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Chapter 1

Introduction

The Painlevé equations are second-order differential equations whose only movable singularities are poles.
One of the important characteristics of the Painlevé equations is that they can be derived from the isomon-
odromic deformations of systems of linear differential equations. For example, the Painlevé VI equation
is the isomonodromic deformation equation of a rank two linear system with four regular singularities.

Another way to obtain the Painlevé equations is by using the theory of rational surfaces. The notion
of the spaces of initial conditions for the Painlevé equations was introduced by K. Okamoto [Ok1]. H.
Sakai [Sa] characterized the good compactification of spaces of initial conditions as a certain projective
rational surface and classified them according to some affine root systems. In his framework, the second
order discrete Painlevé equations are the dynamical systems generated by the action of the translation
part of the corresponding affine Weyl group on the family of rational surfaces and the Painlevé equations
appear as a limit of the translation part. Saito-Takebe-Terajima [STT] also characterized the spaces
of initial conditions and classified them. In their framework, the Painlevé equations arise from certain
deformations of rational surfaces.

Moduli spaces of meromorphic connections connect the isomonodromic deformation and the space of
initial conditions. The equations of the isomonodromic deformations can be geometrically understood as
an algebraic vector field on the moduli space of meromorphic connections by Riemann-Hilbert correspon-
dence. In particular, we can regard the moduli space of meromorphic connections as a space of initial
conditions of the equation determined by the isomonodromic deformation. Giving a coordinate on the
moduli space of meromorphic connections leads to giving an explicit description of the higher dimensional
Painlevé equations and characterizing the space of initial conditions for them.

Moduli spaces of meromorphic connections are mainly studied in the case of rank two logarithmic
connections on the projective line. The first purpose in this thesis is to give an example of the moduli
space of logarithmic connections with rank ≥ 3. Specifically, we provide an explicit description of the
moduli space of rank three logarithmic connections over P1 with three poles, considering its relation to
the difference Painlevé equation. The second purpose is to give a Darboux coordinate on the moduli
space of logarithmic connections over the curve with higher genus.

1.1 The moduli space of connections and difference Painlevé
equations

First, we consider the higher rank case. The moduli space of parabolic logarithmic connections of rank r
and degree d on the smooth irreducible projective curve C with n distinct points has dimension 2r2(g −
1)+nr(r− 1)+ 2. In particular, the moduli space has the even dimension. The dimension of the moduli
space is two if and only if (g, n, r) = (0, 4, 2), (0, 3, 3), (1, n, 1). So we focus on the case (g, n, r) = (0, 3, 3).

Rank three logarithmic connections over P1 with three poles do not admit nontrivial isomonodromic
deformations. However it is known that discrete deformations of those connections give rise to the

difference Painlevé equation associated to A(1)∗
2 -surfaces. Here an A(1)∗

2 -surface is a surface with a unique
effective anti-canonical divisor and is obtained by blowing up P2 at three points on each three lines
meeting in a single point, i.e. blowing up at nine points in total. So the moduli spaces of rank three
logarithmic connections over P1 with three poles can be identified with the spaces of initial conditions

of the difference Painlevé equation, i.e. A(1)∗
2 -surfaces. D. Arinkin and A. Borodin [AB] proved that

the moduli space of a certain type of difference connections over P1 for generic parameters, which is a
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geometric interpretation of difference equations, is isomorphic to the surface obtained by removing the

effective anti-canonical divisor from an A(1)∗
2 -surface. They pointed out that the moduli space of the type

of difference connections is isomorphic to the moduli space of rank three logarithmic connections over P1

with three poles by the Mellin transform. P. Boalch [Bo] considered the relation between A(1)∗
2 -surfaces

and the moduli spaces of logarithmic connections from the perspective of quiver variety and symmetry.
The moduli space of rank 3 logarithmic connections on the trivial bundle over P1 with 3 poles is identified
with the Kronheimer’s E6-type ALE space, which is obtained by blowing up P2 at 6 points on the smooth

locus of a cuspidal cubic. Boalch explained how to obtain an A(1)∗
2 -surface from the Kronheimer’s E6-

type ALE space, that is, how to pratially compactify the moduli space of logarithmic connections on the
trivial bundle to get the full moduli space of logarithmic connections of degree zero. On the other hand,
they did not explicitly mention the correspondence between each logarithmic connection and the points

on an A(1)∗
2 -surface. A. Dzhamay and T. Takenawa [DT] provided a coordinate on a Zariski open subset

of the moduli space of logarithmic connections by introducing rational parameters of Fuchsian systems
of the spectral type 111, 111, 111 and described the difference Painlevé equation. To obtain the whole of
the moduli space of parabolic logarithmic connections, we must also consider connections on nontrivial
bundles. In this thesis, we provide normal forms of α-stable rank three parabolic φ-connections over P1

with three poles by the apparent singularity and its dual parameter (see Section 4.5), and prove that the
moduli space of α-stable rank three parabolic φ-connections over P1 with three poles for arbitrary local

exponents is isomorphic to an A(1)∗
2 -surface by using the normal forms.

Put
T3 :=

{
(t1, t2, t3) ∈ (P1)3

∣∣ ti ̸= tj for i ̸= j
}
,

N (ν1, ν2, ν3) := {(νi,j) ∈ C9 | νi,0 + νi,1 + νi,2 = νi, 1 ≤ i ≤ 3},

where ν1, ν2, ν3 ∈ C and ν1 + ν2 + ν3 ∈ Z. Take t ∈ T3 and ν ∈ N (ν1, ν2, ν3). Let Mα
3 (ν1, ν2, ν3) →

T3 × N (ν1, ν2, ν3) (resp. Mα
3 (ν1, ν2, ν3) → T3 × N (ν1, ν2, ν3)) be the family of moduli spaces of α-

stable ν-parabolic connections (resp. φ-connections), whose fiber Mα
3 (t,ν) (resp. Mα

3 (t,ν)) at (t,ν) ∈
T3 × N (ν1, ν2, ν3) is the moduli space of α-stable ν-parabolic connections (resp. φ-connections) over
(P1, t). The existence of Mα

3 (ν1, ν2, ν3) is proved in [IIS1] and that of Mα
3 (ν1, ν2, ν3) in Chapter 3. Let

S be the family of A(1)∗
2 -surfaces parametrized by T3 ×N (0, 0, 2) defined in section 4.1.

Theorem 1.1.1. (Theorem 4.1.1) Take α = (αi,j)1≤i,j≤3 such that 0 < αi,j ≪ 1 for any 1 ≤ i, j ≤ 3.

(1) There exists an isomorphism Mα
3 (0, 0, 2) −→ S over T3 ×N (0, 0, 2). In particular, for each (t,ν) ∈

T3 ×N (0, 0, 2), the fiber Mα
3 (t,ν) is isomorphic to an A(1)∗

2 -surface .

(2) Let Y be the closed subscheme of Mα
3 (0, 0, 2) defined by the conditions ∧3φ = 0. Then Y is reduced

and the natural morphism

Mα
3 (0, 0, 2) −→ Mα

3 (0, 0, 2) \ Y, (E,∇, l∗) ,−→ (E,E, id,∇, l∗, l∗)

is an isomorphism. Moreover for each (t,ν) ∈ T3 ×N (0, 0, 2), the fiber Y(t,ν) is the anti-canonical

divisor of Mα
3 (t,ν).

1.2 Moduli spaces of parabolic bundles and parabolic connec-
tions

Second, we consider the higher genus case. Let C be an irreducible smooth projective curve of genus g
over the field of complex numbers C, and let t = {t1, . . . , tn} be a set of n distinct points on C. Let
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Mα(ν, (L,∇L)) be the moduli space of rank two α-stable ν-parabolic logarithmic connections over (C, t)
with fixed determinant (L,∇L). The moduli space of parabolic connections has the canonical symplectic
structure, and providing a Darboux coordinate of such a moduli space is important from the viewpoint
of the isomonodromic deformation. There are two main approaches to giving a Darboux coordinate. One
is to use the apparent singularities and their dual parameters. Okamoto [Ok2] described Hamiltonian
systems of the Garnier systems, which are obtained from the isomonodromic deformation of rank 2
connections on P1, by using the apparent singularities and their dual parameters. Iwasaki [Iw] proved
that the moduli space of SL2-connections on a Riemann surface of any genus can be locally written by the
apparent singularities and their dual parameters as an analytic space and provided Hamiltonian systems
of the equations obtained from the isomonodromic deformation in the case of higher genus, which is a
generalization of Okamoto’s result. Arinkin-Lysenko [AL], Oblezin [Ob], Inaba-Iwasaki-Saito [IIS2] and
Komyo-Saito [KS] give an explicit description of the moduli space of parabolic connections on P1 as an
algebraic variety. The other approach is to analyze the apparent singularities and underlying parabolic
bundles. Loray-Saito [LS] provided an explicit description of the moduli space in the case of g = 0 in this
way. Specifically, they proved that a Zariski-open subset of the moduli space of parabolic connections on
P1 is isomorphic to a Zariski-open subset of the product of a projective space and the moduli space of
parabolic bundles. Fassarella-Loray [FL] and Fassarella-Loray-Muniz [FLM] investigated the geometry
of the moduli space in the case of g = 1. In this thesis, we describe the Zariski-open subset of the
moduli space Mα(ν, (L,∇L)) for a certain parabolic weight α in the case g ≥ 2 by using the apparent
singularities and underlying parabolic bundles, which is a generalization of Loray-Saito’s result.

In order to state the description of the Zariski-open subset of the moduli space precisely, we introduce
some notations. Let ν = (νi,j)

i=1,...,n
j=0,1 be a collection of complex numbers satisfying

∑n
i=1(νi,0+νi,1) = −d.

Let α = {αi,1,αi,2}1≤i≤n be a collection of rational numbers such that for all i = 1, . . . , n, 0 < αi,1 <
αi,2 < 1. Let (L,∇L) be a pair of a line bundle on C with degL = d and a logarithmic connection ∇L

over L which has the residue data resti(∇L) = νi,0 + νi,1 for each i. Let Mα(ν, (L,∇L)) be the moduli
space of rank 2 α-stable ν-parabolic connections over (C, t) whose determinant and trace connection are
isomorphic to (L,∇L). Inaba [In] showed that Mα(ν, (L,∇L)) is a smooth irreducible variety if

g = 1, n ≥ 2 or g ≥ 2, n ≥ 1. (1.1)

By elementary transformations, we can change degree d freely. When d = 2g − 1, by the theory of
apparent singularities [SS], we can define the rational map

App : Mα(ν, (L,∇L)) · · · → PH0(C,L⊗ Ω1
C(D)).

The map which forgets connections induces a rational map

Bun : Mα(ν, (L,∇L)) · · · → Pα(2, L).

Let V0 and Mα(ν, (L,∇L))0 be the open subsets of Pα(2, L) and Mα(ν, (L,∇L)), respectively, defined
in Subsection 5.1.1 . From Proposition 5.1.5, we obtain an open immersion V0 ↪→ PH1(C,L−1(−D)).
Let Σ ⊂ PH0(C,L⊗ Ω1

C(D))× PH1(C,L−1(−D)) be the incidence variety. Then the following theorem
holds.

Theorem 1.2.1. (Theorem 5.1.6 and Proposition 5.1.11) Under the condition (1.1), assume that d =
2g − 1,

∑n
i=1 νi,0 ̸= 0 and

∑n
i=1(αi,2 − αi,1) < 1. Then the map

App× Bun: Mα(ν, (L,∇L))
0 −→ (PH0(C,L⊗ Ω1

C(D))× V0) \ Σ

is an isomorphism. Hence, the rational map

App× Bun: Mα(ν, (L,∇L)) · · · → |L⊗ Ω1
C(D)|× Pα(2, L)

is birational. Moreover, App and Bun are Lagrangian fibrations.

From the above theorem, we wonder whether App × Bun is birational in general. So, we investigate
App× Bun in the case of rank three parabolic logarithmic connections over P1 with three poles.

Let (E, l∗) be a parabolic bundle and ∇ be a ν-logarithmic connection over (E, l∗). All λν-logarithmic
λ-connections over (E, l∗) are of the form λ∇ + Φ, where Φ is a parabolic Higgs field over (E, l∗). So
the space of all isomorphim classes of λν-logarithmic λ-connections over (E, l∗) is P(C∇⊕H) and it can
be regarded as a compactification of the space of all ν-logarithmic connections over (E, l∗). Here H is
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the space of all parabolic Higgs fields over (E, l∗). Let Pw(3,−2) be the moduli space of rank three w-
stable parabolic bundles with degree −2 over (P1, t) and Mw

3 (t,ν)0 be the moduli space of λν-parabolic
λ-connections over (P1, t) whose underlying parabolic bundles are w-stable, that is,

Mw
3 (t,ν)0 := {(λ, E,∇, l∗) | (E, l∗) ∈ Pw(3,−2)} / ∼ .

Here the w-stability is a special case of the α-stability. Analyzing Pw(3,−2), we obtain the following
theorem.

Theorem 1.2.2. (Theorem 5.2.2) Assume that 2/9 < w < 1/3. Then we have

Mw
3 (t,ν)0 ∼=

{
P1 × P1 ν1,0 + ν2,0 + ν3,0 ̸= 0
P(OP1 ⊕OP1(−2)) ν1,0 + ν2,0 + ν3,0 = 0.

Let V0 be a Zariski open subset of Pw(3,−2) defined in the Subsection 5.2.3. The following shows
that App× Bun is not birational in general.

Corollary 1.2.3. (Proposition 5.2.5) Assume that 2/9 < w < 1/3 and ν1,0 + ν2,0 + ν3,0 ̸= 0. Then the
morphism

App× Bun: Bun−1(V0) −→ P1 × V0

is finite and its generic fiber consists of three points.

1.3 Outline of this paper

Chapter 2 contains a summary of parabolic bundles and parabolic connections.
In Chapter 3, we construct of the moduli space of parabolic φ-connections. This construction is

essentially due to Inaba-Iwasaki-Saito [IIS1] and Inaba [In].
In Chapter 4, we will prove Theorem 1.1.1. First, we analyze underlying vector bundles of α-stable

parabolic connections under the assumption of Theorem 1.1.1. Second, we define the apparent singularity
of parabolic φ-connections. We can see that the apparent singularity of parabolic φ-connections with
rankφ = 1 is not uniquely determined. So we consider pairs of a parabolic φ-connection and a subbundle.
Then the apparent map is defined on moduli space M̂α

3 (t,ν) of such pairs. Third, we define a morphism

ϕ : M̂α
3 (t,ν) → P(Ω1

P1(D(t)) ⊕ OP1) by using the apparent singularity and its dual parameter. Fourth,
we provide a normal form of parabolic φ-connections. By using this form we prove the smoothness of
Mα

3 (t,ν). Finally we prove Theorem 1.1.1 through ϕ and the normal forms. In appendix, we describe
the moduli space of rank three parabolic Higgs bundles on P1 with three poles. We extend the Hitchin
map to a map from the moduli space of ν-parabolic φ-Higgs bundles to a natural compactification of the
Hitchin base, and we determine the singular fibers of the extended Hitchin map when ν = 0.

Chapter 5 is divided into two sections. In first section, we study the Zariski-open subset of moduli
spaces of rank two parabolic connections for certain parabolic weights. Firstly, we provide the distin-
guished open subset V0 of the moduli space of parabolic bundles. Secondly, we introduce the apparent
map. The apparent map was defined in general genus and rank by Saito and Szabó [SS]. Thirdly, we
prove the first assertion of Theorem 1.2.1. This proof is based on the proof of Theorem 4.3 in [LS]. We
also give another proof that App×Bun is birational. Finally, we show that App and Bun are Lagrangian
fibrations. Second section is devoted to the case of rank three parabolic logarithmic connections over
P1 with three poles. First, we consider the moduli space of w-stable parabolic bundles. We determine
the type of w-stable parabolic bundles and investigate a wall-crossing phenomenon. Second, we show
Theorem 1.2.2 by writing down a ν-parabolic connection and a parabolic Higgs field. Moreover, we inves-
tigate the relation between two moduli spaces Mα

3 (t,ν) and Mw
3 (t,ν)0. Finally, we study the morphism

App× Bun.
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Chapter 2

General theory

2.1 Parabolic bundles

Let C be an irreducible smooth projective curve over C and t = (ti)1≤i≤n be n distinct points of C.

Definition 2.1.1. A quasi-parabolic bundle of rank r and degree d is a pair (E, l∗ = {li,∗}1≤i≤n)
consisting of the following data:

(1) E is a vector bundle on C of rank r and degree d and,

(2) li,∗ is a filtration E|ti = li,0 ! · · · ! li,r−1 ! li,r = 0

Definition 2.1.2. We say that two quasi-parabolic bundles (E, l∗), (E, l′∗) are isomorphic to each other
if there is an isomorphisms σ : E

∼−→ E′ such that σti(li,j) = l′i,j for 1 ≤ i ≤ n and 1 ≤ j ≤ r − 1.

Let α = {αi,j}1≤i≤n
1≤j≤r be a set of rational numbers satisfying 0 < αi,1 < · · · < αi,r < 1 for each

i = 1, . . . , n and αi,j ̸= αi′,j′ for (i, j) ̸= (i′, j′).

Definition 2.1.3. A quasi-parabolic bundle (E, l∗) is said to be α-semistable (resp. α-stable) if for any
nonzero subbundle F " E, the inequality

degF +
∑n

i=1

∑r
j=1 αi,j dim((F |ti ∩ li,j−1)/(F |ti ∩ li,j))

rankF
≤

(resp.<)

degE +
∑n

i=1

∑r
j=1 αi,j

rankE
(2.1)

holds.

Let Pα
(C,t)(r, d) denote the moduli space of α-semistable quasi-parabolic bundles over (C, t) of rank r

and degree d.

Theorem 2.1.4. (Mehta and Seshadri [Theorem 4.1 [MS]]). The moduli space Pα
(C,t)(r, d) is an irre-

ducible normal projective variety of dimension r2(g−1)+nr(r−1)/2+1. Moreover, if (E, l∗) is α-stable,
then Pα

(C,t)(r, d) is smooth at the point corresponding to (E, l∗).

Let PicdC be the Picard variety of degree d, which is the set of isomorphism classes of line bundles
of degree d on C. Then we can define the morphism

det : Pα
(C,t)(d) −→ PicdC, (E, l∗) ,−→ detE,

where detE =
∧r E. For each L ∈ PicdC, set

Pα
(C,t)(r, L) = {(E, l∗) ∈ Pα

(C,t)(d) | detE ≃ L}.

2.2 Parabolic λ-connections

Put D(t) = t1 + · · ·+ tn. We take ν = (νi,j)
1≤i≤n
0≤j≤r−1 ∈ Crn and λ ∈ C.

Definition 2.2.1. A ν-parabolic λ-connection of rank r and degree d is a collection (E,∇, l∗ = {li,∗}1≤i≤n)
consisting of the following data:
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(1) E is a vector bundle on C of rank r and degree d,

(2) ∇ : E → E ⊗ Ω1
C(D(t)) is a logarithmic λ-connection, i.e. ∇(fs) = s ⊗ λdf + f∇(s) for any

f ∈ OC , s ∈ E, and

(3) li,∗ is a filtration E|ti = li,0 ! · · · ! li,r−1 ! li,r = 0 satisfying (resti(∇) − νi,j id)(li,j) ⊂ li,j+1 for
1 ≤ i ≤ n and 0 ≤ j ≤ r − 1.

When λ = 1, a λ-connection is a connection. When λ = 0, a λ-connection is a Higgs bundle.

Proposition 2.2.2. (Fuchs relation) Let (E,∇, l∗) be a ν-parabolic connection of rank r and degree d.
Then we have

n∑

i=1

r−1∑

j=0

νi,j + λd = 0.

For a integer d, we put

Nn,r(d) :=

⎧
⎨

⎩(νi,j)
1≤i≤n
0≤j≤r−1 ∈ Crn

∣∣∣∣∣∣

n∑

i=1

r−1∑

j=0

νi,j + d = 0

⎫
⎬

⎭ .

Let us fix ν = (νi,j)
1≤i≤n
0≤j≤r−1 ∈ Nn,r(d).

Definition 2.2.3. We say that two ν-parabolic λ-connections (E,∇, l∗), (E,∇′, l′∗) are isomorphic to
each other if there is an isomorphisms σ : E

∼−→ E′ such that the diagram

E E ⊗ Ω1
C(D(t))

E′ E′ ⊗ Ω1
C(D(t))

∇

σ σ⊗id

∇′

is commutative and σti(li,j) = l′i,j for 1 ≤ i ≤ n and 1 ≤ j ≤ r − 1.

Let α = {αi,j}1≤i≤n
1≤j≤r be a set of rational numbers satisfying 0 < αi,1 < · · · < αi,r < 1 for each

i = 1, . . . , n and αi,j ̸= αi′,j′ for (i, j) ̸= (i′, j′).

Definition 2.2.4. A ν-parabolic λ-connection (E,∇, l∗) is said to be α-stable (resp. α-semistable) if
for any nonzero subbundle F " E satisfying ∇(F ) ⊂ F ⊗ Ω1

C(D(t)), the inequality

degF +
∑n

i=1

∑r
j=1 αi,j dim((F |ti ∩ li,j−1)/(F |ti ∩ li,j))

rankF
<

(resp. ≤)

degE +
∑n

i=1

∑r
j=1 αi,j

rankE

holds.

Let M̃g,n be a smooth algebraic scheme which is a smooth covering of the coarse moduli space of
n pointed irreducible smooth projective curves of genus g over C and take a universal family (C, t̃) =
(C, t̃1, . . . , t̃n) over M̃g,n.

Theorem 2.2.5. (Theorem 2.1 [In]) There exists a relative fine moduli scheme

Mα
C/M̃g,n

(t̃, r, d) −→ M̃g,n ×Nn,r(d)

of α-stable parabolic connections of rank r and degree d, which is smooth and quasi-projective. The fiber
Mα

(Cx,t̃x)
(r,ν) over (x,ν) ∈ M̃g,n ×Nn,r(d) is the moduli space of α-stable ν-parabolic connections over

(Cx, t̃x) whose dimension is 2r2(g − 1) + nr(r − 1) + 2.

2.3 Parabolic φ-connections

Definition 2.3.1. For ν ∈ Nn,r(d), a ν-parabolic φ-connection of rank r and degree d over (C, t) is a

collection (E1, E2,φ,∇, l(1)∗ = {l(1)i,∗ }1≤i≤n, l
(2)
∗ = {l(2)j,∗}1≤j≤n) consisting of the following data:

(1) E1 and E2 are vector bundles on C of rank r and degree d,
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(2) l(k)i,∗ is a filtration Ek|ti = l(k)i,0 ! l(k)i,1 ! · · · ! l(k)i,r = 0 for k = 1, 2 and i = 1, . . . , n,

(3) φ : E1 → E2 is a homomorphism such that φti(l
(1)
i,j ) ⊂ l(2)i,j for any 1 ≤ i ≤ n and 1 ≤ j ≤ r− 1, and

(4) ∇ : E1 → E2 ⊗ Ω1
C(D(t)) is a logarithmic φ-connection, i.e. ∇(fs) = φ(s) ⊗ df + f∇(s) for any

f ∈ OC , s ∈ E1, and ∇ satisfies that (resti∇ − νi,jφti)(l
(1)
i,j ) ⊂ l(2)i,j+1 for any 1 ≤ i ≤ n and

0 ≤ j ≤ r − 1.

Consider the case where E1 = E2 and φ = λid for λ ∈ C. When λ = 1, the parabolic φ-connection is

a parabolic λ-connection because l(1)∗ = l(2)∗ by the condition (3). On the other hand, when λ = 0, the
parabolic φ-connection is not a parabolic Higgs bundle in general.

Definition 2.3.2. We say that two ν-parabolic φ-connections (E1, E2,φ,∇, l(1)∗ , l(2)∗ ), (E′
1, E

′
2,φ

′,∇′, l′(1)∗ , l′(2)∗ )
are isomorphic to each other if there are isomorphisms σ1 : E1

∼−→ E′
1 and σ2 : E2

∼−→ E′
2 such that the

diagrams

E1 E2 E1 E2 ⊗ Ω1
C(D)

E′
1 E′

2 E′
1 E′

2 ⊗ Ω1
C(D)

φ

σ1 σ2

∇

σ1 σ2⊗id

φ′ ∇′

commute and (σk)ti(l
(k)
i,j ) = l′(k)i,j for k = 1, 2, 1 ≤ i ≤ n and 0 ≤ j ≤ r − 1.

Remark 2.3.3. Assume that r = 2. Given a parabolic φ-connection (E1, E2,φ,∇, l(1)∗ , l(2)∗ ), we obtain

a parabolic φ-connection in the sense of Definition 2.5 in [IIS1] by forgetting l(2)∗ . However we can not
canonically obtain parabolic φ-connections in this paper from parabolic φ-connections in [IIS1]. For
example, let (E, {li}1≤i≤n) be a rank 2 parabolic bundle over (C, (t1, . . . , tn)) with the determinant L
and Φ : E → E ⊗ Ω1

C(t1 + · · · + tn) be a parabolic Higgs bundle of rank 2. Let us fix an isomorphism

ϕ : ∧2 E
∼→ L. We put E1 = E2 = E and l(1)i = li for 1 ≤ i ≤ n. Take a point tn+1 ∈ C \ {t1, . . . , tn}.

Let l(1)n+1 ⊂ E|tn+1 be a one dimensional subspace and Ψ be the composite

E
Φ→ E ⊗ Ω1

C(t1 + · · ·+ tn) → E ⊗ Ω1
C(t1 + · · ·+ tn + tn+1).

Then (E1, E2, 0,Ψ,ϕ, {l(i)}1≤i≤n+1) becomes a parabolic φ-connection in the sense of [IIS1]. However

l(2)n+1 ⊂ E2|tn+1 is not uniquely determined by (E1, E2, 0,Ψ,ϕ, {l(i)}1≤i≤n+1).

Let γ be a positive integer. Take a set of rational numbers α = {α(k)
i,j }

k=1,2
1≤i≤n,1≤j≤r satisfying 0 ≤

α(k)
i,1 < · · · < α(k)

i,r < 1 for k = 1, 2 and i = 1, . . . , n, and α(k)
i,j ̸= α(k)

i′,j′ for (i, j) ̸= (i′, j′).

Definition 2.3.4. A ν-parabolic φ-connection (E1, E2,φ,∇, l(1)∗ , l(2)∗ ) is α-stable (resp. α-semistable) if
for any subbundles F1 ⊆ E1, F2 ⊆ E2, (F1, F2) ̸= (0, 0) satisfying φ(F1) ⊂ F2 and∇(F1) ⊂ F2⊗Ω1

C(D(t)),
the inequality

degF1 + degF2(−γ) +
∑n

i=1

∑r
j=1 α

(1)
i,j d

(1)
i,j (F1) +

∑n
i=1

∑r
j=1 α

(2)
i,j d

(2)
i,j (F2)

rankF1 + rankF2

<
(resp. ≤)

degE1 + degE2(−γ) +
∑n

i=1

∑r
j=1 α

(1)
i,j d

(1)
i,j (E1) +

∑n
i=1

∑r
j=1 α

(2)
i,j d

(2)
i,j (E2)

rankE1 + rankE2

holds, where d(k)i,j (F ) = dim(F |ti ∩ l(k)i,j−1)/(F |ti ∩ l(k)i,j ) for a subbundle F ⊂ Ek and for k = 1, 2.

Take a universal family (C, t̃) = (C, t̃1, . . . , t̃n) over M̃g,n and put D = t̃1 + · · · + t̃n . Then D is an
effective Cartier divisor which is flat over M̃g,n. For simplicity of notation, we use the same character D
to denote the pull back of D by the projection C×N → C, where N := Nn,r(d). Let ν̃i,j ⊂ C×M̃g,n×N
be the section defined by

M̃g,n ×N ↪→ C× M̃g,n ×N ; (x, (νk,l)
1≤k≤n
0≤l≤r−1) ,→ (νi,j , x, (νk,l)

1≤k≤n
0≤l≤r−1).

