Taking m; sufficiently large, we obtain the surjectivities of this homomorphism and the canonical homo-
morphism

V1@ Wy ® Ops — (7R )« (E1(mo + m1) ). (3.3)
The canonical homomorphisms
Vi ® Ops — (7Re )« ((€1/Fi(€1))(mo) ), (3.4)

Vo ® Ops — (mRs)«((E2/ Fi(E2))(mo — 7)R:) (3.5)

are surjective. Indeed, set
G1 = ker(V1 ® Oxp. (—mo) — (E1)Rs),

gi“) = ker(V1 @ Oxp. (—mo) = (E1/Fi(&1))Rs)-

Then we obtain a commutative diagram

Vi ® Ope ——— (wps)u(E1(mo)) e ——2— R'mpsw(G1(mo))

I J i

Vi®Ope —— (mpe)+(E1/Fi(E1)(mo)) pe —— R'mper(GL (o))

Since H'(F;(&1)y(mo)) = 0 and Vi = H((&1),(mo)) for any y € R*, the middle homomorphism is
surjective and 6 = 0. So the homomorphism V; ® Ogs — (wgs)«(E1/F;(E1)(mo))rs is surjective. In a
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similar way, we obtain the surjectivity of the homomorphism Vo @ Ogs — (TRs)«(E2/Fi(E2)(mo — ¥)Rs)-
The quotients (3.2), (3.3), (3.4) and (3.5) determine a morphism
ll 12

t: R® — Grass,, (V1 @ W1 & Vo @ Wh) x Grass,, (V1 @ Wa) X H Grassd(1> (V1) x H Grass ;) (Va),

i1
=1 =1

where 71 = hY(E1(mo +m1)y), 72 = hY(Ea(mo + m1 — 7),) for any y € R*. We can see that ¢ is a closed
immersion.

Let G := (GL(V1) xs GL(V2))/(Gy, x S). Here G,,, x S is the subgroup of GL(V1) xg GL(V)
consisting of all scalar matrices. The group G acts canonically on R® and on Grass,, (V1 @ W1 @ V2 ®
W3) x Grass,, (V1 @ Wa) x Hilzl Grass o) (V1) x Hiil Grass y2) (V2). We can see that ¢ is a G-equivariant

i+l i+l
immersion. Let OGraSsTZ(V1®W1@V2®W2)(1)7OGrassrl(Vl@Wg)( ) OGrasa (1)(V1 ( ) OGrasa (2) (Vg)( ) be the
S-ample line bundle on Grass,, (V7 @ Wi @ Vo @ Wa), Grassrl(Vl ® Wg) Grassd<1)(V1) Grassd<2)(V2)
respectively, induced by Pliicker embedding. For ¢ = 01 and j = 1,. lg, we define p051t1ve
rational numbers &, ffl), 5](2) by

& = P(mg) + P(mo — Ze(l)d(l) Ze ]i)l, Ei(l) = QTdelegl), 552) = 2rdeleZ(-2). (3.6)
Put

L:= ((I)GrasST2(V1®VV1EBV2®W2)(5)@)(9(%&55,«1 (V1®W2 ®® OGrass (1> (Vl) ®® OGrass (2) (Vg)(f( )))
=1 Jj=1

Then L is a Q-line bundle on R® and for some positive integer N, L®Y becomes a G -linearized S-ample
line bundle on R®.

Proposition 3.3.3. All points of R® are properly stable with respect to the action of G and the G-
linearized S-ample line bundle L&V,

Proof. Take any geometric point  of R®. Let y be the induced geometric point of S. We prove that x
is a properly stable point of the fiber Rj with respect to the action of GGy and the polarization L®N . So
we may assume that S = Spec K with K an algebraically closed field. We put

(B, By, @, Fu(By), Fu(E2)) = ((E1)a, (€2)ar Py Fu(E1), Ful€2)a))

For simplicity, we write the same character Vi, Vo, W1, W to denote (V1)y, (Va)y, (Wh)y, (Wa),, respec-
tively. Let

T VieWL & Va®@Wa — Na, m: Vi@ Wa — Ny, w1t Vi & NV my 0 Vo = N&

be the quotients of vector spaces corresponding to ¢(x). We will show that ¢(z) is a properly stable point
with respect to the action of G and the linearization of L®Y. Consider the character

X: GL(‘/l) X GL(VQ) — Gm, (gl,gg) — det(gl)det(gg)

Since the natural composite ker x — GL(V1) x GL(V,) — G is an isogeny, by Theorem 2.1 [MFK]
it is sufficient to show that ,uL®N (z,\) > 0 for any nontrivial homomorphism A: G,, — ker x ,where
,uL®N (2, ) is defined in Definition 2.2 [MFK]. Let A: G,, — ker x be a nontrivial homomorphism. For

a suitable basis e§1)7 .. e%ll) (resp. egl), . 6%22)) the action of A on Vi (resp. Va) is represented by

(1) o g e(l) (resp. e( )y g’ 6(2)) (t € Gn),

where ugl) <o < u;ﬂ) (resp. u§2) < - < u%)) Then we have > 1u(l) + 3 1“(2) = 0. Let
fk), ey ng) be a basis of Wy, for each k =1, 2.
For ¢ =0,1,...,n1+ng, we define functions a1 (q), az(q) as follows. First, we set (a1(q),az2(q)) = (0,0)
and put
(1,0) if ugl) < u?)
a1(l),as(1)) = .
( 1( ) 2( )) { (071) ifugl) >u§2)
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We inductively define

(a1(q) + 1,a2(q)) if ul(lll)(q)-‘rl < ufli)(q)—‘,-l’ a1(q) < ny,and as(q) < ng
(a1(g+1),a2(¢+ 1)) = (a1(q), a2(q) +1) if “gll)(q)ﬂ > “gi(q)ﬂ a1(q) < ny,and az(q) < ns

(a1(q) +1,a2(q)) if az(q) = n2

(a1(g),a2(q) +1) ifai(g) =m

Then a;(q) and as(q) are integers satisfying 0 < a1(q) < n1, 0 < ax(q) < no, a1(q) < ai(qg + 1),
az(q) < az2(g+1) and a1(q) + a2(q) = q. We define vy, ..., 0pn,1n, DY

v — { ((111)((]) if (a1(g),a2(q)) = (a1(g — 1) +1,a2(g — 1))
q uffz)(q) if (a1(q),a2(q)) = (a1(q—1),a2(q — 1) +1)

For p=1,...,biny + bang, we can find a unique integer ¢ € {1,...,ny + na} such that

b { (a1(q) = 1)b1 + az(q)bo +j  for some 1 < j < by if (a1(qg), a2(q)) = (a1(g — 1) + 1,a2(q — 1))
a1(q)by + (az(q) — )bz +j  for some 1 < j < by if (a1(q), a2(q)) = (a1(¢ — 1),a2(¢ = 1) + 1)

(2)

For each p, we put s, ' := v, and
el M f = — 1)+ 1,as(q—1
po ) @ ®f; T (@), ax(9) = (a(g = 1) +1,a2(¢ — 1))
P €Dy @ 1P i (a1(a), a2(9) = (aa(g — 1), a2(g — 1) + 1)

Put 8, := (vg+1 — vg)(n1 + n2)~'. Then we have

ni+n2—1
Uni+ny = Z qdq, (3.7
q=1
gzlz) = Z 404 + Z (g —n1 —n2)dy, (3.8)
1<q<ni+n2—1 1<qg<ni+no—1
aj(q)<ny aj(g)=ny
and
ugz) = Z q0q + Z (g —n1 — n2)dy. (3.9)
1<qg<ni+n2—1 1<qg<ni+no—1
ag(q)<ng ag(q)=ngy

Let U(Q) be the Vector subspace of Vi ® W1 @ Vo @ Wy generated by hi,...,hy. Fori=1,... 72, we can
find an integer p ) e {1,...,b1n1 + bana} such that dim ﬂz(Uég)) =4 and dim WQ(U;?Z))_l) =4—1. Then

Zs ) = Zs @ (dlmﬂ'g U(?g)) —dimﬂg(Ulgg)_l)>

b1n1+b2n2
= Y 0 (dim w2 (UP) — dim m(Uﬁl))
p=1
) bini+bang—1 )
= r251(71211+b2n2 o Z (81(1'21 o 81(72)> dim 7T2(U752))
p=1
ni+ns—1 (2)
=T2Vni4n, — Z (Vg1 — vg) dim 7T2(Ublal(q)erzaz(q))
g=1
3.7) ni+nz—1
. . 2
= Z (7"2(] — (n1 + ng) dim WQ(UlSlil(q)+b2a2(q))) 9y
q=1

Forp=(>i—1ba+j(1<i<mg,1<j<by), we put s( ) = u ) and h;, = e(l) f(Q) Let U(l) be the
subspace of V) ® Wy generated by hf, ..., h;,. Fori=1,... 71, we can find an integer pZ ) e {1,...,ban1}
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such that dim 7r1(U((11)>) = ¢ and dim 7r1(U((11)> 1) =14 — 1. Then
p; p; " —

r
25;1(2) = Zs o (dlmm U((l))) dim7r1(U§1)>1))
i=1 ' ‘

anl

= 3 s (aimm (U)) - dimm (US))
p=1

b2n1—1
= rlsgizh - Z (5}(,21 - s(l))dlmw (U(1 )
p=1
77,171
=) = 3 (ufy — ) dimm (U)
1=1
. 1
= rlu;ﬁ) _ Z (Vg+1 — vg) dim Wl(Uc(u%q)bz)
1<g<ni1+na—1
ay(q)<ni
(3.8) . 1
el 3 et XD aemem)d [ = 3T (4 me)ddimm (U,,,)
1<g<ni+nz—1 1<g<ni+nz—1 1<q<ni+na—1
ay(q)<ni aj(gq)=ny aj(gq)<ng
ni+ns—1 )
= Z (rlq — (n1 +n2) dimm(Uél%q)bz)) dq-
qg=1

Let Vp(l) be the subspace of V; generated by e:(ll) ez(,l). Fori=1,...,ly and for j = 1,... ,dgl), let

pflj) be the integer such that dim Wl’i(v((ll))) = j and dim Wl,i(V(}l)) 1) =j— 1. Then
’ Pij Pij—

4o 4o

1 . 1 . 1
Zu a) = Zu((z) (dlm m’i(Vp(O)?) - dlmmﬂ»(Vp((l))l)>

Pij 2%

= Zug) (dim m1,4(V;) = dimm i (V1) )

nyp—1
= dMu® = 3" @) —uV) dim (V)
p=1

= dgl)uglll) - Z (Vg+1 — vg) dim 7-‘-1’i(va(11()‘1))

a1(q)<ni
(3.8) dl(l) Z q0q + Z (g —n1 —n2)dy | — Z (n1 + n2)dy dim W17i(Va(1l()q))
1<g<ni+nz—1 1<g<ni+nz—1 1<g<ni+nz—1
a1(q)<ni ai(g)=ny ai(g)<ni
ni+ns—1
_ (aPa = (1 +nz) dimmy (V) 8o
q=1

Let V(Z) be the subspace of V5, generated by 652), .. (2) Fori=1,...,lp,and for j =1,..., dl(-2), let
pizj) be the integer such that dim s z(V((Q))) = j and dlm o Z(V(@)) 1) =j— 1. Then

d(2) d(2)
. 2 . 2
Zu @ = Zu @ (dlm 7T21(Vp((23)) - dlmﬁg,i(vp(g%_l))

no

= > uf® (dimma, (V) — dimma,i(V,2)))
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n2—1

= dPu? - >, (uz()%zl —uf?)) dimmy ; (V)

p=1
2 2 . 2
=dPul) — Y () - e dimm (V)
az(q)<nz
(8.9) ,(2) 3 5 i (2)
= df Wgt D (gmmi—ma)dy [ = DT (mtn2)d,dimm(V,2),)
1<g<ni+n2—1 1<g<ni+nz—1 1<g<n1+n2—1
ag(q)<ng ag(q)=ng ag(q)<ng
ni+ng—1
( (Q)q_ 77,1 +n2)d1m772 Z(Va(j()q))) 5q.
q=1
So we have
P d®
RN
pE (N = - st m+Z€(”Zu(3>+25”2u(33>
ni+ns—1 1 1 2 Iy 1 1 1
S IR D SELTER SET RN SERE RN
q=1 i=1

2
— (n1 4+ n2) Z@@) dim%‘(z) (Va(f()q)) + (r1 +r2)g

=1
: (1) : (2)
- (TL1 + nz)f (dlm Trl(Ual(‘J)bz) +dim Wg(Ublal(Q)-‘r%a?(Q))) }

Hence x is properly stable point if

I l2
QZ f(l)dl+l medﬁ)l (n1 + n2) Zﬁz‘(l) dim Wl,i(vzz(ll()q)) + (n1 + n2) Zgz@) dim Z(Va(z>2()c1))

i=1 i=1

. 1 . 2
—q€(r1 +r2) + &(ny +ng) (dlmm(Uélzq)bz) + dim 7T2(Ul§1<)11(q)+bza2(q))) >0

forallg=1,...,ny +mo — 1.
(k) (k)

For each ¢ =1,...,n1 + ny — 1, let V}/ be the vector subspace of Vj, generated by e; o Cae) for
k =1,2. We note that
q=dim V] +dim V. (3.10)
(1) _ 2)
Then U, (b, =V ® Wy and Ublal(q)+b2a2(q) Vi@ Wy @ Vy @ Wa. Put

E{ :=1m (V] ® Ox,(-mo) = E1), By :=Im (Ap, @ V{ ® Ox,(~mo) & V3 @ Ox, (~mo +7) = En).
By the choice of my, we have

(U2 @) = H(By(mo +m1 — 7)), m(UL,) = H(E{(mo +my)). (3.11)

brai(q)+bzaz2(q a1(q)bz
Put r{ = rank E},r5 = rank EY. Let m; ; be the composite V}| < Vi = N(k) for k =1,2. Then we have

dim V{ < h%(E}(my)), dimkerm;; < h(Fiy1(Ey)(mo)), dimVy < h°(Ej(my)), dimker o ; < h°(Fj11(Eb)(mg))
(3.12)
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for 1 <i<I for 1 <j<ls. So we obtain

. 1 . 2
= a&(r 7o) +{(m + ) (dlm 1 (Ug{yp,) + lim W2(szl<)zl(q)+b2az<q>))
l1 l2
. 2) .. 2
QZ§(1)dl+1 ZE Q)d]i)l + (n1 +ng) Zfi(l) dim m’i(Va(ll()q)) + (n1 +ng) Z§J( ) dim 7T2,i(Va(2()q))
i=1

j=1
CILL — (dim V] + dim V) (RO (B (o + m1)) + b (Ez(mo +ma — 7))

+ (dim V4 + dim Vo) (RO(E} (mo 4+ my)) + h°(ES(mo +mq — v)))}

l1 ll
— (dimV{ +dim V3) Y Mal + (dim Vi + dim Va) Y eV (dim V{ — dimker ;)
=1 =1

lz l2
— (dim V{ +dim V§) 3~ €@a); + (dim V3 + dim V5) > €8 (dim V5 — dimker 7} )
j=1 j=1
6 151 lo
9 (dim V4 + dim Vy — ST eVdl) =37 PdP )~ (dim V] + dim V§)(2rdxmy + dim V3 + dim V)
i=1 j=1
+ (dim Vi + dim Vo) ((r} + 7”/2)de1 +X(E1(mo)) + x(Ez(mo — 7))}

5

— 2rdxmy (dim V{ + dim V) Z eMdl)) + 2rdxm (dim Vi + dim V5) > el (dim V] — dimker 7} ,)

i=1 i=1

l2
— 2rdxmi (dim V{ + dim V) Z (2)d§il + 2rdxmq (dim V3 + dim V5) Z ¢'?) (dim VJ — dim ker T5.;)

J
j=1 j=1

ll l2
= —2rdxmq(dim V; + dim Vz){ dim V{ + dim Vy — Zegl)(dim V) — dim ker ﬂ"u) — Ze§2) (dim V4 — dim ker Fé,j)
i=1

j=1
151 lo
+ () + rh)dxma(dim Vi + dim Va) (dim Vi +dim Vo — Y eVdl, = 37 ePa?))
i=1 j=1
5
+(dimV; + dimVQ)(dimVl +dim Ve - Y eVdly, - Z @) ]H)
=1
[ @V + G V) + 1B me) + (B Omo - )}
@2, . : 0 0 S0 NS @) o)
> (7"1 + rz)dxml(dlmVl + dlm‘/g){h (El(mo)) + h (Eg(mo - ’Y)) - Zﬁi di+1 - Zej dj+1}
i=1 j=1

— 2rdxmy(dim V; + dim Vg){hO(E{(mo)) + hO(EL(mo — 7))

A P
3 eV (RO(E (mo)) — KO (Fiyr (B (mo))) — 3 e (hO(E(mo — 7)) — hO(Ej1(E5) (mo — v)))}
=1

Jj=1

lo

SCCURSTIE] CRUBRIRIASS SERTAND SE!
=1 =

x (dim V{ + dim V5 — x(E7(mq)) — x(E5(mo —7)))
(3.1)
>0.

Hence z is a properly stable point.
By Proposition 3.3.3, there exists a geometric quotient R*/G.

Theorem 3.3.4. M)?/g(r, d,dy,ds) := R®/G is a coarse moduli scheme of M?’/ﬂs(r, d,dy,ds).
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Lemma 3.3.5. Take any geometric point (F1, Eq, @, Fy(F1), Fi(FE2)) € MX/S(T d,d;,d2)(K). Then
for any endomorphisms f1: E1 — Ei, fa: Es — Es satisfying ® o (1® f1) = foo ®, fi(Fj+1(E1)) C
Fit1(Eh) (1 < j < li) and fo(Fj41(E2)) C Fiq1(E2) (1 < j < ly), there exists ¢ € K such that
(fl,fg) = (C'idEl,C~idE2).

Proposition 3.3.6. Let R be a discrete valuation ring over S with the residue field k¥ = R/m and the
quotient field K. Let (Ey, Eq, @, F.(E1), Fx(E2)) be a semistable parabolic A}jK—triple on Xg. Then

there exists a flat family (E1, s, ®, F,(E}), F.(E3)) of parabolic A}DR—triples on Xpi over R such that
(El, Eg, CD, F*(El), F*(EQ)) = (El,EQ, (I),F*(El),F*(EQ)) ®R K and (El,EQ, (I),F*(El),F*(EQ)) ®R k is
semistable.

Proof of Theorem 2.3.6. Put l; = ly = rn and dz(l) = dz(?) =j—1for2<i<rn+1. Put {5§k)}1gigm =
{a (k)}izﬁﬁ for each k = 1,2. For a parabolic ¢-connection (El,EQ,gb,V,lil),lS?)) over (C,t), we de-
fine a parabolic AL-triple (Ey, E2, ®, F\.(E1), F.(E2)) as follows: Let ®: AL @ By — Es be a left Oc-
homomorphism induced by ¢ and V. For each 1 < p < rn, there exists a unique pair of integers (4, j) such
that 1 <i¢<m,1<j<rand B},l) (1) Then we put Fi(E) := Ey and Fpqq1(E4) := ker(F,(E1) —

Eqly, /l(l)) In a similar way we define Fp(EQ) for 1 < p <rn+ 1. By the definition of the stability we

can see that (Ey, By, ¢, V, 1\, 1?)) is ae-stable if and only if (Ey, By, ®, F,(E1), F,(E»)) is B-stable. The
above correspondence determlnes a morphism of functors

v Mg (t,r,d) — M?X@/M w(rdsdi,ds).