Definition 2.3.5. We define the moduli functor Mα
C/M̃g,n

(t̃, r, d) of the category of locally noetherian

schemes over M̃g,n ×N to the category of sets by

Mα
C/M̃g,n

(t̃, r, d)(S) := {(E1, E2,φ,∇, l(1)∗ , l(2)∗ )}/ ∼,

where S is a locally noetherian scheme over M̃g,n ×N and
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(1) E1, E2 are vector bundles on (C ×N )S := (C ×N )×M̃g,n×N S such that for any geometric point s

of S, rank (E1)s = rank (E2)s = r and deg(E1)s = deg(E2)s = d,

(2) for each k = 1, 2, Ek|(t̃i)S = l(k)i,0 ! · · · ! l(k)i,r−1 ! l(k)i,r = 0 is a filtration by subbundles,

(3) φ : E1 → E2 is a homomorphism such that φ(t̃i)S (l
(1)
i,j ) ⊂ l(2)i,j for each k = 1, 2, 1 ≤ i ≤ n and

1 ≤ j ≤ r − 1,

(4) ∇ : E1 → E2 ⊗ Ω1
(C×N )S/S(DS) is a relative logarithmic φ-connection such that (res(t̃i)S∇ −

(ν̃i,j)Sφ(t̃i)S )(l
(1)
i,j ) ⊂ l(2)i,j+1 for each k = 1, 2, 1 ≤ i ≤ n and 0 ≤ j ≤ r − 1,

(5) for any geometric point s of S, the parabolic φ-connection ((E1)s, (E2)s,φs,∇s, (l
(1)
∗ )s, (l

(2)
∗ )s) is

α-stable.

In Chapter 3, we prove the following theorem.

Theorem 2.3.6. (1) There exists a fine moduli scheme Mα
C/M̃g,n

(t̃, r, d) of Mα
C/M̃g,n

(t̃, r, d). If α is

generic, then Mα
C/M̃g,n

(t̃, r, d) is projective over M̃g,n ×N .

(2) Assume that α(1)
i,j = α(2)

i,j =: α′
i,j for any 1 ≤ i ≤ n and 1 ≤ j ≤ r. Then the set

Uisom :=
{
(E1, E2,φ,∇, l(1)∗ , l(2)∗ ) ∈ Mα

C/M̃g,n
(t̃, r, d)

∣∣∣ φ is an isomorphism
}

is a Zariski open subset of Mα
C/M̃g,n

(t̃, r, d) and it is just a moduli space of α′-stable parabolic

connections Mα′

C/M̃g,n
(t̃, r, d), where α′ = {α′

i,j}
1≤i≤n
1≤j≤r .

2.4 Elementary transformations of parabolic φ-connections

Let (E1, E2,φ,∇, l(1)∗ , l(2)∗ ) be a ν-parabolic φ-connection of rank r and degree d over (C, t). Let us fix

integers 1 ≤ p ≤ n and 0 ≤ q ≤ r. Put E′
k := ker(Ek → Ek|tp/l

(k)
p,q ) for k = 1, 2. Then E′

k is a locally free
sheaf of rank r and degree d− q, φ induces a homomorphism φ′ : E′

1 → E′
2 and ∇ induces a logarithmic

φ-connection ∇′ : E′
1 → E′

2 ⊗ Ω1
C(D(t)). Put

l′(k)i,j :=

⎧
⎪⎨

⎪⎩

l(k)i,j i ̸= p

(π(k)
p,q )|−1

tp (l(k)q+j) i = p, 0 ≤ j ≤ r − q

ι(k)p |tp(l
(k)
p,j−r+q/l

(k)
p,q ) i = p, r − q ≤ j ≤ r,

ν′i,j :=

⎧
⎨

⎩

νi,j i ̸= p
νi,q+j i = p, 0 ≤ j ≤ r − q − 1
νi,j−r+q + 1 i = p, r − q ≤ j ≤ r − 1,

where

0 −→ Ek(−tp)
ι(k)
p−→ E′

k

π(k)
p,q−→ l(k)p,q −→ 0.

Then (E′
1, E

′
2,φ

′,∇′, l′(1)∗ , l′(2)∗ ) be a ν ′-parabolic φ-connection of rank r and degree d−q over (C, t). This
correspondence induces a morphism

elmp,q : Mα
C/M̃g,n

(t̃, r, d) −→ Mα′

C/M̃g,n
(t̃, r, d− q), (E1, E2,φ,∇, l(1)∗ , l(2)∗ ) ,−→ (E′

1, E
′
2,φ

′,∇′, l′(1)∗ , l′(2)∗ )

of functors. Here α′ is a suitable parabolic weight. Let bp be a morphism of functors defined by tensoring
with (OC(tp), d), i.e.

bp : Mα
C/M̃g,n

(t̃, r, d) −→ Mα
C/M̃g,n

(t̃, r, d+r), (E1, E2,φ,∇, l(1)∗ , l(2)∗ ) ,−→ (E1, E2,φ,∇, l(1)∗ , l(2)∗ )⊗(OC(tp), d).

Then we can see that

bp ◦ elmp,r−q ◦ elmp,q = id, elmp,q ◦ bp ◦ elmp,r−q = id.

So elmp,q is an isomorphism. Hence we can freely change degree.
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Chapter 3

Construction of the moduli space of
parabolic φ-connections

In this chapter we construct the moduli space of parabolic φ-connections. The construction is based on
[IIS1] and [In]. For propositions and theorems without proofs, please refer to these papers.

3.1 Parabolic Λ1
D-triples

Let D be an effective Cartier divisor on C. We define an OC-bimodule structure on Λ1
D = OC ⊕

(Ω1
C(D(t)))∨ by

(a, v)f := (fa+ ⟨v, df⟩, fv), f(a, v) := (fa, fv)

for a, f ∈ OC and v ∈ (Ω1
C(D))∨, where ⟨ , ⟩ : (Ω1

C(D))∨ × Ω1
C(D) → OC is the canonical pairing. Let

φ : E1 → E2 be a homomorphism of vector bundles on C and ∇ : E1 → E2 ⊗ Ω1
C(D) be a φ-connection.

We define Φ : Λ1
D⊗OX E1 → E2 by Φ((a, v)⊗s) = aφ(s)+⟨v,∇s⟩. Then we can easily see that Φ becomes

a left OC-homomorphism. Conversely, let Φ : Λ1
D ⊗OX E1 → E2 be a left OC-homomorphism. We define

a homomorphism φ : E1 → E2 by φ(s) = Φ((1, 0) ⊗ s). Let ∇ : E1 → E2 ⊗ Ω1
C(D) be a map satisfying

Φ((0, v)⊗s) = ⟨v,∇s⟩ for any v ∈ (Ω1
C(D))∨ and s ∈ E1. Then ∇ is uniquely determined and ∇ becomes

a φ-connection. The above correspondence is inverse each other.

Definition 3.1.1. A parabolic Λ1
D-triple is a collection (E1, E2,Φ, F∗(E1), F∗(E2)) consisting of the

following data:

(1) E1 and E2 are vector bundles on C of rank r and degree d.

(2) F∗(Ek) is a filtration Ek = F1(Ek) ⊃ F2(Ek) ⊃ · · · ⊃ Fli(Ek) ⊃ Fli+1(Ek) = Ek(−D) for k = 1, 2.

(3) Φ : Λ1
D ⊗OX E1 → E2 is a left OC-homomorphism.

Remark 3.1.2. A parabolic Λ1
D-triple in [IIS1] is a collection (E1, E2,Φ, F∗(E1)) consisting of vector

bundles E1, E2, a left OC-homomorphism Φ : Λ1
D ⊗E1 → E2 and a filtration F∗(E1) of E1. So forgetting

a filtration F∗(E2) of a present parabolic Λ1
D-triple (E1, E2,Φ, F∗(E1), F∗(E2)), we obtain a parabolic

Λ1
D-triple (E1, E2,Φ, F∗(E1)) in their sense.

Definition 3.1.3. A parabolic Λ1
D-triple (E′

1, E
′
2,Φ

′, F∗(E′
1), F∗(E′

2)) is said to be a parabolic Λ1
D-

subtriple of (E1, E2,Φ, F∗(E1), F∗(E2)) if E′
1 ⊂ E1, E′

2 ⊂ E2, Φ′ = Φ|Λ1
D⊗OX

E′
1
, Fi(E′

1) ⊂ Fi(E1)

and Fi(E′
2) ⊂ Fi(E2).

For each k = 1, 2, let β(k) = {β(k)
i }1≤i≤lk be a collection of rational numbers with 0 ≤ β(k)

1 < · · · <
β(k)
lk

< 1.

Definition 3.1.4. For a parabolic Λ1
D-triple (E1, E2,Φ, F∗(E1), F∗(E2)), we put

µβ((E1, E2,Φ, F∗(E1), F∗(E2))) :=
degE1(−D) + degE2(−D)− γ degOX(1)rankE2

rankE1 + rankE2

+

∑l1
i=1 β

(1)
i lengthFi(E1)/Fi+1(E1) +

∑l2
i=1 β

(2)
i lengthFi(E2)/Fi+1(E2)

rankE1 + rankE2
.

10



Definition 3.1.5. A parabolic Λ1
D-triple (E1, E2,Φ, F∗(E1), F∗(E2)) is β-stable if for any nonzero proper

parabolic subtriple (E′
1, E

′
2,Φ

′, F∗(E′
1), F∗(E′

2)) of (E1, E2,Φ, F∗(E1), F∗(E2)), the inequality

µβ((E
′
1, E

′
2,Φ

′, F∗(E
′
1), F∗(E

′
2))) < µβ((E1, E2,Φ, F∗(E1), F∗(E2)))

holds.

3.2 Properties of the moduli functor

Let S be a connected noetherian scheme and πS : X → S be a smooth projective morphism whose
geometric fibers are irreducible smooth curves of genus g. Let D ⊂ X be a relative effective Cartier
divisor for πS .

Definition 3.2.1. We define the moduli functor MD,β
X/S(r, d,d1 = {d(1)i }2≤i≤l1 ,d2 = {d(2)i }2≤i≤l2) of the

category of locally noetherian schemes over S to the category of sets by

MD,β
X/S(r, d,d1,d2)(T ) := {(E1, E2,Φ, F∗(E1), F∗(E2))}/ ∼

where T is a locally noetherian scheme over S and

(1) E1, E2 are vector bundles on X ×S T such that for any geometric point s of T , rank (E1)s =
rank (E2)s = r and deg(E1)s = deg(E2)s = d,

(2) Φ : Λ1
D/S ⊗ E1 → E2 is a homomorphism of left OX×ST -modules,

(3) For each k = 1, 2, Ek = F1(Ek) ⊃ · · · ⊃ Flk(Ek) ⊃ Flk+1(Ek) = Ek(−DT ) is a filtration of E1 by
coherent subsheaves such that each Ek/Fi(Ek) is flat over T and for any geometric point s of T

and 2 ≤ i ≤ lk, length (Ek/Fi(Ek))s = d(k)i ,

(4) for any geometric point s of T , the parabolic Λ1
Ds

-triple ((E1)s, (E2)s,Φs, F∗(E1)s, F∗(E2)s) is β-
stable.

Proposition 3.2.2. The family of geometric points of MD,β,γ
X/S (r, d,d1,d2) is bounded.

Proposition 3.2.3. Put β(1)
l1+1 = β(2)

l2+1 = 1 and ϵ(k)i = β(k)
i+1−β

(k)
i for k = 1, 2 and 1 ≤ i ≤ lk. There exists

an integer m0 such that for any geometric point (E1, E2,Φ, F∗(E1), F∗(E2)) of MD,β
X/S(r, d,d1,d2)(K),

the inequality

β(1)
1 h0(E′

1(m)) + β(2)
1 h0(E′

2(m− γ)) +
∑l1

i=1 ϵ
(1)
i h0(Fi+1(E′

1)(m))) +
∑l2

i=1 ϵ
(2)
i h0(Fi+1(E′

2)(m− γ)))

rankE′
1 + rankE′

2

<
β(1)
1 h0(E1(m)) + β(2)

1 h0(E2(m− γ)) +
∑l1

i=1 ϵ
(1)
i h0(Fi+1(E1)(m))) +

∑l2
i=1 ϵ

(2)
i h0(Fi+1(E2)(m− γ)))

rankE1 + rankE2

holds for any proper nonzero parabolic Λ1
DK

-subtriple (E′
1, E

′
2,Φ, F∗(E′

1), F∗(E′
2)) of (E1, E2,Φ, F∗(E1), F∗(E2))

and any integer m ≥ m0.

Proposition 3.2.4. Let T be a noetherian scheme over S and (E1, E2,Φ, F∗(E1), F∗(E2)) be a flat family
of parabolic Λ1

DT /T -triples on X ×S T over T . Then there exists an open subscheme T s of T such that

T s(K) = {s ∈ T (K) | (E1, E2,Φ, F∗(E1), F∗(E2))⊗ k(s) is β-stable.}

for any algebraically closed field K.

3.3 Construction of the moduli spaces

We introduce a proposition and a lemma.

Proposition 3.3.1. (EGA III (7.7.8), (7.7.9) or [AK] (1.1)) Let f : X → S be a proper morphism of
noetherian schemes, and let I and F be two coherent OX -modules with F flat over S. Then there exist
a coherent OS module H(I, F ) and an element h(I, F ) of HomX(I, F ⊗S H(I, F )) which represents the
functor

M ,−→ HomX(I, F ⊗OS M)
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defined on the category of quasi-coherent OS-modules M , and the formation of the pair commutes with
base change; in other words, the Yoneda map defined by h(I, F )

y : HomT (H(I, F )T ,M) ,−→ HomXT (IT , F ⊗OS M)

is an isomorphism for every S-scheme T and every quasi-coherent OT -module M .

Lemma 3.3.2. (Lemma 4.3 [Yo]) Let f : X → S be a proper morphism of noetherian schemes and let
φ : I → F be an OX -homomorphism of coherent OS-modules with F flat over S. Then there exists a
unique closed subscheme Z of S such that for all morphism g : T → S, g∗(φ) = 0 if and only if g factors
through Z.

Let P (m) = rdXm + d + r(1 − g) where dX = degOXs(1) for s ∈ S. We take an integer m0 in
Proposition 3.2.3. We may assume that for any m ≥ m0, hk(Fi(E1)(m)) = hk(Fj(E2)(m − γ)) = 0 for
k > 0, 1 ≤ i ≤ l1 + 1, 1 ≤ j ≤ l2 + 1, and Fi(E1)(m0), Fj(E2)(m0 − γ) are generated by their global

sections for any geometric point (E1, E2,Φ, F∗(E1), F∗(E2)) of MD,β
X/S(r, d,d1,d2) by Proposition 3.2.2.

Put n1 = P (m0) and n2 = P (m0 − γ). Let V1, V2 be free OS-modules of rank n1, n2, respectively. Let
Q(1) be the Quot-scheme QuotPV1⊗OS(−m0)/X/S and V1 ⊗ OX

Q(1)
(−m0) → E1 be the universal quotient

sheaf. Let Q(2) = QuotPV2⊗OS(−m0+γ)/X/S and V2 ⊗ OX
Q(2)

(−m0 + γ) → E2 be the universal quotient

sheaf. Put d(1)l1+1 = d(2)l2+1 = rn. For k = 1, 2 and 2 ≤ i ≤ lk + 1, let Q(k)
i := Quot

d(k)
i

Ek/XQ(k)/Q(k) and

Fi(Ek) ⊂ Ek be the universal subsheaf. We define Q as the maximal closed subscheme of

Q(1)
2 ×Q(1) · · ·×Q(1) Q

(1)
l1+1 ×Q(2)

2 ×Q(2) · · ·×Q(2) Q
(2)
l2+1

such that there exist filtrations

(E1)Q ⊗OXQ(−DQ) = Fl1+1(E1)Q ⊂ Fl1(E1)Q ⊂ · · · ⊂ F2(E1)Q ⊂ F1(E1)Q := (E1)Q

and
(E2)Q ⊗OXQ(−DQ) = Fl2+1(E2)Q ⊂ Fl2(E2)Q ⊂ · · · ⊂ F2(E2)Q ⊂ F1(E2)Q := (E2)Q.

By Proposition 3.3.1 there exists a coherent sheaf H on Q such that for any noetherian scheme T over Q
and for any quasi-coherent OT -module F , there exists a functorial isomorphism

HomT (HT ,F) ∼= HomXT (Λ
1
D/S ⊗OX (E1)T , (E2)T ⊗OT F).

Let V = Spec SymOQ(H), where SymOQ(H) is the symmetric algebra of H on Q. Then the homomor-
phism

Φ̃ : Λ1
D/S ⊗OX (E1)V −→ (E2)V

corresponding to the natural homomorphism HV → OV is the universal homomorphism. Put

Rs :=

{
s ∈ V

∣∣∣∣
(V1)s → H0((E1)s(m0)), (V2)s → H0((E2)s(m0 − γ)) are isomor-
phisms, and ((E1)s, (E2)s, Φ̃s, F∗(E1)s, F∗(E2)s) is β-stable

}
.

By Proposition 3.2.4, Rs is a open subscheme of V . For y ∈ Rs and vector subspaces V ′
1 ⊂ V1 and

V ′
2 ⊂ V2, let E′

1(V
′
1 , V

′
2 , y) be the image of V ′

1 ⊗ OX(−m0) → (E1)y and E′
2(V

′
1 , V

′
2 , y) be the image of

Λ1
D/S ⊗ V ′

1 ⊗OX(−m0)⊕ V ′
2 ⊗OX(−m0 + γ) → (E2)y. Since the family

F = {(E(V ′
1 , V

′
2 , y)1, E(V ′

1 , V
′
2 , y)2) | y ∈ Rs, V ′

1 ⊂ V1, V
′
2 ⊂ V2}

is bounded, there exists an integerm1 ≥ m0 such that for allm ≥ m1 and all members (E(V ′
1 , V

′
2 , y)1, E(V ′

1 , V
′
2 , y)2) ∈

F ,
V ′
1 ⊗H0(OXy (m)) → H0(E(V ′

1 , V
′
2 , y)1(m+m0))

and

V ′
1 ⊗H0(OXy (m0 +m− γ)⊗Λ1

Dy
⊗OXy (−m0))⊕ V ′

2 ⊗H0(OXy (m)) → H0(E(V ′
1 , V

′
2 , y)2(m0 +m− γ))
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are surjective, Hi(OXy (m0 + m − γ) ⊗ Λ1
Dy

⊗ OXy (−m0)) = 0,Hi(OXy (m)) = 0 for i > 0, and the
inequality

(r′1 + r′2)dX

{
h0(E1(m0)) + h0(E2(m0 − γ))−

l1∑

i=1

ϵ(1)i d(1)i+1 −
l2∑

j=1

ϵ(2)j d(2)j+1

}

− 2rdX

{
h0(E′

1(m0)) + h0(E′
2(m0 − γ))−

l1∑

i=1

ϵ(1)i

(
h0(E′

1(m0))− h0(Fi+1(E
′
1)(m0))

)

−
l2∑

j=1

ϵ(2)j

(
h0(E′

2(m0 − γ))− h0(Fj+1(E
′
2)(m0 − γ))

)}

>m−1
(
dimV1 + dimV2 −

l1∑

i=1

ϵ(1)i d(1)i+1 −
l2∑

j=1

ϵ(2)j d(2)j+1

)(
dimV ′

1 + dimV ′
2 − χ(E′

1(m0))− χ(E′
2(m0 − γ))

)

(3.1)

holds for (0, 0) " (V ′
1 , V

′
2) " ((V1)y, (V2)y), where E′

k = E(V ′
1 , V

′
2 , y)k and Fi+1(E′

k) = E′
k ∩Fi+1(Ek)y for

k = 1, 2 and 1 ≤ i ≤ lk. We note that the left hand side of (3.1) is positive since m0 is an integer in
Proposition 3.2.3. The composite

V1 ⊗ Λ1
D/S ⊗OXRs (−m0) −→ Λ1

D/S ⊗ (E1)Rs
Φ̃−→ (E2)Rs

induces a homomorphism

V1 ⊗W1 ⊗ORs −→ (πRs)∗(E2(m0 +m1 − γ)Rs),

where W1 = (πS)∗(OX(m0 + m1 − γ) ⊗ Λ1
D/S ⊗ OX(−m0)) and πRs : XRs := X ×S Rs → Rs be the

projection, and the quotient V2 ⊗OXRs (−m0 + γ) → (E2)Rs induces a homomorphism

V2 ⊗W2 ⊗ORs −→ (πRs)∗(E2(m0 +m1 − γ)Rs)

where W2 = (πS)∗(OX(m1)). These homomorphism induce a quotient bundle

(V1 ⊗W1 ⊕ V2 ⊗W2)⊗ORs −→ (πRs)∗(E2(m0 +m1 − γ)Rs). (3.2)

Taking m1 sufficiently large, we obtain the surjectivities of this homomorphism and the canonical homo-
morphism

V1 ⊗W2 ⊗ORs −→ (πRs)∗(E1(m0 +m1)Rs). (3.3)

The canonical homomorphisms

V1 ⊗ORs −→ (πRs)∗((E1/Fi(E1))(m0)Rs), (3.4)

V2 ⊗ORs −→ (πRs)∗((E2/Fi(E2))(m0 − γ)Rs) (3.5)

are surjective. Indeed, set
G1 = ker(V1 ⊗OXRs (−m0) → (E1)Rs),

G(1)
i = ker(V1 ⊗OXRs (−m0) → (E1/Fi(E1))Rs).

Then we obtain a commutative diagram

V1 ⊗ORs (πRs)∗(E1(m0))Rs R1πRs∗(G1(m0))

V1 ⊗ORs (πRs)∗(E1/Fi(E1)(m0))Rs R1πRs∗(G(1)
i (m0))

=

δ

.

Since H1(Fi(E1)y(m0)) = 0 and V1
∼= H0((E1)y(m0)) for any y ∈ Rs, the middle homomorphism is

surjective and δ = 0. So the homomorphism V1 ⊗ ORs → (πRs)∗(E1/Fi(E1)(m0))Rs is surjective. In a

13



similar way, we obtain the surjectivity of the homomorphism V2 ⊗ORs → (πRs)∗(E2/Fi(E2)(m0 − γ)Rs).
The quotients (3.2), (3.3), (3.4) and (3.5) determine a morphism

ι : Rs −→ Grassr2(V1 ⊗W1 ⊕ V2 ⊗W2)×Grassr1(V1 ⊗W2)×
l1∏

i=1

Grass
d(1)
i+1

(V1)×
l2∏

i=1

Grass
d(2)
i+1

(V2),

where r1 = h0(E1(m0 +m1)y), r2 = h0(E2(m0 +m1 − γ)y) for any y ∈ Rs. We can see that ι is a closed
immersion.

Let G := (GL(V1) ×S GL(V2))/(Gm × S). Here Gm × S is the subgroup of GL(V1) ×S GL(V2)
consisting of all scalar matrices. The group G acts canonically on Rs and on Grassr2(V1 ⊗ W1 ⊕ V2 ⊗
W2)×Grassr1(V1⊗W2)×

∏l1
i=1 Grass

d(1)
i+1

(V1)×
∏l2

i=1 Grass
d(2)
i+1

(V2). We can see that ι is a G-equivariant

immersion. Let OGrassr2 (V1⊗W1⊕V2⊗W2)(1),OGrassr1 (V1⊗W2)(1),OGrass
d
(1)
i

(V1)(1),OGrass
d
(2)
i

(V2)(1) be the

S-ample line bundle on Grassr2(V1 ⊗ W1 ⊕ V2 ⊗ W2), Grassr1(V1 ⊗ W2),Grass
d(1)
i
(V1),Grass

d(2)
i
(V2),

respectively, induced by Plücker embedding. For i = 1, . . . , l1 and j = 1, . . . , l2, we define positive

rational numbers ξ, ξ(1)i , ξ(2)j by

ξ = P (m0) + P (m0 − γ)−
l1∑

i=1

ϵ(1)i d(1)i+1 −
l2∑

j=1

ϵ(2)j d(2)j+1, ξ(1)i = 2rdXm1ϵ
(1)
i , ξ(2)i = 2rdXm1ϵ

(2)
i . (3.6)

Put

L := ι∗
(
OGrassr2 (V1⊗W1⊕V2⊗W2)(ξ)⊗OGrassr1 (V1⊗W2)(ξ)⊗

l1⊗

i=1

OGrass
d
(1)
i+1

(V1)(ξ
(1)
i )⊗

l2⊗

j=1

OGrass
d
(2)
j+1

(V2)(ξ
(2)
j )
)
.

Then L is a Q-line bundle on Rs and for some positive integer N , L⊗N becomes a G -linearized S-ample
line bundle on Rs.

Proposition 3.3.3. All points of Rs are properly stable with respect to the action of G and the G-
linearized S-ample line bundle L⊗N .

Proof. Take any geometric point x of Rs. Let y be the induced geometric point of S. We prove that x
is a properly stable point of the fiber Rs

y with respect to the action of Gy and the polarization L⊗N . So
we may assume that S = SpecK with K an algebraically closed field. We put

(E1, E2,Φ, F∗(E1), F∗(E2)) := ((E1)x, (E2)x, Φ̃x, F∗(E1)x, F∗(E2)x))

For simplicity, we write the same character V1, V2,W1,W2 to denote (V1)y, (V2)y, (W1)y, (W2)y, respec-
tively. Let

π2 : V1 ⊗W1 ⊕ V2 ⊗W2 → N2, π1 : V1 ⊗W2 → N1, π1,i : V1 → N (1)
i , π2,i : V2 → N (2)

i

be the quotients of vector spaces corresponding to ι(x). We will show that ι(x) is a properly stable point
with respect to the action of G and the linearization of L⊗N . Consider the character

χ : GL(V1)×GL(V2) −→ Gm; (g1, g2) ,→ det(g1) det(g2).

Since the natural composite kerχ → GL(V1) × GL(V2) → G is an isogeny, by Theorem 2.1 [MFK]

it is sufficient to show that µL⊗N

(x,λ) > 0 for any nontrivial homomorphism λ : Gm → kerχ ,where

µL⊗N

(x,λ) is defined in Definition 2.2 [MFK]. Let λ : Gm → kerχ be a nontrivial homomorphism. For

a suitable basis e(1)1 , . . . , e(1)n1 (resp. e(1)1 , . . . , e(2)n2 ), the action of λ on V1 (resp. V2) is represented by

e(1)i ,→ tu
(1)
i e(1)i (resp. e(2)i ,→ tu

(2)
i e(2)i ) (t ∈ Gm),

where u(1)
1 ≤ · · · ≤ u(1)

n1 (resp. u(2)
1 ≤ · · · ≤ u(2)

n2 ). Then we have
∑n1

i=1 u
(1)
i +

∑n2

i=1 u
(2)
i = 0. Let

f (k)
1 , . . . , f (k)

bk
be a basis of Wk for each k = 1, 2.

For q = 0, 1, . . . , n1+n2, we define functions a1(q), a2(q) as follows. First, we set (a1(q), a2(q)) = (0, 0)
and put

(a1(1), a2(1)) =

{
(1, 0) if u(1)

1 ≤ u(2)
1

(0, 1) if u(1)
1 > u(2)

1

.
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We inductively define

(a1(q + 1), a2(q + 1)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(a1(q) + 1, a2(q)) if u(1)
a1(q)+1 ≤ u(2)

a2(q)+1, a1(q) < n1, and a2(q) < n2

(a1(q), a2(q) + 1) if u(1)
a1(q)+1 > u(2)

a2(q)+1 a1(q) < n1, and a2(q) < n2

(a1(q) + 1, a2(q)) if a2(q) = n2

(a1(q), a2(q) + 1) if a1(q) = n1

.