We can see that ¢ is a closed immersion by Lemma 3.3.2. So there exists a closed subscheme Z C R®
such that 3
(t7 r’ d)7

hz = hgs x D.B

M
CxN /g an(T7d7d17d2) C/Mg,n

where hy = HomMg an(f, Z). Z is invariant by the action of G. By Lemma 3.3.5, the quotient R® —
Méjx’/ﬁ\//z\"dg,n XN.(?”, d,dy,ds) is a principal G-bundle. So Z/G is a closed subscheme of MCDX.I?\//MH . XN(’I“, d,dy,ds)

which is just the coarse moduli scheme of MO‘/ (t r,d).

When r and d are coprime, we can see that Mé"/M (t r,d) is fine by Lemma 3.3.5 and the stan-

dard argument. For general d, there is an isomorphism o: Mg‘/ i, (t r,d) — Mg‘/'M (t,7,d") induced
an elementary transformation, where r and d’ are coporime. Then we obtain a unlversal family over

Mg/M (t,7,d) X, (€ x N') by pulling back a universal family over Mg‘/M (t,r,d") x w1, xn (€ x N)

through . So M C/M ( r,d) is fine for arbitrary d.
It follows from PI"OpOblthIl 3.3.6 that M C/M M (t,r,d) — Mgm x N is projective for generic c. O
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Chapter 4

Moduli space of rank three
logarithmic connections on the
projective line with three poles

In this chapter, we describe the moduli space of rank 3 parabolic logarithmic connections on P! with 3
poles. Through this chapter, we may assume that o = (o j)1<i,j<3 and v satisfy 0 < «; ; < 1 for any
1<4,7<3and v> 0. We put

Ty := {(t1,t2,t3) € (P')* | t; # t; for i # 5},

N(vi,va,v3) == {(v;;) € C? | vio+vi1+vio=uv;,1 <1 <3}

where v1,1v5,v3 € C and v + v + 13 € Z.

Let M$(v1,v2,v3) — T3 X N(v1,v0,v3) (vesp. M$F(vi,ve,v3) — T3 x N(v1,1v2,v3)) be the family
of moduli spaces of a-stable v-parabolic connections (resp. ¢-connections), whose fiber M$(¢,v) (resp.
M(t,v)) at (t,v) € Ts x N(v1,v2,v3) is the moduli space of a-stable v-parabolic connections (resp. ¢-
connections) over (P!,¢). Here a parabolic ¢-connection is said to be a-stable if a parabolic ¢-connection
is {a, a}-stable.

4.1 The family of Agl)*—surfaces and the main theorem

In this section, we construct a family of Aél)*-surfaces parameterized by T3 x N(0,0,2) and state the

main theorem. We put A := N(0,0,2).
Let £; C P! x T3 x N be the section defined by

Ts x N = P! x T5 x \; ((tj)1<j<s, (Vm,n)(l)énmg%?)) (L, (E)i<i<s, (Vm,n)(lézgg)

fori=1,2,3 and D(f) = t,+12+13 be a relative effective Cartier divisor for the projection P! x T3 x N —
T3 X N Put ~

&= Q]%J’leng/Tng(D(t)) ® Opr XT3 XN -
Let

T PE) — P x T3 x N

be the projection, where P(€) := ProjSym (£Y). We note that for each z € T3 x N, there is an
isomorphism (1,7, a7y (P(8)))e = Qi (D(t)) = Opi (1) and so P(E;) is a Hirzebruch surface of
degree 1. Let Dy C P(£) be the section over P! x T3 x A defined by the injection 2}, T3 N/ T (D) =
& and D; C P(€) be the inverse image of #;. Put £ = Op(g)(bo + D). Let

w:PE) P x T3 x N — T3 x N
be the projection and take a closed point x € T3 x A. Since Dy and D are flat over Ts x N, (ﬁo)gﬂ

and (D1), are effective Cartier divisors on P(&,), and so £, = O]p(gx)((Do)w + (D1)). The section
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(Do)x C P(E,) is a (—1)-curve by definition, so we get a morphism f: P(£,) — P? by contracting (Dp)..
By the projection formula R’ f, L, = Op2(1) ® R' f,Op(g,), we have H (P(E,), L) = H'(P?, Op2(1)) = 0
for any i > 0, which leads to dim H°(P(&,), £,) = 3 by Riemann-Roch theorem. Hence w.L is a rank
3 locally free sheaf on T3 x A. Since L, is generated by global section, the canonical homomorphism
w*w,L — L is surjective, so we obtain a morphism p: P(£) — P(w.L) over T3 x N. Let W be the
scheme theoretic image of p: Dy — P(w.L). Since Dy is proper over Ts x N, W is a closed subvariety
of P(w.L). W, consists of one point because degp,) L] p,). = (Do)2-((Do)z + (D1),) = 0. We can see

that P(£) \ (Do) — P(w.L) \ W is an isomorphism by the proof of Theorem V.2.17. in [Ha], and P(E) is
isomorphic to the blow-up of P(w.L) along W. By the residue map

resg, : QllP’IXT3 XN /Ts xN(D(i)) i Oﬂ-v

we obtain an isomorphism D; = P! x Ty x N. For each i =1,2,3 and j =0, 1,2, let 61'71‘ be the section
of D; over T3 x N defined by

{((vij +rese, (52-) 2 1), (t)k, Wmn)mon)} C P x Ty x N.

z—13

Let l’;’j denote the reduced induced structure on l;l,j U Eg,j U Egyj for 7 = 0,1,2. Then we can naturally
regard p(B;) as a closed subvariety of P(ww,£), and it is isomorphic to B;. So we use the same character
B; to denote p(l’g‘z) for simplicity of notation. Let go: So — P(w,.L) be the blow-up along B, g1: S1 — Sy
be the blow-up along the strict transform of By and g: S — S; be the blow-up along the strict transform
of By. Then for each closed point (t,v) € T3 x N, the fiber S(t,v) 1s a surface obtained by blowing up
three points on each of three lines meeting at a single point on P((ww.L)t,,)) = P2. Let Bly: Z — S be
the blow-up along W. Z is also obtained by repeating the blow-up of P(E) .

Let J\/43E(O,O,2) be the moduli space of pairs of an a-stable parabolic ¢-connection and a certain

subbundle (see Section 4.3), and PC: ]\/43?‘(0,0, 2) — M$(0,0,2) be the morphism defined by forgetting
subbundles. Our aim is to prove the following theorem.

Theorem 4.1.1. Take oo = (v 5)1<i,j<3 and «y such that 0 < a5 ; < 1 for any 1 < 4,5 <3 and v > 0.

(1) The closed subscheme Y<; defined by rank ¢ < 1 is reduced. The forgetful map PC: J\//[?‘(O, 0,2) —
M$(0,0,2) is the blow-up along Y<;.

ere exists an 1somorphism M , 0, =5 Z an &(0,0, —5 S over 3 X such that the
2) Th i i hi M$(0,0,2 Z and M$*(0,0,2 S T3 x N h th h
diagram

M2(0,0,2) —— Z
PC\L J{Blw
ME(0,0,2) — S

commutes. In particular, M$(¢,v) is isomorphic to an Aél)*-surface for each (t,v) € T5 x N.

(3) Let Y be the closed subscheme of M(0,0,2) defined by the conditions A3¢ = 0. Then Y is
reduced and M5*(0,0,2) = Mg (0,0,2) \ Y. Moreover, for each (t,v) € T3 x N, the fiber Y, .y is
the anti-canonical divisor of M$ (¢, v).

Remark 4.1.2. Theorem 4.1.1 implies a description for all v. Take vy, v, v3 € C satisfying v +1vo+v3 =

2. Put L := Op1 and
1 —2
VL:d+( no 2B >dz.

3 Z—tl Z_tQ Z—tg

Then the morphism defined by
T T (1) 4(2) (1) 4(2)
MS (Oa0’2) —>M3 (V17V25V3)’ (El,EQ,(b,V,l* 7l* )'—> (E17E2,¢,V,l* 7l* )®(L7VL)

is an isomorphism. When deg Fy = deg Fy # —2, elementary transformations give isomorphisms of
moduli spaces (see section 2.4).

21



Mg (t,v)

blow-up

4.2 Types of underlying vector bundles

In this section, we investigate types of underlying vector bundles. Take t = (¢;)1<i<3 € T3,v € N and
put D(t) = t; + t2 + t3. Let (E1,Es, ¢,V l(1 1(2)) be a v- parabohc ¢-connection. We assume that

0<a;; <1lforany1<4,j<3andvy>0. Let (E17E2,¢,V7l* ) £ )) be a v-parabolic ¢-connection,
and Fy; C F; and F> C Es be subbundles such that (Fy, F») # (0,0). We put

deg Fi(~D(t)) + deg Fo(—D(t)) — yrank Fy + Y20, 30 oy (dl) (Fy) + d) (Fy))

(e} F 7F =
po(Fr, F) rank Fy + rank Fy

)

where dEZ)(F) = dim(F lz(kj) D/ (Fle: N lz(ky))

Lemma 4.2.1. Let (Fl,Fg) C (E1, E3) be a pair of subbundles with non-negative degree. If (Fy, F5)
satisfies ¢(Fy) C F, V(F1) C F> ® Q3 (D(t)) and rank Fy > rank Fy, then (F}, F») is an a-destabilizing

pair of (Ey, E2, ¢, V, lil), lg))-

Proof. We have

rank F} — rank F5 deg F + deg I, deg Fy
o(F1. Fy) — pio(Ey, Ey) = -
Ha (1, F) = pa(Er, Br) 2(rank Ey —i—rankEz)’errankFl +rank F5  rank Ey

Zk 1 Zz 1 Zj 1 @ijd z B (Fk) _ Zi:l Z?:l Zj‘:l Q5
rank F} + rank F, rank B +rank By

Now 7 > 0, so under the assumption, we obtain pi (F1, F2) — pe(F1, E2) > 0. O

Lemma 4.2.2. Let (Fy, Fy) C (Eq, E2) be a pair of non-zero subbundles of rank v < r. If (Fy, F)
satisfy ¢(Fy) C Fa, ( 1) C Fo@QL, (D(t)) and p(Fy) + p(Fo) > —1, then (Fy, F») is an a-destabilizing

pair of (Eq, Es, ¢, V, NS )). Here for nonzero vector bundle F, u(F) = deg F/rank F.
Proof. We have

Zk 121 12; 1O‘u(3d( )(Fk)_rl)
3 3r’ ’

to(F1, Fo) — pa(Er, E2) = % { (F1) + p(F2) +

If p(F1) + p(F2) > —1, we obtain pa (F1, F2) — pa(Er, E2) > 0. 0

Proposition 4.2.3. For any a-stable v-parabolic ¢-connection (El,Eg,gb,V,lg}),liz))

degree —2, we have

of rank 3 and

Ei=2E,20m P O]pl(—]_) D OPI(—]_).
Proof. Take decompositions
Ey = Op1 (1) ® Op1 (I2) ® Op1(I3) (ht+la+l3==21>13>13)

= Op (ml) ® Op (mg) ® Op1 (mg) (m1 +mg +mg=—2, M > mo > mg).

If a triple of integers (ny,na,n3) satisfies ny +ns +n3 = —2 and ny > ng > ng, then (n1, o, n3) satisfies
one of the following conditions:

(1) ny > ng > 0> ng,
(ii) nq1 > 1, 0 > ng > ng,
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(111) ny = 0, Ng = N3 = —1.

If (I1,12,13) and (mq, m2, mg) satisfy the condition (i), then we have ¢(Op1 (11) DOp1 (1)) C Op1(my) @
Op1(mz2). The composite

Op1 (1) @ Opi (1) = By~ By ® Qb (D(£)) = Op1 (m3) @ QL (D(¢)) = Opi (ms + 1)

becomes a homomorphism and must be zero since mg+1 = —1—mq —msy < —1. So we have V(Op: (1) ®
Opi(l2)) C (Op1(m1) @ Op1 (1m2)) @ Qpa (D(t)). Since pu(Op1 (1) @ Opa (I2)) 4 1(Op1 (m1) @ Opa (m2)) > 0,
the pair (Op:(11) & Op1 (1), Op1 (m1) & Opi (m2)) breaks the stability of (Ey, Ea, ¢, V, 1, 1),

Suppose that (11, l2, I3) satisfies (i) and (mq,mq, mg) satisfies (ii). Since mg < —2, we have ¢(Op1 (11)®
O[pl (12)) - O]pl (ml) and V(Opl (ll)@O]}»l (12)) - (O]}»l (ml)@O]pl (mg))®Qé(D(t)) Since mi+mo = —2—
mg > 0, the pair (Op1(l1) ® Op1(l2), Op1(m1) @ Op1(mg)) breaks the stability of (Ey, E2, ¢, V, L(kl),l,(ﬁz)).

Suppose that (11,12, l3) satisfies (i) and (mq, ma, m3) satisfies (iii). Then we have ¢(Op1 (I1)BOp1 (I2)) C
Opi(mq). If l; > 1, then V(Opi(l1)) C Opr(m1) @ Q3. (D(¢)). The pair (Opi(l1), Op1(my)) breaks the
stability. If I; = 0, then we have I = 0. Put F; = Ker qf)\@Pl (1)®0 (o). Then the composite

fi Pl — By -5 By @ QL(D())

becomes a homomorphism. Put 5 = (Im f) @ Q4 (D(t))V. The pair (F1, F») breaks the stability.
Suppose that (I1,l2,13) satisfies (ii) and (mq,me, ms) satisfies (i). If Iy > my, then the composite
Opl (ll) — E1 Z> E2 & Q]%,l (D(t)) becomes a homomorphism. Put F2 = (Im V|O]Pl (ll)) ®QI%” (D(t))v, then
(Op:1 (11), F) breaks the stability of (B, o, ¢, V, 17, 1), If I, < my, then we have lo — 2 > lo + I3 =
m1 — l1 + mag + mg > mg since I3 < —2. So we have ¢(Op1(l1) ® Op1(l2)) C Opr(my) ® Opi(ms) and
V(O]pl (ll) ® Opr (lg)) C (O]pl (ml) ® Opr (mg)) ® QIlPl (D(t)) The pair (O]pl (ll) ® Op1 (lg), Op1 (m1) D
Op1(m2)) breaks the stability of (E1, Fa, ¢, V, ZS}), l,(kQ)) because
L+l—-2-m 1
1(Op1 (1) & Op1 (I2)) + pu(Opr (m1) & Op1 (m2)) = % =
If (l1,1s,13) satisfies (ii) and (my, ma,ms) satisfies (ii) or (iii), then ¢(Opi(l1)) C Opi(m1) and
V(O (11)) C Opr(ma) @ QL (D(t)). (Op1(l1), Op: (my)) breaks the stability of (Ey, By, ¢, V, 1", 18%).
Suppose that (I1,ls,l3) satisfies (iii) and (mq, ma, m3) satisfies (i), then mz = =2 —mj —my < —2. If
ms3 < —2, then ¢(E1) C Op (ml) ® Opr (mg) and V(El) C (O]}»l (ml) ® Opr (mg)) & Q]%,l (D(t)) The pair
(By, Op1 (m1) & Opi (m2)) breaks the stability of (Ey, B, ¢, V, 17, 18%)). If my = —2 , then my = mp = 0
and ¢(Op1(l2) ® Op1(l3)) C Op1(m1) ® Op1(mz). Moreover the composite

£ Opi(ly) @ Opi (I3) = By —2 By ® QL (D(£)) = Opi (m3) ® QL (D(¢))

becomes a homomorphism. Let F; = Ker f. If F; = Op1(l2) ® Op1(l3), then ¢(E1) C Opi(my) G Op1 (m2)
and V(E1) C (Op1(m1) ® Opi(m2)) @ U, (D(t)). The pair (Eq, Opi (my) ® Op1 (m2)) breaks the stability
of (B, Es, ¢, V, 1" 1), If Fi # Opi(ls) & Opi(l3), then we have Fy = Opi(—1) since Opi(ly) =
Op1(l3) = Opi(m3) @ Qb (D(t)) =2 Opi(—1). So we obtain ¢(Opi(l1) & Fi) C Opi(my) & Opi(ms) and
V(Op1 (L) ® F1) C (Op1(m1) dOp1 (m2)) @Qp (D(t)). The pair (Op: (I1) ® Fi, Op1 (mq) ® Op1 (my)) breaks
the stability of (E1, o, ¢, V, 1", 1),

Suppose that (I1,l2,13) satisfies (iii) and (my, me, m3) satisfies (ii). If mo < —1, then ¢(Op:(ly)) C
Opi1(m1) and V(Opi(l1)) C Opi(mi1) ® QL (D(t)). The pair (Opi(l1), Opi(my)) breaks the stabil-
ity of (E1, B2, ¢, VI 1), If my = —1 and ms < —2, then ¢(E1) C Opi(m1) @ Opi(mg) and
V(E1) C (Opi(m1) & Opi(m2)) ® Qf: (D(t)). The pair (Eq, Opi(mq) @ Op1(m2)) breaks the stability of
(Ey, Ea, 6, V, 17 1), Tfmy = —1 and m3 = —2, then we have ¢(Op1 (1)@ 0p1 (I3)) C Op1 (m1)@O0p: (m2)
and so the composite

£ Opi(ls) @ Opi (I3) = By —2 By ® QL (D(£)) = Op1 (m3) ® QL (D(t))

becomes a homomorphism. Let F; = Ker f. If F; = Op1(l2) & Op1(l3), then ¢(E1) C Op1(m1) B Op1 (mo)
and V(E1) C (Op1(m1) ® Opi(m2)) ® U, (D(t)). The pair (Eq, Opi (m1) ® Op: (m2)) breaks the stability
of (Ey,Ea,,V, 1M, 1), If Fy # Opi(lo) ® Opi(l3), then we have F; 2 Opi(—1) since Opi(ly) =
Op1(l3) = Opi(m3) @ Qb (D(t)) = Opi(—1). So we obtain ¢(Opi(l1) & Fi) C Opi(my) & Opi(ms) and
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V<O]p1 (ll) @Fl) C (Oﬂml (ml) @O]pl (mg)) ®QI%D1 (D(t)) The pair (O]pl (ll) EBFl, O]pl (ml) @O]pl (mg)) breaks
the stability of (B, o, ¢, V, 1", 1),
Hence we have E; & Ey = Opr @ Op1(—1) ® Op1(—1). O

Lemma 4.2.4. Let F be a subbundle of E; which is isomorphic to the trivial bundle. If ¢|r = 0, then
(E1, E2,0,V, L(kl), lg)) is a-unstable. In particular, if ¢ = 0, then (E1, Es, ¢, V, lil),l,(ﬂz)) is a-unstable.

Proof. Tf ¢|F = 0, then the composite

fiF— B -5 By @ QL(D(t))
becomes a homomorphism. If f = 0, then (F,0) breaks the stability. If f # 0, then (F,(Im f) ®
Q3. (D(t))Y) breaks the stability. O
4.3 The apparent map

Proposition 4.3.1. Take (F1, Es, ¢, V, lil), l,(kZ)) € M$(t,v). Then there exists a filtration Ej, = Fo(k) )
F¥ 2 FM 5 B = 0 by subbundles for k = 1,2 such that

FV = p® >~ 0, @ Opi(—1), BV = B ~ 0, (4.1)
and
o(F) c BP v(EL) ¢ B @ Qb(D(t) (4.2)

for any 0 < ¢ < 2. Subbundles Fz(l),Fl(Q), F2(2) satisfying the above conditions are uniquely determined.
If rank ¢ = 2 and 3, then Fl(l) is also unique. If rank ¢ = 1, then there is a one-to-one correspondence
between the set of all such Fl(l) and P

Proof. By Proposition 4.2.3, F; and E5 have a unique line subbundle which is isomorphic to the trivial

line bundle. Let FQ(k) be the such line subbundle of Ej for £ = 1,2. Then we have ¢(F2(1)) C F2(2) by
Proposition 4.2.3, and so the composite

f21 p1 = F2(1) — B L FEy® Q]:Iln (D) — EQ/FQ(Q) ® Qﬁm (D) = O]pl D O]p1

becomes a homomorphism. If fo = 0, then (F2(1), F2(2)) breaks the stability of (E1, Fa, ¢, V,l,(kl), l,g)). So
fo2 is not zero. Let

Fl(z) = ker(Ey ® Q1 (D) — (E2/F2(2) ® Q1 (D)) /Im fo) @ O (D(2))".

Then we have F\*) = Op @ Op1 (—1) and V(F{") € FP @ QL (D(t)). Let K :=ker(¢: Ey — Ey/F?).
If rank ¢ = 2,3, then we have K = Op1 @ Opi(—1). Put Fl(l) = K. We then have desire filtrations.
The uniqueness of a filtration satisfying the above condition is clear. If rank¢ = 1, then K = E; by

Lemma 4.2.4. Take a subbundle Fl(l) C FE; which is isomorphic to Opt @ Op:1(—1). Then we have
o(F: 1(1)) CcCF 1(2). We can see that there is a one-to-one correspondence between the set of such subbundles
Fl(l) and PHom(OP1(—1),E1/F2(1)) =~ Pl O

Let B, = FM 2 F® 2 F® 5 F® = 0 be a filtration in Proposition 4.3.1. We define f; by
f:FY S B 5 By @ QL (D) = By /F @ QL (D(t)).

Then f; becomes a homomorphism. If f; = 0, then (Fl(l),Fl(2)) breaks the stability. So fi is not zero,
and it implies that the induced homomorphism

w: Op (-1) =2 FV/FY o By Y By @ QL (D(t) — Ey/F? @ QL (D(t)) = O
is also not zero because V(FQ(D) C FI(Q) ® Q4 (D(¢)). Since u € Hom(Op1 (—1), Op1) = HY(P!, Op1 (1)),

there exists a unique point ¢ € P! such that u, = 0.
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Definition 4.3.2. We call the zero ¢ of u the apparent singularity of (Ey, E2, ¢, V, ZS}), l£2), F1(1))7 and
let ¢ denote App(FE1, Ea, ¢, V, ISNISE F1(1))-

Let ]\//.I'?‘(i‘;7 v) be the moduli space of pairs of a parabolic ¢-connections and a subbundle Fl(l)7 ie.
Mg (t,v) = {(By, By, 6, V.10 12 )}
We can construct J\/l?(t, v) as follows. Let (Ey, E,, &, V, l~5<1), ZN,(.?)) be a universal family over M$(t, v) x P!
and Fz(k) C E}, be a unique subbundle such that (13’2(]6))31C > Op: for each z € M&(t,v). Put
fo: BV s By Vs By 0 QL (D) = Eo/E @ QL (D)

and
F® = ker(Ey ® Qb/(D) — (Eo/F? @ QL (D))/Im fo) ® Qb (D(2))V.

Let p1: M$(t,v) x IP)1~—)~M§‘(t7V) and py: M$(t,v) x P — P! be the projection and put G :=
(p1)«Hom(p5O0p:(—1), Ey /F2(1)). Then we have the natural isomorphism

Gl = Hom(Op: (1), (B1/F3"),) = Hom(Op: (—1), Op1 (~1)¥2).

Let w: P(G) = Proj Sym (GY) — M$(t,v) be the projection and [o] be the homothety class of a nonzero
element o € G|,. Put

M?@V%={M€P@)

the composite Op1 (—1) > (El/ﬁ‘Q(l))m LA (E~’2/151(2))x} )
is zero, where x = w([o])

Then ]\//[?‘(t, v) is a closed subscheme of P(G) and desired one.

4.4 Construction of the morphism ¢: ]\/4?(15,1/) — P(QL(D(t)) &
Op1)

Take (Ey, By, ¢, V, 17,19 FV) € M&(t,v) and put ¢ := App(Ey, o, ¢, V, 10 18 FV). Let py: By —
E,/F 1(2) be the quotient and let us fix an isomorphism Ey/F' 1(2) = Op1(—t3). We define a homomorphism
B:E, - Ey)FP g Q3. (D(¢)) by B(a) := (p2 ®id)V(a) — d(p2¢(a)) for a € Ey, where d is the canonical
connection on Op:i(—t3). Since V(FQ(D) C F1(2) ® QL (D(t)) and uq = 0, B, induces a homomorphism
hy: (El/Fl(l))|q — (Eg/Fl(Z) ® Q41 (D(t)))|q which makes the diagram

0 — FV, Eil, (B /F))|g —— 0

\\\Q\N l& (/4:/ (4.3)

(B2/F® @ Qb (D()))]g

commute. Let ho: (E} /Fl(l))|q — (EQ/Fl(Q)”q be the homomorphism induced by ¢. Then hq, hs determine
a homomorphism

v (B FO) g — (Bo/FP @ QL(D@)) @ Ea/F)g,  ars (hi(a), ha(a)).
Lemma 4.4.1. . is injective.

Proof. If rank ¢ = 3, then hy is not zero. In fact, if hy = 0, then ¢(F;) C F1(2) since ¢: Op1(—1) =
El/Fl(l) — EQ/F1(2) & Op1(—1) is zero. It is a contradiction. So ¢ is injective.

Consider the case rank¢ = 2. Assume that ho = 0. We take a local basis egl),egl),eg) (resp.

682),6(12),652)) of E; (resp. F5) such that egl) generates F2(1) and egl),eg) generate Fl(l) (resp. eg)

generates FQ(Z) and 652)7 eéQ) generate F1(2)). By taking bases well, ¢ and V are represented by matrices

1 0 0
¢(€§)76§1)76§))2(652)7652),682)) 0 @22 23],
0 O 0
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O a12(2’) alg(z) d
z
V(e e et = (7 e e?) | 1 am(e) an(2) | 7
0 a32(z) agg(z)
where 2 is an inhomogeneous coordinate on P! = Spec C[z] U {oo} and h(z) = (2 — t1)(z — t2)(2 — t3)

and ¢aa, a3 € C. Suppose that ¢o2 = 0. Then we may assume that ¢o3 = 1. For each i = 1,2,3, asa(t;)
must be zero because the polynomial

1 7h/(tl)>\ alg(ti) alg(ti)
\restiV — /\¢| = (t) 1 agg(ti) a23(ti) — h’(tz))\
! 0 aza(ti) az3(t;)

in A is identically zero by Lemma 4.4.2 and h/(¢;)as2(t;) is the second order coefficient of |res;,V — Ag|.

Here ' = d/dz. Since aza(z) € H°(Op1(1)), we obtain azz(z) = 0. Then (F} rW F(z)) breaks the stability of
(E1,Es,0,V, l£1), liz)). Suppose that ¢oo # 0. Then we may assume that ¢35 = 0. In the same way as the
above, we can see that ags(z) = 0. So (Fz(l)GBEl/Fl(l), F1(2)) breaks the stability of (E4, Es, ¢, V, 10, l,(f)).
Hence he # 0 and so ¢ is injective.

Finally, we consider the case rank ¢ = 1. Let f: El/Fél) — Eg/Fl(Q) ® Q. (D(t)) be the homomor-
phism induced by V. Since ¢(E7) C F2(2) C F(2) the map f becomes a homomorphism. If hy = 0,
then we have f|, = 0 by the diagram (4.3). If f = 0, then (E, F} o )) breaks the stability, so f # 0.
Since Fy/FSY 2 Opi(—1)%82, By/F? ® Q31 (D(¢)) = Op1 and f|, = 0, we have ker f = Opi1(—1). Put
G :=ker(E, — (El/F2(1 )/ ker f). Then G = Op1 & Op1(—1) and so (G, F1(2)) breaks the stability. Hence
hy # 0 and so ¢ is injective. O

Lemma 4.4.2. For each ¢, the polynomial |res;,V — A¢,| in A has the form
(Ne) (Vio = N (wia = N (vi2 = A).

Proof. We take a basis v(() ) v§1)7 (1) (resp. v( ) U§2)7’U22)) of Eilt, (vesp. Ealy ) such that vél) generates

l(l) and vgl),vé ) generate z§ ) (resp. vf) generates 12 %) and v12), () generate l )). Then ¢;, and res;, V
are represented by matrices
b1 P12 P13
1, (05 0, o) = (W P o) [ 0 dm a3 |
0 0 ¢s3

a3
restiv(vél)’vgl)vv(()l)) (£2)3v§2)7 (2) ( CL22 (123

because ¢;, and res;,V are parabolic. Since (res;,V u”qﬁtl) ) C 1”4_1 for j = 0,1,2, we have
a11 = Vi oP11, 22 = Vi 1¢22 and azz = v; 2¢33. So we have

[res, V — Aoy,

= P11022033(Vio — A) (Vi1 — A) (2 — A).
O

By Lemma 4.4.1, the map ¢ determines a point ¢(E, Es, ¢, V, RIS 1(1)) of P(Q, (D(¢)) ® Op1).
We can see that the map

©: ME(t,v) — P(QL (D(t)) & Op1) (4.4)

is a morphism.

4.5 Normal forms of a-stable parabolic ¢-connections

Take (Ey, By, ¢, V, 187 1 ) € M&(t,v). For k = 1,2, let E, 2 F* 2 F{¥ 20 be a filtration in

Proposition 4.3.1. We take a local basis eél), eg ), (1) (resp. 662), eg ), 6%2)) of Ey (resp. Es) such that eél)
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generates Fz(l) and egl),eg ) generate Fl(l) (resp. eg ) generates F2( ) and eg ), (2) generate F1( )) Let z be

a fixed inhomogeneous coordinate on P* = Spec C[z] U {oo}. Then ¢ and V are represented by matrices

$11 P12 P13
¢(egl)7 egl)a e(()l)) (eé )a 652)7 e(()2)) O ¢22 ¢23 )
0 0 ¢s3
a11(2) a12(z) ai3(2) d
V(e; )’ egl)’ 6(()1)) (6&2), €§2)7 (() )) a1 ¢22(Z - tl)(z - t2) + GQQ(Z) ¢23(Z - tl)(z - tg) + a23(z) h(z)’
0 a32(Z) ¢33(Z — t1)(Z — t2) + CL33(Z)

where 11, g2, da3, ¢33 € HO(Op1), d12, 013 € HO(Op1(1)), ai1,as2,ass,as2,a33 € H°(Opi(1)),a01 €
H%(Op1), and h(z) = (z — t1)(z — t2)(z — t3). By taking e((J ),egl), (2),6(12) well, we may assume that
$12 = ¢$13 = 0,a11(2) = 0 and a21 = 1. Then we have ai2,a13 € H°(Op1(2)). Let ¢ be the apparent
singular point of (E, Ea, ¢, V, s £ ),F(l))

Lemma 4.5.1. Assume that A%¢ # 0. Then ¢ and V have the forms

1 0 0 0 a12(2’) a13(Z) dz
o=10 1 0],V=d+ |1 (z—t1)(z—1t2)—p 0 AL (4.5)
0 01 0 z—q (z—t1)(z—t2) +p (2)

respectively, where p € C and aj2(2), a13(2) are quadratic polynomials in z satisfying

ara(ti) = —h'(t:)*(viovia + viavia + Viavio — (reSti(ZGl_zt3 )?) —p?, (4.6)
2
(t - q a13 = H Vz J resti(zd,Z% )) - p) (47)
7=0

for any i = 1,2,3. Here ' = d/dz.

Proof. Applying ¢! to Ey, we may assume that ¢ = id. Put

1 0 013(2)
C= 0 1 C23 s
0 0 1

where c¢13(2) € H°(Op1(1)) and c23 € H?(Op1). Then we have

CoVoCt
0 a12(2) +cs(z—q)  a3(z) — ca3a12(2) + c1s(2)ass(z) — cis(2)cas(z — @) — h(2)ci3(2)\ 4,
=d+ |1 a9(z)+ cos(z—q) az3(z) — cazaga(z) — c13(2) + cazazs(z) — 33(2 — q) m
0 zZ—q az3(z) — ca3(z — q)

So we may assume that as3(z) = 0 and a33(z) changes into the form (z —t1)(z —t2) +p. Since res;, trV =

2res;, ( di ), we have aga(z) = (2 — t1)(z — t2) — p. So we obtain the desire form

0 alg(z) a13(z) dZ
V=d+ |1 (z—t1)(z—1t2)—p 0 W)
0 z—q (z—t1)(z—t2) +p :

By Lemma 4.4.2, we can see that a12(z) and aq3(z) satisfy the conditions (4.6) and (4.7) for each i =
1,2,3. O

Remark 4.5.2. The polynomial a;2(z) is uniquely determined by p. When g # t17t2,t3, ay3(z) is also
uniquely determined by ¢ and p. When ¢ = t;, p is equal to one of h'(¢;)(vi0 — restl(z - ), B (t:) (Vi1 —

resy, (2% 7)), B () (Vi — resy, (zdz153)) and ai3(t;) takes any complex number. When p = A/(t;)(vi; —

resy, (d—zt)), we have (res;, @ id)(p(E, V, 1)) = (vi; — resy,( dzts) : 1), where res;, @ id: P(Qp, (D(t)) ®
Op1)lt; = P(Opt]t, ® Op1|t,) is a natural isomorphism. The choice of a13(t;) gives an exceptional curves

of the first kind on the moduli space of parabolic connections (see Proposition 4.7.2, 4.7.3, and 4.7.4).
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Lemma 4.5.3. Assume that rank ¢ = 2. Then ¢ and V have the forms

1 00 0 0 [Lsi(z—15) dz
p=|0 0 0),V=0¢®d+ |1 0 0 AL (4.8)
0 01 0 z—t; (¢—t)(z—t2)+p )

respectively.

Proof. By the proof of Lemma 4.4.1, we have ¢33 # 0. So we may assume that

100
o=1[0 0 0
00 1

Applying an automorphism of E4, E5 given by the form

1 0 —a23(Z)
0 1 0 ,
0 0 1
V changes into the form
0 a12(2) + azs(2)as2(z)  a13(2) + azs(2)ass(z) — h(2)ass(2)\ ;.
1 a22(z) 0 m
0 0,32(2’) CL33(Z) o

So we may assume without loss of generality that as3(z) = 0. Using an argument of the proof of Lemma
4.4.1, we obtain a12(2) = ag2(z) = 0 and asa(t;)a1s(t;) = 0 for ¢ = 1,2,3. If azz(z) is identically zero,
then (Fl(l)7F1(2)) breaks the stability. If aj3(z) is identically zero, then (El/Fz(l),Ez/Fl(z)) breaks the
stability. So there exists unique ¢ € {1,2,3} such that ass(t;) = 0, which implies a13(t;) = 0 for j # i.
Applying suitable automorphisms, we obtain the desire form

0 0 Hj;éi(z _tj) dz
0 Z*ti (Z*tl)(Z*tQ)*Fp z
O
Lemma 4.5.4. Assume that rank ¢ = 1. Then ¢ and V have the forms
1 00 0 Hj#(z—tj) 0 dx
o=10 0 0|, V=0xd+ |1 0 0 Ha) (4.9)
0 0 O 0 z—q z—t; (2)

respectively, where t; # q.
Proof. By Lemma 4.2.4 and the assumption, ¢ and V have the forms

1 0 0 0 a12(2) alg(z) dz
¢: 0 0 0 y V:¢®d+ 1 GQQ(Z) a23(2§) T,
0 00 0 z—q ass(z) (2)

where a12,a13 € H°(Op1(2)) and agz, ass,aszs € H°(Op1(1)). If aszs(q) = 0, then we may assume that
as3(z) = 0 by applying an automorphism of F;, which implies that (Fz(l) @ El/Fl(l),Fl(z)) breaks the
stability of (El,E2,¢,V,li1),l£2)). Hence we have as3(q) # 0. Let us fix ¢ € {1,2, 3} satisfying ¢; # q.
Applying an automorphism of E; given by the form

1 0 0
0 1 1—ass(q) tass(g)(q—ti) ],
00 ass(q) Mg —t;)

the ¢-connection V changes into the form

0 alg(z) (113(2)
p@d+ (1 ax(z) as(2)
0 z—q z—1t
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We consider the polynomial

1 |TR @A aa(ty)  as(ty)
1 a(t;) a23( i) (4.10)
ti

|I‘eSt.V - A(bt’ =7 3
' ) 0 ti—q tj—t

in A. By Lemma 4.4.2, the polynomial (4.10) is identically zero, that is, we have

(tj — ti)aza(t;) — (t; — @lazs(t;) =0, (4.11)
(tj — ti)aiz(t;) — (t; — q)ars(t;) =0 (4.12)
for any j. By (4.11) and (4.12), we have a13(¢t;) = a23(t;) = 0. Applying a suitable automorphism of Eq,

we may assume without loss of generality that a13( ) = as3(z) = 0. Then we have as(t;) = 0 for j # ¢
by (4.11), and it implies that as2(z) = 0. By (4.12), we have aj2(t;) =0 for j #i. If a12( ) is identically

zero, then (El/F(l) Eg/F ) breaks the stability. So ¢ and V have the forms
1 00 0 [[ju(z—t) 0 &
=10 0 0|, V=0¢od+ |1 0 )
00 0 0 2—g 2ot ) 2

O

Remark 4.5.5. Let (E1, E9,¢,V, l&l), lg), Fl(l)), (B, EY @' V', l;(l), l;(z), F{(l)) be v-parabolic ¢-connections
such that rank ¢ = rank ¢’ = 1. Then (E1, Es, ¢, V, lgl), l$<2)) and (B}, ES, ¢/, V', li(l), 11(2)) are isomorphic

to each other. In other words, the locus on M$ (¢, v) defined by rank ¢ = 1 consists of one point. In fact,
applying automorphisms of Ey, Fo, ¢ and V change into the form

00 0|,¢0d+|1 0 0]
00 0 0 ity 2oty ) M)

By the proof of Proposition 4.5.6, it follows that parabolic structures l and l(2 satisfying the conditions

¢ti(ll(71j)) C lfj) and (resy, V — I/i,jgi)ti)(l(l)) C ll( ])+1 are uniquely determmed.

Proposition 4.5.6. Let Y{;,) be the closed subscheme of ]\@(t, v) defined by the condition A3¢ = 0.
Then the restriction morphism ¢: Yy ) — P(Q: (D(t)) @ Op1) is injective.

Proof. Take a point © = (Fq, Fa,¢,V, 1M l(2 1)) € Y(t). Then rank ¢ must be one or two by
Lemma 4.2.4. Let Dy be the section of ]P’(Q%Pl( ( )) @ Op1) over P! defined by the injection QF, (D(¢)) <
Q3. (D(t)) ® Opr, that is, Dy is the section defined by hy = 0, where hy is defined in section 4.4. Let
D; C P(Q,(D(t)) @ Op1) be the fiber over ¢; € P'. By the proof of Lemma 4.5.3 and Lemma 4.5.4,
o(z) € U2, D; \ Dy if and only if rank ¢ = 2, and () € Dy if and only if rank ¢ = 1.

First, we consider the case of rank ¢ = 2. By Lemma 4.5.3, a pair (¢, V) is uniquely determined

up to isomorphism by ¢(x). By Proposition 4.3.1, FWY s also uniquely determined by (Eq, Ea, ¢, V).
1

1D and 1@

Moreover, we can check that parabolic structures [’ and are uniquely determined by (E1, Ea, ¢, V).