Then a1(q) and a2(q) are integers satisfying 0 ≤ a1(q) ≤ n1, 0 ≤ a2(q) ≤ n2, a1(q) ≤ a1(q + 1),
a2(q) ≤ a2(q + 1) and a1(q) + a2(q) = q. We define v1, . . . , vn1+n2 by

vq =

{
u(1)
a1(q)

if (a1(q), a2(q)) = (a1(q − 1) + 1, a2(q − 1))

u(2)
a2(q)

if (a1(q), a2(q)) = (a1(q − 1), a2(q − 1) + 1)
.

For p = 1, . . . , b1n1 + b2n2, we can find a unique integer q ∈ {1, . . . , n1 + n2} such that

p =

{
(a1(q)− 1)b1 + a2(q)b2 + j for some 1 ≤ j ≤ b1 if (a1(q), a2(q)) = (a1(q − 1) + 1, a2(q − 1))
a1(q)b1 + (a2(q)− 1)b2 + j for some 1 ≤ j ≤ b2 if (a1(q), a2(q)) = (a1(q − 1), a2(q − 1) + 1)

.

For each p, we put s(2)p := vq and

hp :=

{
e(1)a1(q)

⊗ f (1)
j if (a1(q), a2(q)) = (a1(q − 1) + 1, a2(q − 1))

e(2)a2(q)
⊗ f (2)

j if (a1(q), a2(q)) = (a1(q − 1), a2(q − 1) + 1)
.

Put δp := (vq+1 − vq)(n1 + n2)−1. Then we have

vn1+n2 =
n1+n2−1∑

q=1

qδq, (3.7)

u(1)
n2

=
∑

1≤q≤n1+n2−1
a1(q)<n1

qδq +
∑

1≤q≤n1+n2−1
a1(q)=n1

(q − n1 − n2)δq, (3.8)

and
u(2)
n2

=
∑

1≤q≤n1+n2−1
a2(q)<n2

qδq +
∑

1≤q≤n1+n2−1
a2(q)=n2

(q − n1 − n2)δq. (3.9)

Let U (2)
p be the vector subspace of V1 ⊗W1 ⊕ V2 ⊗W2 generated by h1, . . . , hp. For i = 1, . . . , r2, we can

find an integer p(2)i ∈ {1, . . . , b1n1 + b2n2} such that dim π2(U
(2)

p(2)
i

) = i and dimπ2(U
(2)

p(2)
i −1

) = i− 1. Then

r2∑

i=1

s(2)
p(2)
i

=
r2∑

i=1

s(2)
p(2)
i

(
dimπ2(U

(2)

p(2)
i

)− dimπ2(U
(2)

p(2)
i −1

)

)

=
b1n1+b2n2∑

p=1

s(2)p

(
dimπ2(U

(2)
p )− dimπ2(U

(2)
p−1)

)

= r2s
(2)
b1n1+b2n2

−
b1n1+b2n2−1∑

p=1

(s(2)p+1 − s(2)p ) dimπ2(U
(2)
p )

= r2vn1+n2 −
n1+n2−1∑

q=1

(vq+1 − vq) dimπ2(U
(2)
b1a1(q)+b2a2(q)

)

(3.7)
=

n1+n2−1∑

q=1

(
r2q − (n1 + n2) dimπ2(U

(2)
b1a1(q)+b2a2(q))

)
δq.

For p = (i − 1)b2 + j (1 ≤ i ≤ n1, 1 ≤ j ≤ b2), we put s(1)p = u(1)
i and h′

p = e(1)i ⊗ f (2)
j . Let U (1)

p be the

subspace of V1⊗W2 generated by h′
1, . . . , h

′
p. For i = 1, . . . , r1, we can find an integer p(1)i ∈ {1, . . . , b2n1}
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such that dim π1(U
(1)

p(1)
i

) = i and dimπ1(U
(1)

p(1)
i −1

) = i− 1. Then

r1∑

i=1

s(1)
p(1)
i

=
r1∑

i=1

s(1)
p(1)
i

(
dimπ1(U

(1)

p(1)
i

)− dimπ1(U
(1)

p(1)
i −1

)

)

=
b2n1∑

p=1

s(1)p

(
dimπ1(U

(1)
p )− dimπ1(U

(1)
p−1)

)

= r1s
(1)
b2n1

−
b2n1−1∑

p=1

(s(1)p+1 − s(1)p ) dimπ1(U
(1)
p )

= r1u
(1)
n1

−
n1−1∑

i=1

(u(1)
i+1 − u(1)

i ) dimπ1(U
(1)
ib2

)

= r1u
(1)
n1

−
∑

1≤q≤n1+n2−1
a1(q)<n1

(vq+1 − vq) dimπ1(U
(1)
a1(q)b2

)

(3.8)
= r1

⎛

⎜⎜⎝
∑

1≤q≤n1+n2−1
a1(q)<n1

qδq +
∑

1≤q≤n1+n2−1
a1(q)=n1

(q − n1 − n2)δq

⎞

⎟⎟⎠−
∑

1≤q≤n1+n2−1
a1(q)<n1

(n1 + n2)δq dimπ1(U
(1)
a1(q)b2

)

=
n1+n2−1∑

q=1

(
r1q − (n1 + n2) dimπ1(U

(1)
a1(q)b2

)
)
δq.

Let V (1)
p be the subspace of V1 generated by e(1)1 , . . . , e(1)p . For i = 1, . . . , l1 and for j = 1, . . . , d(1)i , let

p(1)i,j be the integer such that dim π1,i(V
(1)

p(1)
i,j

) = j and dimπ1,i(V
(1)

p(1)
i,j−1

) = j − 1. Then

d(1)
i∑

j=1

u(1)

p(1)
i,j

=

d(1)
i∑

j=1

u(1)

p(1)
i,j

(
dimπ1,i(V

(1)

p(1)
i,j

)− dimπ1,i(V
(1)

p(1)
i,j−1

)

)

=
n1∑

p=1

u(1)
p

(
dimπ1,i(V

(1)
p )− dimπ1,i(V

(1)
p−1)

)

= d(1)i u(1)
n1

−
n1−1∑

p=1

(u(1)
p+1 − u(1)

p ) dimπ1,i(V
(1)
p )

= d(1)i u(1)
n1

−
∑

a1(q)<n1

(vq+1 − vq) dimπ1,i(V
(1)
a1(q)

)

(3.8)
= d(1)i

⎛

⎜⎜⎝
∑

1≤q≤n1+n2−1
a1(q)<n1

qδq +
∑

1≤q≤n1+n2−1
a1(q)=n1

(q − n1 − n2)δq

⎞

⎟⎟⎠−
∑

1≤q≤n1+n2−1
a1(q)<n1

(n1 + n2)δq dimπ1,i(V
(1)
a1(q)

)

=
n1+n2−1∑

q=1

(
d(1)i q − (n1 + n2) dimπ1,i(V

(1)
a1(q)

)
)
δq.

Let V (2)
p be the subspace of V2 generated by e(2)1 , . . . , e(2)p . For i = 1, . . . , l2, and for j = 1, . . . , d(2)i , let

p(2)i,j be the integer such that dim π2,i(V
(2)

p(2)
i,j

) = j and dimπ2,i(V
(2)

p(2)
i,j−1

) = j − 1. Then

d(2)
i∑

j=1

u(2)

p(2)
i,j

=

d(2)
i∑

j=1

u(2)

p(2)
i,j

(
dimπ2,i(V

(2)

p(2)
i,j

)− dimπ2,i(V
(2)

p(2)
i,j−1

)

)

=
n2∑

p=1

u(2)
p

(
dimπ2,i(V

(2)
p )− dimπ2,i(V

(2)
p−1)

)
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= d(2)i u(2)
n2

−
n2−1∑

p=1

(u(2)
p+1 − u(2)

p ) dimπ2,i(V
(2)
p )

= d(2)i u(2)
n2

−
∑

a2(q)<n2

(u(2)
q+1 − u(2)

q ) dimπ2,i(V
(2)
a2(q)

)

(3.9)
= d(2)i

⎛

⎜⎜⎝
∑

1≤q≤n1+n2−1
a2(q)<n2

qδq +
∑

1≤q≤n1+n2−1
a2(q)=n2

(q − n1 − n2)δq

⎞

⎟⎟⎠−
∑

1≤q≤n1+n2−1
a2(q)<n2

(n1 + n2)δq dimπ2,i(V
(2)
a2(q)

)

=
n1+n2−1∑

q=1

(
d(2)i q − (n1 + n2) dimπ2,i(V

(2)
a2(q)

)
)
δq.

So we have

µL⊗N

(x,λ) =−

⎛

⎝ξ
r1∑

i=1

s(k)
p(k)
i

+
l1∑

i=1

ξ(1)i

d(1)
i∑

j=1

u(1)

p(1)
i,j

+
l2∑

i=1

ξ(2)i

d(2)
i∑

j=1

u(2)

p(2)
i,j

⎞

⎠N

=−
n1+n2−1∑

q=1

Nδq

{
q

l1∑

i=1

ξ(1)i d(1)i + q
l2∑

i=1

ξ(2)i d(2)i − (n1 + n2)
l1∑

i=1

ξ(1)i dimπ(1)
i (V (1)

a1(q)
)

− (n1 + n2)
l2∑

i=1

ξ(2)i dimπ(2)
i (V (2)

a2(q)
) + (r1 + r2)qξ

− (n1 + n2)ξ
(
dimπ1(U

(1)
a1(q)b2

) + dimπ2(U
(2)
b1a1(q)+b2a2(q)

)
)}

.

Hence x is properly stable point if

− q
l1∑

i=1

ξ(1)i d(1)i+1 − q
l2∑

i=1

ξ(2)i d(2)i+1 + (n1 + n2)
l1∑

i=1

ξ(1)i dimπ1,i(V
(1)
a1(q)

) + (n1 + n2)
l2∑

i=1

ξ(2)i dimπ2,i(V
(2)
a2(q)

)

− qξ(r1 + r2) + ξ(n1 + n2)
(
dimπ1(U

(1)
a1(q)b2

) + dimπ2(U
(2)
b1a1(q)+b2a2(q)

)
)
> 0

for all q = 1, . . . , n1 +m2 − 1.

For each q = 1, . . . , n1 + n2 − 1, let V ′
k be the vector subspace of Vk generated by e(k)1 , . . . , e(k)ak(q)

for
k = 1, 2. We note that

q = dimV ′
1 + dimV ′

2 . (3.10)

Then U (1)
a1(q)b2

= V ′
1 ⊗W2 and U (2)

b1a1(q)+b2a2(q)
= V ′

1 ⊗W1 ⊕ V ′
2 ⊗W2. Put

E′
1 := Im (V ′

1 ⊗OXy (−m0) → E1), E
′
2 := Im (Λ1

Dy
⊗ V ′

1 ⊗OXy (−m0)⊕ V ′
2 ⊗OXy (−m0 + γ) → E2).

By the choice of m1, we have

π2(U
(2)
b1a1(q)+b2a2(q)

) = H0(E′
2(m0 +m1 − γ)), π1(U

(1)
a1(q)b2

) = H0(E′
1(m0 +m1)). (3.11)

Put r′1 = rankE′
1, r

′
2 = rankE′

2. Let π
′
k,i be the composite V ′

k ↪→ Vk
πk,i→ N (k)

i for k = 1, 2. Then we have

dimV ′
1 ≤ h0(E′

1(m0)), dimkerπ1,i ≤ h0(Fi+1(E
′
1)(m0)), dimV ′

2 ≤ h0(E′
2(m0)), dimkerπ2,j ≤ h0(Fj+1(E

′
2)(m0))

(3.12)
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for 1 ≤ i ≤ l1 for 1 ≤ j ≤ l2. So we obtain

− qξ(r1 + r2) + ξ(n1 + n2)
(
dimπ1(U

(1)
a1(q)b2

) + dimπ2(U
(2)
b1a1(q)+b2a2(q)

)
)

− q
l1∑

i=1

ξ(1)i d(1)i+1 − q
l2∑

j=1

ξ(2)j d(2)j+1 + (n1 + n2)
l1∑

i=1

ξ(1)i dimπ1,i(V
(1)
a1(q)

) + (n1 + n2)
l2∑

j=1

ξ(2)j dimπ2,i(V
(2)
a2(q)

)

(3.10)(3.11)
= ξ

{
− (dimV ′

1 + dimV ′
2)(h

0(E1(m0 +m1)) + h0(E2(m0 +m1 − γ)))

+ (dimV1 + dimV2)(h
0(E′

1(m0 +m1)) + h0(E′
2(m0 +m1 − γ)))

}

− (dimV ′
1 + dimV ′

2)
l1∑

i=1

ξ(1)i d(1)i+1 + (dimV1 + dimV2)
l1∑

i=1

ξ(1)i (dimV ′
1 − dimkerπ′

1,i)

− (dimV ′
1 + dimV ′

2)
l2∑

j=1

ξ(2)j d(2)j+1 + (dimV1 + dimV2)
l2∑

j=1

ξ(2)j (dimV ′
2 − dimkerπ′

2,j)

(3.6)
=
(
dimV1 + dimV2 −

l1∑

i=1

ϵ(1)i d(1)i+1 −
l2∑

j=1

ϵ(2)j d(2)j+1

){
− (dimV ′

1 + dimV ′
2)(2rdXm1 + dimV1 + dimV2)

+ (dimV1 + dimV2)((r
′
1 + r′2)dXm1 + χ(E′

1(m0)) + χ(E′
2(m0 − γ)))

}

− 2rdXm1(dimV ′
1 + dimV ′

2)
l1∑

i=1

ϵ(1)i d(1)i+1 + 2rdXm1(dimV1 + dimV2)
l1∑

i=1

ϵ(1)i (dimV ′
1 − dimkerπ′

1,i)

− 2rdXm1(dimV ′
1 + dimV ′

2)
l2∑

j=1

ϵ(2)j d(2)j+1 + 2rdXm1(dimV1 + dimV2)
l2∑

j=1

ϵ(2)j (dimV ′
2 − dimkerπ′

2,j)

=− 2rdXm1(dimV1 + dimV2)
{
dimV ′

1 + dimV ′
2 −

l1∑

i=1

ϵ(1)i (dimV ′
1 − dimkerπ′

1,i)−
l2∑

j=1

ϵ(2)j (dimV ′
2 − dimkerπ′

2,j)
}

+ (r′1 + r′2)dXm1(dimV1 + dimV2)
(
dimV1 + dimV2 −

l1∑

i=1

ϵ(1)i d(1)i+1 −
l2∑

j=1

ϵ(2)j d(2)j+1

)

+ (dimV1 + dimV2)
(
dimV1 + dimV2 −

l1∑

i=1

ϵ(1)i d(1)i+1 −
l2∑

j=1

ϵ(2)j d(2)j+1

)

×
{
− (dimV ′

1 + dimV ′
2) + χ(E′

1(m0)) + χ(E′
2(m0 − γ))

}

(3.12)
≥ (r′1 + r′2)dXm1(dimV1 + dimV2)

{
h0(E1(m0)) + h0(E2(m0 − γ))−

l1∑

i=1

ϵ(1)i d(1)i+1 −
l2∑

j=1

ϵ(2)j d(2)j+1

}

− 2rdXm1(dimV1 + dimV2)

{
h0(E′

1(m0)) + h0(E′
2(m0 − γ))

−
l1∑

i=1

ϵ(1)i

(
h0(E′

1(m0))− h0(Fi+1(E
′
1)(m0))

)
−

l2∑

j=1

ϵ(2)j

(
h0(E′

2(m0 − γ))− h0(Fj+1(E
′
2)(m0 − γ))

)}

− (dimV1 + dimV2)

⎛

⎝dimV1 + dimV2 −
l1∑

i=1

ϵ(1)i d(1)i+1 −
l2∑

j=1

ϵ(2)j d(2)j+1

⎞

⎠

× (dimV ′
1 + dimV ′

2 − χ(E′
1(m0))− χ(E′

2(m0 − γ)))

(3.1)
> 0.

Hence x is a properly stable point.

By Proposition 3.3.3, there exists a geometric quotient Rs/G.

Theorem 3.3.4. MD,β
X/S(r, d,d1,d2) := Rs/G is a coarse moduli scheme of MD,β

X/S(r, d,d1,d2).
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Lemma 3.3.5. Take any geometric point (E1, E2,Φ, F∗(E1), F∗(E2)) ∈ MD,β
X/S(r, d,d1,d2)(K). Then

for any endomorphisms f1 : E1 → E1, f2 : E2 → E2 satisfying Φ ◦ (1 ⊗ f1) = f2 ◦ Φ, f1(Fj+1(E1)) ⊂
Fj+1(E1) (1 ≤ j ≤ l1) and f2(Fj+1(E2)) ⊂ Fj+1(E2) (1 ≤ j ≤ l2), there exists c ∈ K such that
(f1, f2) = (c · idE1 , c · idE2).

Proposition 3.3.6. Let R be a discrete valuation ring over S with the residue field k = R/m and the
quotient field K. Let (E1, E2,Φ, F∗(E1), F∗(E2)) be a semistable parabolic Λ1

DK
-triple on XK . Then

there exists a flat family (Ẽ1, Ẽ2, Φ̃, F∗(Ẽ1), F∗(Ẽ2)) of parabolic Λ1
DR

-triples on XR over R such that

(E1, E2,Φ, F∗(E1), F∗(E2)) ∼= (Ẽ1, Ẽ2, Φ̃, F∗(Ẽ1), F∗(Ẽ2)) ⊗R K and (Ẽ1, Ẽ2, Φ̃, F∗(Ẽ1), F∗(Ẽ2)) ⊗R k is
semistable.

Proof of Theorem 2.3.6. Put l1 = l2 = rn and d(1)i = d(2)i = i− 1 for 2 ≤ i ≤ rn+1. Put {β(k)
i }1≤i≤rn =

{α(k)
i,j }

1≤i≤n
1≤j≤r for each k = 1, 2. For a parabolic φ-connection (E1, E2,φ,∇, l(1)∗ , l(2)∗ ) over (C, t), we de-

fine a parabolic Λ1
D-triple (E1, E2,Φ, F∗(E1), F∗(E2)) as follows: Let Φ : Λ1

D ⊗ E1 → E2 be a left OC-
homomorphism induced by φ and ∇. For each 1 ≤ p ≤ rn, there exists a unique pair of integers (i, j) such

that 1 ≤ i ≤ n, 1 ≤ j ≤ r and β(1)
p = α(1)

i,j . Then we put F1(E1) := E1 and Fp+1(E1) := ker(Fp(E1) →
E1|ti/l

(1)
i,j ). In a similar way we define Fp(E2) for 1 ≤ p ≤ rn + 1. By the definition of the stability we

can see that (E1, E2,φ,∇, l(1)∗ , l(2)∗ ) is α-stable if and only if (E1, E2,Φ, F∗(E1), F∗(E2)) is β-stable. The
above correspondence determines a morphism of functors

ι : Mα
C/M̃g,n

(t̃, r, d) −→ MD,β

C×N/M̃g,n×N (r, d,d1,d2).

We can see that ι is a closed immersion by Lemma 3.3.2. So there exists a closed subscheme Z ⊂ Rs

such that
hZ = hRs ×

MD,β

C×N/M̃g,n×N
(r,d,d1,d2)

Mα
C/M̃g,n

(t̃, r, d),

where hZ = HomM̃g,n×N (−, Z). Z is invariant by the action of G. By Lemma 3.3.5, the quotient Rs →

MD,β

C×N/M̃g,n×N (r, d,d1,d2) is a principalG-bundle. So Z/G is a closed subscheme ofMD,β

C×N/M̃g,n×N (r, d,d1,d2)

which is just the coarse moduli scheme of Mα
C/M̃g,n

(t̃, r, d).

When r and d are coprime, we can see that Mα
C/M̃g,n

(t̃, r, d) is fine by Lemma 3.3.5 and the stan-

dard argument. For general d, there is an isomorphism σ : Mα
C/M̃g,n

(t̃, r, d) → Mα′

C/M̃g,n
(t̃, r, d′) induced

an elementary transformation, where r and d′ are coporime. Then we obtain a universal family over
Mα

C/M̃g,n
(t̃, r, d)×M̃g,n×N (C×N ) by pulling back a universal family over Mα′

C/M̃g,n
(t̃, r, d′)×M̃g,n×N (C×N )

through σ. So Mα
C/M̃g,n

(t̃, r, d) is fine for arbitrary d.

It follows from Proposition 3.3.6 that Mα
C/M̃g,n

(t̃, r, d) → M̃g,n ×N is projective for generic α.
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Chapter 4

Moduli space of rank three
logarithmic connections on the
projective line with three poles

In this chapter, we describe the moduli space of rank 3 parabolic logarithmic connections on P1 with 3
poles. Through this chapter, we may assume that α = (αi,j)1≤i,j≤3 and γ satisfy 0 < αi,j ≪ 1 for any
1 ≤ i, j ≤ 3 and γ ≫ 0. We put

T3 :=
{
(t1, t2, t3) ∈ (P1)3

∣∣ ti ̸= tj for i ̸= j
}
,

N (ν1, ν2, ν3) := {(νi,j) ∈ C9 | νi,0 + νi,1 + νi,2 = νi, 1 ≤ i ≤ 3},

where ν1, ν2, ν3 ∈ C and ν1 + ν2 + ν3 ∈ Z.
Let Mα

3 (ν1, ν2, ν3) → T3 × N (ν1, ν2, ν3) (resp. Mα
3 (ν1, ν2, ν3) → T3 × N (ν1, ν2, ν3)) be the family

of moduli spaces of α-stable ν-parabolic connections (resp. φ-connections), whose fiber Mα
3 (t,ν) (resp.

Mα
3 (t,ν)) at (t,ν) ∈ T3 ×N (ν1, ν2, ν3) is the moduli space of α-stable ν-parabolic connections (resp. φ-

connections) over (P1, t). Here a parabolic φ-connection is said to be α-stable if a parabolic φ-connection
is {α,α}-stable.

4.1 The family of A(1)∗
2 -surfaces and the main theorem

In this section, we construct a family of A(1)∗
2 -surfaces parameterized by T3 × N (0, 0, 2) and state the

main theorem. We put N := N (0, 0, 2).
Let t̃i ⊂ P1 × T3 ×N be the section defined by

T3 ×N ↪→ P1 × T3 ×N ; ((tj)1≤j≤3, (νm,n)
1≤m≤3
0≤n≤2 ) ,→ (ti, (tj)1≤j≤3, (νm,n)

1≤n≤3
0≤n≤2)

for i = 1, 2, 3 and D(t̃) = t̃1+ t̃2+ t̃3 be a relative effective Cartier divisor for the projection P1×T3×N →
T3 ×N . Put

E := Ω1
P1×T3×N/T3×N (D(t̃))⊕OP1×T3×N .

Let
π : P(E) −→ P1 × T3 ×N

be the projection, where P(E) := Proj Sym (E∨). We note that for each x ∈ T3 × N , there is an
isomorphism (Ω1

P1×T3×N/T3×N (D(t̃)))x ∼= Ω1
P1(D(t̃)x) ∼= OP1(1) and so P(Ex) is a Hirzebruch surface of

degree 1. Let D̃0 ⊂ P(E) be the section over P1×T3×N defined by the injection Ω1
P1×T3×N/T3×N (D(t̃)) ↪→

E and D̃i ⊂ P(E) be the inverse image of t̃i. Put L = OP(E)(D̃0 + D̃1). Let

ϖ : P(E) π−→ P1 × T3 ×N −→ T3 ×N

be the projection and take a closed point x ∈ T3 × N . Since D̃0 and D̃1 are flat over T3 × N , (D̃0)x
and (D̃1)x are effective Cartier divisors on P(Ex), and so Lx

∼= OP(Ex)((D̃0)x + (D̃1)x). The section
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(D̃0)x ⊂ P(Ex) is a (−1)-curve by definition, so we get a morphism f : P(Ex) → P2 by contracting (D̃0)x.
By the projection formula Rif∗Lx

∼= OP2(1)⊗ Rif∗OP(Ex), we have Hi(P(Ex),Lx) ∼= Hi(P2,OP2(1)) = 0
for any i > 0, which leads to dimH0(P(Ex),Lx) = 3 by Riemann-Roch theorem. Hence ϖ∗L is a rank
3 locally free sheaf on T3 × N . Since Lx is generated by global section, the canonical homomorphism
ϖ∗ϖ∗L → L is surjective, so we obtain a morphism ρ : P(E) → P(ϖ∗L) over T3 × N . Let W be the
scheme theoretic image of ρ : D̃0 → P(ϖ∗L). Since D̃0 is proper over T3 ×N , W is a closed subvariety
of P(ϖ∗L). Wx consists of one point because deg(D̃0)x

L|(D̃0)x
= (D̃0)x.((D̃0)x + (D̃1)x) = 0. We can see

that P(E) \ (D̃0) → P(ϖ∗L) \W is an isomorphism by the proof of Theorem V.2.17. in [Ha], and P(E) is
isomorphic to the blow-up of P(ϖ∗L) along W . By the residue map

rest̃i : Ω
1
P1×T3×N/T3×N (D(t̃))|t̃i −→ Ot̃i ,

we obtain an isomorphism D̃i
∼→ P1 × T3 ×N . For each i = 1, 2, 3 and j = 0, 1, 2, let b̃i,j be the section

of D̃i over T3 ×N defined by

{((νi,j + resti(
dz

z−t3
) : 1), (tk)k, (νm,n)m,n)} ⊂ P1 × T3 ×N .

Let B̃j denote the reduced induced structure on b̃1,j ∪ b̃2,j ∪ b̃3,j for j = 0, 1, 2. Then we can naturally
regard ρ(B̃i) as a closed subvariety of P(ϖ∗L), and it is isomorphic to B̃i. So we use the same character
B̃i to denote ρ(B̃i) for simplicity of notation. Let g2 : S2 → P(ϖ∗L) be the blow-up along B̃2, g1 : S1 → S2

be the blow-up along the strict transform of B̃1 and g : S → S1 be the blow-up along the strict transform
of B̃0. Then for each closed point (t,ν) ∈ T3 × N , the fiber S(t,ν) is a surface obtained by blowing up
three points on each of three lines meeting at a single point on P((ϖ∗L)(t,ν)) ∼= P2. Let BlW : Z → S be
the blow-up along W . Z is also obtained by repeating the blow-up of P(E) .

Let M̂α
3 (0, 0, 2) be the moduli space of pairs of an α-stable parabolic φ-connection and a certain

subbundle (see Section 4.3), and PC: M̂α
3 (0, 0, 2) → Mα

3 (0, 0, 2) be the morphism defined by forgetting
subbundles. Our aim is to prove the following theorem.

Theorem 4.1.1. Take α = (αi,j)1≤i,j≤3 and γ such that 0 < αi,j ≪ 1 for any 1 ≤ i, j ≤ 3 and γ ≫ 0.

(1) The closed subscheme Y≤1 defined by rankφ ≤ 1 is reduced. The forgetful map PC: M̂α
3 (0, 0, 2) →

Mα
3 (0, 0, 2) is the blow-up along Y≤1.

(2) There exists an isomorphism M̂α
3 (0, 0, 2)

∼−→ Z and Mα
3 (0, 0, 2)

∼−→ S over T3 ×N such that the
diagram

M̂α
3 (0, 0, 2) Z

Mα
3 (0, 0, 2) S

∼

PC BlW

∼

commutes. In particular, Mα
3 (t,ν) is isomorphic to an A(1)∗

2 -surface for each (t,ν) ∈ T3 ×N .

(3) Let Y be the closed subscheme of Mα
3 (0, 0, 2) defined by the conditions ∧3φ = 0. Then Y is

reduced and Mα
3 (0, 0, 2) ∼= Mα

3 (0, 0, 2) \ Y . Moreover, for each (t,ν) ∈ T3 ×N , the fiber Y(t,ν) is

the anti-canonical divisor of Mα
3 (t,ν).