For example, when ¢(x) € Dy, 1M and l,(kQ) are given by the following;

0 0 B (t)
Ifh=cC 1 , 1 =c(1]+cC 0 :
0 p— hl(tl)VLo
) W (t1)p — B (t1)?v1,0 — B (t1)v1a ) —h/(t1)v10 ' (t1)
1% =C B (t1) , 1P =cC 1 +C 0 ,
(p h (t1>V1 0)(]9 h tl vy, 1 0 p— h/(tl)Vl’o
0 0 0 0 7h,(t2)l/210 0
) =C | p=Hta)ms |, ) =c|1]+c|o], & =co], ) =c 1 +cfol.
—(t2 —t1) 0 1 1 0 1
0 0 0 0 7h/(t3)1/370 0
By=Cp+(t:)— Wty |, 8 =C[1]|+C 0], B =C0]. 1) =C 1 +c|o
—(t3 —t1) 0 1 1 0 1



Next we consider the case of rank ¢ = 1. By Proposition 4.3.1 and Lemma 4.5.4, a triple (¢, V, Fl(l))
is uniquely determined up to isomorphism by the apparent singularity q. We can see that parabolic

structures lil) and L(f) are determined by ¢ and V. In fact, we have

0 0 0 h/(ti) —h/(tl)Vl,o h/(ti)
)=cflo], i)=cl1]+clo]|,Z=c| o |.i¥=cC 1 +c| o |,
1 0 1 ti —q 0 ti—q
and
0 0 0 0 —h (tj)yj,O 0
=c| t;-t |, i)=cl1]+clo],.iB=clo], ¥ =cC 1 +cfo],
—(t; —q) 0 1 1 0 1
for j #i. So ply,,, is injective. O

4.6 Smoothness of moduli space of parabolic ¢-connections

Let £; C P! x T3 x N be the section defined by

Ty x N PP x Ty x N ((t)1<5<3, Umm)osnss) = (ti (E)1<5<8, (Vmn)oZmss )

for i = 1,2,3 and D(t) = t; +15 +13 be a relative effective Cartier divisor for the projection P* x T3 x N —
T3 x N. Foreach1 <i<3and 0<j <2, let

ﬂiyj = {(V’i,j7 (tk)ka (Vm,n)m,n)} cCx T35 x N.
Proposition 4.6.1. M£(0,0,2) is smooth over T3 x N.

Proof. Let A be an artinian local ring with the residue field A/m = k and I be an ideal of A such that
ml = 0. Let Spec A — T3 x N be a morphism and t; € P}, v; ; € A be the elements obtained by the pull
back of the sections ;, v; j, respectively. By the definition of A/, we have

Vio+ Vi1 +vig= 21res,51.(zdft3 ). (4.13)
We take an open subset U C Pl such that U = Spec A[z] and t1,t2,t3 € U. We show that
M5(0,0,2)(A) — M$(0,0,2)(A/I) (4.14)
is surjective. Put K := QPL/I/(A/I)(D(E)A/I) and take (El,Eg,(b,V,lil),lg)) € M£(0,0,2)(A/I). Then
Ei2E,~20pm @ Opi/l(fl) ® Opi‘/l(fl). The homomorphism ¢ can be written by the form

A/l
$11 P12 P13

o= 0 @2 o3,
0  ¢32 ¢33

Where ¢11, ¢22, (72523, ¢32, ¢33 € HO(OP}A/I) = A/I and ¢12, ¢13 e HO(OIF’;/I(]-))' By Lemma 424, (,2511 iS a
unit, so we may assume that ¢12 = ¢13 = 0. Then V can be written by

0 0 0 w1l Wiz w13
V=¢d+ |0 ¢an ¢23 + | w21 w2 wes |,
zZ — t3
0 @32 ¢33 w31 W32 W33

where wo1, w31 € HO(K(—1)) & A/I, w1, was,wss, wss,wsz € H(K), and wie, w3 € HY(K(1)). Taking
decompositions Fy & Fy = Opi/z &) Opi‘/l(—l) &) OP;/I(—l) well, we may assume that wi; = w3 = 0
and res;,woy € (A/I)* for any ¢ = 1,2,3. The smoothness of the map M$(0,0,2) — T3 x N is proved in
[In], which means the map (4.14) is surjective when A3¢ ¢ m/I. So we consider the case A3¢p € m/I.
Assume that rank ¢ ® id; = 2. Then applying certain automorphisms of E; and Es, we may assume
that ¢ ® idx and V ® id; have the form (4.8). Then we may also assume that ¢11 = ¢33 = 1 and
23 = ¢32 = 0 and waz = 0. We note that ¢a2 € m/I. In the same way of the proof Lemma 4.4.2, we
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obtain |res;, V — Ay, | = (A3e,) (vi0 — A)(vi1 — M) (vi2 — A). By comparing the coefficients on both sides
and using (4.13), we have

waa (ti) + paawsas(ti) = 0, (4.15)
waz (ts)wss(ts) — war(ts)wia(ti) = G2 (viovin + Violi2 + Vialia — (resy, (zd_ig))z), (4.16)
—wa1 (t) (wiz(ts) (wss(ti) + reSt,-(zd_izts)) —wis(ti)wsa(ti)) = daaviolinViz, (4~17)

for each ¢ = 1,2,3, where w;;(t,) := res;, w;;. From the form (4.8), we have wi3(t;) € (A/I)*
wsa(t;) € (A/I)X for j # 4. Put

0 Paowi3(ti)(wss(ti) + reSti(zd_iS) — (vi0 + Vi) W wis(ts)
Vg = wis(ti)war (t:) y Vil = 0 ;
P22 (wss(t;) + resti(zﬁ—zts) —v;0)(wss(ts) + resti(zi—is) — V1) was(ti) +rese, (;52) — vio
, wia(t:)(waa(ts) + rest, (3%-) — (vio + Vi) , w13 (t:)
vy = wis(ti)wa (t:) ol = 0
(w33 (t;) + resti(zizts) — v 0)(wss(t;) + resti(zdfts) — V1) w3 (ti) + resti(zd_ZtS) — V0
and
" (waa(tj) + Poz(resy, (3252) — vj0)) (waa(ty) + res, (3252) — vj2) " —$22050
Vi = —wa1(t5)(wss(t;) + resy, ( dZS_) —Vi2) c v = | walty) |
w21(t )w?,g(t ) 0
(waz(t;) + az(resy, (35-) — vj2)) (was(ty) + resy, (32-) — v;2) ~Vj0
02 = " gmm (6) (w33 (£)) + resy (-22-) — ;) v = [ walty)
52 22W21 33 A 5,2 » Vs 21(15
u}21(t )W32(t ) O

for j # i. Then we can see that

199 = /oy, 1Y = @a/nol) + /ey, 18 =/, 18 = @a/mned + A/
for any j = 1,2, 3 by the conditions ¢, l( N 1@ , (resy, V—v; iy, ) c 1@ and the relations (4. 15),
4 @] i IR g2 i,5+1
(4.16), (4.17). We take lifts ¢os € A, @1 . HO(Q, ) ,(D (t)A)(—1)),w33 € H(Qhy ,4(D(2)4)) and &\ e

A* of ¢aa,wa1,ws3 and wis(t;), respectively. Put wag : = — o33 and let @1o € HO(Q]%,1 /A( (t)a)(1)) be
a lift of w12 satisfying

a1 (t3)012(t;) = Woalssz — Q~522(Vi,01/i,1 + VoV + ViV — (resti(z‘fzts N?).

Then we can find a lift @3y € HO(Qg, 1/4(D(t)4)) of wsy satisfying

@21 () (@12(L:) (@33 (t:) + resy, (52-)) — @Y D32(4:)) = Paavioviavi 2.
Let @13 be the element of H°(Q, /A( (t)a)(1)) satistying
—01 (1) (@12(t) (@s3(t:) + resy, (357)) — D13(t;)@32(t5)) = aavj ovs1v)a-

for j # 4 and wi3(t;) = d;%) Put

1 0 0 0 0 0 0 w2 w3
oy 7 = 9" ~ dz . “
¢=10 ¢ 0], V=02d+|0 ¢ 0 . T e @2 0],
00 1 0o 0 17" 0 w3 ws
) ¢22w13(t ) (33(t;) + resy, ( dztg) — (vip+vin)) 1 Ga(t:)
f)z(,z) - B wlg(t )WQl(t ) , ,52(71) — 0 )
P20 (@33 (i) + rest, (3252) — vi0)(@s3(t:) + rest, (3452) — vin) @33(t:) + resy, (325-) —vio
) 13(ti)(Ws3(ti) + reSti(zd_ztg) — (Vio+vi1)) , )
171(,2) = @13(@)@21(1&1‘) , @571) _ 0 .
(@33 (t:) + resy, (342) — vi0) (@sa(t:) + resy, (32-) — vin) ws3(t:) +rese, (;57) — vio

31



and

(@aa(t) + boa(vesy, (32-) — v.2)) (@ss(t;) + resy, (7%-) — v)2) —P2avj 0
o5y = o1 (1) (@ (t5) + rese, (=2) — v7.) Co = oty |
wgl(t )UJgg(t ) O
(@aa(t) + Paz(resy, (32-) — v2)) (@s3(t5) + resy, (3%2) — vj2) ~Vj0
17522) = —aaiin (t )(W33( j) + resy, (zd_zts) vj2) ) 53(21) = [ @=(ty)
wa1(t5)@s2(t;) 0

for j # i. Let l(m) = Av(”;) C A®3 and l(m) = Av(m) + Av(”;) C A% for m = 1,2 and j = 1,2,3.

Then we can see that A@3/l is flat over A and (resth — V)1 ](n) C lj,n+1 for any j =1,2,3 and
n =0,1,2 by the way of takmg lifts w9, W13, Wog, W32. SO ¢~>, Vv, lz(lj) and ZNZ(? are desire lifts.

Next we consider the case rank ¢ ® id; = 1. Then applying certain automorphisms of F; and FEs,
we may assume that ¢ ® idy and V ® idx have the form (4.9). In particular, we may assume that
wsa(t;) € (A/I)*. In the same way of the proof Lemma 4.4.2, we also obtain |res;, V — ¢y, | = (A3¢)(vi0—

A) (Vi1 — A)(vi2 — A), and by comparing the coefficients on both sides and using (4.13), we have

Paow3s(ti) + Pazwaz(ti) — Paswsa(ts) — daawas(ti) =0, (4.18)
(woa(ti)wss(ti) — was(ti)wsa(ti)) — wai(t;)(wi2(ti)Pss — wiz(ti)ds2)
dr 2 (4.19)
= (22033 — P23h32) (Viovi,1 + Vijovi2 + viavi2 — (resy, (;5))7),
— w21 w12 w33 331€5¢, dz — W13 w32 321€5¢, &
() na(4) 1)+ e, (55)) = st () + mre ()

= (22033 — P23h32)Vi,0Vi,1Vi2-
Put
waz(tj)wss(t;) — waa(t))was(t;) + (Pp22¢33 — ¢23¢32)(Y68t]»(zd,72t3) —vj2)?
vy = w1 (1) (wss (1) + b3 (resy, (552) = v;2)) ,
wa1 (1) (waa(ty) + daz(res, (352) — vj.2))

" —vj0(P2awsa(t;) — ¢32w22( ) + w2 (ts)wia(t) a2
il = (wsa(t; )+¢32(fest (%) — vio))wa(t;) 7
0
2 1 2 Vo
01 1= (resy, V = w160,)(08)), 0 = [ wai(t)
0

Then we can see that {5 = (4/1)0'}), 1) = (4/D)ol) +(4/1)0') 15 = (A/1)0}3) and 1'?) = (A/1)0
(A/I)’UJ(-?Q) for any j = 1,2,3 by the conditions ¢y, (l(l ) C l§7)n and (res;; V — v m oy, ) (1 ( ) o) C lfgwru and
the relations (4 18), (4.19), (420) We take lifts 199, 193, Q~532, égg € A ko € HO(QIIP,1 /A( (t)A)(—l)), W32, W33 €

HO (g, /A( (t)a)) and @12 € HO(Q, /A( (t)a)(1)) of P2z, P23, P32, P33, Wa1, W32, W33, w12, Tespectively.
We take lifts @3 € HO(Q%,1 /A(D(t)A)(l)), Waz, W3 € HO(Q4, /A(D(t)A)) of w13, wa2,was, respectively,

satisfying

— oy (ty)(W12(ts)(Ws3(ty) + ¢33rest] (Zdt )) — w13(ts)(ws2(t;) + &32rest,-(zd_zt3 )
= (2ahsz — Yazda2)Vj0Vi1Vja,
— o3 (t;)@3a (i) — @1 (t:) (D12 () daz — @13(ti) Paa)
= (Paath3z — Pazpae) (WioVin + VioVip + ViiVia — (resti(zdjg N?),
(@a2(t;)@33(t;) — das(t;)@s2(t;)) — a1 (t) (@12(t;) das — @13(t;)Pa2)
(vi

= (Yo2tss — Yoshsa) (VioVi,1 + VioVia + Vi1via — (resy, (zd_zts )?)

for any j =1,2,3. Put ~ ~
1 := P22Ws3 + P33Waz — P23W32 — P32W23.
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Since Wz (t;) # 0 and ws3(t;) = 0, @32 and Ws3 generate HO(QL, /A( (t)a)) = A®2 as A-module. In

particular, i can be written by the form ~bl<1132 + bass, where by, bg € A. Since n mod I is zero by (4.18),
we have by, by € I. Put ¢ag = 199 — ba, pag = 123 + by. Then we have

Poobs3 + P3saz — Possz — Paalas =0, (4.21)
(Wa2(t)w33(t) — Was(ti)wza(ti)) — @ar (ts)(@12(t ti)baz — @13(ti)h32)
= (¢~722¢~733 - Q~523¢~532)(Vi Vi1 + VioVi2 + ViiVi2 — (resti(zd_zt?, ))2)7
— Wa1(t)(@12(t;) (@as(t;) + ¢33rest (zdts)) — w13(t;)(@32(ty) + ¢32T€St (Zdt3 )

= (Pa2d33 — Pazdaz)VjoviiVja

for any j = 1,2,3 because mI = 0. Put

(4.22)

(4.23)

) r 0 0 o 0 0 0 ds 0 @12 13
=0 ¢a2 o3|, V=0Rd+ |0 P2 ¢o3 P War wa2 w3 |,
0 @32 ¢33 0 ¢32 ¢33 ’ 0 w32 Wwss

W29 (t;)W33(t;) — Waa(t;)was(t;) + (<l~522<l~533 - 4523&32)(1“6815]»(%) - Vj,2)2
773(‘,2 = —G1 (1) (@ss(t) + bss(resy, (357) — v52)) ,
‘I)Ql(tj)( 32( ]) + ¢32(rest ( dz ) vj, 2))

_V10(¢QQW32( ) ¢32w22(t ) + Qa1 (t5)@12(t; )¢32

ol (@sa(t5) + Paa(vesy, (322) — vj.0))2 (t5) ;

7

0
B —Vi0
37 1= (res, V= w060 (@), 077 = | da(ty)
0

Let ly;) = Afzyg) C A®3 and l~§m) Av(m) +Av(m) A®3 form =1,2 and j = 1,2,3. Then we can see
that A@?’/l(m) is flat over A and (res;, V- l/j n(bt )(l(l)) C lﬁ)H_l for any j =1,2,3 and n = 0, 1,2 by the

IV and l; j) are desire lifts. O

way of taking lifts wio, W13, Wo2, W32. SO qb, A g

4.7 Proof of Theorem 4.1.1

To prove Theorem 4.1.1, we consider ]\/433‘@, v) and M$(t,v) for (t,v) € T3 x N. Let Dy be the section
of P(Q4,(D(t)) @ Opr) over P! defined by the injection QF, (D(t)) < Q3. (D(t)) ® Opr, and D; be the
fiber of P(Q}, (D(t)) & Op1) over t; € P'. Let b;; be the point of D; corresponding to v; ;. We put
Bi={b;|1<i<30<j<2}.

Proposition 4.7.1. The restriction morphism
p: M§(t,v) \ ¢~ (B) — P(Qh(D(t) & Op1) \ B (4.24)
is an isomorphism.

Proof. Let z be a fixed inhomogeneous coordinate on P* = SpecC[z] U {oc}. Let Do, be the fiber of
P(Qp: (D(t)) ® Op1) over co € PL. Put Y = U?:o D; U Dy. Then the morphism

(B'\ {t1,ta, t3,00}) x € — P2 (D(#)) ® Op:) \ Vi (4.p) — Clog5,1) € R (DB, ® Osa,

becomes an isomorphism. By this isomorphism, we regard (g, p) as a coordinate on P(}, (D(¢))®Op1)\Y .
We define a family of v-parabolic connections (E, V, 1) on P(Qp, (D(t)) ® Op1) \ Y x P! as follows. Let
E = p5(Op1 @ Op1 (—1) ® Op1(—1)), where pa: P(Qp: (D(¢)) @ Op1) \ Y x P! — P! be the projection. We
define a relative logarithmic connection V: E — E @ p5Qf, (D(t)) by

0 ai2(p; z) a13(q,p; 2) dz
Vi=d+ |1 (z—tl)(z—tg)—p 0 w,
0 z—q (z—t1)(z—t2)+p
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where a12(p; 2), a13(q, p; z) are the quadratic polynomials in z satisfying

ar2(p;t;) = (¢ — t1)2(ti - t2)2 —p? - h/(ti)z(’/i,ol/i,l +viavio + ViaVio)

(ti — @)ars(q, i t; H )(vij — (res, (342))) — p)

for any i = 1,2,3. Let El¢, 2 l;,1 2 l;,2 2 0 be a filtration by subbundles such that (res;, V —v; jid)(l; ;) C
l; j+1 for any 7 = 0,1,2. Then we have

(p+ 1 (t:)(vi,2 — resy, (355)) (W (t:) (vi,2 — vese, (5;)) = p)

liz=C (W' (t: )(Vz,z res;, (%)) — p) ; (4.25)
ti—q
(p+ ' (t) (vi2 — rese, (322))) (W (t:) (vi2 — resy, (3%2)) — p) —h(t:)vio
lin=C (h'(t; )(Vz,2 resy, (3%5-)) — p) +C 1 (4.26)
ti—q 0

For any (q,p) € P(Qp: (D(¢))®Op1)\Y, the corresponding v-parabolic connection (E(, ), V(g.p)s (1) (g,p))
is a-stable. So we obtain a morphism

P(Qb (D(t) & Op) \ Y — Mg (t,v) \ ¢} (V),
which is just the inverse of the morphism
o1 M (1) \ o™ (Y) — P2 (D(2)) © Op) \ Y.

Hence the morphism (4.24) is a birational morphism. By Proposition 4.5.6 and Zariski’s main theorem,
the morphism (4.24) is an isomorphism. O

Proposition 4.7.2. @(t, V) is a smooth variety.
Proof. By Remark 4.5.5, the locus on M$(t,v) defined by rank¢ = 1 consists of one point py. Let
PC: M$(t,v) — M$(t,v) be the forgetful map. Then, by Proposition 4.3.1, the restriction map

PC: Mg (t,v) \ PC™" (po) — Mg*(t,v) \ {po}

becomes an isomorphism. So it sufficient to proof that ]\/4?‘(15,1/) is smooth at any point in PC™*(py),
and it follows from Proposition 4.7.1. O

Proposition 4.7.3. If v; 0 # v;1 # V2 # Vi, then gofl(bm-) =~ P! for any j = 0,1,2 and these are
(=1)-curves.