Remark 4.1.2. Theorem 4.1.1 implies a description for all ν. Take ν1, ν2, ν3 ∈ C satisfying ν1+ν2+ν3 =
2. Put L := OP1 and

∇L := d+
1

3

(
ν1

z − t1
+

ν2
z − t2

+
ν3 − 2

z − t3

)
dz.

Then the morphism defined by

Mα
3 (0, 0, 2) −→ Mα

3 (ν1, ν2, ν3), (E1, E2,φ,∇, l(1)∗ , l(2)∗ ) ,−→ (E1, E2,φ,∇, l(1)∗ , l(2)∗ )⊗ (L,∇L)

is an isomorphism. When degE1 = degE2 ̸= −2, elementary transformations give isomorphisms of
moduli spaces (see section 2.4).
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4.2 Types of underlying vector bundles

In this section, we investigate types of underlying vector bundles. Take t = (ti)1≤i≤3 ∈ T3,ν ∈ N and

put D(t) = t1 + t2 + t3. Let (E1, E2,φ,∇, l(1)∗ , l(2)∗ ) be a ν-parabolic φ-connection. We assume that

0 < αi,j ≪ 1 for any 1 ≤ i, j ≤ 3 and γ ≫ 0. Let (E1, E2,φ,∇, l(1)∗ , l(2)∗ ) be a ν-parabolic φ-connection,
and F1 ⊂ E1 and F2 ⊂ E2 be subbundles such that (F1, F2) ̸= (0, 0). We put

µα(F1, F2) :=
degF1(−D(t)) + degF2(−D(t))− γ rankF2 +

∑3
i=1

∑3
j=1 αi,j(d

(1)
i,j (F1) + d(2)i,j (F2))

rankF1 + rankF2
,

where d(k)i,j (F ) = dim(F |ti ∩ l(k)i,j−1)/(F |ti ∩ l(k)i,j ).

Lemma 4.2.1. Let (F1, F2) ⊂ (E1, E2) be a pair of subbundles with non-negative degree. If (F1, F2)
satisfies φ(F1) ⊂ F2, ∇(F1) ⊂ F2 ⊗Ω1

P1(D(t)) and rankF1 > rankF2, then (F1, F2) is an α-destabilizing

pair of (E1, E2,φ,∇, l(1)∗ , l(2)∗ ).

Proof. We have

µα(F1, F2)− µα(E1, E2) =
rankF1 − rankF2

2(rankE1 + rankE2)
γ +

degF1 + degF2

rankF1 + rankF2
− degE1

rankE1

+

∑2
k=1

∑3
i=1

∑3
j=1 αi,jd

(k)
i,j (Fk)

rankF1 + rankF2
−
∑2

k=1

∑3
i=1

∑3
j=1 αi,j

rankE1 + rankE2
.

Now γ ≫ 0, so under the assumption, we obtain µα(F1, F2)− µα(E1, E2) > 0.

Lemma 4.2.2. Let (F1, F2) ⊂ (E1, E2) be a pair of non-zero subbundles of rank r′ < r. If (F1, F2)
satisfy φ(F1) ⊂ F2, ∇(F1) ⊂ F2 ⊗Ω1

P1(D(t)) and µ(F1)+µ(F2) ≥ −1, then (F1, F2) is an α-destabilizing

pair of (E1, E2,φ,∇, l(1)∗ , l(2)∗ ). Here for nonzero vector bundle F , µ(F ) = degF/rankF .

Proof. We have

µα(F1, F2)− µα(E1, E2) =
1

2

{
µ(F1) + µ(F2) +

4

3
+

∑2
k=1

∑3
i=1

∑3
j=1 αi,j(3d

(k)
i,j (Fk)− r′)

3r′

}
.

If µ(F1) + µ(F2) ≥ −1, we obtain µα(F1, F2)− µα(E1, E2) > 0.

Proposition 4.2.3. For any α-stable ν-parabolic φ-connection (E1, E2,φ,∇, l(1)∗ , l(2)∗ ) of rank 3 and
degree −2, we have

E1
∼= E2

∼= OP1 ⊕OP1(−1)⊕OP1(−1).

Proof. Take decompositions

E1 = OP1(l1)⊕OP1(l2)⊕OP1(l3) (l1 + l2 + l3 = −2, l1 ≥ l2 ≥ l3)

E2 = OP1(m1)⊕OP1(m2)⊕OP1(m3) (m1 +m2 +m3 = −2, m1 ≥ m2 ≥ m3).

If a triple of integers (n1, n2, n3) satisfies n1 + n2 + n3 = −2 and n1 ≥ n2 ≥ n3, then (n1, n2, n3) satisfies
one of the following conditions:

(i) n1 ≥ n2 ≥ 0 > n3,

(ii) n1 ≥ 1, 0 > n2 ≥ n3,
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(iii) n1 = 0, n2 = n3 = −1.

If (l1, l2, l3) and (m1,m2,m3) satisfy the condition (i), then we have φ(OP1(l1)⊕OP1(l2)) ⊂ OP1(m1)⊕
OP1(m2). The composite

OP1(l1)⊕OP1(l2) → E1
∇−→ E2 ⊗ Ω1

P1(D(t)) → OP1(m3)⊗ Ω1
P1(D(t)) ∼= OP1(m3 + 1)

becomes a homomorphism and must be zero since m3+1 = −1−m1−m2 ≤ −1. So we have ∇(OP1(l1)⊕
OP1(l2)) ⊂ (OP1(m1)⊕OP1(m2))⊗Ω1

P1(D(t)). Since µ(OP1(l1)⊕OP1(l2)) + µ(OP1(m1)⊕OP1(m2)) ≥ 0,

the pair (OP1(l1)⊕OP1(l2),OP1(m1)⊕OP1(m2)) breaks the stability of (E1, E2,φ,∇, l(1)∗ , l(2)∗ ).
Suppose that (l1, l2, l3) satisfies (i) and (m1,m2,m3) satisfies (ii). Since m3 ≤ −2, we have φ(OP1(l1)⊕

OP1(l2)) ⊂ OP1(m1) and ∇(OP1(l1)⊕OP1(l2)) ⊂ (OP1(m1)⊕OP1(m2))⊗Ω1
C(D(t)). Since m1+m2 = −2−

m3 ≥ 0, the pair (OP1(l1)⊕OP1(l2),OP1(m1)⊕OP1(m2)) breaks the stability of (E1, E2,φ,∇, l(1)∗ , l(2)∗ ).
Suppose that (l1, l2, l3) satisfies (i) and (m1,m2,m3) satisfies (iii). Then we have φ(OP1(l1)⊕OP1(l2)) ⊂

OP1(m1). If l1 ≥ 1, then ∇(OP1(l1)) ⊂ OP1(m1) ⊗ Ω1
P1(D(t)). The pair (OP1(l1),OP1(m1)) breaks the

stability. If l1 = 0, then we have l2 = 0. Put F1 = Kerφ|OP1 (l1)⊕OP1 (l2). Then the composite

f : F1 −→ E1
∇−→ E2 ⊗ Ω1

C(D(t))

becomes a homomorphism. Put F2 = (Im f)⊗ Ω1
C(D(t))∨. The pair (F1, F2) breaks the stability.

Suppose that (l1, l2, l3) satisfies (ii) and (m1,m2,m3) satisfies (i). If l1 > m1, then the composite

OP1(l1) → E1
∇→ E2⊗Ω1

P1(D(t)) becomes a homomorphism. Put F2 = (Im∇|OP1 (l1))⊗Ω1
P1(D(t))∨, then

(OP1(l1), F2) breaks the stability of (E1, E2,φ,∇, l(1)∗ , l(2)∗ ). If l1 ≤ m1, then we have l2 − 2 ≥ l2 + l3 =
m1 − l1 + m2 + m3 ≥ m3 since l3 ≤ −2. So we have φ(OP1(l1) ⊕ OP1(l2)) ⊂ OP1(m1) ⊕ OP1(m2) and
∇(OP1(l1) ⊕ OP1(l2)) ⊂ (OP1(m1) ⊕ OP1(m2)) ⊗ Ω1

P1(D(t)). The pair (OP1(l1) ⊕ OP1(l2),OP1(m1) ⊕
OP1(m2)) breaks the stability of (E1, E2,φ,∇, l(1)∗ , l(2)∗ ) because

µ(OP1(l1)⊕OP1(l2)) + µ(OP1(m1)⊕OP1(m2)) =
l1 + l2 − 2−m3

2
≥ 1

2
.

If (l1, l2, l3) satisfies (ii) and (m1,m2,m3) satisfies (ii) or (iii), then φ(OP1(l1)) ⊂ OP1(m1) and

∇(OP1(l1)) ⊂ OP1(m1)⊗ Ω1
P1(D(t)). (OP1(l1),OP1(m1)) breaks the stability of (E1, E2,φ,∇, l(1)∗ , l(2)∗ ).

Suppose that (l1, l2, l3) satisfies (iii) and (m1,m2,m3) satisfies (i), then m3 = −2−m1 −m2 ≤ −2. If
m3 < −2, then φ(E1) ⊂ OP1(m1)⊕OP1(m2) and ∇(E1) ⊂ (OP1(m1)⊕OP1(m2))⊗ Ω1

P1(D(t)). The pair

(E1,OP1(m1)⊕OP1(m2)) breaks the stability of (E1, E2,φ,∇, l(1)∗ , l(2)∗ ). If m3 = −2 , then m1 = m2 = 0
and φ(OP1(l2)⊕OP1(l3)) ⊂ OP1(m1)⊕OP1(m2). Moreover the composite

f : OP1(l2)⊕OP1(l3) → E1
∇−→ E2 ⊗ Ω1

P1(D(t)) → OP1(m3)⊗ Ω1
P1(D(t))

becomes a homomorphism. Let F1 = Ker f . If F1 = OP1(l2)⊕OP1(l3), then φ(E1) ⊂ OP1(m1)⊕OP1(m2)
and ∇(E1) ⊂ (OP1(m1)⊕OP1(m2))⊗Ω1

P1(D(t)). The pair (E1,OP1(m1)⊕OP1(m2)) breaks the stability

of (E1, E2,φ,∇, l(1)∗ , l(2)∗ ). If F1 ̸= OP1(l2) ⊕ OP1(l3), then we have F1
∼= OP1(−1) since OP1(l2) ∼=

OP1(l3) ∼= OP1(m3) ⊗ Ω1
P1(D(t)) ∼= OP1(−1). So we obtain φ(OP1(l1) ⊕ F1) ⊂ OP1(m1) ⊕ OP1(m2) and

∇(OP1(l1)⊕F1) ⊂ (OP1(m1)⊕OP1(m2))⊗Ω1
P1(D(t)). The pair (OP1(l1)⊕F1,OP1(m1)⊕OP1(m2)) breaks

the stability of (E1, E2,φ,∇, l(1)∗ , l(2)∗ ).
Suppose that (l1, l2, l3) satisfies (iii) and (m1,m2,m3) satisfies (ii). If m2 < −1, then φ(OP1(l1)) ⊂

OP1(m1) and ∇(OP1(l1)) ⊂ OP1(m1) ⊗ Ω1
P1(D(t)). The pair (OP1(l1),OP1(m1)) breaks the stabil-

ity of (E1, E2,φ,∇, l(1)∗ , l(2)∗ ). If m2 = −1 and m3 < −2, then φ(E1) ⊂ OP1(m1) ⊕ OP1(m2) and
∇(E1) ⊂ (OP1(m1) ⊕OP1(m2)) ⊗ Ω1

P1(D(t)). The pair (E1,OP1(m1) ⊕OP1(m2)) breaks the stability of

(E1, E2,φ,∇, l(1)∗ , l(2)∗ ). Ifm2 = −1 andm3 = −2, then we have φ(OP1(l2)⊕OP1(l3)) ⊂ OP1(m1)⊕OP1(m2)
and so the composite

f : OP1(l2)⊕OP1(l3) → E1
∇−→ E2 ⊗ Ω1

P1(D(t)) → OP1(m3)⊗ Ω1
P1(D(t))

becomes a homomorphism. Let F1 = Ker f . If F1 = OP1(l2)⊕OP1(l3), then φ(E1) ⊂ OP1(m1)⊕OP1(m2)
and ∇(E1) ⊂ (OP1(m1)⊕OP1(m2))⊗Ω1

P1(D(t)). The pair (E1,OP1(m1)⊕OP1(m2)) breaks the stability

of (E1, E2,φ,∇, l(1)∗ , l(2)∗ ). If F1 ̸= OP1(l2) ⊕ OP1(l3), then we have F1
∼= OP1(−1) since OP1(l2) ∼=

OP1(l3) ∼= OP1(m3) ⊗ Ω1
P1(D(t)) ∼= OP1(−1). So we obtain φ(OP1(l1) ⊕ F1) ⊂ OP1(m1) ⊕ OP1(m2) and
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∇(OP1(l1)⊕F1) ⊂ (OP1(m1)⊕OP1(m2))⊗Ω1
P1(D(t)). The pair (OP1(l1)⊕F1,OP1(m1)⊕OP1(m2)) breaks

the stability of (E1, E2,φ,∇, l(1)∗ , l(2)∗ ).
Hence we have E1

∼= E2
∼= OP1 ⊕OP1(−1)⊕OP1(−1).

Lemma 4.2.4. Let F be a subbundle of E1 which is isomorphic to the trivial bundle. If φ|F = 0, then

(E1, E2,φ,∇, l(1)∗ , l(2)∗ ) is α-unstable. In particular, if φ = 0, then (E1, E2,φ,∇, l(1)∗ , l(2)∗ ) is α-unstable.

Proof. If φ|F = 0, then the composite

f : F −→ E1
∇−→ E2 ⊗ Ω1

C(D(t))

becomes a homomorphism. If f = 0, then (F, 0) breaks the stability. If f ̸= 0, then (F, (Im f) ⊗
Ω1

P1(D(t))∨) breaks the stability.

4.3 The apparent map

Proposition 4.3.1. Take (E1, E2,φ,∇, l(1)∗ , l(2)∗ ) ∈ Mα
3 (t,ν). Then there exists a filtration Ek = F (k)

0 !
F (k)
1 ! F (k)

2 ! F (k)
3 = 0 by subbundles for k = 1, 2 such that

F (1)
1

∼= F (2)
1

∼= OP1 ⊕OP1(−1), F (1)
2

∼= F (2)
2

∼= OP1 , (4.1)

and
φ(F (1)

i ) ⊂ F (2)
i , ∇(F (1)

i+1) ⊂ F (2)
i ⊗ Ω1

P1(D(t)) (4.2)

for any 0 ≤ i ≤ 2. Subbundles F (1)
2 , F (2)

1 , F (2)
2 satisfying the above conditions are uniquely determined.

If rankφ = 2 and 3, then F (1)
1 is also unique. If rankφ = 1, then there is a one-to-one correspondence

between the set of all such F (1)
1 and P1.

Proof. By Proposition 4.2.3, E1 and E2 have a unique line subbundle which is isomorphic to the trivial

line bundle. Let F (k)
2 be the such line subbundle of Ek for k = 1, 2. Then we have φ(F (1)

2 ) ⊂ F (2)
2 by

Proposition 4.2.3, and so the composite

f2 : OP1 ∼= F (1)
2 ↪→ E1

∇−→ E2 ⊗ Ω1
P1(D) → E2/F

(2)
2 ⊗ Ω1

P1(D) ∼= OP1 ⊕OP1

becomes a homomorphism. If f2 = 0, then (F (1)
2 , F (2)

2 ) breaks the stability of (E1, E2,φ,∇, l(1)∗ , l(2)∗ ). So
f2 is not zero. Let

F (2)
1 = ker(E2 ⊗ Ω1

P1(D) → (E2/F
(2)
2 ⊗ Ω1

P1(D))/Im f2)⊗ Ω1
P1(D(t))∨.

Then we have F (2)
1

∼= OP1 ⊕OP1(−1) and ∇(F (1)
2 ) ⊂ F (2)

1 ⊗Ω1
P1(D(t)). Let K := ker(φ : E1 → E2/F

(2)
1 ).

If rankφ = 2, 3, then we have K ∼= OP1 ⊕ OP1(−1). Put F (1)
1 = K. We then have desire filtrations.

The uniqueness of a filtration satisfying the above condition is clear. If rank φ = 1, then K = E1 by

Lemma 4.2.4. Take a subbundle F (1)
1 ⊂ E1 which is isomorphic to OP1 ⊕ OP1(−1). Then we have

φ(F (1)
1 ) ⊂ F (2)

1 . We can see that there is a one-to-one correspondence between the set of such subbundles

F (1)
1 and PHom(OP1(−1), E1/F

(1)
2 ) ∼= P1.

Let Ek = F (k)
0 ! F (k)

1 ! F (k)
2 ! F (k)

3 = 0 be a filtration in Proposition 4.3.1. We define f1 by

f1 : F
(1)
1 ↪→ E1

∇−→ E2 ⊗ Ω1
P1(D(t)) → E2/F

(2)
1 ⊗ Ω1

P1(D(t)).

Then f1 becomes a homomorphism. If f1 = 0, then (F (1)
1 , F (2)

1 ) breaks the stability. So f1 is not zero,
and it implies that the induced homomorphism

u : OP1(−1) ∼= F (1)
1 /F (1)

2 → E1
∇−→ E2 ⊗ Ω1

P1(D(t)) → E2/F
(2)
1 ⊗ Ω1

P1(D(t)) ∼= OP1

is also not zero because ∇(F (1)
2 ) ⊂ F (2)

1 ⊗ Ω1
P1(D(t)). Since u ∈ Hom(OP1(−1),OP1) ∼= H0(P1,OP1(1)),

there exists a unique point q ∈ P1 such that uq = 0.
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Definition 4.3.2. We call the zero q of u the apparent singularity of (E1, E2,φ,∇, l(1)∗ , l(2)∗ , F (1)
1 ), and

let q denote App(E1, E2,φ,∇, l(1)∗ , l(2)∗ , F (1)
1 ).

Let M̂α
3 (t,ν) be the moduli space of pairs of a parabolic φ-connections and a subbundle F (1)

1 , i.e.

M̂α
3 (t,ν) := {(E1, E2,φ,∇, l(1)∗ , l(2)∗ , F (1)

1 )}/ ∼ .

We can construct M̂α
3 (t,ν) as follows. Let (Ẽ1, Ẽ2, φ̃, ∇̃, l̃(1)∗ , l̃(2)∗ ) be a universal family over Mα

3 (t,ν)×P1

and F̃ (k)
2 ⊂ Ẽk be a unique subbundle such that (F̃ (k)

2 )x ∼= OP1 for each x ∈ Mα
3 (t,ν). Put

f̃2 : F̃
(1)
2 ↪→ Ẽ1

∇̃−→ Ẽ2 ⊗ Ω1
P1(D) → Ẽ2/F̃

(2)
2 ⊗ Ω1

P1(D)

and
F̃ (2)
1 = ker(Ẽ2 ⊗ Ω1

P1(D) → (Ẽ2/F̃
(2)
2 ⊗ Ω1

P1(D))/Im f̃2)⊗ Ω1
P1(D(t))∨.

Let p1 : Mα
3 (t,ν) × P1 → Mα

3 (t,ν) and p2 : Mα
3 (t,ν) × P1 → P1 be the projection and put G :=

(p1)∗Hom(p∗2OP1(−1), Ẽ1/F̃
(1)
2 ). Then we have the natural isomorphism

G|x ∼= Hom(OP1(−1), (Ẽ1/F̃
(1)
2 )x) ∼= Hom(OP1(−1),OP1(−1)⊕2).

Let ϖ : P(G) = Proj Sym (G∨) → Mα
3 (t,ν) be the projection and [σ] be the homothety class of a nonzero

element σ ∈ G|x. Put

M̂α
3 (t,ν) :=

{
[σ] ∈ P(G)

∣∣∣∣
the composite OP1(−1)

σ→ (Ẽ1/F̃
(1)
2 )x

φ→ (Ẽ2/F̃
(2)
1 )x

is zero, where x = ϖ([σ])

}
.

Then M̂α
3 (t,ν) is a closed subscheme of P(G) and desired one.

4.4 Construction of the morphism ϕ : M̂α
3 (t,ν) → P(Ω1

P1(D(t)) ⊕
OP1)

Take (E1, E2,φ,∇, l(1)∗ , l(2)∗ , F (1)
1 ) ∈ M̂α

3 (t,ν) and put q := App(E1, E2,φ,∇, l(1)∗ , l(2)∗ , F (1)
1 ). Let p2 : E2 →

E2/F
(2)
1 be the quotient and let us fix an isomorphism E2/F

(2)
1

∼= OP1(−t3). We define a homomorphism

B : E1 → E2/F
(2)
1 ⊗Ω1

P1(D(t)) by B(a) := (p2 ⊗ id)∇(a)− d(p2φ(a)) for a ∈ E1, where d is the canonical

connection on OP1(−t3). Since ∇(F (1)
2 ) ⊂ F (2)

1 ⊗ Ω1
P1(D(t)) and uq = 0, Bq induces a homomorphism

h1 : (E1/F
(1)
1 )|q → (E2/F

(2)
1 ⊗ Ω1

P1(D(t)))|q which makes the diagram

0 F (1)
1 |q E1|q (E1/F

(1)
1 )|q 0

(E2/F
(2)
1 ⊗ Ω1

P1(D(t)))|q

0
Bq

h1

(4.3)

commute. Let h2 : (E1/F
(1)
1 )|q → (E2/F

(2)
1 )|q be the homomorphism induced by φ. Then h1, h2 determine

a homomorphism

ι : (E1/F
(1)
1 )|q −→ ((E2/F

(2)
1 ⊗ Ω1

P1(D(t)))⊕ E2/F
(2)
1 )|q, a ,→ (h1(a), h2(a)).

Lemma 4.4.1. ι is injective.

Proof. If rankφ = 3, then h2 is not zero. In fact, if h2 = 0, then φ(E1) ⊂ F (2)
1 since φ : OP1(−1) ∼=

E1/F
(1)
1 → E2/F

(2)
1

∼= OP1(−1) is zero. It is a contradiction. So ι is injective.

Consider the case rankφ = 2. Assume that h2 = 0. We take a local basis e(1)0 , e(1)1 , e(1)2 (resp.

e(2)0 , e(2)1 , e(2)2 ) of E1 (resp. E2) such that e(1)2 generates F (1)
2 and e(1)1 , e(1)2 generate F (1)

1 (resp. e(2)2

generates F (2)
2 and e(2)1 , e(2)2 generate F (2)

1 ). By taking bases well, φ and ∇ are represented by matrices

φ(e(1)2 , e(1)1 , e(1)0 ) = (e(2)2 , e(2)1 , e(2)0 )

⎛

⎝
1 0 0
0 φ22 φ23
0 0 0

⎞

⎠ ,
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∇(e(1)2 , e(1)1 , e(1)0 ) = (e(2)2 , e(2)1 , e(2)0 )

⎛

⎝
0 a12(z) a13(z)
1 a22(z) a23(z)
0 a32(z) a33(z)

⎞

⎠ dz

h(z)
,

where z is an inhomogeneous coordinate on P1 = SpecC[z] ∪ {∞} and h(z) = (z − t1)(z − t2)(z − t3)
and φ22,φ23 ∈ C. Suppose that φ22 = 0. Then we may assume that φ23 = 1. For each i = 1, 2, 3, a32(ti)
must be zero because the polynomial

|resti∇− λφ| = 1

h′(ti)

∣∣∣∣∣∣

−h′(ti)λ a12(ti) a13(ti)
1 a22(ti) a23(ti)− h′(ti)λ
0 a32(ti) a33(ti)

∣∣∣∣∣∣

in λ is identically zero by Lemma 4.4.2 and h′(ti)a32(ti) is the second order coefficient of |resti∇− λφ|.
Here ′ = d/dz. Since a32(z) ∈ H0(OP1(1)), we obtain a32(z) = 0. Then (F (1)

1 , F (2)
1 ) breaks the stability of

(E1, E2,φ,∇, l(1)∗ , l(2)∗ ). Suppose that φ22 ̸= 0. Then we may assume that φ23 = 0. In the same way as the

above, we can see that a33(z) = 0. So (F (1)
2 ⊕E1/F

(1)
1 , F (2)

1 ) breaks the stability of (E1, E2,φ,∇, l(1)∗ , l(2)∗ ).
Hence h2 ̸= 0 and so ι is injective.

Finally, we consider the case rank φ = 1. Let f : E1/F
(1)
2 → E2/F

(2)
1 ⊗ Ω1

P1(D(t)) be the homomor-

phism induced by ∇. Since φ(E1) ⊂ F (2)
2 ⊂ F (2)

1 , the map f becomes a homomorphism. If h1 = 0,

then we have f |q = 0 by the diagram (4.3). If f = 0, then (E1, F
(2)
1 ) breaks the stability, so f ̸= 0.

Since E1/F
(1)
2

∼= OP1(−1)⊕2, E2/F
(2)
1 ⊗ Ω1

P1(D(t)) ∼= OP1 and f |q = 0, we have ker f ∼= OP1(−1). Put

G := ker(E1 → (E1/F
(1)
2 )/ ker f). Then G ∼= OP1 ⊕OP1(−1) and so (G,F (2)

1 ) breaks the stability. Hence
h1 ̸= 0 and so ι is injective.

Lemma 4.4.2. For each i, the polynomial |resti∇− λφti | in λ has the form

(∧3φti)(νi,0 − λ)(νi,1 − λ)(νi,2 − λ).

Proof. We take a basis v(1)0 , v(1)1 , v(1)2 (resp. v(2)0 , v(2)1 , v(2)2 ) of E1|ti (resp. E2|ti) such that v(1)2 generates

l(1)2 and v(1)1 , v(1)2 generate l(1)1 (resp. v(2)2 generates l(2)2 and v(2)1 , v(2)2 generate l(2)1 ). Then φti and resti∇
are represented by matrices

φti(v
(1)
2 , v(1)1 , v(1)0 ) = (v(2)2 , v(2)1 , v(2)0 )

⎛

⎝
φ11 φ12 φ13
0 φ22 φ23
0 0 φ33

⎞

⎠ ,

resti∇(v(1)2 , v(1)1 , v(1)0 ) = (v(2)2 , v(2)1 , v(2)0 )

⎛

⎝
a11 a12 a13
0 a22 a23
0 0 a33

⎞

⎠

because φti and resti∇ are parabolic. Since (resti∇ − νi,jφti)(l
(1)
i,j ) ⊂ l(2)i,j+1 for j = 0, 1, 2, we have

a11 = νi,0φ11, a22 = νi,1φ22 and a33 = νi,2φ33. So we have

|resti∇− λφti | = φ11φ22φ33(νi,0 − λ)(νi,1 − λ)(νi,2 − λ).

By Lemma 4.4.1, the map ι determines a point ϕ(E1, E2,φ,∇, l(1)∗ , l(2)∗ , F (1)
1 ) of P(Ω1

P1(D(t))⊕OP1).
We can see that the map

ϕ : M̂α
3 (t,ν) −→ P(Ω1

P1(D(t))⊕OP1) (4.4)

is a morphism.