Proof. Let E1 = Ey = Op1 @ Op1(—1) & Op1(—1), p = A (t;)(vs; — resti(zd_zt3)) and h(z) = (z —t1)(z —
to)(z —t3). Let a(z) be the quadratic polynomial satisfying

a(tm) = (tm - t1)2(tm - t2)2 _p2 - h/(tm)2(1/m,OVm,1 + Vm,lym,2 + Vm,2Vm,())
for m =1,2,3. Let b(z) be the quadratic polynomial satisfying b(¢;) = 0 and
(tm—t)b(tm) = (B (tn) (Vim,0—rese,, (3%2)) =p) (R (tn) (Vi1 —ress,, (352)) =p) (R (tn) (Vin,2—resy,, (3%5)) —p)

for m # 4. Put

1 00 0 pa(z) uo(2) + 01 Lnsi(z = tm)\ 4,
¢,u: 0 K 0 ) v(u,’r]) :¢#®d+ 1 :u(zftl)(zftQ)*Hp 0 W?
0 0 1 0 z—t; (z—t1)(z —t2) +p
(4.27)

where p,n € C. When u = n = 0, the ¢,-connection (E1, E, ¢,V (,.,)) becomes a-unstable for any
parabolic structures. Assume that (u,n) # (0,0). Then parabolic structures lz(l*) and 1(2 of Ey and E,

respectively, satisfying the conditions (¢,)¢, (I (1)) C 1(2) and (ress, (V) — Vi) (¢ll«)ti)(l(1)) C ll(ZJL_1 are
uniquely determined. In fact, when p = 0, it is proved in the proof of Proposition 4.5.6. When p # 0,
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we may assume that p = 1. For m # i, parabolic structures l%)* and lsz)* are given by (4.25) and (4.26).
1Y and l1(2*) are of the following form. When p = h’(t;)(v; 2 — res;, (2-)),

D% z—13
0 0 —h'(t:)vio
Iy =c 0 Y =cC n +C 1 :
B (t:)(vio — vi2) (Vi1 — vi2) R (t:)(vio — vie)(vin — vi2) 0
13 = 60, (11) and 1) = 6, (11})). When p = 1/ (t:)(vi1 — resy, (522)),
—h/(ti)Vi70 —h’(ti)uw 0
1) =c 1 L) =c 1 +C o ,
0 0 R (ti)(vio — vi2)(vin — Vi2)
1% = 60, (1) and 1Y) = ¢, (1Y), When p = I/ (t;)(vi0 - resy, (:257)),
=l (ti)vin =N (ti)via 1
1) =cC 1 i) =c 1 +clo],
0 0 0

11(22) = q’)ti(lE}Q)) and l£21) = gzbt(ll(ll)) We can see that (E1, Ea, ¢u, Vi 1, 15?)) is a-stable if and only if
(1,m) # (0,0). We can also see that (E1, Ea, ¢uy, Vi, ) and (E1, By, ¢y, Vi, .m,)) are isomorphic to
each other if and only if there exists ¢ € C* such that (u1,71) = ¢(p2,72). So we obtain the morphism

_ 1 2
P'—s o (bi); (:m) — (Br, Eay s Vi, 187,18,

which is an isomorphism by Lemma 4.5.1 and Lemma 4.5.3. Since ]/W?(t, v) and P(Q4, (D(t)) ® Op1) are
smooth, ¢~!(b; ;) is a (—1)-curve. O

Let N3(t,v) be the moduli space of rank 3 stable v-logarithmic connections over (P,t). A connection
(E, V) is said to be stable if for any nonzero subbundle F' C E preserved by V, the inequality
deg I deg &
rank F'  rank

holds. Under the assumption in this section, a v-parabolic connection (F,V,1,) is a-stable if and only
if (E,V) is stable. So we have the surjective morphism M$(¢,v) — N3(t,v) by forgetting parabolic
structures.

Proposition 4.7.4. Let jg, j1 and jo be distinct elements of {0,1,2}. Assume that v; j, = vi j, # Vi j,-
Then gp‘l(biﬁjo) is the union of two projective lines C7, Cy such that Y4,y N Cp and Cy N Cy consist of
one point, respectively, and Y ,) N Cy = (). Moreover, self-intersection numbers of C; and Cy are —1
and —2, respectively.

Proof. Assume that jo = 0,71 =1,j2 = 2. Put v; :=v;0 =11,V = v;2 and p := A/ (¢;) (v; —resy, ( dz ).

z—13

Let a(z),b(z), h(z) be the polynomials defined in the proof of Proposition 4.7.3. Then we can see that
any element (Eq, Ea, ¢, V, L(kl), 19)) € p1(bio) have the forms

100 pa(z) po(2) + 01 Lnsi(z = tm)\ 4,
¢p=(0 pu 0), V=0@d+ |1 plz—t1)(z—t2) —pp 0 )
001 0 z =t (z—t1)(z—t2) +p
where (12 : 1) € PL. So we have
1 _h/(ti)yi ,ua(tz) 77Hm¢z(7fz - tm)
resy, V — Vigy, = 7 — —ph ()]
hit) 0 0
and / )
1 —h (ti)yi :ua(ti) ﬁHm#(ti - tm)
restiv - V£¢ti = Wt 1 —Mh/(ti)yz 0
B\ o 0 W (t:) (i — o)
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|
1
1
|
Vi0 # Vi1 # Vi2 # Vio Vio = Vi1 # Vi2 Vio = Vi1 = Vi 2

By definition, we have a(t;) = —h'(t;)?v;v). If n = 0, then ll(l*) and 11(2*) are of the form

7h,(t1)l/lﬂ 7h/(ti)l/ip, S 7h/(ti)l/i 7h/(ti)l/i S
i) = 1 L =c 1 +Clo), i3 =cC 1 L1 =c 1 +clo],
0 0 ' 0 0 '

where (s :t) € PL. If  # 0, then

(1 —H(tvin (1) ! v 2) it (2 : !
1) =C 1 AV =clo]+cf1].13=cC 1 JAX=cflo]+c|1
0 0 0 0 0 0

By the above argument, we have

Cr={n#0 N (bij,) 2P Cy:i={n=0} 2P o ' (b;)=C1UCs

and we find that C1 NY(4,) and C1 N Cy consist of one point, respectively.
Next we consider self-intersection numbers. Let a12(p; z) be the quadratic polynomial satisfying

CLu(?% tm) = (tm - t1)2(tm - t2)2 - p2 - hl(tm)Q(Vm,OVmJ + Vm,1Vm,2 + Vm,ZVm,O)

for m =1,2,3. Let a15(q, p,n; z) be the quadratic polynomial satisfying a13(q, p,n;t;) = n and

(tm—=a)a13(¢, P, 0 tm) = (' (tm) (vm,0—resy,, (3552))=p) (1 (tm) (Vim 1 —vest,,, (552))=p) (B (tm) (vim 2 —resy,, (755)) —p)

for m # 4. Put E = Opr @ Op1(—1) ® Op1(—1),

0 ar2(p; z) a13(q, p, 1; 2) 5
Vigpay =d+ |1 (z=t)(z—12) —p 0 et
0 z2—q (z—t1)(z—t2) +p z

F(g,p,m) = (ti—q)n—(' (t:) (vio—rest, (35)) —p) (W' (t:) (Vi1 —resy, (3%2)) —p) (B (t:) (vi, 2 —vest, (3252)) —p),
and

X ={f(g,p,n) = 0} C(C\ {tm}mzi) x Cx C.

Then (E,V (q,p,n) is a stable v-connection, which induces the morphism X — N3(t,v). We can see that
this morphism is an open immersion, which implies that the point in N5(¢,v) corresponding to (¢,p,n) =
(ti, W (t;)(v; — resy, (z92-)),0) is an A;-singularity. Since Cs is the fiber of the map M$(t,v) — Ni(t,v)

Z—tg

over (t;, h'(t;)(v; —resy, ( Zd_ztg )),0), we have C3 = —2. The morphism ¢ can be factored into a composition
of blow-ups, so C; must be a (—1)-curve.
We can also prove the case of jo = 0,1 in the same manner. O

Proposition 4.7.5. Assume that v;0 = v;,1 = v;2. Then ¢~ !(b; ;) is the union of three projective
lines C1,Cs,C3 such that Cy N Yy, C1 N Ca, and Cy N C3 consist of one point, Cy N C3 = (), and
self-intersection numbers of Cy, Cy and C3 are —1, —2, and —2, respectively.
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Proof. Put v; := ;0 = v;1 = v; 2 and p := B’ (t;)(v; —res, (z%2-)). Let a(z),b(2), h(z) be the polynomials

z—t3
defined in the proof of Proposition 4.7.3. Then we can see that any element (El,E2,¢7V,l£1),l£2)) €
©~1(b; ;) have the forms

1 00 0 pa(z) pb(2) + UHm#(Z —tm) dz
¢=10 pu 0),V=0d+ |1 pulz—t1)(z—1t2) —pp 0 Bk
0 0 1 0 z—t (z—t1)(z—t2) +p
where (1 : 1) € P. So we have
1 =h'(t)vi  palty)  n]l,(ti —tm)
resy, V — Vi, = ——— 1 wh! (t;)v;
h/(ti) 0 0 0

Assume that 7 = 0. Then l1(12) has the following form

—uh!(t;)v;s —uh/(t;)v;s
1) =C s , 13 =c 115 ,
t t

where (s :t) € PL. If t # 0, then ll(ll) and lfl) are of the form

7,uh/(ti)l/i 0 7h/(ti)1/i O

(1) (2)
I =c 1 +clo], 1d=c 1 +Cfo
0 1 0 1

If t =0, then lfll) and 1121) are of the form

)

. —uh!(t;)v; U , —h'(t;)v; U
i) =c 1 +clof, ¥ =c 1 +clo],
0 v 0 v

where (u : v) € PL. If n # 0, then 1Y and 11(2*) are given by the following;

T,%

—/Lh/(ti)yi 1 0 —h/(ti)l/i 1 0
1) =cC 1 S =cfo]+cf1]. 13 =cC 1 Y =cfo]+c(1
0 0 0 0 0

By the above argument, we have

Cl = {7] # O} ﬂ(pfl(biﬁj) = Pl,c’g = {t = 0} = IP’1,03 = {t 7A O} = Pl,wil(bi,j) = 01 U CQ UCg,

and we find that C1 NY(y ), C1 N C, and Cz N C3 consist of one point, respectively, and C1 N C3 = 0.
Next we consider self-intersection numbers. Let £ = Op1 @ Op1(—1) @ Op1(—1) and Vg, ) be the
logarithmic connection defined in the proof of Proposition 4.7.4. Put

X ={(g:p:1) € (C\ {tm}mxi) x Cx C| (ti — q)n — (W' (ts) (v — vesy, (£7)) — p)° = 0}

Then we can construct an open immersion X < N3(¢,v) as in the proof of Proposition 4.7.4. Since
X has an As-singularity at (q,p,n) = (t;, ' (t;)(vi — resti(i—iS)),O), we have C3 = C% = —2, and so
C?=-1. O

Proof of Theorem 2.1. We prove (2) first. The morphism (4.4) extends to the morphism
©: M2(0,0,2) — P(€).
Let B be the reduced induced structure on B;O U 51 U BQ. Then we can see that the restriction morphism

p: M£(0,0,2)\ ¢ }(B) — P() \ B
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is an isomorphism by Proposition 4.7.1. Any irreducible component of the inverse image gpfl(lg’) has
codimension one by Zariski’s main theorem. In particular, the inverse image ¢ ~!(Bs) is a Cartier divisor

on ]\/4?(0, 0,2), so ¢ induces the morphism
fa: M. (0 0,2) — Zo,

where Zs is the blow-up of P(€) along By. Let Z; is the blow-up of Z, along the strict transform of
Bi. In the same way, we obtain the morphisms f: J\//[E"(0,0,Q) — Z1 and f: ]\/4?(0,0,2) — Z. By
Proposition 4.7.1, 4.7.3, 4.7.4, and 4.7.5, the morphism f(,): ]\/J?(t, V) — Z(t) is an isomorphism for
any (t,v) € T3 x N. So f is an isomorphism. Let (Y<1)rea be the reduction of Y<;. Then the composite

Bly o f o PC™H: M&(0,0,2) \ (Y<i)rea — S\ W

is an isomorphism, where Bly: Z — S is the blow-up along W. By Hartogs’ theorem, the above
morphism extends to the morphism f’: M$(0,0,2) — S and it becomes an isomorphism by Zariski’s
main theorem. By the construction of f’, the diagram

M£(0,0,2) L Z

PCJ/ lBlw
ME(0,0,2) —L— S
becomes commutative.
To prove (1), it is sufficient to show that Y<; is reduced. Let us fix t = (¢;)1<i<3 € T5. Take a Zariski
open subset U C P* such that U = SpecCl[z] and ty,2,t3 € U \ {0} = SpecC[z, 2]. Let a12(u; 2) and
a13(u, v; z) be the quadratic polynomials in z satisfying

ara(usty) = w(t; — t1)(t; — t2)® — 1 — R’ () (viovi1 + ViaVi2 + Viavio)

LN (t)u = 1) T ] (tmo —w)

for i =1,2,3. Put By = E5 = Op1 @ Op1(—1) ® Op1(—1), p(u,v) = (t1v — u)(tev — u)(t3v — u)

2
a3 (u,v;t;) H Vij — rebt

1 0 0 w(u,v)aiz(u; z) ays(u, v; 2)
¢(u,v) =10 UQ/J,(’U,7 U) 0 ’ v(u,v) =1 u2lu’(u7 ’U)(Z - tl)(’z - t2) - ul“’(”’ ’U) 0
0 0 u 0 vz —u u(z —t1)(z —t2) +1

and

2 (vi,; — resy, (3% 2Rt )u—l;é()forany1<z<3}
X= {(uvtu)e(c X Ty x N andO<y<2&ndt€(U\{0})

Then we can see that parabolic structures of (lil))(uw) and (lg))(uvv) of E1 and Es, respectively, satisfying

1 2 1 2 .
S () ) © Uy and (ress, V) = Vi) () wm) € (1741w are unique. So we
obtain an open immersion X — M$(0,0,2). Since Y<; is defined by u = 0, Y<; is reduced.
Finally, we prove (3). Let p: P(Qp.(D(t)) ® Op1) — P? be the blow-down of Dy and H; = p(D;).
Then there is a morphism ¢’: M$(t,v) — P? such that the diagram

—

Mg (t,v) —— P(Q}(D(t)) ® Op1)
pcl lp (4.28)

/

ME(t,v) ————— P?

commutes. The morphism ¢’ can be factored into a composition of blow-ups at a point. Let H; be
the strict transform of H; under ¢, respectively. Then we have 7KM73?‘(t vy = Hy + H + H3. So it

is sufficient to show that Yy ,y on M$*(t,v) has multiplicity one along H; for each i = 1,2,3, which is
equivalent to that the strict transform Y(t,,,) of Y(¢,,) under PC on M$(t,v) has multiplicity one along
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D, for i = 1,2,3, where D; is that the strict transform of D; under . Let b12(p; z) be the quadratic
polynomial in z satisfying

bio(P; tm) = (tm — t1)2 (tm — t2)* — p* — hl(tm)z(yi,ol/i,l +vivio + Vialio)

for m =1,2,3. Let b13(q, p; 2) be the quadratic polynomial in z satisfying b13(q,p;t;) = 0 and

(tm—)b13(¢, pitm) = (B (tm) (Vim0 —rest,, (355)) —0) (W (tm) (Vm,1 —ves,, (325)) =p) (W (tm) (V.2 —rest,, (525)) —D)
for m #i. Put
F(ap, ) = 1 () (ti=q) = (' (t:) (vi0—rese, (355)) —p) (' (83) (vi —vesy, (5255)) —p) (I (t:) (vi,a—vest, (:%)) —p)

and

X = {f(g,p,n) = 0} C (C\ {tm}mzi) x (C\{N(t:)(vij — rese, (;25)) bo<j<2) x C.
Then the family of parabolic ¢-connections defined by

1 00 0 pibi2(p; 2) pb13(q: 3 2) + Tlss (2 = tm)\ 4,
Gu=1{0 p O, Vigpu =0.®d+ |1 wz —t1)(z —t2) — pup 0 @
0 0 1 0 z—q (z—t1)(z—t2) +p
(4.29)

gives an open immersion ¢: X < ]\@(t,u). In particular, L*)>(t7y) is defined by u = 0. So }A/(tﬂ,) on

]\@(t, v) has multiplicity one along D;. O

4.8 The moduli space of parabolic Higgs bundles and Hitchin
fibration

Take t € T3, A € C and v € N(0,0,2\).

Definition 4.8.1. A wv-parabolic ¢-A-connection of rank 3 and degree d over (P! t) is a collection
(E1,FE2,0,V, 1 = {ll(l*) ?Zl,lf") = {11(2*) 3_,) consisting of the following data:

(1) E; and Ey are vector bundles on P! of rank 3 and degree d,

(2) ¢: E1 — E5 is a homomorphism and V: Ey — E» @ Qb (D(t)) is a A-twisted logarithmic ¢-
connection, i.e. ¢(fa) = fé(a) and V(fa) = ¢(a) ® Mdf + fV(a) for any f € Op1,a € Eq, and
(3) For each k = 1,2, lgi) is a filtration Ey|;, = l%) 2 lvakl) 2 lgg) 2 ZE? = 0 satisfying qﬁti(lg}j)) C lfj)

and (resy, (V) — Vi,j(bti)(lg}j)) C lE?H for1<i<3and0<j <2

Remark 4.8.2. When E; = E5 and ¢ = id, a v-parabolic ¢-A-connection is a v-parabolic A-connection.
When A = 0, we call ¢-A-connections ¢-Higgs bundles. If ¢ = id, then a v-parabolic ¢-Higgs bundle is a
v-parabolic Higgs bundle.

We define the a-stability for v-parabolic ¢-A-connections by the same condition of Definition ?7. Let
Mg (A, t,v) and M$(A,t,v) be the moduli space of rank 3 v-parabolic A-connections with 3 poles and
v-parabolic ¢-A-connections, respectively. If A # 0, then we have M$ (A, ¢, \v) =2 M$(1,¢,v) = M$(t,v)
and MS(\, ¢, \v) = MS(1,t,v) = M$(t,v) for any t € T3 and v € N3(0,0,2). Put

Mg,B(tvy) = M?l)l(ovtay)7 M§,3(tay) = M?(O,t’l/)

for t € T3 and v € N3(0,0,0). In the same way of the case of connections, we can also provide an
explicit description of M 5(¢,v) and le"m(t7 v). Specifically, M ;(t,v) is obtained by blowing up P?
at 9 points including infinitely near points such that a cubic curve passing through those 9 points is
not unique, which means that the complete linear system of an anti-canonical divisor has dimension
one. M 4(t,v) is obtained by removing an anti-canonical divisor of M ;(¢,v). In the same manner as
Lemma 4.5.1, Lemma 4.5.3, and Lemma 4.5.4, we have a normal form of a-stable v-parabolic ¢-Higgs
bundles.

Lemma 4.8.3. Take a = (o j)1<i,j<3 and v such that |a; ;| < 1 for any 1 <i,5 < 3 and v > 0. Let
(E1,Eq,0,9, lil), l,(f)) be a v-parabolic ¢-Higgs bundle.
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Mg 5(¢,0) P2

blow-up

(1) Assume that A%¢ # 0. Then ¢ and ® have the forms

1 0 0 0 alg(Z) alg(z) dz
¢=10 1 0],®=1[1 —p ) (4.30)
0 0 1 0 z—gq p (2)
respectively, where ¢,p € C and a12(z), a13(2) are the quadratic polynomial in z satisfying
ara(t;) = *h/(ti)Q(Vi,oVi,l +viavio + Vialio) — P, (4.31)
2
(ti — q)ars(t;) = H(h/(ti)yi,j - p) (4.32)
§=0
for any i = 1,2, 3.
(2) Assume that rank ¢ = 2. Then ¢ and ® have the forms
100 0 0 [1(z—t)) &z
o=10 0 0],®d=1(1 0 0 AL (4.33)
00 1 0 22—t p (2)
respectively.
(3) Assume that rank ¢ = 1. Then ¢ and ® have the forms
10 0 0 [LuG=t) 0\ .
¢=10 0 0],®d=1(1 0 0 ) (4.34)
0 0 O 0 zZ—q z—1; (2)

respectively.
(4) Assume that ¢ = 0. Then (E, Ea, ¢, ®, lffl), 19) is a-unstable.

Take a v-parabolic ¢-Higgs bundle E = (E4, Es, ¢, @, 1M, lﬁz)). For each 0 < i < 3, let ¢;(F) €
HO(PY, Hom(N3Ey, A3 E2) ® (U, (D(t)))®%) = HO(P!, (L, (D(t)))®%) be the coefficient of the polynomial
A3(tg — @) in t, that is,

A3 (tp — @) = co(E)t® + 1 (E)t? + co( B)t + c3(E).
In other words, ¢;(E) is the homomorphism defined by
co(E)(v1 Ava Avz) = ¢(v1) A d(v2) A (v3),
c1(E)(vi Ava Avg) = —=(®(v1) A d(v2) A d(vs) + d(v1) A D(v2) A d(vs) + d(v1) A d(v2) A D(vs)),
co(E)(v1 Ava Avg) = @(v1) A P(vg) A P(v3) + D(v1) A d(va) A P(v3) + P(v1) A D(v2) A P(03),
Cg(E)(’Ul A\ (%) A\ Ug) = 7@(’1)1) A\ @(’Ug) N @(vg),
where v1,v2,v5 € E1. Put H = &3_ HO((Q4,(D(¢)))®*). Let us define the morphism Hit by
Hit: Mg 4(t,v) — PH, @+ [(co(),c1(x), cal), c3(2))],

which is well-defined by Lemma 4.8.3. Here for a nonzero element o € H, [o] is the homothety class
of 0. The restriction Hit on Mgﬁ(t,u) is just the parabolic Hitchin map. We can see that for any

40



x € Mg 4(t,v), ci(x) = 0,ca(x) = (A*¢) f(v; 2), and c3(x) has the form bh(z) + (A*¢)g(v; 2) by Lemma
4.4.2, where b € C, and f(v;z) and g(v; z) are the quadratic polynomials satisfying the condition

fwit) =viovin +viavie + vialio, gWiti) = =V oViaVi2

for i =1,2,3. So the image Hit(Mfj 5(t,v)) is the locus defined by

{[(a.0.07022)(5)°2 0h(2) + ag(w: 2)(585)7") | | (a:0) € B} P,

Let us consider the fiber mil(a :b). When a = 0, mil(a : b) is the boundary of M 5(¢,v). Assume
that @ = 1. The form (4.30) provides an open immersion P!\ {t1,t5,t3,00} x C < Mg 5(t,v). Since

det ® = ((z — q)a13(z) — palg(z))(hcéz))‘g’B, the fiber m_l(l : b) is the locus defined by the equation

pai2(q) = bh(q) + g(v;q) (4.35)

on P\ {t1,t5,t3,00} x C. Consider the case v = 0. Since f(0;2) = g(0;2) = 0, we can replace PH with
P(H°(Op) ® H°((Q4:)*(2D(t)))) = P!, and the equation (4.35) becomes

P +b(g —t1)(g —t2)(g — t3) = 0.
So we obtain the following proposition.

Proposition 4.8.4. The morphism Hit: Mg 4(t,0) — P(H°(Op) & HO((Q24:)*(2D(t)))) is an elliptic
fibration and has singular fibers of type IV* and IV over (1 : 0) and (0 : 1), respectively.
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Chapter 5

Moduli space of parabolic bundles

and parabolic connections

5.1 Rank 2 case

In this section, we describe the birational structure of moduli spaces of rank 2 parabolic connections.
Let C be an irreducible smooth projective curve over C of genus g > 1 and t = (¢;)1<i<n be n distinct
points of C. Let us fix a line bundle L with degree d := 2g — 1. Then we have H'(C, L) = {0} and by
Riemann-Roch theorem, dim H°(C, L) =d+1—g = g. Let us fix a weight & = {v; 1, i 2}1<i<n and set

Wi = Q2 — Q1.

)

5.1.1 The distinguished open subset of the moduli space of parabolic bundles

Lemma 5.1.1. Assume that Z?:l w; < 1. For a quasi-parabolic bundle (F, ) of rank 2 and odd degree,

the following conditions are equivalent:
(i) (E,l.) is a-semistable.
(ii) (E,l.) is a-stable.

(iii) F is stable.

Proof. 1f (E,l,) is a-semistable but not a-stable, then there is a sub line bundle F' C E such that

deg E —2deg F' = Z w; — Z w;.
Flg, =1 Fl,, #1

The left hand side is odd, but

Z w; — Z w; §iwl<l
=1

Fly, =1 Flg, #1

It is a contradiction. So conditions (i) and (ii) are equivalent.
If (E,l.) is a-stable, then for all sub line bundle F C E, the inequality

2deg F < deg E + Z w; — Z w;
Flg, 1 Flg,=1{"
holds. From (5.1), it follows that
degEF —1<degFE + Z w; — Z w; <degE 41,
Fl,, 21 Fle,=1{"
and so we have 2deg F' < deg E by (5.2). Since deg F is odd, we obtain
2degF < degFE —1 < degF.

Hence, FE is stable. Conversely, if E is stable, then we can prove that (F,l,) is a-stable by the above

argument.
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Lemma 5.1.2. Suppose that a vector bundle E on C' satisfies the following conditions:

(i) E is an extension of L by O¢, that is, E fits into an exact sequence

0—0Oc—FEF—L—0.

(ii) dim HO(C’, E)=1.
Then F is stable.

Proof. If E is not stable, then there exists a sub line bundle F' C E such that degF' > g. Since
dim H°(C, F) — dim HY(C,F) = degF + 1 — g > 1, we have dim H°(C,F) > 1, hence we have an
inclusion O < F. By assumption (ii), we have a unique inclusion Oc C F C FE, and this inclusion
induces the injection F/Oc — E/O¢ ~ L. Since L is torsion free, one concludes that F'/O¢ = 0, that
is, F' ~ O¢. This contradicts the fact that deg F' > g > 1. O

Proposition 5.1.3. For an element b € H'(C,L™1), let
0—0c—FE,—L—0 (5.3)

be the exact sequence obtained by the extension of L by O¢ with the extension class b. Then dim H(C, E}) =
1 if and only if the natural cup-product map

(,b): H'(C,L) — H*(C,0¢)
is an isomorphism. Moreover, dim H°(C, E},) = 1 for a generic element b € H'(C,L™1).

Proof. Since H(C, L) = {0}, from the exact sequence (5.3), we obtain the following exact sequence

0 — HY(C,00) —s HY(C, Ey) —s H(C,L) "% HY(C,0¢0) — HY(C, Ey) — 0
Here we note that by definition of the extension with b the connecting homomorphism §: H(C, L) —
HY(C,O¢) is given by ( ,b). Since dim H°(C, Ep) = dim H'(C, Ey)+deg Ey+2(1—g) = dim H'(C, Ey)+1,
the first assertion follows from the above exact sequence.
We show the second assertion. We set

Z = {(s,b) € H(C,L) x H'(C,L™") | {s,b) = 0}.
Since deg L ® Qf, = 49 — 3 > 2g — 1, we have H'(C, L ® Q) = {0} and
dim HY(C, L") = dim H(C,L ® Q5)* =deg L@ QL +1 — g = 3g — 2.

Hence, it is sufficient to show that dimZ = 3¢g — 2. In fact, if dimZ = 3¢ — 2, then for generic
be HY(C,L™1), we have dim¢~*(b) = 0 and it means ¢~ '(b) = {(0,b)}. Here q: Z — H*(C,L™1) is the
projection.
Let p: Z — H°(C, L) be the projection. We show that for any s € H°(C, L)\ {0} , dimp~(s) = 2¢g—2.
A section o € H(C,Q},) induces the diagram

HO(C, L) x HY(C, L) —

Hl(C,Oc)

®o xid Qo

HO(C,L® QL) x H'(C, L) — ~ H(C, QL)

where the above and below map are natural cup-products and the left and right map are natural maps
induced by o. Note that ( , )’ is nondegenerate. Set s € H°(C, L) \ {0}. For b € H'(C,L™'), (s,b) =0
if and only if for all 0 € H°(C,QL), (s® 0,b) = (s,b) ® ¢ = 0. Since the set

{s@c|oec H(C,Q)} ~ HY(C,QH)
is a g dimensional subspace of H°(C, L ® ©2},) and by the nondegeneracy of (, )’, the set
{be HY(C,L™1) | (s,b) = 0}

defines a 2g — 2 dimensional subspace of H*(C,L~1). We therefore obtain dimp~!(s) = 2g — 2. So we
conclude dim Z = 3g — 2. O
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Proposition 5.1.4. Let ., w; < 1. Let Vj € P*(L) = P& 4 (L) be the subset which consists of all
elements (E,l,) € P*(L) satisfying following conditions:
(i) F is an extension of L by O¢.
(i) dim H°(C,E) = 1.
t; 7 li,1. Here O¢

(iii) For any ¢, O¢ ¢, is identified with the image by an injection O¢|;, — E

ti
Then V; is a nonempty Zariski open subset of P*(L).

Proof. Let E be a vector bundle on C satisfying conditions (i) and (ii). Then we have det E' ~ L from
(i) and F is stable by Lemma 5.1.2. Let M, denote the moduli space of rank 2 stable vector bundles on
C with the determinant L.

First, we show that the subset of M}, consisting of vector bundles satisfying (i) and (ii) is open. Since
rank and degree are coprime, M, has the universal family £. Set

V={zec M |dimH(C,&|cxs) =1},

then V is an open subset of M by the upper semicontinuity of dimensions. Let q: C x V — V be
the natural projection. By Corollary 12.9 in [Hal, ¢.£ is an invertible sheaf on V and for any x € V,
(¢+€)|x is naturally isomorphic to H°(C,E|cx.). Hence ¢*q.€ is an invertible sheaf on C' x V and a
natural homomorphism ¢: ¢*¢.€ — £ is injective. By definition, for any = € V, we have (¢*¢.€)|cxz =~
HO(C,E|cxz) @c Ocxe =~ Oc and tlexz: Oc ~ (¢*¢.E)|oxe — E|lcxe is not zero. Set

Y ={(c,) € CxV | ey Ocle = (q"¢E)|(exz) =+ El(e,e) 18 zero.}

and V! = V' \ ¢(Y), then Y is a closed subset of C' x V and V’ is an open subset of V. If z € V’,
then we obtain &|cx./Oc ~ L, that is, E|cx, is an extension of L by O¢. Therefore, V' consists of all
isomorphism classes of vector bundles satisfying the conditions (i) and (ii), and V' is an open subset of
My,. Moreover, V' is not empty by Proposition 5.1.3.

Second, we prove that Vj is open. By Lemma 5.1.1, we obtain

P(L) = P(El¢y xmp,) Xaay, P(Eliyxnay) Xaay -+ Xy, P(Ee, xary,)-

For each t;, by projectivization of ¢|¢,xv: (¢*q«E)|t,xv' — E|t,xv’, we obtain a morphism IAM: vV —
P(E|t,xv+) such that for all z € V', I;1(x) is the point associated with the image by the immersion
Oc <= E|lexz at t;. Let w: P*(L) — My, be the natural forgetful map and p;: P*(L) — P(E|s, <, ) be

the natural projection. Set

Vo= = (VO Up G (V).

Then V; is an open subset of P*(L) and Vj is the set of all isomorphism classes of parabolic bundles
satisfying (1), (ii), and (iii). O

We introduce another expression of Vy. For b € H(C,L™1), let
0 —0c —E,—L—0
be the exact sequence associated with b. We set
U:={bec H(C,L7") | dim H°(C, E}) = 1}

and then U is an open subset and 0 ¢ U by Proposition 5.1.3.
The natural homomorphism ¢: HY(C, L='(-D)) — H'(C, L~!) induces the morphism

¢: PHY(C,L~Y(-D))\ PKery) — PH'(C,L™Y).

Let U ¢ PH'(C,L™") be the open subset associated with U and V = ¢~ (0).
Suppose that (E,l,) € P*(L) satisfies conditions (i), (ii), and (iii) of Proposition 5.1.4. Let b €
H(C,L™") be the element associated with an exact sequence

0— 0O —FEF—L—0
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and [b] be the point in PH'(C, L) associated with the subspace generated by b. By assumption, we
have b € U. Let {U;}; be an open covering of C' and (¢;;); ;, ¢i; = ¢i/c; be transition functions of L over
{U;}i. Let e’i be the restriction of a global section O¢ < E on U; and eé be a local section of E on
U; whose image by the natural map E — E|;, generates [ 1 at each ¢, € U;. For generators el and e,
transition matrices M; ; is denoted by
1 b
. <0 Cii‘)

where b = (bj;¢;)i; € H'(C,L™'(=D)). Then we have Y([b']) = [b], and so ['] € V. By using the
above argument, we can correspond [b'] € V to an isomorphism class of a parabolic bundle satisfying all
conditions of Proposition 5.1.4. Thus we conclude Vj ~ V.

Putting together the above argument, we get the following proposition.

Proposition 5.1.5. Suppose that > 1, w; < 1. Let Vo C P*(L) be the subset defined in Proposition
5.1.4. Then there is an open immersion Vo < PH(C, L~1(-D)).

5.1.2 The apparent map

Let us fix v = (1/”);3)1” € N,.2(d) and a tr(v)-parabolic connection Vj, over L. Let Vj be the open
subset of P*(L) defined in Proposition 5.1.4. We set

M*(v, (L, V1)) == ME 4(2,v,(L, V1)),
M*(v,(L,V0))" = {(E,V,l) € M*(v,(L, V1)) | (E,L) € Vo}.
For each (E,V,l,) € M*(v,(L,V1))?, E has the unique sub line bundle which is isomorphic to the
trivial line bundle. We define the section ¢y € H°(C, L ® Qf (D)) by the composite
Oc = E S E®OL(D) - E/Oc @ QL(D) ~ L & QL (D).

Suppose that py = 0, i.e. V(Oc) C Oc @ Q5 (D). Then we obtain Y., v;0 = 0 by Fuchs relation
because Oc|y, N1 = {0} for any i. So if >.i" 150 # 0, then ¢y # 0 and we therefore define the
morphism

App: M*(v,(L,V.))° — PH(C, L ® Q&(D)) ~ |L ® QL(D)|.

(E7 vvl*) — [@V}

Here [py] is the point in PHY(C, L®Q (D)) associated with the subspace of H(C, L&QL (D)) generated
by ¢v. We can extend this map to the rational map

App: M*(v,(L,V1))--- — |L® Q&(D)|.

5.1.3 Parabolic bundles and the apparent singularities

Let
Bun: M*(v,(L,V1))? — Vj

be the forgetful map which sends (E,V, 1) to (E,l.). We can extend this map to the rational map
Bun: M®(v,(L,Vy)) - — P*(L).

Let
(,): H(C,L® Q&(D)) x HY(C, L™ (-=D)) — H(C,Q¢)

be the natural cup-product. This cup-product is nondegenerate.

Theorem 5.1.6. Assume that 2?21 vio # 0 and Z?:l w; < 1. Let us define the subvariety ¥ C
PHY(C,L ® QL(D)) x PHY(C, L=(-D)) by

%= {([s], [o]) | (s,b) = 0}.

Then the map
App x Bun: M*(v,(L,V))? — (PH°(C,L ® QL(D)) x Vp) \ &

is an isomorphism. Therefore, the rational map
App x Bun: M*(v,(L,Vy)) -+ = |L® Q&(D)| x P*(L)

is birational. In particular, M*(v, (L, Vy)) is a rational variety.

45



Before showing this theorem, we prove the following lemma.

Lemma 5.1.7. Let (E,l.) € Vo and b € HY(C, L) be an element associated with an extension

0—0c—F—L—0.

Then the natural cup-product map

(,bY: HY(C,QL) — HY(C, L' @ 0})

is an isomorphism. In particular, for an element V' € H'(C,L~'(—D)) associated with (E,l.), the

composite of the natural cup-product map and the natural homomorphism

20,0k~ gy O, LY (-D) @ QL) — HY(C, L' © QL)

is also an isomorphism.

Proof. By Serre duality, we have H(C, Q%) ~ HY(C,O¢)* and H'(C,L7' ® Q) ~ H°(C,L)*. So it

suffices to prove that the natural cup-product map
(,0)": H°(C,L) — H'(C,0¢)

is an isomorphism, and it is nothing but the first assertion of Proposition 5.1.3.
The second assertion follows from the following diagram.

L HN O, L (-D) @ QL)

HO(C,QL) x H'(C, L~ (-D))

HO(C,QL) x HY(C, L)) — ) L HY(C, L' o 0L)

Proof. (Proof of Theorem 5.1.6)

O

Firstly, we show that for any v € H°(C, L ® Q&(D)) and b € H*(C, L=!(—D)) such that the quasi-
parabolic bundle (E,l,) associated with b is in Vj, there exist a unique complex number A and a unique

Av-parabolic A-connection (E,V, ) such that trV = AV and ¢y = 7.

Let {U;}; be an open covering of C' and (c;;)i ;,¢ij = ¢;/c; be transition functions of L over {U,},.
Let e} be the restriction of a global section Oc — E on U; and €% be a local section of E on U; whose

image €5 by the natural map E — E
can denote transition matrices of E by

_ (1 by
M’L a (O Cij> ’
where b = (b;;c;)i; € HY(C, L' (—D)) is the cocycle corresponding to an extension
0—0c—F—L—0.

A logarithmic A-connection V is given in U; by Ad + A;

= (3 ) e s o))

with the compatibility condition

on each intersection U; N U;. By using elements of matrices, this condition is written by

(51' — (5]' = —bij’}/j - A
ij
cifi — ¢jB; = —(Acjdbij 4 (bijcj) (o — ;).
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If (E,V,l,) is a Av-parabolic A-connection, then for each point ¢;, V satisfies the residual condition

resy, (A;) = <M’0 0 ) (5.5)

* AV 1
at each t;, € U; because éé generates I, 1. V, is denoted in U; by d + w; with the compatibility condition
deij + cijwi = ¢ijwj (5.6)
on each U; NU;. If trV = AV, then the equation
o + 0; = Aw; (5.7)

holds. When V is denoted in U; by Ad + A;, we have py = (7;/¢;); € H°(C, L ® Q&(D)). So if oy =1,
then we have
(vi/ei)i = 1. (5.8)

We show that there exist A € C and «;, 3,74, 0; € Q4(D)(U;) satisfying the conditions (5.4), (5.5), (5.7)
and (5.8) uniquely.

Step 1: we find ;. From (5.8), we have to set v; = ¢;.

Step 2: we find ;. Fix a section o € QL (D)(U;) which has the residue data res;, (af) = vy at each
ty € U;. The cocycle (of — af); ; defines an element of H'(C, Q). If (o) — af); ; is zero in H'(C, Qg),
then there exist sections &; € Q};(Ul) on each i such that o — a? = &; — & for any ¢, 7. (af — @;); defines
a global logarithmic 1-form whose sum of residues >, ;¢ is not zero. This contradicts the residue

0

theorem. Therefore, the cocycle (a? — )i j is a generator of H(C,Qk) and there is a unique complex

number A such that A\(a? — Oz?)m' = (bijv;)i,j- Let a&; € QL(U;) be a section such that

& — a; = by — Moy — af)

for any i, j. Set a; = Aa? + @&;, then («;); is a solution of the second equation of (5.4) and has the residue
data res;, (a;) = Avg 0. Note that (a;); is still not uniquely determined. Actually, the difference of two
solutions of the second equation of (5.4) having the same residue data defines a global 1-form and now
dim H(C, Q%) > g > 1.