4.5 Normal forms of α-stable parabolic φ-connections

Take (E1, E2,φ,∇, l(1)∗ , l(2)∗ , F (1)
1 ) ∈ M̂α

3 (t,ν). For k = 1, 2, let Ek ! F (k)
1 ! F (k)

2 ! 0 be a filtration in

Proposition 4.3.1. We take a local basis e(1)0 , e(1)1 , e(1)2 (resp. e(2)0 , e(2)1 , e(2)2 ) of E1 (resp. E2) such that e(1)2
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generates F (1)
2 and e(1)1 , e(1)2 generate F (1)

1 (resp. e(2)2 generates F (2)
2 and e(2)1 , e(2)2 generate F (2)

1 ). Let z be
a fixed inhomogeneous coordinate on P1 = SpecC[z] ∪ {∞}. Then φ and ∇ are represented by matrices

φ(e(1)2 , e(1)1 , e(1)0 ) = (e(2)2 , e(2)1 , e(2)0 )

⎛

⎝
φ11 φ12 φ13
0 φ22 φ23
0 0 φ33

⎞

⎠ ,

∇(e(1)2 , e(1)1 , e(1)0 ) = (e(2)2 , e(2)1 , e(2)0 )

⎛

⎝
a11(z) a12(z) a13(z)
a21 φ22(z − t1)(z − t2) + a22(z) φ23(z − t1)(z − t2) + a23(z)
0 a32(z) φ33(z − t1)(z − t2) + a33(z)

⎞

⎠ dz

h(z)
,

where φ11,φ22,φ23,φ33 ∈ H0(OP1),φ12,φ13 ∈ H0(OP1(1)), a11, a22, a23, a32, a33 ∈ H0(OP1(1)),a21 ∈
H0(OP1), and h(z) = (z − t1)(z − t2)(z − t3). By taking e(1)0 , e(1)1 , e(2)0 , e(2)1 well, we may assume that
φ12 = φ13 = 0, a11(z) = 0 and a21 = 1. Then we have a12, a13 ∈ H0(OP1(2)). Let q be the apparent

singular point of (E1, E2,φ,∇, l(1)∗ , l(2)∗ , F (1)
1 ).

Lemma 4.5.1. Assume that ∧3φ ̸= 0. Then φ and ∇ have the forms

φ =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ ,∇ = d+

⎛

⎝
0 a12(z) a13(z)
1 (z − t1)(z − t2)− p 0
0 z − q (z − t1)(z − t2) + p

⎞

⎠ dz

h(z)
, (4.5)

respectively, where p ∈ C and a12(z), a13(z) are quadratic polynomials in z satisfying

a12(ti) = −h′(ti)
2(νi,0νi,1 + νi,1νi,2 + νi,2νi,0 − (resti(

dz
z−t3

))2)− p2, (4.6)

(ti − q)a13(ti) =
2∏

j=0

(h′(ti)(νi,j − resti(
dz

z−t3
))− p) (4.7)

for any i = 1, 2, 3. Here ′ = d/dz.

Proof. Applying φ−1 to E2, we may assume that φ = id. Put

C =

⎛

⎝
1 0 c13(z)
0 1 c23
0 0 1

⎞

⎠ ,

where c13(z) ∈ H0(OP1(1)) and c23 ∈ H0(OP1). Then we have

C ◦ ∇ ◦ C−1

=d+

⎛

⎝
0 a12(z) + c13(z − q) a13(z)− c23a12(z) + c13(z)a33(z)− c13(z)c23(z − q)− h(z)c′13(z)
1 a22(z) + c23(z − q) a23(z)− c23a22(z)− c13(z) + c23a33(z)− c223(z − q)
0 z − q a33(z)− c23(z − q)

⎞

⎠ dz

h(z)
.

So we may assume that a23(z) = 0 and a33(z) changes into the form (z− t1)(z− t2)+p. Since restitr∇ =
2resti(

dz
z−t3

), we have a22(z) = (z − t1)(z − t2)− p. So we obtain the desire form

∇ = d+

⎛

⎝
0 a12(z) a13(z)
1 (z − t1)(z − t2)− p 0
0 z − q (z − t1)(z − t2) + p

⎞

⎠ dz

h(z)
.

By Lemma 4.4.2, we can see that a12(z) and a13(z) satisfy the conditions (4.6) and (4.7) for each i =
1, 2, 3.

Remark 4.5.2. The polynomial a12(z) is uniquely determined by p. When q ̸= t1, t2, t3, a13(z) is also
uniquely determined by q and p. When q = ti, p is equal to one of h′(ti)(νi,0 − resti(

dz
z−t3

)), h′(ti)(νi,1 −
resti(

dz
z−t3

)), h′(ti)(νi,2 − resti(
dz

z−t3
)) and a13(ti) takes any complex number. When p = h′(ti)(νi,j −

resti(
dz

z−t3
)), we have (resti ⊕ id)(ϕ(E,∇, l∗)) = (νi,j − resti(

dz
z−t3

) : 1), where resti ⊕ id : P(Ω1
P1(D(t)) ⊕

OP1)|ti → P(OP1 |ti ⊕OP1 |ti) is a natural isomorphism. The choice of a13(ti) gives an exceptional curves
of the first kind on the moduli space of parabolic connections (see Proposition 4.7.2, 4.7.3, and 4.7.4).
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Lemma 4.5.3. Assume that rankφ = 2. Then φ and ∇ have the forms

φ =

⎛

⎝
1 0 0
0 0 0
0 0 1

⎞

⎠ , ∇ = φ⊗ d+

⎛

⎝
0 0

∏
j ̸=i(z − tj)

1 0 0
0 z − ti (z − t1)(z − t2) + p

⎞

⎠ dz

h(z)
, (4.8)

respectively.

Proof. By the proof of Lemma 4.4.1, we have φ33 ̸= 0. So we may assume that

φ =

⎛

⎝
1 0 0
0 0 0
0 0 1

⎞

⎠ .

Applying an automorphism of E1, E2 given by the form
⎛

⎝
1 0 −a23(z)
0 1 0
0 0 1

⎞

⎠ ,

∇ changes into the form
⎛

⎝
0 a12(z) + a23(z)a32(z) a13(z) + a23(z)a33(z)− h(z)a′23(z)
1 a22(z) 0
0 a32(z) a33(z)

⎞

⎠ dz

h(z)
.

So we may assume without loss of generality that a23(z) = 0. Using an argument of the proof of Lemma
4.4.1, we obtain a12(z) = a22(z) = 0 and a32(ti)a13(ti) = 0 for i = 1, 2, 3. If a32(z) is identically zero,

then (F (1)
1 , F (2)

1 ) breaks the stability. If a13(z) is identically zero, then (E1/F
(1)
2 , E2/F

(2)
1 ) breaks the

stability. So there exists unique i ∈ {1, 2, 3} such that a32(ti) = 0, which implies a13(tj) = 0 for j ̸= i.
Applying suitable automorphisms, we obtain the desire form

∇ = φ⊗ d+

⎛

⎝
0 0

∏
j ̸=i(z − tj)

1 0 0
0 z − ti (z − t1)(z − t2) + p

⎞

⎠ dz

h(z)
.

Lemma 4.5.4. Assume that rankφ = 1. Then φ and ∇ have the forms

φ =

⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ , ∇ = φ⊗ d+

⎛

⎝
0
∏

j ̸=i(z − tj) 0
1 0 0
0 z − q z − ti

⎞

⎠ dz

h(z)
, (4.9)

respectively, where ti ̸= q.

Proof. By Lemma 4.2.4 and the assumption, φ and ∇ have the forms

φ =

⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ , ∇ = φ⊗ d+

⎛

⎝
0 a12(z) a13(z)
1 a22(z) a23(z)
0 z − q a33(z)

⎞

⎠ dz

h(z)
,

where a12, a13 ∈ H0(OP1(2)) and a22, a23, a33 ∈ H0(OP1(1)). If a33(q) = 0, then we may assume that

a33(z) = 0 by applying an automorphism of E1, which implies that (F (1)
2 ⊕ E1/F

(1)
1 , F (2)

1 ) breaks the

stability of (E1, E2,φ,∇, l(1)∗ , l(2)∗ ). Hence we have a33(q) ̸= 0. Let us fix i ∈ {1, 2, 3} satisfying ti ̸= q.
Applying an automorphism of E1 given by the form

⎛

⎝
1 0 0
0 1 1− a33(q)−1a′33(q)(q − ti)
0 0 a33(q)−1(q − ti)

⎞

⎠ ,

the φ-connection ∇ changes into the form

φ⊗ d+

⎛

⎝
0 a12(z) a13(z)
1 a22(z) a23(z)
0 z − q z − ti

⎞

⎠ .
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We consider the polynomial

∣∣restj∇− λφtj
∣∣ = 1

h′(tj)3

∣∣∣∣∣∣

−h′(tj)λ a12(tj) a13(tj)
1 a22(tj) a23(tj)
0 tj − q tj − ti

∣∣∣∣∣∣
(4.10)

in λ. By Lemma 4.4.2, the polynomial (4.10) is identically zero, that is, we have

(tj − ti)a22(tj)− (tj − q)a23(tj) = 0, (4.11)

(tj − ti)a12(tj)− (tj − q)a13(tj) = 0 (4.12)

for any j. By (4.11) and (4.12), we have a13(ti) = a23(ti) = 0. Applying a suitable automorphism of E2,
we may assume without loss of generality that a13(z) = a23(z) = 0. Then we have a22(tj) = 0 for j ̸= i
by (4.11), and it implies that a22(z) = 0. By (4.12), we have a12(ti) = 0 for j ̸= i. If a12(z) is identically

zero, then (E1/F
(1)
2 , E2/F

(2)
1 ) breaks the stability. So φ and ∇ have the forms

φ =

⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ , ∇ = φ⊗ d+

⎛

⎝
0
∏

j ̸=i(z − tj) 0
1 0 0
0 z − q z − ti

⎞

⎠ dz

h(z)
.

Remark 4.5.5. Let (E1, E2,φ,∇, l(1)∗ , l(2)∗ , F (1)
1 ), (E′

1, E
′
2,φ

′,∇′, l′(1)∗ , l′(2)∗ , F ′(1)
1 ) be ν-parabolic φ-connections

such that rankφ = rankφ′ = 1. Then (E1, E2,φ,∇, l(1)∗ , l(2)∗ ) and (E′
1, E

′
2,φ

′,∇′, l′(1)∗ , l′(2)∗ ) are isomorphic
to each other. In other words, the locus on Mα

3 (t,ν) defined by rankφ = 1 consists of one point. In fact,
applying automorphisms of E1, E2, φ and ∇ change into the form

⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ , φ⊗ d+

⎛

⎝
0 (z − t2)(z − t3) 0
1 0 0
0 z − t2 z − t1

⎞

⎠ dz

h(z)
.

By the proof of Proposition 4.5.6, it follows that parabolic structures l(1)i,∗ and l(2)i,∗ satisfying the conditions

φti(l
(1)
i,j ) ⊂ l(2)i,j and (resti∇− νi,jφti)(l

(1)
i,j ) ⊂ l(2)i,j+1 are uniquely determined.

Proposition 4.5.6. Let Y(t,ν) be the closed subscheme of M̂α
3 (t,ν) defined by the condition ∧3φ = 0.

Then the restriction morphism ϕ : Y(t,ν) −→ P(Ω1
P1(D(t))⊕OP1) is injective.

Proof. Take a point x = (E1, E2,φ,∇, l(1)∗ , l(2)∗ , F (1)
1 ) ∈ Y(t,ν). Then rankφ must be one or two by

Lemma 4.2.4. Let D0 be the section of P(Ω1
P1(D(t))⊕OP1) over P1 defined by the injection Ω1

P1(D(t)) ↪→
Ω1

P1(D(t)) ⊕ OP1 , that is, D0 is the section defined by h2 = 0, where h2 is defined in section 4.4. Let
Di ⊂ P(Ω1

P1(D(t)) ⊕ OP1) be the fiber over ti ∈ P1. By the proof of Lemma 4.5.3 and Lemma 4.5.4,
ϕ(x) ∈ ∪3

i=1Di \D0 if and only if rankφ = 2, and ϕ(x) ∈ D0 if and only if rankφ = 1.
First, we consider the case of rank φ = 2. By Lemma 4.5.3, a pair (φ,∇) is uniquely determined

up to isomorphism by ϕ(x). By Proposition 4.3.1, F (1)
1 is also uniquely determined by (E1, E2,φ,∇).

Moreover, we can check that parabolic structures l(1)∗ and l(2)∗ are uniquely determined by (E1, E2,φ,∇).

For example, when ϕ(x) ∈ D1, l
(1)
∗ and l(2)∗ are given by the following;

l(1)1,2 = C

⎛

⎝
0
1
0

⎞

⎠ , l(1)1,1 = C

⎛

⎝
0
1
0

⎞

⎠+ C

⎛

⎝
h′(t1)
0

p− h′(t1)ν1,0

⎞

⎠ ,

l(2)1,2 = C

⎛

⎝
h′(t1)p− h′(t1)2ν1,0 − h′(t1)ν1,1

h′(t1)
(p− h′(t1)ν1,0)(p− h′(t1)ν1,1)

⎞

⎠ , l(2)1,1 = C

⎛

⎝
−h′(t1)ν1,0

1
0

⎞

⎠+ C

⎛

⎝
h′(t1)
0

p− h′(t1)ν1,0

⎞

⎠ ,

l(1)2,2 = C

⎛

⎝
0

p− h′(t2)ν2,2
−(t2 − t1)

⎞

⎠ , l(1)2,1 = C

⎛

⎝
0
1
0

⎞

⎠+ C

⎛

⎝
0
0
1

⎞

⎠ , l(2)2,2 = C

⎛

⎝
0
0
1

⎞

⎠ , l(2)2,1 = C

⎛

⎝
−h′(t2)ν2,0

1
0

⎞

⎠+ C

⎛

⎝
0
0
1

⎞

⎠ ,

l(1)3,2 = C

⎛

⎝
0

p+ h′(t3)− h′(t3)ν3,2
−(t3 − t1)

⎞

⎠ , l(1)3,1 = C

⎛

⎝
0
1
0

⎞

⎠+C

⎛

⎝
0
0
1

⎞

⎠ , l(2)3,2 = C

⎛

⎝
0
0
1

⎞

⎠ , l(2)3,1 = C

⎛

⎝
−h′(t3)ν3,0

1
0

⎞

⎠+C

⎛

⎝
0
0
1

⎞

⎠ .
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Next we consider the case of rank φ = 1. By Proposition 4.3.1 and Lemma 4.5.4, a triple (φ,∇, F (1)
1 )

is uniquely determined up to isomorphism by the apparent singularity q. We can see that parabolic

structures l(1)∗ and l(2)∗ are determined by φ and ∇. In fact, we have

l(1)i,2 = C

⎛

⎝
0
0
1

⎞

⎠ , l(1)i,1 = C

⎛

⎝
0
1
0

⎞

⎠+ C

⎛

⎝
0
0
1

⎞

⎠ , l(2)i,2 = C

⎛

⎝
h′(ti)
0

ti − q

⎞

⎠ , l(2)i,1 = C

⎛

⎝
−h′(t1)ν1,0

1
0

⎞

⎠+ C

⎛

⎝
h′(ti)
0

ti − q

⎞

⎠ ,

and

l(1)j,2 = C

⎛

⎝
0

tj − ti
−(tj − q)

⎞

⎠ , l(1)j,1 = C

⎛

⎝
0
1
0

⎞

⎠+ C

⎛

⎝
0
0
1

⎞

⎠ , l(2)j,2 = C

⎛

⎝
0
0
1

⎞

⎠ , l(2)j,1 = C

⎛

⎝
−h′(tj)νj,0

1
0

⎞

⎠+ C

⎛

⎝
0
0
1

⎞

⎠ ,

for j ̸= i. So ϕ|Y(t,ν)
is injective.

4.6 Smoothness of moduli space of parabolic φ-connections

Let t̃i ⊂ P1 × T3 ×N be the section defined by

T3 ×N ↪→ P1 × T3 ×N ; ((tj)1≤j≤3, (νm,n)
1≤m≤3
0≤n≤2 ) ,→ (ti, (tj)1≤j≤3, (νm,n)

1≤m≤3
0≤n≤2 )

for i = 1, 2, 3 and D(t̃) = t̃1+ t̃2+ t̃3 be a relative effective Cartier divisor for the projection P1×T3×N →
T3 ×N . For each 1 ≤ i ≤ 3 and 0 ≤ j ≤ 2, let

ν̃i,j := {(νi,j , (tk)k, (νm,n)m,n)} ⊂ C× T3 ×N .

Proposition 4.6.1. Mα
3 (0, 0, 2) is smooth over T3 ×N .

Proof. Let A be an artinian local ring with the residue field A/m = k and I be an ideal of A such that
mI = 0. Let SpecA → T3 ×N be a morphism and ti ∈ P1

A, νi,j ∈ A be the elements obtained by the pull
back of the sections t̃i, ν̃i,j , respectively. By the definition of N , we have

νi,0 + νi,1 + νi,2 = 2resti(
dz

z−t3
). (4.13)

We take an open subset U ⊂ P1
A such that U ∼= SpecA[z] and t1, t2, t3 ∈ U . We show that

Mα
3 (0, 0, 2)(A) −→ Mα

3 (0, 0, 2)(A/I) (4.14)

is surjective. Put K := ΩP1
A/I

/(A/I)(D(t̃)A/I) and take (E1, E2,φ,∇, l(1)∗ , l(2)∗ ) ∈ Mα
3 (0, 0, 2)(A/I). Then

E1
∼= E2

∼= OP1
A/I

⊕OP1
A/I

(−1)⊕OP1
A/I

(−1). The homomorphism φ can be written by the form

φ =

⎛

⎝
φ11 φ12 φ13
0 φ22 φ23
0 φ32 φ33

⎞

⎠ ,

where φ11,φ22,φ23,φ32,φ33 ∈ H0(OP1
A/I

) ∼= A/I and φ12,φ13 ∈ H0(OP1
A/I

(1)). By Lemma 4.2.4, φ11 is a

unit, so we may assume that φ12 = φ13 = 0. Then ∇ can be written by

∇ = φ⊗ d+

⎛

⎝
0 0 0
0 φ22 φ23
0 φ32 φ33

⎞

⎠ dz

z − t3
+

⎛

⎝
ω11 ω12 ω13

ω21 ω22 ω23

ω31 ω32 ω33

⎞

⎠ ,

where ω21,ω31 ∈ H0(K(−1)) ∼= A/I, ω11,ω22,ω23,ω32,ω33 ∈ H0(K), and ω12,ω13 ∈ H0(K(1)). Taking
decompositions E1

∼= E2
∼= OP1

A/I
⊕ OP1

A/I
(−1) ⊕ OP1

A/I
(−1) well, we may assume that ω11 = ω31 = 0

and restiω21 ∈ (A/I)× for any i = 1, 2, 3. The smoothness of the map Mα
3 (0, 0, 2) → T3 ×N is proved in

[In], which means the map (4.14) is surjective when ∧3φ /∈ m/I. So we consider the case ∧3φ ∈ m/I.
Assume that rankφ⊗ idk = 2. Then applying certain automorphisms of E1 and E2, we may assume

that φ ⊗ idk and ∇ ⊗ idk have the form (4.8). Then we may also assume that φ11 = φ33 = 1 and
φ23 = φ32 = 0 and ω23 = 0. We note that φ22 ∈ m/I. In the same way of the proof Lemma 4.4.2, we
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obtain |resti∇− λφti | = (∧3φti)(νi,0 − λ)(νi,1 − λ)(νi,2 − λ). By comparing the coefficients on both sides
and using (4.13), we have

ω22(ti) + φ22ω33(ti) = 0, (4.15)

ω22(ti)ω33(ti)− ω21(ti)ω12(ti) = φ22(νi,0νi,1 + νi,0νi,2 + νi,1νi,2 − (resti(
dz

z−t3
))2), (4.16)

−ω21(ti)(ω12(ti)(ω33(ti) + resti(
dz

z−t3
))− ω13(ti)ω32(ti)) = φ22νi,0νi,1νi,2, (4.17)

for each i = 1, 2, 3, where ωij(tm) := restmωij . From the form (4.8), we have ω13(ti) ∈ (A/I)× and
ω32(tj) ∈ (A/I)× for j ̸= i. Put

v(1)i,2 =

⎛

⎝
φ22ω13(ti)(ω33(ti) + resti(

dz
z−t3

)− (νi,0 + νi,1))
ω13(ti)ω21(ti)

φ22(ω33(ti) + resti(
dz

z−t3
)− νi,0)(ω33(ti) + resti(

dz
z−t3

)− νi,1)

⎞

⎠ , v(1)i,1 =

⎛

⎝
ω13(ti)

0
ω33(ti) + resti(

dz
z−t3

)− νi,0

⎞

⎠ ,

v(2)i,2 =

⎛

⎝
ω13(ti)(ω33(ti) + resti(

dz
z−t3

)− (νi,0 + νi,1))
ω13(ti)ω21(ti)

(ω33(ti) + resti(
dz

z−t3
)− νi,0)(ω33(ti) + resti(

dz
z−t3

)− νi,1)

⎞

⎠ , v(2)i,1 =

⎛

⎝
ω13(ti)

0
ω33(ti) + resti(

dz
z−t3

)− νi,0

⎞

⎠

and

v(1)j,2 =

⎛

⎝
(ω22(tj) + φ22(resti(

dz
z−t3

)− νj,2))(ω33(tj) + resti(
dz

z−t3
)− νj,2)

−ω21(tj)(ω33(tj) + resti(
dz

z−t3
)− νi,2)

ω21(tj)ω32(tj)

⎞

⎠ , v(1)j,1 =

⎛

⎝
−φ22νj,0
ω21(tj)

0

⎞

⎠ ,

v(2)j,2 =

⎛

⎝
(ω22(tj) + φ22(resti(

dz
z−t3

)− νj,2))(ω33(tj) + resti(
dz

z−t3
)− νj,2)

−φ22ω21(tj)(ω33(tj) + resti(
dz

z−t3
)− νj,2)

ω21(tj)ω32(tj)

⎞

⎠ , v(2)j,1 =

⎛

⎝
−νj,0
ω21(tj)

0

⎞

⎠

for j ̸= i. Then we can see that

l(1)j,2 = (A/I)v(1)j,2 , l(1)j,1 = (A/I)v(1)j,1 + (A/I)v(1)j,2 , l(2)j,2 = (A/I)v(2)j,2 , l(2)j,1 = (A/I)v(2)j,1 + (A/I)v(2)j,2

for any j = 1, 2, 3 by the conditions φti(l
(1)
i,j ) ⊂ l(2)i,j , (resti∇−νi,jφti)(l

(1)
i,j ) ⊂ l(2)i,j+1 and the relations (4.15),

(4.16), (4.17). We take lifts φ̃22 ∈ A, ω̃21 ∈ H0(Ω1
P1
A/A(D(t)A)(−1)), ω̃33 ∈ H0(Ω1

P1
A/A(D(t)A)) and ω̃

(i)
13 ∈

A× of φ22,ω21,ω33 and ω13(ti), respectively. Put ω̃22 := −φ̃22ω̃33 and let ω̃12 ∈ H0(Ω1
P1
A/A(D(t)A)(1)) be

a lift of ω12 satisfying

ω̃21(ti)ω̃12(ti) = ω̃22ω̃33 − φ̃22(νi,0νi,1 + νi,0νi,2 + νi,1νi,2 − (resti(
dz

z−t3
))2).

Then we can find a lift ω̃32 ∈ H0(Ω1
P1
A/A(D(t)A)) of ω32 satisfying

ω̃21(ti)(ω̃12(ti)(ω̃33(ti) + resti(
dz

z−t3
))− ω̃(i)

13 ω̃32(ti)) = φ̃22νi,0νi,1νi,2.

Let ω̃13 be the element of H0(Ω1
P1
A/A(D(t)A)(1)) satisfying

−ω̃21(tj)(ω̃12(tj)(ω̃33(ti) + resti(
dz

z−t3
))− ω̃13(tj)ω̃32(tj)) = φ̃22νj,0νj,1νj,2.

for j ̸= i and ω̃13(ti) = ω̃(i)
13 . Put

φ̃ =

⎛

⎝
1 0 0
0 φ̃22 0
0 0 1

⎞

⎠ , ∇̃ = φ̃⊗ d+

⎛

⎝
0 0 0
0 φ̃22 0
0 0 1

⎞

⎠ dz

z − t3
+

⎛

⎝
0 ω̃12 ω̃13

ω̃21 ω̃22 0
0 ω̃32 ω̃33

⎞

⎠ ,

ṽ(1)i,2 =

⎛

⎝
φ̃22ω̃13(ti)(ω̃33(ti) + resti(

dz
z−t3

)− (νi,0 + νi,1))
ω̃13(ti)ω̃21(ti)

φ̃22(ω̃33(ti) + resti(
dz

z−t3
)− νi,0)(ω̃33(ti) + resti(

dz
z−t3

)− νi,1)

⎞

⎠ , ṽ(1)i,1 =

⎛

⎝
ω̃13(ti)

0
ω̃33(ti) + resti(

dz
z−t3

)− νi,0

⎞

⎠ ,

ṽ(2)i,2 =

⎛

⎝
ω̃13(ti)(ω̃33(ti) + resti(

dz
z−t3

)− (νi,0 + νi,1))
ω̃13(ti)ω̃21(ti)

(ω̃33(ti) + resti(
dz

z−t3
)− νi,0)(ω̃33(ti) + resti(

dz
z−t3

)− νi,1)

⎞

⎠ , ṽ(2)i,1 =

⎛

⎝
ω̃13(ti)

0
ω̃33(ti) + resti(

dz
z−t3

)− νi,0

⎞

⎠
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and

ṽ(1)j,2 =

⎛

⎝
(ω̃22(tj) + φ̃22(resti(

dz
z−t3

)− νj,2))(ω̃33(tj) + resti(
dz

z−t3
)− νj,2)

−ω̃21(tj)(ω̃33(tj) + resti(
dz

z−t3
)− νi,2)

ω̃21(tj)ω̃32(tj)

⎞

⎠ , ṽ(1)j,1 =

⎛

⎝
−φ̃22νj,0
ω̃21(tj)

0

⎞

⎠ ,

ṽ(2)j,2 =

⎛

⎝
(ω̃22(tj) + φ̃22(resti(

dz
z−t3

)− νj,2))(ω̃33(tj) + resti(
dz

z−t3
)− νj,2)

−φ̃22ω̃21(tj)(ω̃33(tj) + resti(
dz

z−t3
)− νj,2)

ω̃21(tj)ω̃32(tj)

⎞

⎠ , ṽ(2)j,1 =

⎛

⎝
−νj,0
ω̃21(tj)

0

⎞

⎠

for j ̸= i. Let l̃(m)
j,2 = Aṽ(m)

j,2 ⊂ A⊕3 and l̃(m)
j,1 = Aṽ(m)

j,1 + Aṽ(m)
j,2 ⊂ A⊕3 for m = 1, 2 and j = 1, 2, 3.

Then we can see that A⊕3/l(m)
j,n is flat over A and (restj ∇̃ − νj,nφ̃tj )(l

(1)
j,n) ⊂ l(2)j,n+1 for any j = 1, 2, 3 and

n = 0, 1, 2 by the way of taking lifts ω̃12, ω̃13, ω̃22, ω̃32. So φ̃, ∇̃, l̃(1)i,j and l̃(2)i,j are desire lifts.
Next we consider the case rank φ ⊗ idk = 1. Then applying certain automorphisms of E1 and E2,

we may assume that φ ⊗ idk and ∇ ⊗ idk have the form (4.9). In particular, we may assume that
ω32(ti) ∈ (A/I)×. In the same way of the proof Lemma 4.4.2, we also obtain |resti∇−λφti | = (∧3φ)(νi,0−
λ)(νi,1 − λ)(νi,2 − λ), and by comparing the coefficients on both sides and using (4.13), we have

φ22ω33(ti) + φ33ω22(ti)− φ23ω32(ti)− φ32ω23(ti) = 0, (4.18)

(ω22(ti)ω33(ti)− ω23(ti)ω32(ti))− ω21(ti)(ω12(ti)φ33 − ω13(ti)φ32)

= (φ22φ33 − φ23φ32)(νi,0νi,1 + νi,0νi,2 + νi,1νi,2 − (resti(
dz

z−t3
))2),

(4.19)

− ω21(ti)(ω12(ti)(ω33(ti) + φ33resti(
dz

z−t3
))− ω13(ti)(ω32(ti) + φ32resti(

dz
z−t3

)))

= (φ22φ33 − φ23φ32)νi,0νi,1νi,2.
(4.20)

Put

v(1)j,2 :=

⎛

⎝
ω22(tj)ω33(tj)− ω32(tj)ω23(tj) + (φ22φ33 − φ23φ32)(restj (

dz
z−t3

)− νj,2)2

−ω21(tj)(ω33(tj) + φ33(restj (
dz

z−t3
)− νj,2))

ω21(tj)(ω32(tj) + φ32(restj (
dz

z−t3
)− νj,2))

⎞

⎠ ,

v(1)j,1 :=

⎛

⎝
−νj,0(φ22ω32(tj)− φ32ω22(tj)) + ω21(tj)ω12(tj)φ32

(ω32(tj) + φ32(resti(
dz

z−t3
)− νj,0))ω21(tj)

0

⎞

⎠ ,

v(2)j,2 := (resti∇− νj,1φtj )(v
(1)
j,1 ), v

(2)
j,1 :=

⎛

⎝
−νi,0
ω21(tj)

0

⎞

⎠ .