Step 3: we find §;. From (5.7), we have to set §; = Aw; — «;. It is clear that (d;); is a solution of the
third equation of (5.4) and has the residue data res, (0;) = Avg 1. 0; is uniquely determined by «;.

Step 4: we find 8; and show that «; is uniquely determined. From the cocycle condition of (b;;c;)i,;
and the first, second, and third equations of (5.4), we obtain

(Acjdbi; + (bije;)(ai — 05)) + (Ackdbjk + (bjkcr)(a; — k)

= — )\bijckdcjk + Acpdb, + (bikck — bjkck)ai - bijCj(Sj + (bjkck)(ozj — 51@)

= — )\bijckdcjk + Aepdb + bikck(ai — 5k) — bjkck(ai — aj) — bijCj (5] — 5k)

=Acrdb; + bikck(ai — 5k>
So (—(Acjdbij + (bijej) (i — 85)))i,; defines a cocycle of H(C, L™ ® Q). Note that a solution of the
fourth equation of (5.4) exists if and only if (—(Ac;db;; + (bijci)(cwi — 6;)))i,; s trivial. We denote the
image of b by the natural homomorphism H'(C, L=*(—D)) — H'(C, L) by the same character b. Since
the linear map ( ,b)": H(C,QL) — HY(C,L~' ® QL) is an isomorphism by Lemma 5.1.7, there exists
a unique global 1-form ¢ = ((;/c;); € H(C, Q) such that

(2bi5C5)ig = (2¢,0)" = —(Acjdbij + (bijcj) (i — 65))i g,

that is,
—(Acjdbij + (bijes) (i + Gifei) = (6 = ¢j/¢j)))i; =0
in HY(C,L~' @ Q). So there exist unique (;); and (J;); satisfying the condition (5.7) and

—(Acjdbij + (bijej) (i — 65))i; = 0,

and there exists a solution of the fourth equation (5;); of (5.4) such that res;, (8;) = 0 for any ¢ and
t, € U;. Since HO(C, L' ® QL) ~ H*(C, L)* = {0}, (B;); is uniquely determined.
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When A = 0, the cocycle (b;;;):,; is zero because o; € QL (U;). Conversely, assume that (b;;7;)i; = 0.
Then there exists &; € Qlc(UZ) for each 4 such that a; — a; = b;;7; = & — &;. The cocycle (o; — &;);
defines a global logarithmic 1-form on C'. By the residue theorem, we have

i )\Vi,O =0.
i=1

By assumption, we obtain A = 0.

For a point ([7],[b]) € (PH(C,L ® QL(D)) x Vp) \ E, there exist a unique complex number A and
a unique Awv-parabolic A-connection (E,V,l,) such that trV = AV, ov = v, and (E,l,) is the quasi-
parabolic bundle corresponding to b. Then A # 0 and (E,A\"1'V,l,) is a v-parabolic connection with
the determinant (L, V) whose image by App x Bun is ([7], [b]). If a v-parabolic connection (E, V', 1)
satisfies trV’/ = V1, and oy € [7], then there is a unique complex number u such that v = pA=1ty. A
pv-parabolic p-connection (E, pA~V, 1) satisfies tr(uA™'V) = pV 1 and ¢, -1y = pA~ 1y, so we have
p=1and V' = A~V by the uniqueness. Therefore, the morphism

App x Bun: M*(v, (L, V1)) — (PHY(C,L ® QL(D)) x Vp) \ &

is bijective. By Zariski’s main theorem (for example, see Chapter 3, §9, Proposition 1 in [Mu]), App x Bun
is an isomorphism. O

The following proposition is the same as Proposition 4.6 in [LS] and follows by using the same argument
of the proof.

Proposition 5.1.8. Suppose that >, 1,0 = 0. Then M*(v, (L, V))? is isomorphic to the total space
of the cotangent bundle T*Vy and the map Bun: M*(v,(L,V1))? — Vo corresponds to the natural
projection T*Vy — Vy. Moreover, the section Vo: Vo — M<(v,(L,V))° corresponding to the zero
section Vy — T*V} is given by those reducible connections preserving the destabilizing subbundle O¢.

5.1.4 Another proof of Theorem 5.1.6

We will show App x Bun is a birational map in another way. First, we show the existence of a parabolic
connection over a given parabolic bundle. The following lemma is an analogy of Lemma 2.5 in [FL].

Lemma 5.1.9. Suppose that > .~ w; < 1. Then for each (E,l.) € P*(L), there is a v-parabolic
connection (F,V,l,) such that trV ~ V.

Proof. Let {U;}; be an open covering of C' and V/, be a logarithmic connection on U; satisfying (res;, (V) —
v 1id)(lk1) = 0, (vesy, (V5) — v 0id)(E|s,) C lg1 at each g € U; and trV] = V|y,. We define sheaves
& and & on C' by

EY = {s € &nd(F) | tr(s) = 0 and s, (l;1) C ;1 for any i},

&' = {s € End(E) @ QL(D) | tr(s) = 0 and resy, (s)(l; ;) C l; j+1 for any 4, j}.

Then the isomorphism £' ~ (£°)¥ ® Qf, holds. Differences V; — V' define the cocycle
(Vi—V))i,; € H(C,EY).
By Serre duality and the simplicity of E, we obtain
HY(C,&Y) ~ H(C, &%) = {0}.

Hence, there exists ®; € £1(U;) for each i such that V, — V; =®, — ®;. Set V; =V, — ®;. Then (V;);
defines a v-parabolic connection V over (F,[,) satisfying trV ~ V. O

For a quasi-parabolic bundle (E, I,.) € Vp, let us fix a v-parabolic connection (E, V,1,) € Bun™'((E, 1..)).
Let (E,V',1,) € Bun *((E,l.)) be another v-parabolic connection. Then V' — V is a global section
of &' which is the sheaf defined in the proof of Lemma 5.1.9. Therefore, we have the isomorphism
Bun'((E, 1))~V + H°(C,&Y).

For a section © € HY(End(E) ® QL(D)), we define the section pg € HO(C,L ® Qf(D)) by the
composite

Oc = E 2 E®QL(D) = E/Oc @ QL(D) ~ L@ QL(D)
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and define the map
@: HY(C,End(E) ® QL (D)) — H°(C, L ® Q'(D))

by ¢(0) = pe. It is clearly linear. Let us define the sheaf F! by
Fl = {s € &nd(E) @ QL(D) | resy, (s)(li ;) C lij41 for all 4,5}

Assume that © € H(C, F') satisfies po = 0, that is, ©(Oc) C Oc ® Q4(D). By definitions of 1 and
&Y we obtain resy, (©)(O¢lt,) € Oclt, Nl; 1 = {0} for any i. Hence, we have ©(O¢) C O¢ ® Q¢, that is,
Olo, is a global section of Q.

Lemma 5.1.10. The linear map H°(C, F') NKer p — H(C,Q), © — 0|0, is an isomorphism.

Proof. For p € H°(C,QL), we define © = idg ® . Then we have © € H°(C, F')NKer ¢ and 0|0, = p.
The linear map is hence surjective. We show that the map is injective. If © € H°(C,F') N Kerg
satisfies ©|p, = 0, then © induces the homomorphism ©: L ~ E/O¢ — E @ Q&(D). res;,(©) = 0
implies res;,(©) = 0, so we obtain (L) C E ® Q. Since rank E = 2, we have isomorphisms EV ~
E® (det E)™! ~ E® L~!. By this isomorphism and Serre duality,

Hom(L,E® Qf) ~ HY(C, L' ® E®Qf) ~ H(C,EY @ QL) ~ HY(C,E)* = {0}
Hence we obtain © = 0 and this implies © = 0. O

Proof. (Another proof the second assertion of Theorem 5.1.6)
We show that for each (E, 1) € Vp, the morphism

App: Bun((E, 1)) — PH°(C,L ® QL(D))

is injective.

Let us fix a v-parabolic connection (E,V,1,) € Bun *((E,1,)). If there exists © € H(C,&") such
that pv = pg, then V — © is a v-parabolic connection and ¢v_g = 0. It is a contradiction. Thus, we
have

{ve |© € H°(C,€M)} N Copy = {0}.

Hence, we only need to show that the linear map ¢: H°(C, &) — HY(C, L® Q' (D)) is injective. Suppose
that a section © € HO(C,E') satisfies pg = 0. By the proof of Lemma 5.1.10, there is a section
p € H°(C,Q}) such that © = idg ® . Since tr© = 0, we get 1= 0 and this means © = 0. O

5.1.5 Lagrangian fibrations

Recall the canonical symplectic structure on M (v, (L, Vy)) (see section 6 in [IIS1] and section 7 in [In]
for more detail). Take a point z = (E,V,l,.) € M*(v,(L,Vy)). Let £° be the complex of sheaves defined
by
E' €&l s—Vos—soV,

where £° and £' are sheaves defined in Lemma 5.1.9. Then there exists the canonical isomorphism
between the tangent space T, M“(v,(L,Vy)) and the hypercohomology group H!(£®). Take an open
covering {U;}; of C. In Cech cohomology an element of H*(£®) can be written by the form {(B;;), (®;)},
where (Bij)i,j S 01(50)’ ((I)z)z S CO((‘:I) and (VBZJ — Bijv)i,j = ((I)J — (I)i)i,j in Cl(gl) The canonical
symplectic form Q on M*(v, (L, Vy)) is defined by

Q. HY(E*) @ HY(E*) — H2(0c % QL) = C
({(Bij), (@)} {(Bi;), (2)}) — ({tx(Bij o Bj)}, —{(tr(Bij o ®}) — tr(®; 0 Bj;))})

at each #. We can see that the homomorphisms H°(C,&') — H(C,E®) and HY(C,E®) — H(C, &)
defined by (®;); — {0, (®;);} and {(Bij)i,j, (®;)i} — (Bij)i,j, respectively, give an exact sequence

HY(C, &% — HO(C,&Y) — HY(C,£%) — HY(C,E%) — H'(C,&Y).

When (E,V,l,.) € M*(v,(L,V1))", we have H'(C, &) ~ H°(C,£°%)* = {0}. We note that each element
in H*(C, EY) gives a deformation of (E, ).

Proposition 5.1.11. App: M*(v,(L,V))? — |L ® QL(D)| and Bun: M*(v,(L,V))° — V, are
Lagrangian fibrations.
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Proof. Take a point x = (E,V,l,) € M*(v,(L,V1))? and put [y] = App(z) and [b] = Bun(z), where
v = (1) € HY(C,L @ QL(D)) and b = (b;;);; € H'(C,L7'(—D)) are nonzero elements. Then a
transition matrix M;; of E and a connection matrix A; of V have the form

(1 by (o Bi
w2 )
respectively. The natural homomorphism
T.App~ ' ([7]) ® T,Bun™ ' ([o]) — T.M*(v,(L, V1)) = H(C,E*)

is an isomorphism. Since any element in T, Bun™"([b]) does not deform (E,1,), we have T,Bun~*([b]) C
H°(C,EY). So Qlpyy-1(p)) = 0 and T.App~ ' ([7]) — H*(C,E°) is an isomorphism. Take {(B;;)i;, (®;)i} €
H'(C,&*). Since the homomorphism

_ _ o 0 gij
TPH'(C. L™ (-D) = HC. L™ (=D))/I] — HC.%) = Tioay P, i (o %))
Z7J
is an isomorphism, B;; and ®; can be written by the form

0 gij G
B;; = (0 Oj) , ;= <91: Cz’) ,

where (;,m;, € Q&(U;) and 6; € QL(D)(U;). We note that (b;; ’y ;.j is a nonzero cocycle in H'(C, Q)
(see Step 2 in the proof of Theorem 5.1.6). So we have H!(C, L~ ( D)) = [b] ® Ker (v, ), where (, ) is
the natural pairing

3

< ) >: HO(C’L®QlC(D)) X Hl(CaL_l(_D)) — Hl(C?Qlc)
Since b = 0 in H'(C, &), the composite
Ker (v, ) — H*(C,L™*(-D)) — H*(C,&%)

becomes an isomorphism. So we may assume that (g;;);; € Ker (v, ). The condition VB;; — B;;V =
dBij + AlBZ] - BijAj = Mij(I)j — (I)iMij is equivalent to

—9i;V; = G — Gi + bi;0;

dgij + aigiz — 9ij0; = nj — Mmicij — bij (G + ;)

Cijoj — 91' =0.

So 6 = (6;); defines a global section of L @ Q4 (D) and (b;;0;)i; is zero in H'(C,Qf). Assume that
{(Bij)ij, (®:)i} € ToApp~'([7]). Then 6 is an element of [y], and so § must be zero. Hence we have

Qo ({(Bij)ij» (®i)i}, {(Bij)ijs (¥7)i}) =0

for any {(Bij)’ij7 ((I)z)z}7 {(B;])z], ((I);)z} S TxAppil([’}/]), which means that Q|App*1([’y]) =0. L]

5.2 Rank 3 case

This section is devoted to the relation between the moduli space of parabolic bundles and parabolic
logarithmic connections of rank three on the projective line with three points.

5.2.1 The moduli space of w-stable parabolic bundles

In this subsection, we determine w-stable parabolic bundles on P! of rank 3 and degree —2, and investigate
the moduli space and the wall-crossing behavior. Let us fix t € T;.
We assume that

Q13— Q12 =012 Q11 =023 Q22 = Q22 — Qg1 =33 Q32 = Q32— Q31 = W.
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Then we have 0 < w < 1/2. We consider the case of deg E = —2. Take a nonzero subbundle F' C E. If
rank 7' = 2, then the inequality (2.1) is equivalent to

—4— 3degF+ZZa” —3d; ;(F)) >0, (5.9)
i=1 j=1
and we have
—3w c=lia
Zam —3d; j(F)) = 0 Fly, #1li1, Fle, D lio
3’[1) F|t1 2 li,2-

In the case of rank F' = 1, (2.1) is equivalent to

3 3
—2—3deg F+ Y Y« ;(1-3d;;(F)) >0, (5.10)
i=1 j=1
and we have
3w F t; g li71
ZO‘U dij(F)) = 0 Fly, Clig, Fly, #lig2
—3w F t; — li72-

The stability condition is determined by w under the assumption, so we call the special case of the
a-stability the w-stability.

Let (E,l.) be a w-stable parabolic bundle with deg F = —2. The vector bundle E can be written by
the form Opi(mq) @ Op1(ma) ® Op1(ms3), where my > ma > ms and mq + ma + m3 = —2. Suppose that
my > 1. Since w < 1/2, we have

—2 — 3 deg Op1 (M —|—ZZa” —3d; ;(Op1(m1))) < =54 9w < 0.

i=1 j=1

So E is isomorphic to Op1 & Op1(—1) & Op: (—1). Suppose that Op: i, = l; 2 for some i. Then we have

—2 — 3deg Op: +ZZO¢” —3d; j(Op1)) < =2+ 3w < 0.

1=1 j=1

So Op1 |y, # ;2 for any i. Let I} be the image of [; » by the quotient E|;, — (E/Op1)|s,. Since O
I/ is not zero for any i. For a parabolic structure I/, = {l’};<;<3 on Op1(—1)®2 put

n(ll) = ax At

Op1 (—1)= FCOH,J( 1)@

t; % li,27

A parabolic bundle (Op: (—1)%2,1") with n(l’) = 1 and 3 is unique up to isomorphism, respectively. When
n(li,) = 2, there are three isomorphism classes of such parabolic bundecles, that is, those isomorphism
classes are determined by the pair of numbers 1 <4 < j < 3. Let (x) be the following condition;

(*) There is no subbundle F' C E such that F' = Op1(—1)%2,1;5 C F|;, and F|;, = [} for some i and

any j # i.
Proposition 5.2.1. Let P"(-2) := P (3, -2).
(1) If0 < w < 2/9,4/9 < w < 1/2, then P¥(-2) = 0.
(2) If 2/9 < w < 1/3, then a w-stable parabolic bundle (E,l,) fits into a nonsplit exact sequence
0 — (Op1,0) — (B, 1) — (Op (=1)®2)1L) — 0, (5.11)

where n(l,) = 1. In particular, P*(—2) is isomorphic to P

(3) If 1/3 < w < 4/9, then a w-stable parabolic bundle (E,l,) is either type of the following;:

(i) £ = Op @ Op1(—1) @ Opa(—1), #{i | Op1]:
holds.

Cli1} =0, n(l,) = 1, and the condition (x)

i
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(i) B = Op & Opi(~1) & Opu (—1), #{i | Opl,
holds.

C i1} =1, n(l,) = 1, and the condition (x)

i

In particular, P*(—2) is isomorphic to P*.
Proof. Assume that w < 2/9. Then we have
7273degopl+zza” 3d; ;(Op1))) < =24 9w <0,
=1 j=1

which means that P¥(—2) = ().

t; C l;1 for some 4, then we have

—2 = 3deg Op +ZZ% —3d; ;(Op1)) < 2+ 6w < 0.

=1 j=1

t: € 1; 1 for any 7. Hence (E,l,) fits into an exact sequence
0— (Opl,@) — (E,l*) — (Opl(—l)eﬂ,l; = {l;}lgigg) — 0. (5.12)

If (5.12) splits, that is, there exists a subbundle F' such that F' = Opi(—1)®2 and F|;, = ;1 for all 4,

then we have
3 3

—4—3deg F+ Y ) (2 3d;;(F)) =2~ 9w <0.
i=1 j=1

So (5.12) does not split. Suppose that n(l}) > 2. Then we can take a subbundle F' C FE satisfying
F = Opi(—1) and Fl;, = l; 2, F|t, = l;2 for some 1 <1i < j < 3 and we have

3 3
—4—3deg(Op @ F) + Y > (2= 3d; ;((Op & F))) < —1 43w < 0.

i=1 j=1
Hence n(l,) =1 and we have
P (=2) & PExt!((Op: (—1)°2, ), (Ops,0))  PHY((Op: (1)°%)(~ D)) = PL.

Assume that 1/3 < w < 1/2. If n(l}) > 2, then we can take a subbundle F' C F satisfying F' = Op1(—1)
and Fl;, = l; 2, F|t;, = 12 for some 1 <1 < j < 3, and we have

—2—3deg F+ Y Y o j(1—3d;;(F)) <1—3w<0.

i=1 j=1

So n(l,) = 1. In this case, we can take a unique subbundle F' C E such that F' = Op1(—2) and F|;, =, 2
for any ¢, and we have

—2—3degF+ZZa” —3d, ;(F)) =4 — 9uw.
=1 j=1

So P*(—2) = 0 if w > 4/9. Assume that 1/3 < w < 4/9. Suppose that #{i | Op
we have

t;, C Zi,l} > 2. Then

—2 — 3deg Op —|—ZZO¢” —3d; ;(Op1)) < —2+ 3w < 0.

=1 j=1

So #{i | Op1|t, C I t: € l;1 for any i. Then we can take a unique
subbundle F;; C E buch that F;j & Op:(—1)%2 Fjlt, = 1;1 and Fijly; = lj1 for each 1 <4 < j < 3. If
b2 C Fijle,, for m # 4,7, then we have

3 3
—4—3deg F+ ) ) (2 3d;;(F)) =2~ 6w < 0.
i=1j=1
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So such a parabolic bundle becomes w-unstable, which is a contradiction. We can see that such a parabolic
bundle p;; € PExt' ((Op1 (—1)%2,12), (Op1,0)) is unique for each 1 <14 < j < 3. Next we consider the case
Opily; € U1 for some m. Let 4,5 be different elements of {1,2,3} \ {m}. Then we can take a unique
subbundle F;; C E such that Fj; & Opi(—1)%2 F;;|;, = 1,1 and Fijlt; = lj1. In the same reason of the
above, we have l,,, o € F|;, . We can see that such a parabolic bundle p,, is unique up to isomorphism.
Therefore we have

PY(=2) = (PExt' ((Op1 (—=1)%2, 1), (Op1,0)) \ {p12, 13, p23}) U {p1,p2. p3} = P'.
O

As the above proof shows, pio,p13,p23 become w-unstable and pi,p2, p3 become w-stable when w
is across 1/3. Let us investigate this in detail. Assume that 2/9 < w < 1/3. In this case, a w-
stable parabolic bundle (F,l.) fits into a nonsplit exact sequence (5.11). Then we can take nonzero
homomorphisms s1, so: Op1(—1) — E satisfying 11 o = (Im s1)]s,, l22 = (Im s2)]¢,, 0 # (Ims1)|4, C la1,
0 # (Im sa)|, Cl1,1. Let eq, ez be local basis corresponding to si, sz, respectively, and ey be the nonzero
section of Op1 C E. Let us denote aeg + bey + cea by the matrix “(a b ¢). Since n(l,) = 1, we can wright
I, by the form

0 0 0 0 0 0
ll,gz(c 1 ,ll,lz(C 11+C|0], ZQ,QZ(C 0 ,12,1:(C 114+C|0
0 0 1 1 0 1
a+b a b
13)2 =C 1 R l371 =Cj|1]+C|o0],
1 0 1

where a,b € C. The exact sequence (5.11) splits if and only if (a,b) = (0,0), and parabolic bundles
defined by (a,b), (a’,b") are isomorphic to each other if and only if (a,b), (a’,b") are the same up to scalar
multiplicities. In this way, we also prove that P*(—2) = P!. The parabolic bundles pi2, p13, p2s in the
proof of Proposition 5.2.1 correspond to the case a +b = 0,b = 0,a = 0, respectively. Let us fix a # 0
and put g = a + b. Let [, be the parabolic structure defined by

N 0\ 0 0\ 0\ 0 0
Lhao=C|1],hh=C|1|+C|0], ho=C|0],by=C|1]+C[0
0 0 1 1 0 1

) I 1 1

so=C|1],y=C|2]+C|1

1 0 1

When p # 0, the homomorphism defined by the matrix

S OoOx
oo
— o O

is an isomorphism from (E,1,) to (E,l.). When p = 0, (E,I.) and (E,l.) are parabolic bundles corre-
sponding to p3 and pio in the proof of Proposition 5.2.1, respectively. So ps and pi2 are infinitesimally
close to each other. In the same way, we can see that p1, po are infinitesimally close to po3, p13, respectively.

5.2.2 The moduli space of A-connections

In this subsection, we consider the compactification of the moduli space of parabolic connections by using
A-connections. Let M3’(¢,v) be the moduli space of rank 3 w-stable v-parabolic logarithmic connection
on (P',t). Let M¥(t,v)" be the moduli space of Av-parabolic A-connections over (P!, ¢) whose underlying
parabolic bundle is w-stable, that is,

MY, v)° :={(\E,V,l.) | (E,l,) € PY(=2)}/ ~.
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Here two objects (A1, E1, V1, (I11)+), (A2, B2, Va, (I2)) are equivalent if there exists an isomorphism o: (Ey, (I1).) —
(B2, (I2)«) and p € C* such that the diagram

B — By @ QL (D(t))

| [

By Y2 By @ QL (D(t))

commutes. The locus defined by A = 0 on M¥(¢,v)° is isomorphic to the projectivization PT*P™(—2)
of the cotangent bundle of P*(—2). By definition,

M (t,v)° = {\ #£0} = MY (t,v)0 \ PT*P¥(-2)

is just the moduli space of v-parabolic connections whose underlying parabolic bundle is w-stable. The
following result when vy g + v2,0 + 3,0 = 0 is a version of Proposition 4.6 in [LS] in the present setting.

Theorem 5.2.2. Assume that 2/9 < w < 1/3. Then we have

S P! x P! V1,0 + 20+ 130 #0
M¥(t 0~ ) ) s
#Ev) { P(Op1 @ Op1(=2)) 11,0+ vo0+1v30=0.
Proof. Let Uy := C and Uy, := C. For a € Uy and b € U, let us define a parabolic structure (I,). and
(lb)* on Op1 & O[p)l(—l) %) O[Pl(—l) by

0 0 0
(la)i2=W2=C[ 1|, (la)11=U)11=C|1]+C|O],
0 0 1
0 0 0
(la)22=(p)22=C| 0], (la)21=(ls)21=C|1] +C (0],
1 0 1
a+1 a 1 1+5b 1 b
(lo)s2=C| 1 |, (a)31=C[1]+C|O0],(lh)s2=C| 1 |, {)s1=C[1|]+C]|O
1 0 1 1 0 1
Then (Uy, a) and (U, b) define coordinates on P*(—2), and we have a = 1/b when a,b # 0. Put

c11(2) = vt —t3)(z —t1) + 10t — t3)(z — t2),

CQQ(Z) Vo (tQ 7t3)(27t1)+1/172(t1 7t3)(27t2),

C33(Z) Vo (tg —t3)(z—t1) +I/171(t1 —t3)(Z—t2),
)y(a) = a(1+vy o+vao—v12—vo 1)+ (1—(v12+ve1+131)), €5(b) = (1—v1 2—va1—130)+b((V11+Ve 2413 2)—1),
Ys(a) = a((v1 2+1o,1+v32)—1)+(1—

c

(v1,1+12,24130)), c73(b) = (1—v11—122—131)+b(14v1 0+ 0—11,1—122),
9 =% = —(v10 +v20 + 130),

Sy = (12 +v21+r32)—1, 55(b ) (v12+va1 +v32) =14+ (L+0b)(vio + 20+ 130),

By(a) = (1 +vap+vs2) — L+ (a+ 1)(v0 + v20 + V30), €55 = (V11 + 122 +132) — 1,

ci(z)  chla)(z—t)(z—t)  ds(a)(z—t)(z—t2) \ 4,

Vo(a) =d—+ 0 (Z — tl)(Z — tz) + CQQ(Z) 683(t3 — tl)(z — t2) h(Z)’
el (ts)  ca(a)(ts —t2)(z —t1) (2 —t)(z — t2) + c33(2)
0 ala+1)(z—t1)(z —t2) —ala+1)(z—t1)(z —t2) ds
Dg(a):=| W (tz) 0 —(a+ 1)(t3 —t1)(z —t2) )’

—ah/(tg) a(a + 1)(t3 — tg)(Z — tl)

ci(z)  BO)(z—t)(z—t2)  FBO(z—t)(z—-t2) \ 4
Voo(b) =d + Cg?h/(tg) (Z — t1)(2’ - t2) + 622(2’) ng(b)(tg - tl)(z — tg)
0 C%(tg*tg)(Z*tl) (Z*tl)(27t2)+633(2’)
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0 b(1+b)(z—t1)(z—ta) —b(1+b)(z—t1)(z—t3)

d
Do (b) = [ b (t3) 0 (14 b)(ts — 1) (2 — t2) Wi)
“W(t) (L4 B)(ts —t2)(z — 1) 0
Then we have
Bun ' (Up) 2 P(CVo @ CP), Bun *(Uy) = P(CV4 @ CP,),
where Bun: M¥(t,v)° — P (—2) is the forgetful map. We can see that
al 0 0 a 0 0 at 0 0 a 0 0
Vee=| 0 1 0] (Vo—(vio+raotrze)a @) |0 1 0|, o= 0 1 0)(@a32®)[0 1 0],
0 01 0 01 0 01 0 01
and so we have
1 0
D) ) .
(Voo @oc) = (Vo, @) (—(V1’0+1/2,0+V3,0)a_1 a_2>
Hence we obtain the theorem. O

Let us consider the relation between the moduli space of v-parabolic ¢-connections M$*(¢,v) and the
moduli space of Av-parabolic A-connections My (¢, v)°. We assume that v; o # v;1 # v, 2 # v for each ¢
for simplicity. Let : .7\/4-3?'(t7 v) = P(Qp, (D(¢) © Op1), " : ME(t,v) — P? and p: P(Qp: (D(¢)) © Op1) —
P2 be the morphism defined in Section 4 (see the diagram (4.28) in the proof of Theorem 4.1.1). Let
D; C IP’(QHE,1 (D(t))@Op1) be the fiber over t; and D; be the strict transform of D; under . Let H; = p(Dy)
and H; be the strict transform of H; under ¢’. Let Dy be the section of P(Q, (D(t)) ® Opr) over P
defined by the injection Qi (D(t)) < QL (D(t)) @ Opi. Let b;; € P(Qh, (D(t)) & Op1) be the point
defined in the Subsection 4.7 and put ¢; ; = p(b; ;) € P2. We can see that three points 1,3, C2,5,C3,k are
on the same line if and only if 11 ; +v2 j + 3, = 1, and six points c1,4,, C1,i5, €251+ €2, 555 C3,k, > C3,ky ATE OL
the same conic if and only if vy ;; +v14, + 12, + Vo, + Vs iy + Vs g, = 2.

The following proposition follows from the proof of Proposition 4.7.1 and Proposition 4.7.3.

Proposition 5.2.3. Assume that 0 < a; ; < 1 and v; 0 # v;1 # vi2 # Vi for each i. Take (E,V,l,) €
Mg (t,v). Then the type of (E,l,) is one of the following:

(i) E 2 Op & Opi(—1) @ Opi(—1), #{i | O]y, € 117} =0, n(I%) = 1, and the condition (*) holds.

(i) E=0Op1 @ Op1(—1)® Op1(—1), #{i | Op1 |4, C lgi)} =0, n(l}) = 1, and the condition (%) does not

hold.
(ii) E 2 Op1 @ Op1(—1) ® Op1(—1), #{i | Op

t; C lgi)} =1, n(l,) =1, and the condition () holds.

(ili) E = Op1 @ Opi(—1) @ Opi (=1), #{i | Ops]y, 117} =0, n(l)) > 2, and the condition (x) holds.
For (E,l.) whose type is (iii), n(l},) = 3 when 14 g+ 12 2+1v32 = 1l and n(l,) = 2 when vy o +1v90+v32 # 1
Assume that v satisfies the condition
vig+ ootz # 1 (5.13)

and
Vigy teetvsa# L vig+rvo, tvse# L vigtiestrs  #1 (5.14)

for any j1,jo2,j3 = 0,1. When 2/9 < w < 1/3, P¥(—2) consists of parabolic bundles of the type (i) and
(i)’. We can obtain M3’ (¢, v)" from M$ (¢, v) by the following three steps.
Step 1: contract the locus consisting of the type (ii) and (iii). We have

{(B,V,1.) € M§¥(t,v) | the type of (E,L.) is (i)} = (¢ (b1,0)\ D1) U (¢ (b2,0) \ D2) U(p ™} (b3,0) \ D3).
By Proposition 4.7.3, ¢! (b; ;) is a (—1)-curve. From (4.25), the closure of the set

{(E,V,1.) € M$*(t,v) | I; and I lie on some subbundle Op1 (1) = F' C Op1(—1) © Op1 (1)}
on Mg (t,v) is the closure of the locus defined by

(B (t:) (vip — vesy, (3255)) = p)(t; — ) — (W (8) (w2 — resy, (55;) — p)(ti — q) =0,
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Mg(t,v) X X2

Step 1 Step 2

o

l l Step 3

Mg (t,v) M (t,v)°

where (g,p) is the coordinate defined in the proof of Proposition 4.7.1, which is just the strict transform
L;j C M$(t,v) of the line L;; C P2 passing through ¢; » and ¢;2 under ¢’. Since any ¢, ,, for (m,n) #
(,2),(4,2) is not on L; ; from the condition (5.13) and (5.14), the intersection number of L;; is —1. By
contracting ¢~ 1(b1,0), 9 1 (b2,0), ¢ 1 (b3,0) and the inverse images of Lis, Las, L13 under PC, we obtain a

morphism p : @(t, v) — X1, where X is a smooth projective surface.

Step 2: contract the locus defined by rank ¢ = 2. Since ¢: ]\/437"(15, v) — P(Q, (D(¢))®Op1 ) is the blow-
up at 9 points {bm}ééé.%;, D; is a (=3)-curve for each i. H; intersects with ¢~ (c; o) and Lj,, (j,m # 1)
at one point, respectively. So the image p; (IA)Z) C X; is a (—1)-curve. Contracting i)l, Dg, 153, we obtain
a morphism pa: X7 = Xo. When vy g 4+ 12,0 + v39 = 0, there exists a conic C C P? passing through six
points ¢i1,1,¢1,2,¢2,1,C2,2,C3,1,C3,2. Let Cc ]\@(t, v) be the strict transform of C under po ¢ = ¢’ o PC.
Then p1(C) 22 pa(p1(C)) is a projective line and intersects with pa(p1 (¢~ (bi1))) for each i = 1,2, 3.
So X is isomorphic to P(Op1 & Op1(—2)). Since C does not intersect with ¢'~!(c; o), and C intersects
with each H; and L,,, at two points, we have pg(pl(é'))2 = pl(é)2 =C2%=-2. pg(pl(é)) is the unique
section whose intersection number is —2. When vy g +v2,0+v3,0 # 0, there is no projective line contained
in X, which intersects with pa(p1(¢~1(b;1))) for each i = 1,2,3. So X5 is isomorphic to P! x P!.

Step 3: change Dy to PT*P¥(—2). Dy and PT*P¥(—2) are infinitesimally close to each other. A
v-parabolic connection

100 0 a12(z) a13(2) dz
p=10 1 0|, V=d+ |1 (z—t1)(z—t2)—p 0 A
0 0 1 0 z2—q (z—t1)(z—t2) +p =)

whose apparent singularity q is not t1,t2 and t3 has the limits

P> 0 0 P> 0 0 e 100 0 -1 g(2)
0 p20)@@V)[0o 1 o | EZS(looo], |1 o o nelk (5.15)
0 0 1 0 0 p ! 000 0 z—q 1
100 p' 0 0 00 0 0 —1 g2

_ pP— 00 9 d
0p 0)(,V)[ 0O »p2* 0] — 00 0), (1 -1 0 |5, (5.16)
00 p? 0 0 p3 000 0 z—q 1

where g(2) = E?zl m Hj;éi(z —t;). Put

(t3—t1)h'(t3) (ts—ta)(z+g—ti—ta)  (ta—t1)(z+q—t1—t2)
(t2—t1)(g—t1)(q—1t3) (t1—t2)(g—t2) (t2—t1)(g—t1)
Clg;2) = 0 = e ,
0 (ts—t2)(g—t1) (ts—t1)(g—t2)
tl—tz t2_t1
—(q —t2)(qg — t3) 0 z2+q—ta—13
Ci(g;2) = 0 —(q—t2)(qg —t3) 0 :
0 0 1
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—(g—t2) Mg —t3)~" 0 0
Cy(q; 2) = 0 1 1
0 0 ¢g—t
Then we have
1 00 0 -1 g2 ds 100 0 (z—t2)(z—1t3) 0 dx
Ci(q; 2) 0 0 0}, [1 0 0 P Cs(q; 2) 0 0 0,1 0 0 T
000/ \0o 2-q 1 )M 0o 0 0/ \o Z—gq 2t ) M)
and B
0 -1 gz
N dz (ts —t1)(g —t2) (ts—t2)(g—t1)
Cla: 111 -1 0 2 Cla:2) = _ {ta—t2)(g=t1)y
(q7 Z) h(Z) (Q7 Z) h/(tg)(q - tl)(q 7 tg) ( (t37t1)(q7t2))
0 z—q 1
So a v-parabolic ¢-connection with rank ¢ = 1 and a parabolic Higgs bundle is infinitesimally closed to
each other. In the case of ¢ = 1,19, 3, we can also see it by using (4.27) and (4.29). Therefore we can
obtain M (¢,v)0 from M (¢, v).
5.2.3 Parabolic bundles and the apparent singularities
We fix 2/9 < w < 1/3. Let Vj C P¥(—2) be the subset consisting of parabolic bundles of the type
(i). The set Vp is the set of P*(—2) minus 3 points by Proposition 5.2.1. Let (E,l,) € V; and V be a
Av-logarithmic A-connection on (E,l,). Assume that 119+ 0 + v309 # 0. Then there exists a unique
filtration E =: Fy D Fy D F» D 0 such that F» = Op1, Fi = Op1 ® Op1(—1), and V(F>) C Fy @ Q. (D(t)).
We define the apparent singularity App(F, V,[,) by the zero of the nonzero homomorphism
Opi(—1) 2 Fy/F, > (E/Fy) @ QL (D(t)) = Opr.
When A # 0, this definition is the same of the definition in Subsection 4.3.
Remark 5.2.4. Assume that (E,l.) € P*(—2)\ Vp. Then for any parabolic connection V over (E,l),
there exists a unique filtration £ = Fy D Fy D F3 D 0 such that Fy = Op1, F1 = Op @ Opi(—1), and
V(F,) C Fi ® QL (D(t)). However, we can see that for a parabolic Higgs field ® over (E,l,), such
filtration is not unique. So we can not define the apparent map App over M’ (¢,v)°.
The following is a version of Theorem 4.3 in [LS] in the present setting.
Proposition 5.2.5. We fix 2/9 < w < 1/3 and assume that v1 9 + 12,0 + V3,0 # 0. Then the morphism
App x Bun: Bun™ (V) — P! x 1
is finite and its generic fiber consists of three points.
Proof. Consider fibers of App x Bun. We have
1 pein (2) dz
(uWVo+ADg) [0 ]| = AR/ (t3) AR
0)  \(uch —ra)l'(ts)) ")
So Fy is generated by the sections *(1,0,0) and (0, \, (uc3; — Aa)). Since
0 *
VAo [ A | = [ A=t — 1) + e(2)) + (e — Aa) ey — Ma+ D)5 —t1) (= — 1) |,
pcgy — Aa A(ucsa(a) + Aala +1))(ts — t2)(z — t1) + p(ucs; — Aa)((z — t1)(z — t2) + cs3(2))

the apparent singularity of uVg + A®q is the zero of the polynomial

MA(uchs (@) + Aa(a+ 1)) (ts — t2)(z — t1) + p(pcg; — Xa)((z — t1)(z — t2) + c33(2))}
— (e — Aa){pA((z — t1)(z — t2) + c22(2)) + (e, — Aa)(ucss — Ma + 1)) (ts — t1)(z — t2)}
=fi(a; p, N) (2 — t1) + fala; p, N) (2 — t2),
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where

Jia; p, N) =(ts — t2){a(a+ 1)X° + (By(a) + (2,2 — v2,1)a)Np — (v2,2 — v2,1)B A},
fala; p, A) =(t3 — tl){ag(a + 1))\3 —((r12—r11)a+2a(a+ 1)cg1 + aQCgQ(a)))\Q,u
+ (1,2 — v11)8 + 2acd 95 + (a + 1) (c3;)?) A — (c3y) s}

Hence App: Bun™'((E, (I,)+)) = P(CVq(a) ® CPy(a)) — P is defined by

App(uVo + A®0) = (f1(a; i, A) + falas 1, A) = trfra; s A) + tafalas p, A)),
which implies that a generic fiber consists of three points. Since App x Bun is proper, App x Bun is
finite. O
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