Then we can see that l(1)j,2 = (A/I)v(1)j,2 , l
(1)
j,1 = (A/I)v(1)j,1+(A/I)v(1)j,2 , l

(2)
j,2 = (A/I)v(2)j,2 and l(2)j,1 = (A/I)v(2)j,1+

(A/I)v(2)j,2 for any j = 1, 2, 3 by the conditions φtj (l
(1)
j,m) ⊂ l(2)j,m and (restj∇− νj,mφtj )(l

(1)
j,m) ⊂ l(2)j,m+1, and

the relations (4.18), (4.19), (4.20). We take lifts ψ22,ψ23, φ̃32, φ̃33 ∈ A, ω̃21 ∈ H0(Ω1
P1
A/A(D(t)A)(−1)), ω̃32, ω̃33 ∈

H0(Ω1
P1
A/A(D(t)A)) and ω̃12 ∈ H0(Ω1

P1
A/A(D(t)A)(1)) of φ22,φ23,φ32,φ33,ω21,ω32,ω33,ω12, respectively.

We take lifts ω̃13 ∈ H0(Ω1
P1
A/A(D(t)A)(1)), ω̃22, ω̃23 ∈ H0(Ω1

P1
A/A(D(t)A)) of ω13,ω22,ω23, respectively,

satisfying

− ω̃21(tj)(ω̃12(tj)(ω̃33(tj) + φ̃33restj (
dz

z−t3
))− ω̃13(tj)(ω̃32(tj) + φ̃32restj (

dz
z−t3

)))

= (ψ22φ̃33 − ψ23φ̃32)νj,0νj,1νj,2,

− ω̃23(ti)ω̃32(ti)− ω̃21(ti)(ω̃12(ti)φ̃33 − ω̃13(ti)φ̃32)

= (ψ22φ̃33 − ψ23φ̃32)(νi,0νi,1 + νi,0νi,2 + νi,1νi,2 − (resti(
dz

z−t3
))2),

(ω̃22(tj)ω̃33(tj)− ω̃23(tj)ω̃32(tj))− ω̃21(tj)(ω̃12(tj)φ̃33 − ω̃13(tj)φ̃32)

= (ψ22φ̃33 − ψ23φ̃32)(νi,0νi,1 + νi,0νi,2 + νi,1νi,2 − (restj (
dz

z−t3
))2)

for any j = 1, 2, 3. Put
η := ψ22ω̃33 + φ̃33ω̃22 − ψ23ω̃32 − φ̃32ω̃23.
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Since ω̃32(ti) ̸= 0 and ω̃33(ti) = 0, ω̃32 and ω̃33 generate H0(Ω1
P1
A/A(D(t)A)) ∼= A⊕2 as A-module. In

particular, η can be written by the form b1ω̃32+b2ω̃33, where b1, b2 ∈ A. Since η mod I is zero by (4.18),
we have b1, b2 ∈ I. Put φ̃22 = ψ22 − b2, φ̃23 = ψ23 + b1. Then we have

φ̃22ω̃33 + φ̃33ω̃22 − φ̃23ω̃32 − φ̃32ω̃23 = 0, (4.21)

(ω̃22(tj)ω̃33(tj)− ω̃23(ti)ω̃32(ti))− ω̃21(ti)(ω̃12(ti)φ̃33 − ω̃13(ti)φ̃32)

= (φ̃22φ̃33 − φ̃23φ̃32)(νi,0νi,1 + νi,0νi,2 + νi,1νi,2 − (resti(
dz

z−t3
))2),

(4.22)

− ω̃21(tj)(ω̃12(tj)(ω̃33(tj) + φ̃33restj (
dz

z−t3
))− ω̃13(tj)(ω̃32(tj) + φ̃32restj (

dz
z−t3

)))

= (φ̃22φ̃33 − φ̃23φ̃32)νj,0νj,1νj,2
(4.23)

for any j = 1, 2, 3 because mI = 0. Put

φ̃ =

⎛

⎝
1 0 0
0 φ̃22 φ̃23
0 φ̃32 φ̃33

⎞

⎠ , ∇̃ = φ̃⊗ d+

⎛

⎝
0 0 0
0 φ̃22 φ̃23
0 φ̃32 φ̃33

⎞

⎠ dz

z − t3
+

⎛

⎝
0 ω̃12 ω̃13

ω̃21 ω̃22 ω̃23

0 ω̃32 ω̃33

⎞

⎠ ,

ṽ(1)j,2 :=

⎛

⎜⎝
ω̃22(tj)ω̃33(tj)− ω̃32(tj)ω̃23(tj) + (φ̃22φ̃33 − φ̃23φ̃32)(restj (

dz
z−t3

)− νj,2)2

−ω̃21(tj)(ω̃33(tj) + φ̃33(restj (
dz

z−t3
)− νj,2))

ω̃21(tj)(ω̃32(tj) + φ̃32(restj (
dz

z−t3
)− νj,2))

⎞

⎟⎠ ,

ṽ(1)j,1 :=

⎛

⎝
−νj,0(φ̃22ω̃32(tj)− φ̃32ω̃22(tj)) + ω̃21(tj)ω̃12(tj)φ̃32

(ω̃32(tj) + φ̃32(resti(
dz

z−t3
)− νj,0))ω̃21(tj)

0

⎞

⎠ ,

ṽ(2)j,2 := (resti∇̃ − νj,1φ̃tj )(ṽ
(1)
j,1 ), ṽ

(2)
j,1 :=

⎛

⎝
−νi,0
ω̃21(tj)

0

⎞

⎠ .

Let l̃(m)
j,2 := Aṽ(m)

j,2 ⊂ A⊕3 and l̃(m)
j,1 = Aṽ(m)

j,1 +Aṽ(m)
j,2 ⊂ A⊕3 for m = 1, 2 and j = 1, 2, 3. Then we can see

that A⊕3/l(m)
j,n is flat over A and (restj ∇̃ − νj,nφ̃tj )(l

(1)
j,n) ⊂ l(2)j,n+1 for any j = 1, 2, 3 and n = 0, 1, 2 by the

way of taking lifts ω̃12, ω̃13, ω̃22, ω̃32. So φ̃, ∇̃, l̃(1)i,j and l̃(2)i,j are desire lifts.

4.7 Proof of Theorem 4.1.1

To prove Theorem 4.1.1, we consider M̂α
3 (t,ν) and Mα

3 (t,ν) for (t,ν) ∈ T3 ×N . Let D0 be the section
of P(Ω1

P1(D(t)) ⊕ OP1) over P1 defined by the injection Ω1
P1(D(t)) ↪→ Ω1

P1(D(t)) ⊕ OP1 , and Di be the
fiber of P(Ω1

P1(D(t)) ⊕ OP1) over ti ∈ P1. Let bi,j be the point of Di corresponding to νi,j . We put
B := {bi,j | 1 ≤ i ≤ 3, 0 ≤ j ≤ 2}.

Proposition 4.7.1. The restriction morphism

ϕ : M̂α
3 (t,ν) \ ϕ−1(B) −→ P(Ω1

P1(D(t))⊕OP1) \B (4.24)

is an isomorphism.

Proof. Let z be a fixed inhomogeneous coordinate on P1 = SpecC[z] ∪ {∞}. Let D∞ be the fiber of
P(Ω1

P1(D(t))⊕OP1) over ∞ ∈ P1. Put Y =
⋃3

i=0 Di ∪D∞. Then the morphism

(P1 \ {t1, t2, t3,∞})× C −→ P(Ω1
P1(D(t))⊕OP1) \ Y ; (q, p) ,−→ C(p dz

h(z) , 1) ⊂ Ω1
P1(D(t))|q ⊕OP1 |q

becomes an isomorphism. By this isomorphism, we regard (q, p) as a coordinate on P(Ω1
P1(D(t))⊕OP1)\Y .

We define a family of ν-parabolic connections (E,∇, l∗) on P(Ω1
P1(D(t))⊕OP1) \ Y × P1 as follows. Let

E = p∗2(OP1 ⊕OP1(−1)⊕OP1(−1)), where p2 : P(Ω1
P1(D(t))⊕OP1) \ Y × P1 → P1 be the projection. We

define a relative logarithmic connection ∇ : E → E ⊗ p∗2Ω
1
P1(D(t)) by

∇ := d+

⎛

⎝
0 a12(p; z) a13(q, p; z)
1 (z − t1)(z − t2)− p 0
0 z − q (z − t1)(z − t2) + p

⎞

⎠ dz

h(z)
,
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where a12(p; z), a13(q, p; z) are the quadratic polynomials in z satisfying

a12(p; ti) = (ti − t1)
2(ti − t2)

2 − p2 − h′(ti)
2(νi,0νi,1 + νi,1νi,2 + νi,2νi,0)

(ti − q)a13(q, p; ti) =
2∏

j=0

(h′(ti)(νi,j − (resti(
dz

z−t3
)))− p)

for any i = 1, 2, 3. Let E|ti ! li,1 ! li,2 ! 0 be a filtration by subbundles such that (resti∇−νi,j id)(li,j) ⊂
li,j+1 for any j = 0, 1, 2. Then we have

li,2 = C

⎛

⎝
(p+ h′(ti)(νi,2 − resti(

dz
z−t3

)))(h′(ti)(νi,2 − resti(
dz

z−t3
))− p)

(h′(ti)(νi,2 − resti(
dz

z−t3
))− p)

ti − q

⎞

⎠ , (4.25)

li,1 = C

⎛

⎝
(p+ h′(ti)(νi,2 − resti(

dz
z−t3

)))(h′(ti)(νi,2 − resti(
dz

z−t3
))− p)

(h′(ti)(νi,2 − resti(
dz

z−t3
))− p)

ti − q

⎞

⎠+ C

⎛

⎝
−h′(ti)νi,0

1
0

⎞

⎠ (4.26)

For any (q, p) ∈ P(Ω1
P1(D(t))⊕OP1)\Y , the corresponding ν-parabolic connection (E(q,p),∇(q,p), (l∗)(q,p))

is α-stable. So we obtain a morphism

P(Ω1
P1(D(t))⊕OP1) \ Y −→ M̂α

3 (t,ν) \ ϕ−1(Y ),

which is just the inverse of the morphism

ϕ : M̂α
3 (t,ν) \ ϕ−1(Y ) −→ P(Ω1

P1(D(t))⊕OP1) \ Y.

Hence the morphism (4.24) is a birational morphism. By Proposition 4.5.6 and Zariski’s main theorem,
the morphism (4.24) is an isomorphism.

Proposition 4.7.2. M̂α
3 (t,ν) is a smooth variety.

Proof. By Remark 4.5.5, the locus on Mα
3 (t,ν) defined by rankφ = 1 consists of one point p0. Let

PC: M̂α
3 (t,ν) → Mα

3 (t,ν) be the forgetful map. Then, by Proposition 4.3.1, the restriction map

PC: M̂α
3 (t,ν) \ PC−1(p0) −→ Mα

3 (t,ν) \ {p0}

becomes an isomorphism. So it sufficient to proof that M̂α
3 (t,ν) is smooth at any point in PC−1(p0),

and it follows from Proposition 4.7.1.

Proposition 4.7.3. If νi,0 ̸= νi,1 ̸= νi,2 ̸= νi,0, then ϕ−1(bi,j) ∼= P1 for any j = 0, 1, 2 and these are
(−1)-curves.

Proof. Let E1 = E2 = OP1 ⊕OP1(−1) ⊕OP1(−1), p = h′(ti)(νi,j − resti(
dz

z−t3
)) and h(z) = (z − t1)(z −

t2)(z − t3). Let a(z) be the quadratic polynomial satisfying

a(tm) = (tm − t1)
2(tm − t2)

2 − p2 − h′(tm)2(νm,0νm,1 + νm,1νm,2 + νm,2νm,0)

for m = 1, 2, 3. Let b(z) be the quadratic polynomial satisfying b(ti) = 0 and

(tm−ti)b(tm) = (h′(tm)(νm,0−restm( dz
z−t3

))−p)(h′(tm)(νm,1−restm( dz
z−t3

))−p)(h′(tm)(νm,2−restm( dz
z−t3

))−p)

for m ̸= i. Put

φµ =

⎛

⎝
1 0 0
0 µ 0
0 0 1

⎞

⎠ , ∇(µ,η) = φµ ⊗ d+

⎛

⎝
0 µa(z) µb(z) + η

∏
m ̸=i(z − tm)

1 µ(z − t1)(z − t2)− µp 0
0 z − ti (z − t1)(z − t2) + p

⎞

⎠ dz

h(z)
,

(4.27)
where µ, η ∈ C. When µ = η = 0, the φµ-connection (E1, E2,φµ,∇(µ,η)) becomes α-unstable for any

parabolic structures. Assume that (µ, η) ̸= (0, 0). Then parabolic structures l(1)i,∗ and l(2)i,∗ of E1 and E2,

respectively, satisfying the conditions (φµ)ti(l
(1)
i,j ) ⊂ l(2)i,j and (resti(∇(µ,η)) − νi,j(φµ)ti)(l

(1)
i,j ) ⊂ l(2)i,j+1 are

uniquely determined. In fact, when µ = 0, it is proved in the proof of Proposition 4.5.6. When µ ̸= 0,
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we may assume that µ = 1. For m ̸= i, parabolic structures l(1)m,∗ and l(2)m,∗ are given by (4.25) and (4.26).

l(1)i,∗ and l(2)i,∗ are of the following form. When p = h′(ti)(νi,2 − resti(
dz

z−t3
)),

l(1)i,2 = C

⎛

⎝
0
η

h′(ti)(νi,0 − νi,2)(νi,1 − νi,2)

⎞

⎠ , l(1)i,1 = C

⎛

⎝
0
η

h′(ti)(νi,0 − νi,2)(νi,1 − νi,2)

⎞

⎠+ C

⎛

⎝
−h′(ti)νi,0

1
0

⎞

⎠ ,

l(2)i,2 = φti(l
(1)
i,2 ) and l(2)i,1 = φti(l

(1)
i,1 ). When p = h′(ti)(νi,1 − resti(

dz
z−t3

)),

l(1)i,2 = C

⎛

⎝
−h′(ti)νi,0

1
0

⎞

⎠ , l(1)i,1 = C

⎛

⎝
−h′(ti)νi,0

1
0

⎞

⎠+ C

⎛

⎝
0
η

h′(ti)(νi,0 − νi,2)(νi,1 − νi,2)

⎞

⎠ ,

l(2)i,2 = φti(l
(1)
i,2 ) and l(2)i,1 = φti(l

(1)
i,1 ). When p = h′(ti)(νi,0 − resti(

dz
z−t3

)),

l(1)i,2 = C

⎛

⎝
−h′(ti)νi,1

1
0

⎞

⎠ , l(1)i,1 = C

⎛

⎝
−h′(ti)νi,1

1
0

⎞

⎠+ C

⎛

⎝
1
0
0

⎞

⎠ ,

l(2)i,2 = φti(l
(1)
i,2 ) and l(2)i,1 = φti(l

(1)
i,1 ). We can see that (E1, E2,φµ,∇(µ,η), l

(1)
∗ , l(2)∗ ) is α-stable if and only if

(µ, η) ̸= (0, 0). We can also see that (E1, E2,φµ1 ,∇(µ1,η1)) and (E1, E2,φµ2 ,∇(µ2,η2)) are isomorphic to
each other if and only if there exists c ∈ C× such that (µ1, η1) = c(µ2, η2). So we obtain the morphism

P1 −→ ϕ−1(bi,j); (µ : η) ,−→ (E1, E2,φµ1 ,∇(µ1,η1), l
(1)
∗ , l(2)∗ ),

which is an isomorphism by Lemma 4.5.1 and Lemma 4.5.3. Since M̂α
3 (t,ν) and P(Ω1

P1(D(t))⊕OP1) are
smooth, ϕ−1(bi,j) is a (−1)-curve.

Let N3(t,ν) be the moduli space of rank 3 stable ν-logarithmic connections over (P, t). A connection
(E,∇) is said to be stable if for any nonzero subbundle F " E preserved by ∇, the inequality

degF

rankF
<

degE

rankE

holds. Under the assumption in this section, a ν-parabolic connection (E,∇, l∗) is α-stable if and only
if (E,∇) is stable. So we have the surjective morphism Mα

3 (t,ν) → N3(t,ν) by forgetting parabolic
structures.

Proposition 4.7.4. Let j0, j1 and j2 be distinct elements of {0, 1, 2}. Assume that νi,j0 = νi,j1 ̸= νi,j2 .
Then ϕ−1(bi,j0) is the union of two projective lines C1, C2 such that Y(t,ν) ∩ C1 and C1 ∩ C2 consist of
one point, respectively, and Y(t,ν) ∩ C2 = ∅. Moreover, self-intersection numbers of C1 and C2 are −1
and −2, respectively.

Proof. Assume that j0 = 0, j1 = 1, j2 = 2. Put νi := νi,0 = νi,1, ν′i := νi,2 and p := h′(ti)(νi−resti(
dz

z−t3
)).

Let a(z), b(z), h(z) be the polynomials defined in the proof of Proposition 4.7.3. Then we can see that

any element (E1, E2,φ,∇, l(1)∗ , l(2)∗ ) ∈ ϕ−1(bi,0) have the forms

φ =

⎛

⎝
1 0 0
0 µ 0
0 0 1

⎞

⎠ , ∇ = φ⊗ d+

⎛

⎝
0 µa(z) µb(z) + η

∏
m ̸=i(z − tm)

1 µ(z − t1)(z − t2)− µp 0
0 z − ti (z − t1)(z − t2) + p

⎞

⎠ dz

h(z)
,

where (µ : η) ∈ P1. So we have

resti∇− νiφti =
1

h′(ti)

⎛

⎝
−h′(ti)νi µa(ti) η

∏
m ̸=i(ti − tm)

1 −µh′(ti)ν′i 0
0 0 0

⎞

⎠

and

resti∇− ν′iφti =
1

h′(ti)

⎛

⎝
−h′(ti)ν′i µa(ti) η

∏
m ̸=i(ti − tm)

1 −µh′(ti)νi 0
0 0 h′(ti)(νi − ν′i)

⎞

⎠ .
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By definition, we have a(ti) = −h′(ti)2νiν′i. If η = 0, then l(1)i,∗ and l(2)i,∗ are of the form

l(1)i,2 =

⎛

⎝
−h′(ti)νiµ

1
0

⎞

⎠ , l(1)i,1 = C

⎛

⎝
−h′(ti)νiµ

1
0

⎞

⎠+C

⎛

⎝
s
0
t

⎞

⎠ , l(2)i,2 = C

⎛

⎝
−h′(ti)νi

1
0

⎞

⎠ , l(2)i,1 = C

⎛

⎝
−h′(ti)νi

1
0

⎞

⎠+C

⎛

⎝
s
0
t

⎞

⎠ ,

where (s : t) ∈ P1. If η ̸= 0, then

l(1)i,2 = C

⎛

⎝
−h′(ti)νiµ

1
0

⎞

⎠ , l(1)i,1 = C

⎛

⎝
1
0
0

⎞

⎠+ C

⎛

⎝
0
1
0

⎞

⎠ , l(2)i,2 = C

⎛

⎝
−h′(ti)νi

1
0

⎞

⎠ , l(2)i,1 = C

⎛

⎝
1
0
0

⎞

⎠+ C

⎛

⎝
0
1
0

⎞

⎠ .

By the above argument, we have

C1 := {η ̸= 0} ∩ ϕ−1(bi,j0) ∼= P1, C2 := {η = 0} ∼= P1,ϕ−1(bi,j0) = C1 ∪ C2

and we find that C1 ∩ Y(t,ν) and C1 ∩ C2 consist of one point, respectively.
Next we consider self-intersection numbers. Let a12(p; z) be the quadratic polynomial satisfying

a12(p; tm) = (tm − t1)
2(tm − t2)

2 − p2 − h′(tm)2(νm,0νm,1 + νm,1νm,2 + νm,2νm,0)

for m = 1, 2, 3. Let a13(q, p, η; z) be the quadratic polynomial satisfying a13(q, p, η; ti) = η and

(tm−q)a13(q, p, η; tm) = (h′(tm)(νm,0−restm( dz
z−t3

))−p)(h′(tm)(νm,1−restm( dz
z−t3

))−p)(h′(tm)(νm,2−restm( dz
z−t3

))−p)

for m ̸= i. Put E = OP1 ⊕OP1(−1)⊕OP1(−1),

∇(q,p,η) = d+

⎛

⎝
0 a12(p; z) a13(q, p, η; z)
1 (z − t1)(z − t2)− p 0
0 z − q (z − t1)(z − t2) + p

⎞

⎠ dz

h(z)
,

f(q, p, η) = (ti−q)η−(h′(ti)(νi,0−resti(
dz

z−t3
))−p)(h′(ti)(νi,1−resti(

dz
z−t3

))−p)(h′(ti)(νi,2−resti(
dz

z−t3
))−p),

and
X = {f(q, p, η) = 0} ⊂ (C \ {tm}m ̸=i)× C× C.

Then (E,∇(q,p,η)) is a stable ν-connection, which induces the morphism X → N3(t,ν). We can see that
this morphism is an open immersion, which implies that the point in N3(t,ν) corresponding to (q, p, η) =
(ti, h′(ti)(νi − resti(

dz
z−t3

)), 0) is an A1-singularity. Since C2 is the fiber of the map Mα
3 (t,ν) → N3(t,ν)

over (ti, h′(ti)(νi−resti(
dz

z−t3
)), 0), we have C2

2 = −2. The morphism ϕ can be factored into a composition
of blow-ups, so C1 must be a (−1)-curve.

We can also prove the case of j2 = 0, 1 in the same manner.

Proposition 4.7.5. Assume that νi,0 = νi,1 = νi,2. Then ϕ−1(bi,j) is the union of three projective
lines C1, C2, C3 such that C1 ∩ Y(t,ν), C1 ∩ C2, and C2 ∩ C3 consist of one point, C1 ∩ C3 = ∅, and
self-intersection numbers of C1, C2 and C3 are −1, −2, and −2, respectively.
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Proof. Put νi := νi,0 = νi,1 = νi,2 and p := h′(ti)(νi−resti(
dz

z−t3
)). Let a(z), b(z), h(z) be the polynomials

defined in the proof of Proposition 4.7.3. Then we can see that any element (E1, E2,φ,∇, l(1)∗ , l(2)∗ ) ∈
ϕ−1(bi,j) have the forms

φ =

⎛

⎝
1 0 0
0 µ 0
0 0 1

⎞

⎠ , ∇ = φ⊗ d+

⎛

⎝
0 µa(z) µb(z) + η

∏
m ̸=i(z − tm)

1 µ(z − t1)(z − t2)− µp 0
0 z − ti (z − t1)(z − t2) + p

⎞

⎠ dz

h(z)
,

where (µ : η) ∈ P1. So we have

resti∇− νiφti =
1

h′(ti)

⎛

⎝
−h′(ti)νi µa(ti) η

∏
m ̸=i(ti − tm)

1 µh′(ti)νi 0
0 0 0

⎞

⎠ .

Assume that η = 0. Then l(1)i,2 has the following form

l(1)i,2 = C

⎛

⎝
−µh′(ti)νis

s
t

⎞

⎠ , l(2)i,2 = C

⎛

⎝
−µh′(ti)νis

µs
t

⎞

⎠ ,

where (s : t) ∈ P1. If t ̸= 0, then l(1)i,1 and l(2)i,1 are of the form

l(1)i,1 = C

⎛

⎝
−µh′(ti)νi

1
0

⎞

⎠+ C

⎛

⎝
0
0
1

⎞

⎠ , l(2)i,1 = C

⎛

⎝
−h′(ti)νi

1
0

⎞

⎠+ C

⎛

⎝
0
0
1

⎞

⎠ .

If t = 0, then l(1)i,1 and l(2)i,1 are of the form

l(1)i,1 = C

⎛

⎝
−µh′(ti)νi

1
0

⎞

⎠+ C

⎛

⎝
u
0
v

⎞

⎠ , l(2)i,1 = C

⎛

⎝
−h′(ti)νi

1
0

⎞

⎠+ C

⎛

⎝
u
0
v

⎞

⎠ ,

where (u : v) ∈ P1. If η ̸= 0, then l(1)i,∗ and l(2)i,∗ are given by the following;

l(1)i,2 = C

⎛

⎝
−µh′(ti)νi

1
0

⎞

⎠ , l(1)i,1 = C

⎛

⎝
1
0
0

⎞

⎠+ C

⎛

⎝
0
1
0

⎞

⎠ , l(2)i,2 = C

⎛

⎝
−h′(ti)νi

1
0

⎞

⎠ , l(1)i,1 = C

⎛

⎝
1
0
0

⎞

⎠+ C

⎛

⎝
0
1
0

⎞

⎠ .

By the above argument, we have

C1 := {η ̸= 0} ∩ ϕ−1(bi,j) ∼= P1, C2 := {t = 0} ∼= P1, C3 := {t ̸= 0} ∼= P1,ϕ−1(bi,j) = C1 ∪ C2 ∪ C3,

and we find that C1 ∩ Y(t,ν), C1 ∩ C2, and C2 ∩ C3 consist of one point, respectively, and C1 ∩ C3 = ∅.
Next we consider self-intersection numbers. Let E = OP1 ⊕ OP1(−1) ⊕ OP1(−1) and ∇(q,p,η) be the

logarithmic connection defined in the proof of Proposition 4.7.4. Put

X = {(q, p, η) ∈ (C \ {tm}m ̸=i)× C× C | (ti − q)η − (h′(ti)(νi − resti(
dz

z−t3
))− p)3 = 0}.

Then we can construct an open immersion X ↪→ N3(t,ν) as in the proof of Proposition 4.7.4. Since
X has an A2-singularity at (q, p, η) = (ti, h′(ti)(νi − resti(

dz
z−t3

)), 0), we have C2
2 = C2

3 = −2, and so

C2
1 = −1.

Proof of Theorem 2.1. We prove (2) first. The morphism (4.4) extends to the morphism

ϕ : M̂α
3 (0, 0, 2) −→ P(E).

Let B̃ be the reduced induced structure on B̃0 ∪ B̃1 ∪ B̃2. Then we can see that the restriction morphism

ϕ : M̂α
3 (0, 0, 2) \ ϕ−1(B̃) −→ P(E) \ B̃
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is an isomorphism by Proposition 4.7.1. Any irreducible component of the inverse image ϕ−1(B̃) has
codimension one by Zariski’s main theorem. In particular, the inverse image ϕ−1(B̃2) is a Cartier divisor

on M̂α
3 (0, 0, 2), so ϕ induces the morphism

f2 : M̂α
3 (0, 0, 2) −→ Z2,

where Z2 is the blow-up of P(E) along B̃2. Let Z1 is the blow-up of Z2 along the strict transform of

B̃1. In the same way, we obtain the morphisms f1 : M̂α
3 (0, 0, 2) → Z1 and f : M̂α

3 (0, 0, 2) → Z. By

Proposition 4.7.1, 4.7.3, 4.7.4, and 4.7.5, the morphism f(t,ν) : M̂α
3 (t,ν) → Z(t,ν) is an isomorphism for

any (t,ν) ∈ T3 ×N . So f is an isomorphism. Let (Y≤1)red be the reduction of Y≤1. Then the composite

BlW ◦ f ◦ PC−1 : Mα
3 (0, 0, 2) \ (Y≤1)red −→ S \W

is an isomorphism, where BlW : Z → S is the blow-up along W . By Hartogs’ theorem, the above
morphism extends to the morphism f ′ : Mα

3 (0, 0, 2) → S and it becomes an isomorphism by Zariski’s
main theorem. By the construction of f ′, the diagram

M̂α
3 (0, 0, 2) Z

Mα
3 (0, 0, 2) S

f

PC BlW

f ′

becomes commutative.
To prove (1), it is sufficient to show that Y≤1 is reduced. Let us fix t = (ti)1≤i≤3 ∈ T3. Take a Zariski

open subset U ⊂ P1 such that U ∼= SpecC[z] and t1, t2, t3 ∈ U \ {0} ∼= SpecC[z, 1
z ]. Let a12(u; z) and

a13(u, v; z) be the quadratic polynomials in z satisfying

a12(u; ti) = u2(ti − t1)
2(ti − t2)

2 − 1− u2h′(ti)
2(νi,0νi,1 + νi,1νi,2 + νi,2νi,0)

a13(u, v; ti) =
2∏

j=0

((νi,j − resti(
dz

z−t3
))h′(ti)u− 1)

∏

m ̸=i

(tmv − u)

for i = 1, 2, 3. Put E1 = E2 = OP1 ⊕OP1(−1)⊕OP1(−1), µ(u, v) = (t1v − u)(t2v − u)(t3v − u)

φ(u,v) =

⎛

⎝
1 0 0
0 u2µ(u, v) 0
0 0 u

⎞

⎠ , ∇(u,v) =

⎛

⎝
0 µ(u, v)a12(u; z) a13(u, v; z)
1 u2µ(u, v)(z − t1)(z − t2)− uµ(u, v) 0
0 vz − u u(z − t1)(z − t2) + 1

⎞

⎠

and

X =

{
(u, v, t,ν) ∈ C2 × T3 ×N

∣∣∣∣
(νi,j − resti(

dz
z−t3

))h′(ti)u − 1 ̸= 0 for any 1 ≤ i ≤ 3

and 0 ≤ j ≤ 2 and t ∈ (U \ {0})3

}
.

Then we can see that parabolic structures of (l(1)∗ )(u,v) and (l(2)∗ )(u,v) of E1 and E2, respectively, satisfying

φ(u,v)((l
(1)
i,j )(u,v)) ⊂ (l(2)i,j )(u,v) and (resti∇(u,v) − νi,jφ(u,v))((l

(1)
i,j )(u,v)) ⊂ (l(2)i,j+1)(u,v) are unique. So we

obtain an open immersion X ↪→ Mα
3 (0, 0, 2). Since Y≤1 is defined by u = 0, Y≤1 is reduced.

Finally, we prove (3). Let ρ : P(Ω1
P1(D(t)) ⊕ OP1) → P2 be the blow-down of D0 and Hi = ρ(Di).

Then there is a morphism ϕ′ : Mα
3 (t,ν) → P2 such that the diagram

M̂α
3 (t,ν) P(Ω1

P1(D(t))⊕OP1)

Mα
3 (t,ν) P2

ϕ

PC ρ

ϕ′

(4.28)

commutes. The morphism ϕ′ can be factored into a composition of blow-ups at a point. Let Ĥi be
the strict transform of Hi under ϕ′, respectively. Then we have −KMα

3 (t,ν) = Ĥ1 + Ĥ2 + Ĥ3. So it

is sufficient to show that Y(t,ν) on Mα
3 (t,ν) has multiplicity one along Ĥi for each i = 1, 2, 3, which is

equivalent to that the strict transform Ŷ(t,ν) of Y(t,ν) under PC on M̂α
3 (t,ν) has multiplicity one along
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D̂i for i = 1, 2, 3, where D̂i is that the strict transform of Di under ϕ. Let b12(p; z) be the quadratic
polynomial in z satisfying

b12(p; tm) = (tm − t1)
2(tm − t2)

2 − p2 − h′(tm)2(νi,0νi,1 + νi,1νi,2 + νi,2νi,0)

for m = 1, 2, 3. Let b13(q, p; z) be the quadratic polynomial in z satisfying b13(q, p; ti) = 0 and

(tm−q)b13(q, p; tm) = (h′(tm)(νm,0−restm( dz
z−t3

))−p)(h′(tm)(νm,1−restm( dz
z−t3

))−p)(h′(tm)(νm,2−restm( dz
z−t3

))−p)

for m ̸= i. Put

f(q, p, µ) = h′(ti)(ti−q)−µ(h′(ti)(νi,0−resti(
dz

z−t3
))−p)(h′(ti)(νi,1−resti(

dz
z−t3

))−p)(h′(ti)(νi,2−resti(
dz

z−t3
))−p)

and
X = {f(q, p, µ) = 0} ⊂ (C \ {tm}m ̸=i)× (C \ {h′(ti)(νi,j − resti(

dz
z−t3

))}0≤j≤2)× C.

Then the family of parabolic φ-connections defined by

φµ =

⎛

⎝
1 0 0
0 µ 0
0 0 1

⎞

⎠ , ∇(q,p,µ) = φµ⊗d+

⎛

⎝
0 µb12(p; z) µb13(q, p; z) +

∏
m ̸=i(z − tm)

1 µ(z − t1)(z − t2)− µp 0
0 z − q (z − t1)(z − t2) + p

⎞

⎠ dz

h(z)

(4.29)

gives an open immersion ι : X ↪→ M̂α
3 (t,ν). In particular, ι∗Ŷ(t,ν) is defined by µ = 0. So Ŷ(t,ν) on

M̂α
3 (t,ν) has multiplicity one along Di.

4.8 The moduli space of parabolic Higgs bundles and Hitchin
fibration

Take t ∈ T3,λ ∈ C and ν ∈ N (0, 0, 2λ).

Definition 4.8.1. A ν-parabolic φ-λ-connection of rank 3 and degree d over (P1, t) is a collection

(E1, E2,φ,∇, l(1)∗ = {l(1)i,∗ }3i=1, l
(2)
∗ = {l(2)i,∗ }3i=1) consisting of the following data:

(1) E1 and E2 are vector bundles on P1 of rank 3 and degree d,

(2) φ : E1 → E2 is a homomorphism and ∇ : E1 → E2 ⊗ Ω1
P1(D(t)) is a λ-twisted logarithmic φ-

connection, i.e. φ(fa) = fφ(a) and ∇(fa) = φ(a)⊗ λdf + f∇(a) for any f ∈ OP1 , a ∈ E1, and

(3) For each k = 1, 2, l(k)i,∗ is a filtration Ek|ti = l(k)i,0 ! l(k)i,1 ! l(k)i,2 ! l(k)i,3 = 0 satisfying φti(l
(1)
i,j ) ⊂ l(2)i,j

and (resti(∇)− νi,jφti)(l
(1)
i,j ) ⊂ l(2)i,j+1 for 1 ≤ i ≤ 3 and 0 ≤ j ≤ 2.

Remark 4.8.2. When E1 = E2 and φ = id, a ν-parabolic φ-λ-connection is a ν-parabolic λ-connection.
When λ = 0, we call φ-λ-connections φ-Higgs bundles. If φ = id, then a ν-parabolic φ-Higgs bundle is a
ν-parabolic Higgs bundle.

We define the α-stability for ν-parabolic φ-λ-connections by the same condition of Definition ??. Let
Mα

3 (λ, t,ν) and Mα
3 (λ, t,ν) be the moduli space of rank 3 ν-parabolic λ-connections with 3 poles and

ν-parabolic φ-λ-connections, respectively. If λ ̸= 0, then we have Mα
3 (λ, t,λν) ∼= Mα

3 (1, t,ν) = Mα
3 (t,ν)

and Mα
3 (λ, t,λν) ∼= Mα

3 (1, t,ν) = Mα
3 (t,ν) for any t ∈ T3 and ν ∈ N3(0, 0, 2). Put

Mα
H,3(t,ν) := Mα

3 (0, t,ν), Mα
H,3(t,ν) := Mα

3 (0, t,ν)

for t ∈ T3 and ν ∈ N3(0, 0, 0). In the same way of the case of connections, we can also provide an
explicit description of Mα

H,3(t,ν) and Mα
H,3(t,ν). Specifically, Mα

H,3(t,ν) is obtained by blowing up P2

at 9 points including infinitely near points such that a cubic curve passing through those 9 points is
not unique, which means that the complete linear system of an anti-canonical divisor has dimension
one. Mα

H,3(t,ν) is obtained by removing an anti-canonical divisor of Mα
H,3(t,ν). In the same manner as

Lemma 4.5.1, Lemma 4.5.3, and Lemma 4.5.4, we have a normal form of α-stable ν-parabolic φ-Higgs
bundles.

Lemma 4.8.3. Take α = (αi,j)1≤i,j≤3 and γ such that |αi,j | ≪ 1 for any 1 ≤ i, j ≤ 3 and γ ≫ 0. Let

(E1, E2,φ,Φ, l
(1)
∗ , l(2)∗ ) be a ν-parabolic φ-Higgs bundle.

39



(1) Assume that ∧3φ ̸= 0. Then φ and Φ have the forms

φ =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ , Φ =

⎛

⎝
0 a12(z) a13(z)
1 −p 0
0 z − q p

⎞

⎠ dz

h(z)
, (4.30)

respectively, where q, p ∈ C and a12(z), a13(z) are the quadratic polynomial in z satisfying

a12(ti) = −h′(ti)
2(νi,0νi,1 + νi,1νi,2 + νi,2νi,0)− p2, (4.31)

(ti − q)a13(ti) =
2∏

j=0

(h′(ti)νi,j − p) (4.32)

for any i = 1, 2, 3.

(2) Assume that rankφ = 2. Then φ and Φ have the forms

φ =

⎛

⎝
1 0 0
0 0 0
0 0 1

⎞

⎠ , Φ =

⎛

⎝
0 0

∏
j ̸=i(z − tj)

1 0 0
0 z − ti p

⎞

⎠ dz

h(z)
, (4.33)

respectively.

(3) Assume that rankφ = 1. Then φ and Φ have the forms

φ =

⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ , Φ =

⎛

⎝
0
∏

j ̸=i(z − tj) 0
1 0 0
0 z − q z − ti

⎞

⎠ dz

h(z)
, (4.34)

respectively.

(4) Assume that φ = 0. Then (E1, E2,φ,Φ, l
(1)
∗ , l(2)∗ ) is α-unstable.

Take a ν-parabolic φ-Higgs bundle E = (E1, E2,φ,Φ, l
(1)
∗ , l(2)∗ ). For each 0 ≤ i ≤ 3, let ci(E) ∈

H0(P1,Hom(∧3E1,∧3E2)⊗ (Ω1
P1(D(t)))⊗i) ∼= H0(P1, (Ω1

P1(D(t)))⊗i) be the coefficient of the polynomial
∧3(tφ− Φ) in t, that is,

∧3(tφ− Φ) = c0(E)t3 + c1(E)t2 + c2(E)t+ c3(E).

In other words, ci(E) is the homomorphism defined by

c0(E)(v1 ∧ v2 ∧ v3) = φ(v1) ∧ φ(v2) ∧ φ(v3),

c1(E)(v1 ∧ v2 ∧ v3) = −(Φ(v1) ∧ φ(v2) ∧ φ(v3) + φ(v1) ∧ Φ(v2) ∧ φ(v3) + φ(v1) ∧ φ(v2) ∧ Φ(v3)),

c2(E)(v1 ∧ v2 ∧ v3) = φ(v1) ∧ Φ(v2) ∧ Φ(v3) + Φ(v1) ∧ φ(v2) ∧ Φ(v3) + Φ(v1) ∧ Φ(v2) ∧ φ(v3),

c3(E)(v1 ∧ v2 ∧ v3) = −Φ(v1) ∧ Φ(v2) ∧ Φ(v3),

where v1, v2, v3 ∈ E1. Put H = ⊕3
k=0H

0((Ω1
P1(D(t)))⊗k). Let us define the morphism Hit by

Hit : Mα
H,3(t,ν) −→ PH, x ,−→ [(c0(x), c1(x), c2(x), c3(x))],

which is well-defined by Lemma 4.8.3. Here for a nonzero element σ ∈ H, [σ] is the homothety class
of σ. The restriction Hit on Mα

H,3(t,ν) is just the parabolic Hitchin map. We can see that for any
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x ∈ Mα
H,3(t,ν), c1(x) = 0, c2(x) = (∧3φ)f(ν; z), and c3(x) has the form bh(z) + (∧3φ)g(ν; z) by Lemma

4.4.2, where b ∈ C, and f(ν; z) and g(ν; z) are the quadratic polynomials satisfying the condition

f(ν; ti) = νi,0νi,1 + νi,1νi,2 + νi,2νi,0, g(ν; ti) = −νi,0νi,1νi,2

for i = 1, 2, 3. So the image Hit(Mα
H,3(t,ν)) is the locus defined by

{[(
a, 0, af(ν; z)( dz

h(z) )
⊗2, (bh(z) + ag(ν; z))( dz

h(z) )
⊗3
)] ∣∣∣ (a : b) ∈ P1

}
⊂ PH.

Let us consider the fiber Hit
−1

(a : b). When a = 0, Hit
−1

(a : b) is the boundary of Mα
H,3(t,ν). Assume

that a = 1. The form (4.30) provides an open immersion P1 \ {t1, t2, t3,∞} × C ↪→ Mα
H,3(t,ν). Since

detΦ = ((z − q)a13(z)− pa12(z))(
dz
h(z) )

⊗3, the fiber Hit
−1

(1 : b) is the locus defined by the equation

pa12(q) = bh(q) + g(ν; q) (4.35)

on P1 \ {t1, t2, t3,∞}× C. Consider the case ν = 0. Since f(0; z) = g(0; z) = 0, we can replace PH with
P(H0(O1

P)⊕H0((Ω1
P1)3(2D(t)))) ∼= P1, and the equation (4.35) becomes

p3 + b(q − t1)(q − t2)(q − t3) = 0.

So we obtain the following proposition.

Proposition 4.8.4. The morphism Hit : Mα
H,3(t, 0) −→ P(H0(O1

P) ⊕ H0((Ω1
P1)3(2D(t)))) is an elliptic

fibration and has singular fibers of type IV∗ and IV over (1 : 0) and (0 : 1), respectively.
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Chapter 5

Moduli space of parabolic bundles
and parabolic connections

5.1 Rank 2 case

In this section, we describe the birational structure of moduli spaces of rank 2 parabolic connections.
Let C be an irreducible smooth projective curve over C of genus g ≥ 1 and t = (ti)1≤i≤n be n distinct
points of C. Let us fix a line bundle L with degree d := 2g − 1. Then we have H1(C,L) = {0} and by
Riemann-Roch theorem, dimH0(C,L) = d+1− g = g. Let us fix a weight α = {αi,1,αi,2}1≤i≤n and set
wi = αi,2 − αi,1.

5.1.1 The distinguished open subset of the moduli space of parabolic bundles

Lemma 5.1.1. Assume that
∑n

i=1 wi < 1. For a quasi-parabolic bundle (E, l∗) of rank 2 and odd degree,
the following conditions are equivalent:

(i) (E, l∗) is α-semistable.

(ii) (E, l∗) is α-stable.

(iii) E is stable.

Proof. If (E, l∗) is α-semistable but not α-stable, then there is a sub line bundle F ⊂ E such that

degE − 2 degF =
∑

F |ti=l(i)1

wi −
∑

F |ti ̸=l(i)1

wi.

The left hand side is odd, but
∣∣∣∣∣∣∣

∑

F |ti=l(i)1

wi −
∑

F |ti ̸=l(i)1

wi

∣∣∣∣∣∣∣
≤

n∑

i=1

wi < 1. (5.1)

It is a contradiction. So conditions (i) and (ii) are equivalent.
If (E, l∗) is α-stable, then for all sub line bundle F ⊂ E, the inequality

2 degF < degE +
∑

F |ti ̸=l(i)1

wi −
∑

F |ti=l(i)1

wi (5.2)

holds. From (5.1), it follows that

degE − 1 < degE +
∑

F |ti ̸=l(i)1

wi −
∑

F |ti=l(i)1

wi < degE + 1,

and so we have 2 degF ≤ degE by (5.2). Since degE is odd, we obtain

2 degF ≤ degE − 1 < degE.

Hence, E is stable. Conversely, if E is stable, then we can prove that (E, l∗) is α-stable by the above
argument.
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Lemma 5.1.2. Suppose that a vector bundle E on C satisfies the following conditions:

(i) E is an extension of L by OC , that is, E fits into an exact sequence

0 −→ OC −→ E −→ L −→ 0.

(ii) dimH0(C,E) = 1.

Then E is stable.

Proof. If E is not stable, then there exists a sub line bundle F ⊂ E such that degF ≥ g. Since
dimH0(C,F ) − dimH1(C,F ) = degF + 1 − g ≥ 1, we have dimH0(C,F ) ≥ 1, hence we have an
inclusion OC ↪→ F . By assumption (ii), we have a unique inclusion OC ⊂ F ⊂ E, and this inclusion
induces the injection F/OC ↪→ E/OC ≃ L. Since L is torsion free, one concludes that F/OC = 0, that
is, F ≃ OC . This contradicts the fact that deg F ≥ g ≥ 1.

Proposition 5.1.3. For an element b ∈ H1(C,L−1), let

0 −→ OC −→ Eb −→ L −→ 0 (5.3)

be the exact sequence obtained by the extension of L byOC with the extension class b. Then dimH0(C,Eb) =
1 if and only if the natural cup-product map

⟨ , b⟩ : H0(C,L) −→ H1(C,OC)

is an isomorphism. Moreover, dimH0(C,Eb) = 1 for a generic element b ∈ H1(C,L−1).

Proof. Since H1(C,L) = {0}, from the exact sequence (5.3), we obtain the following exact sequence

0 −→ H0(C,OC) −→ H0(C,Eb) −→ H0(C,L)
⟨ ,b⟩−→ H1(C,OC) −→ H1(C,Eb) −→ 0

Here we note that by definition of the extension with b the connecting homomorphism δ : H0(C,L) →
H1(C,OC) is given by ⟨ , b⟩. Since dimH0(C,Eb) = dimH1(C,Eb)+degEb+2(1−g) = dimH1(C,Eb)+1,
the first assertion follows from the above exact sequence.

We show the second assertion. We set

Z := {(s, b) ∈ H0(C,L)×H1(C,L−1) | ⟨s, b⟩ = 0}.

Since degL⊗ Ω1
C = 4g − 3 ≥ 2g − 1, we have H1(C,L⊗ Ω1

C) = {0} and

dimH1(C,L−1) = dimH0(C,L⊗ Ω1
C)

∗ = degL⊗ Ω1
C + 1− g = 3g − 2.

Hence, it is sufficient to show that dimZ = 3g − 2. In fact, if dimZ = 3g − 2, then for generic
b ∈ H1(C,L−1), we have dim q−1(b) = 0 and it means q−1(b) = {(0, b)}. Here q : Z → H1(C,L−1) is the
projection.

Let p : Z → H0(C,L) be the projection. We show that for any s ∈ H0(C,L)\{0} , dim p−1(s) = 2g−2.
A section σ ∈ H0(C,Ω1

C) induces the diagram

H0(C,L)×H1(C,L−1)
⟨ , ⟩ !!

⊗σ×id

""

H1(C,OC)

⊗σ

""
H0(C,L⊗ Ω1

C)×H1(C,L−1)
⟨ , ⟩′ !! H1(C,Ω1

C)

where the above and below map are natural cup-products and the left and right map are natural maps
induced by σ. Note that ⟨ , ⟩′ is nondegenerate. Set s ∈ H0(C,L) \ {0}. For b ∈ H1(C,L−1), ⟨s, b⟩ = 0
if and only if for all σ ∈ H0(C,Ω1

C), ⟨s⊗ σ, b⟩′ = ⟨s, b⟩ ⊗ σ = 0. Since the set

{s⊗ σ | σ ∈ H0(C,Ω1
C)} ≃ H0(C,Ω1

C)

is a g dimensional subspace of H0(C,L⊗ Ω1
C) and by the nondegeneracy of ⟨ , ⟩′, the set

{b ∈ H1(C,L−1) | ⟨s, b⟩ = 0}

defines a 2g − 2 dimensional subspace of H1(C,L−1). We therefore obtain dim p−1(s) = 2g − 2. So we
conclude dimZ = 3g − 2.

43



Proposition 5.1.4. Let
∑n

i=1 wi < 1. Let V0 ⊂ Pα(L) = Pα
(C,t)(L) be the subset which consists of all

elements (E, l∗) ∈ Pα(L) satisfying following conditions:

(i) E is an extension of L by OC .

(ii) dimH0(C,E) = 1.

(iii) For any i, OC |ti ̸= li,1. Here OC |ti is identified with the image by an injection OC |ti ↪→ E|ti .

Then V0 is a nonempty Zariski open subset of Pα(L).

Proof. Let E be a vector bundle on C satisfying conditions (i) and (ii). Then we have detE ≃ L from
(i) and E is stable by Lemma 5.1.2. Let ML denote the moduli space of rank 2 stable vector bundles on
C with the determinant L.

First, we show that the subset of ML consisting of vector bundles satisfying (i) and (ii) is open. Since
rank and degree are coprime, ML has the universal family E . Set

V = {x ∈ ML | dimH0(C, E|C×x) = 1},

then V is an open subset of ML by the upper semicontinuity of dimensions. Let q : C × V → V be
the natural projection. By Corollary 12.9 in [Ha], q∗E is an invertible sheaf on V and for any x ∈ V ,
(q∗E)|x is naturally isomorphic to H0(C, E|C×x). Hence q∗q∗E is an invertible sheaf on C × V and a
natural homomorphism ι : q∗q∗E → E is injective. By definition, for any x ∈ V , we have (q∗q∗E)|C×x ≃
H0(C, E|C×x)⊗C OC×x ≃ OC and ι|c×x : OC ≃ (q∗q∗E)|C×x → E|C×x is not zero. Set

Y = {(c, x) ∈ C × V | ι|(c,x) : OC |c ≃ (q∗q∗E)|(c×x) → E|(c,x) is zero.}

and V ′ = V \ q(Y ), then Y is a closed subset of C × V and V ′ is an open subset of V . If x ∈ V ′,
then we obtain E|C×x/OC ≃ L, that is, E|C×x is an extension of L by OC . Therefore, V ′ consists of all
isomorphism classes of vector bundles satisfying the conditions (i) and (ii), and V ′ is an open subset of
ML. Moreover, V ′ is not empty by Proposition 5.1.3.

Second, we prove that V0 is open. By Lemma 5.1.1, we obtain

Pα(L) ≃ P(E|t1×ML)×ML P(E|t2×ML)×ML · · ·×ML P(E|tn×ML).

For each ti, by projectivization of ι|ti×V ′ : (q∗q∗E)|ti×V ′ → E|ti×V ′ , we obtain a morphism l̂i,1 : V ′ →
P(E|ti×V ′) such that for all x ∈ V ′, l̂i,1(x) is the point associated with the image by the immersion
OC ↪→ E|C×x at ti. Let ϖ : Pα(L) → ML be the natural forgetful map and pi : Pα(L) → P(E|ti×ML) be
the natural projection. Set

V0 = ϖ−1(V ′) \
n⋃

i=1

p−1
i (l̂i,1(V

′)).

Then V0 is an open subset of Pα(L) and V0 is the set of all isomorphism classes of parabolic bundles
satisfying (i), (ii), and (iii).

We introduce another expression of V0. For b ∈ H1(C,L−1), let

0 −→ OC −→ Eb −→ L −→ 0

be the exact sequence associated with b. We set

U := {b ∈ H1(C,L−1) | dimH0(C,Eb) = 1}

and then U is an open subset and 0 /∈ U by Proposition 5.1.3.
The natural homomorphism ψ : H1(C,L−1(−D)) → H1(C,L−1) induces the morphism

ψ̃ : PH1(C,L−1(−D)) \ PKerψ −→ PH1(C,L−1).

Let Ũ ⊂ PH1(C,L−1) be the open subset associated with U and Ṽ = ψ̃−1(Ũ).
Suppose that (E, l∗) ∈ Pα(L) satisfies conditions (i), (ii), and (iii) of Proposition 5.1.4. Let b ∈

H1(C,L−1) be the element associated with an exact sequence

0 −→ OC −→ E −→ L −→ 0
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and [b] be the point in PH1(C,L−1) associated with the subspace generated by b. By assumption, we
have b ∈ U . Let {Ui}i be an open covering of C and (cij)i,j , cij = ci/cj be transition functions of L over
{Ui}i. Let ei1 be the restriction of a global section OC ↪→ E on Ui and ei2 be a local section of E on
Ui whose image by the natural map E → E|ti generates lk,1 at each tk ∈ Ui. For generators ei1 and ei2,
transition matrices Mi,j is denoted by

Mij =

(
1 b′ij
0 cij

)

where b′ = (b′ijcj)i,j ∈ H1(C,L−1(−D)). Then we have ψ̃([b′]) = [b], and so [b′] ∈ Ṽ . By using the

above argument, we can correspond [b′] ∈ Ṽ to an isomorphism class of a parabolic bundle satisfying all
conditions of Proposition 5.1.4. Thus we conclude V0 ≃ Ṽ .

Putting together the above argument, we get the following proposition.

Proposition 5.1.5. Suppose that
∑n

i=1 wi < 1. Let V0 ⊂ Pα(L) be the subset defined in Proposition
5.1.4. Then there is an open immersion V0 ↪→ PH1(C,L−1(−D)).

5.1.2 The apparent map

Let us fix ν = (νi,j)
i=1,...,n
j=0,1 ∈ Nn,2(d) and a tr(ν)-parabolic connection ∇L over L. Let V0 be the open

subset of Pα(L) defined in Proposition 5.1.4. We set

Mα(ν, (L,∇L)) := Mα
(C,t)(2,ν, (L,∇L)),

Mα(ν, (L,∇L))
0 := {(E,∇, l∗) ∈ Mα(ν, (L,∇L)) | (E, l∗) ∈ V0}.

For each (E,∇, l∗) ∈ Mα(ν, (L,∇L))0, E has the unique sub line bundle which is isomorphic to the
trivial line bundle. We define the section ϕ∇ ∈ H0(C,L⊗ Ω1

C(D)) by the composite

OC ↪→ E
∇−→ E ⊗ Ω1

C(D) → E/OC ⊗ Ω1
C(D) ≃ L⊗ Ω1

C(D).

Suppose that ϕ∇ = 0, i.e. ∇(OC) ⊂ OC ⊗ Ω1
C(D). Then we obtain

∑n
i=1 νi,0 = 0 by Fuchs relation

because OC |ti ∩ li,1 = {0} for any i. So if
∑n

i=1 νi,0 ̸= 0, then ϕ∇ ̸= 0 and we therefore define the
morphism

App: Mα(ν, (L,∇L))
0 −→ PH0(C,L⊗ Ω1

C(D)) ≃ |L⊗ Ω1
C(D)|.

(E,∇, l∗) ,−→ [ϕ∇]

Here [ϕ∇] is the point in PH0(C,L⊗Ω1
C(D)) associated with the subspace of H0(C,L⊗Ω1

C(D)) generated
by ϕ∇. We can extend this map to the rational map

App: Mα(ν, (L,∇L)) · · · → |L⊗ Ω1
C(D)|.

5.1.3 Parabolic bundles and the apparent singularities

Let
Bun: Mα(ν, (L,∇L))

0 −→ V0

be the forgetful map which sends (E,∇, l∗) to (E, l∗). We can extend this map to the rational map

Bun: Mα(ν, (L,∇L)) · · · → Pα(L).

Let
⟨ , ⟩ : H0(C,L⊗ Ω1

C(D))×H1(C,L−1(−D)) −→ H1(C,Ω1
C)

be the natural cup-product. This cup-product is nondegenerate.

Theorem 5.1.6. Assume that
∑n

i=1 νi,0 ̸= 0 and
∑n

i=1 wi < 1. Let us define the subvariety Σ ⊂
PH0(C,L⊗ Ω1

C(D))× PH1(C,L−1(−D)) by

Σ = {([s], [b]) | ⟨s, b⟩ = 0}.

Then the map
App× Bun: Mα(ν, (L,∇L))

0 −→ (PH0(C,L⊗ Ω1
C(D))× V0) \ Σ

is an isomorphism. Therefore, the rational map

App× Bun: Mα(ν, (L,∇L)) · · · → |L⊗ Ω1
C(D)|× Pα(L)

is birational. In particular, Mα(ν, (L,∇L)) is a rational variety.
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Before showing this theorem, we prove the following lemma.

Lemma 5.1.7. Let (E, l∗) ∈ V0 and b ∈ H1(C,L−1) be an element associated with an extension

0 −→ OC −→ E −→ L −→ 0.

Then the natural cup-product map

⟨ , b⟩′ : H0(C,Ω1
C) −→ H1(C,L−1 ⊗ Ω1

C)

is an isomorphism. In particular, for an element b′ ∈ H1(C,L−1(−D)) associated with (E, l∗), the
composite of the natural cup-product map and the natural homomorphism

H0(C,Ω1
C)

⟨ ,b′⟩′′−−−−→ H1(C,L−1(−D)⊗ Ω1
C) −→ H1(C,L−1 ⊗ Ω1

C)

is also an isomorphism.

Proof. By Serre duality, we have H0(C,Ω1
C) ≃ H1(C,OC)∗ and H1(C,L−1 ⊗ Ω1

C) ≃ H0(C,L)∗. So it
suffices to prove that the natural cup-product map

⟨ , b⟩′′′ : H0(C,L) −→ H1(C,OC)

is an isomorphism, and it is nothing but the first assertion of Proposition 5.1.3.
The second assertion follows from the following diagram.

H0(C,Ω1
C)×H1(C,L−1(−D))

⟨ , ⟩′′ !!

""

H1(C,L−1(−D)⊗ Ω1
C)

""
H0(C,Ω1

C)×H1(C,L−1)
⟨ , ⟩′ !! H1(C,L−1 ⊗ Ω1

C)

Proof. (Proof of Theorem 5.1.6)
Firstly, we show that for any γ ∈ H0(C,L ⊗ Ω1

C(D)) and b ∈ H1(C,L−1(−D)) such that the quasi-
parabolic bundle (E, l∗) associated with b is in V0, there exist a unique complex number λ and a unique
λν-parabolic λ-connection (E,∇, l∗) such that tr∇ = λ∇L and ϕ∇ = γ.

Let {Ui}i be an open covering of C and (cij)i,j , cij = ci/cj be transition functions of L over {Ui}i.
Let ei1 be the restriction of a global section OC ↪→ E on Ui and ei2 be a local section of E on Ui whose
image ēi2 by the natural map E → E|ti generates lk,1 at each tk ∈ Ui. For local generators ei1 and ei2, we
can denote transition matrices of E by

Mij =

(
1 bij
0 cij

)
,

where b = (bijcj)i,j ∈ H1(C,L−1(−D)) is the cocycle corresponding to an extension

0 −→ OC −→ E −→ L −→ 0.

A logarithmic λ-connection ∇ is given in Ui by λd+Ai

Ai =

(
αi βi
γi δi

)
∈ M2(Ω

1
C(D)(Ui))

with the compatibility condition
λdMij +AiMij = MijAj

on each intersection Ui ∩ Uj . By using elements of matrices, this condition is written by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γi
ci

− γj
cj

= 0

αi − αj = bijγj

δi − δj = −bijγj − λ
dcij
cij

ciβi − cjβj = −(λcjdbij + (bijcj)(αi − δj)).

(5.4)
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If (E,∇, l∗) is a λν-parabolic λ-connection, then for each point ti, ∇ satisfies the residual condition

restk(Ai) =

(
λνk,0 0
∗ λνk,1

)
(5.5)

at each tk ∈ Ui because ēi2 generates lk,1. ∇L is denoted in Ui by d+ωi with the compatibility condition

dcij + cijωi = cijωj (5.6)

on each Ui ∩ Uj . If tr∇ = λ∇L, then the equation

αi + δi = λωi (5.7)

holds. When ∇ is denoted in Ui by λd+Ai, we have ϕ∇ = (γi/ci)i ∈ H0(C,L⊗ Ω1
C(D)). So if ϕ∇ = γ,

then we have
(γi/ci)i = γ. (5.8)

We show that there exist λ ∈ C and αi,βi, γi, δi ∈ Ω1
C(D)(Ui) satisfying the conditions (5.4), (5.5), (5.7)

and (5.8) uniquely.
Step 1: we find γi. From (5.8), we have to set γi = ciγ.
Step 2: we find αi. Fix a section α0

i ∈ Ω1
C(D)(Ui) which has the residue data restk(α

0
i ) = νk,0 at each

tk ∈ Ui. The cocycle (α0
i − α0

j )i,j defines an element of H1(C,Ω1
C). If (α

0
i − α0

j )i,j is zero in H1(C,Ω1
C),

then there exist sections α̃i ∈ Ω1
C(Ui) on each i such that α0

i −α0
j = α̃i− α̃j for any i, j. (α0

i − α̃i)i defines
a global logarithmic 1-form whose sum of residues

∑n
i=1 νi,0 is not zero. This contradicts the residue

theorem. Therefore, the cocycle (α0
i − α0

j )i,j is a generator of H1(C,Ω1
C) and there is a unique complex

number λ such that λ(α0
i − α0

j )i,j = (bijγj)i,j . Let α̃i ∈ Ω1
C(Ui) be a section such that

α̃i − α̃j = bijγj − λ(α0
i − α0

j )

for any i, j. Set αi = λα0
i + α̃i, then (αi)i is a solution of the second equation of (5.4) and has the residue

data restk(αi) = λνk,0. Note that (αi)i is still not uniquely determined. Actually, the difference of two
solutions of the second equation of (5.4) having the same residue data defines a global 1-form and now
dimH0(C,Ω1

C) ≥ g ≥ 1.
Step 3: we find δi. From (5.7), we have to set δi = λωi − αi. It is clear that (δi)i is a solution of the

third equation of (5.4) and has the residue data restk(δi) = λνk,1. δi is uniquely determined by αi.
Step 4: we find βi and show that αi is uniquely determined. From the cocycle condition of (bijcj)i,j

and the first, second, and third equations of (5.4), we obtain

(λcjdbij + (bijcj)(αi − δj)) + (λckdbjk + (bjkck)(αj − δk))

=− λbijckdcjk + λckdbik + (bikck − bjkck)αi − bijcjδj + (bjkck)(αj − δk)

=− λbijckdcjk + λckdbik + bikck(αi − δk)− bjkck(αi − αj)− bijcj(δj − δk)

=λckdbik + bikck(αi − δk).

So (−(λcjdbij + (bijcj)(αi − δj)))i,j defines a cocycle of H1(C,L−1 ⊗ Ω1
C). Note that a solution of the

fourth equation of (5.4) exists if and only if (−(λcjdbij + (bijcj)(αi − δj)))i,j is trivial. We denote the
image of b by the natural homomorphism H1(C,L−1(−D)) → H1(C,L−1) by the same character b. Since
the linear map ⟨ , b⟩′′ : H0(C,Ω1

C) → H1(C,L−1 ⊗ Ω1
C) is an isomorphism by Lemma 5.1.7, there exists

a unique global 1-form ζ = (ζi/ci)i ∈ H0(C,Ω1
C) such that

(2bijζj)i,j = ⟨2ζ, b⟩′′ = −(λcjdbij + (bijcj)(αi − δj))i,j ,

that is,
−(λcjdbij + (bijcj)((αi + ζi/ci)− (δj − ζj/cj)))i,j = 0

in H1(C,L−1 ⊗ Ω1
C). So there exist unique (αi)i and (δi)i satisfying the condition (5.7) and

−(λcjdbij + (bijcj)(αi − δj))i,j = 0,

and there exists a solution of the fourth equation (βi)i of (5.4) such that restk(βi) = 0 for any i and
tk ∈ Ui. Since H0(C,L−1 ⊗ Ω1

C) ≃ H1(C,L)∗ = {0}, (βi)i is uniquely determined.
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When λ = 0, the cocycle (bijγj)i,j is zero because αi ∈ Ω1
C(Ui). Conversely, assume that (bijγj)i,j = 0.

Then there exists α̃i ∈ Ω1
C(Ui) for each i such that αi − αj = bijγj = α̃i − α̃j . The cocycle (αi − α̃i)i

defines a global logarithmic 1-form on C. By the residue theorem, we have

n∑

i=1

λνi,0 = 0.

By assumption, we obtain λ = 0.
For a point ([γ], [b]) ∈ (PH0(C,L ⊗ Ω1

C(D)) × V0) \ Σ, there exist a unique complex number λ and
a unique λν-parabolic λ-connection (E,∇, l∗) such that tr∇ = λ∇L, ϕ∇ = γ, and (E, l∗) is the quasi-
parabolic bundle corresponding to b. Then λ ̸= 0 and (E,λ−1∇, l∗) is a ν-parabolic connection with
the determinant (L,∇L) whose image by App × Bun is ([γ], [b]). If a ν-parabolic connection (E,∇′, l∗)
satisfies tr∇′ = ∇L and ϕ∇′ ∈ [γ], then there is a unique complex number µ such that ϕ∇′ = µλ−1γ. A
µν-parabolic µ-connection (E, µλ−1∇, l∗) satisfies tr(µλ−1∇) = µ∇L and ϕµλ−1∇ = µλ−1γ, so we have
µ = 1 and ∇′ = λ−1∇ by the uniqueness. Therefore, the morphism

App× Bun: Mα(ν, (L,∇L))
0 −→ (PH0(C,L⊗ Ω1

C(D))× V0) \ Σ

is bijective. By Zariski’s main theorem (for example, see Chapter 3, §9, Proposition 1 in [Mu]), App×Bun
is an isomorphism.

The following proposition is the same as Proposition 4.6 in [LS] and follows by using the same argument
of the proof.

Proposition 5.1.8. Suppose that
∑n

i=1 νi,0 = 0. Then Mα(ν, (L,∇L))0 is isomorphic to the total space
of the cotangent bundle T ∗V0 and the map Bun: Mα(ν, (L,∇L))0 → V0 corresponds to the natural
projection T ∗V0 → V0. Moreover, the section ∇0 : V0 → Mα(ν, (L,∇L))0 corresponding to the zero
section V0 → T ∗V0 is given by those reducible connections preserving the destabilizing subbundle OC .

5.1.4 Another proof of Theorem 5.1.6

We will show App×Bun is a birational map in another way. First, we show the existence of a parabolic
connection over a given parabolic bundle. The following lemma is an analogy of Lemma 2.5 in [FL].

Lemma 5.1.9. Suppose that
∑n

i=1 wi < 1. Then for each (E, l∗) ∈ Pα(L), there is a ν-parabolic
connection (E,∇, l∗) such that tr∇ ≃ ∇L.

Proof. Let {Ui}i be an open covering of C and∇′
i be a logarithmic connection on Ui satisfying (restk(∇′

i)−
νk,1id)(lk,1) = 0, (restk(∇′

i) − νk,0id)(E|ti) ⊂ lk,1 at each tk ∈ Ui and tr∇′
i = ∇L|Ui . We define sheaves

E0 and E1 on C by

E0 := {s ∈ End(E) | tr(s) = 0 and sti(li,1) ⊂ li,1 for any i},
E1 := {s ∈ End(E)⊗ Ω1

C(D) | tr(s) = 0 and resti(s)(li,j) ⊂ li,j+1 for any i, j}.

Then the isomorphism E1 ≃ (E0)∨ ⊗ Ω1
C holds. Differences ∇′

i −∇′
j define the cocycle

(∇′
i −∇′

j)i,j ∈ H1(C, E1).

By Serre duality and the simplicity of E, we obtain

H1(C, E1) ≃ H0(C, E0)∗ = {0}.

Hence, there exists Φi ∈ E1(Ui) for each i such that ∇′
i −∇′

j = Φi − Φj . Set ∇i = ∇′
i − Φi. Then (∇i)i

defines a ν-parabolic connection ∇ over (E, l∗) satisfying tr∇ ≃ ∇L.

For a quasi-parabolic bundle (E, l∗) ∈ V0, let us fix a ν-parabolic connection (E,∇, l∗) ∈ Bun−1((E, l∗)).
Let (E,∇′, l∗) ∈ Bun−1((E, l∗)) be another ν-parabolic connection. Then ∇′ − ∇ is a global section
of E1 which is the sheaf defined in the proof of Lemma 5.1.9. Therefore, we have the isomorphism
Bun−1((E, l∗)) ≃ ∇+H0(C, E1).

For a section Θ ∈ H0(End(E) ⊗ Ω1
C(D)), we define the section ϕΘ ∈ H0(C,L ⊗ Ω1

C(D)) by the
composite

OC ↪→ E
Θ−→ E ⊗ Ω1

C(D) → E/OC ⊗ Ω1
C(D) ≃ L⊗ Ω1

C(D)
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and define the map
ϕ : H0(C, End(E)⊗ Ω1

C(D)) −→ H0(C,L⊗ Ω1(D))

by ϕ(Θ) = ϕΘ. It is clearly linear. Let us define the sheaf F1 by

F1 = {s ∈ End(E)⊗ Ω1
C(D) | resti(s)(li,j) ⊂ li,j+1 for all i, j}.

Assume that Θ ∈ H0(C,F1) satisfies ϕΘ = 0, that is, Θ(OC) ⊂ OC ⊗ Ω1
C(D). By definitions of V0 and

E1, we obtain resti(Θ)(OC |ti) ⊂ OC |ti ∩ li,1 = {0} for any i. Hence, we have Θ(OC) ⊂ OC ⊗ΩC , that is,
Θ|OC is a global section of Ω1

C .

Lemma 5.1.10. The linear map H0(C,F1) ∩Kerϕ→ H0(C,Ω1
C), Θ ,→ Θ|OC is an isomorphism.

Proof. For µ ∈ H0(C,Ω1
C), we define Θ = idE ⊗µ. Then we have Θ ∈ H0(C,F1)∩Kerϕ and Θ|OC = µ.

The linear map is hence surjective. We show that the map is injective. If Θ ∈ H0(C,F1) ∩ Kerϕ
satisfies Θ|OC = 0, then Θ induces the homomorphism Θ̂ : L ≃ E/OC → E ⊗ Ω1

C(D). resti(Θ) = 0
implies resti(Θ̂) = 0, so we obtain Θ̂(L) ⊂ E ⊗ Ω1

C . Since rankE = 2, we have isomorphisms E∨ ≃
E ⊗ (detE)−1 ≃ E ⊗ L−1. By this isomorphism and Serre duality,

Hom(L,E ⊗ Ω1
C) ≃ H0(C,L−1 ⊗ E ⊗ Ω1

C) ≃ H0(C,E∨ ⊗ Ω1
C) ≃ H1(C,E)∗ = {0}

Hence we obtain Θ̂ = 0 and this implies Θ = 0.

Proof. (Another proof the second assertion of Theorem 5.1.6)
We show that for each (E, l∗) ∈ V0, the morphism

App: Bun−1((E, l∗)) −→ PH0(C,L⊗ Ω1
C(D))

is injective.
Let us fix a ν-parabolic connection (E,∇, l∗) ∈ Bun−1((E, l∗)). If there exists Θ ∈ H0(C, E1) such

that ϕ∇ = ϕΘ, then ∇− Θ is a ν-parabolic connection and ϕ∇−Θ = 0. It is a contradiction. Thus, we
have

{ϕΘ | Θ ∈ H0(C, E1)} ∩ Cϕ∇ = {0}.

Hence, we only need to show that the linear map ϕ : H0(C, E1) → H0(C,L⊗Ω1(D)) is injective. Suppose
that a section Θ ∈ H0(C, E1) satisfies ϕΘ = 0. By the proof of Lemma 5.1.10, there is a section
µ ∈ H0(C,Ω1

C) such that Θ = idE ⊗ µ. Since trΘ = 0, we get µ = 0 and this means Θ = 0.

5.1.5 Lagrangian fibrations

Recall the canonical symplectic structure on Mα(ν, (L,∇L)) (see section 6 in [IIS1] and section 7 in [In]
for more detail). Take a point x = (E,∇, l∗) ∈ Mα(ν, (L,∇L)). Let E• be the complex of sheaves defined
by

E0 −→ E1, s ,−→ ∇ ◦ s− s ◦ ∇,

where E0 and E1 are sheaves defined in Lemma 5.1.9. Then there exists the canonical isomorphism
between the tangent space TxMα(ν, (L,∇L)) and the hypercohomology group H1(E•). Take an open
covering {Ui}i of C. In Čech cohomology an element of H1(E•) can be written by the form {(Bij), (Φi)},
where (Bij)i,j ∈ C1(E0), (Φi)i ∈ C0(E1) and (∇Bij − Bij∇)i,j = (Φj − Φi)i,j in C1(E1). The canonical
symplectic form Ω on Mα(ν, (L,∇L)) is defined by

Ωx : H
1(E•)⊗H1(E•) −→ H2(OC

d→ Ω1
C) ∼= C

({(Bij), (Φi)}, {(B′
ij), (Φ

′
i)}) ,−→ ({tr(Bij ◦B′

jk)},−{(tr(Bij ◦ Φ′
j)− tr(Φi ◦B′

ij))})

at each x. We can see that the homomorphisms H0(C, E1) → H1(C, E•) and H1(C, E•) → H1(C, E0)
defined by (Φi)i ,→ {0, (Φi)i} and {(Bij)i,j , (Φi)i} ,→ (Bij)i,j , respectively, give an exact sequence

H0(C, E0) −→ H0(C, E1) −→ H1(C, E•) −→ H1(C, E0) −→ H1(C, E1).

When (E,∇, l∗) ∈ Mα(ν, (L,∇L))0, we have H1(C, E1) ≃ H0(C, E0)∗ = {0}. We note that each element
in H1(C, E0) gives a deformation of (E, l∗).

Proposition 5.1.11. App: Mα(ν, (L,∇L))0 → |L ⊗ Ω1
C(D)| and Bun: Mα(ν, (L,∇L))0 → V0 are

Lagrangian fibrations.
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Proof. Take a point x = (E,∇, l∗) ∈ Mα(ν, (L,∇L))0 and put [γ] = App(x) and [b] = Bun(x), where
γ = (γi)i ∈ H0(C,L ⊗ Ω1

C(D)) and b = (bij)i,j ∈ H1(C,L−1(−D)) are nonzero elements. Then a
transition matrix Mij of E and a connection matrix Ai of ∇ have the form

Mij =

(
1 bij
0 cij

)
, Ai =

(
αi βi
γi δi

)
,

respectively. The natural homomorphism

TxApp
−1([γ])⊕ TxBun

−1([b]) −→ TxM
α(ν, (L,∇L)) ∼= H1(C, E•)

is an isomorphism. Since any element in TxBun
−1([b]) does not deform (E, l∗), we have TxBun

−1([b]) ⊂
H0(C, E1). So Ω|Bun−1([b]) = 0 and TxApp−1([γ]) → H1(C, E0) is an isomorphism. Take {(Bij)ij , (Φi)i} ∈
H1(C, E•). Since the homomorphism

T[b]PH1(C,L−1(−D)) ∼= H1(C,L−1(−D))/[b] → H1(C, E0) ∼= T(E,l∗)P
α(L), (gij)i,j ,→

((
0 gij
0 0

))

i,j

is an isomorphism, Bij and Φi can be written by the form

Bij =

(
0 gij
0 0

)
, Φi =

(
ζi ηi
θi −ζi

)
,

where ζi, ηi,∈ Ω1
C(Ui) and θi ∈ Ω1

C(D)(Ui). We note that (bijγj)i,j is a nonzero cocycle in H1(C,Ω1
C)

(see Step 2 in the proof of Theorem 5.1.6). So we have H1(C,L−1(−D)) = [b]⊕Ker ⟨γ, ⟩, where ⟨ , ⟩ is
the natural pairing

⟨ , ⟩ : H0(C,L⊗ Ω1
C(D))×H1(C,L−1(−D)) −→ H1(C,Ω1

C).

Since b = 0 in H1(C, E0), the composite

Ker ⟨γ, ⟩ → H1(C,L−1(−D)) → H1(C, E0)

becomes an isomorphism. So we may assume that (gij)i,j ∈ Ker ⟨γ, ⟩. The condition ∇Bij − Bij∇ =
dBij +AiBij −BijAj = MijΦj − ΦiMij is equivalent to

⎧
⎨

⎩

−gijγj = ζj − ζi + bijθj
dgij + αigij − gijδj = ηj − ηicij − bij(ζi + ζj)
cijθj − θi = 0.

So θ = (θi)i defines a global section of L ⊗ Ω1
C(D) and (bijθj)i,j is zero in H1(C,Ω1

C). Assume that
{(Bij)ij , (Φi)i} ∈ TxApp

−1([γ]). Then θ is an element of [γ], and so θ must be zero. Hence we have

Ωx({(Bij)ij , (Φi)i}, {(B′
ij)ij , (Φ

′
i)i}) = 0

for any {(Bij)ij , (Φi)i}, {(B′
ij)ij , (Φ

′
i)i} ∈ TxApp−1([γ]), which means that Ω|App−1([γ]) = 0.

5.2 Rank 3 case

This section is devoted to the relation between the moduli space of parabolic bundles and parabolic
logarithmic connections of rank three on the projective line with three points.

5.2.1 The moduli space of w-stable parabolic bundles

In this subsection, we determine w-stable parabolic bundles on P1 of rank 3 and degree −2, and investigate
the moduli space and the wall-crossing behavior. Let us fix t ∈ T3.

We assume that

α1,3 − α1,2 = α1,2 − α1,1 = α2,3 − α2,2 = α2,2 − α2,1 = α3,3 − α3,2 = α3,2 − α3,1 =: w.
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Then we have 0 < w < 1/2. We consider the case of degE = −2. Take a nonzero subbundle F " E. If
rankF = 2, then the inequality (2.1) is equivalent to

−4− 3 degF +
3∑

i=1

3∑

j=1

αi,j(2− 3di,j(F )) > 0, (5.9)

and we have
3∑

j=1

αi,j(2− 3di,j(F )) =

⎧
⎨

⎩

−3w F |ti = li,1
0 F |ti ̸= li,1, F |ti ⊃ li,2
3w F |ti # li,2.

In the case of rankF = 1, (2.1) is equivalent to

−2− 3 degF +
3∑

i=1

3∑

j=1

αi,j(1− 3di,j(F )) > 0, (5.10)

and we have
3∑

j=1

αi,j(1− 3di,j(F )) =

⎧
⎨

⎩

3w F |ti $ li,1
0 F |ti ⊂ li,1, F |ti ̸= li,2
−3w F |ti = li,2.

The stability condition is determined by w under the assumption, so we call the special case of the
α-stability the w-stability.

Let (E, l∗) be a w-stable parabolic bundle with degE = −2. The vector bundle E can be written by
the form OP1(m1)⊕OP1(m2)⊕OP1(m3), where m1 ≥ m2 ≥ m3 and m1 +m2 +m3 = −2. Suppose that
m1 ≥ 1. Since w < 1/2, we have

−2− 3 degOP1(m1) +
3∑

i=1

3∑

j=1

αi,j(1− 3di,j(OP1(m1))) ≤ −5 + 9w < 0.

So E is isomorphic to OP1 ⊕OP1(−1)⊕OP1(−1). Suppose that OP1 |ti = li,2 for some i. Then we have

−2− 3 degOP1 +
3∑

i=1

3∑

j=1

αi,j(1− 3di,j(OP1)) ≤ −2 + 3w < 0.

So OP1 |ti ̸= li,2 for any i. Let l′i be the image of li,2 by the quotient E|ti → (E/OP1)|ti . Since OP1 |ti ̸= li,2,
l′i is not zero for any i. For a parabolic structure l′∗ = {l′i}1≤i≤3 on OP1(−1)⊕2, put

n(l′∗) := max
OP1 (−1)∼=F⊂OP1 (−1)⊕2

#{i | F |ti = l′i}.

A parabolic bundle (OP1(−1)⊕2, l′∗) with n(l′∗) = 1 and 3 is unique up to isomorphism, respectively. When
n(l′∗) = 2, there are three isomorphism classes of such parabolic bundccles, that is, those isomorphism
classes are determined by the pair of numbers 1 ≤ i < j ≤ 3. Let (∗) be the following condition;

(∗) There is no subbundle F ⊂ E such that F ∼= OP1(−1)⊕2, li,2 ⊂ F |ti and F |tj = lj,1 for some i and
any j ̸= i.

Proposition 5.2.1. Let Pw(−2) := Pw
(P1,t)(3,−2).

(1) If 0 < w < 2/9, 4/9 < w < 1/2, then Pw(−2) = ∅.

(2) If 2/9 < w < 1/3, then a w-stable parabolic bundle (E, l∗) fits into a nonsplit exact sequence

0 −→ (OP1 , ∅) −→ (E, l∗) −→ (OP1(−1)⊕2, l′∗) −→ 0, (5.11)

where n(l′∗) = 1. In particular, Pw(−2) is isomorphic to P1.

(3) If 1/3 < w < 4/9, then a w-stable parabolic bundle (E, l∗) is either type of the following:

(i) E ∼= OP1 ⊕ OP1(−1) ⊕ OP1(−1), #{i | OP1 |ti ⊂ li,1} = 0, n(l′∗) = 1, and the condition (∗)
holds.
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(ii) E ∼= OP1 ⊕ OP1(−1) ⊕ OP1(−1), #{i | OP1 |ti ⊂ li,1} = 1, n(l′∗) = 1, and the condition (∗)
holds.

In particular, Pw(−2) is isomorphic to P1.

Proof. Assume that w < 2/9. Then we have

−2− 3 degOP1 +
3∑

i=1

3∑

j=1

αi,j(1− 3di,j(OP1))) ≤ −2 + 9w < 0,

which means that Pw(−2) = ∅.
Assume that 2/9 < w < 1/3. If OP1 |ti ⊂ li,1 for some i, then we have

−2− 3 degOP1 +
3∑

i=1

3∑

j=1

αi,j(1− 3di,j(OP1)) ≤ −2 + 6w < 0.

So OP1 |ti $ li,1 for any i. Hence (E, l∗) fits into an exact sequence

0 −→ (OP1 , ∅) −→ (E, l∗) −→ (OP1(−1)⊕2, l′∗ = {l′i}1≤i≤3) −→ 0. (5.12)

If (5.12) splits, that is, there exists a subbundle F such that F ∼= OP1(−1)⊕2 and F |ti = li,1 for all i,
then we have

−4− 3 degF +
3∑

i=1

3∑

j=1

αi,j(2− 3di,j(F )) = 2− 9w < 0.

So (5.12) does not split. Suppose that n(l′∗) ≥ 2. Then we can take a subbundle F ⊂ E satisfying
F ∼= OP1(−1) and F |ti = li,2, F |tj = lj,2 for some 1 ≤ i < j ≤ 3 and we have

−4− 3 deg(OP1 ⊕ F ) +
3∑

i=1

3∑

j=1

αi,j(2− 3di,j((OP1 ⊕ F ))) ≤ −1 + 3w < 0.

Hence n(l′∗) = 1 and we have

Pw(−2) ∼= PExt1((OP1(−1)⊕2, l′∗), (OP1 , ∅)) ∼= PH1((OP1(1)⊕2)(−D)) ∼= P1.

Assume that 1/3 < w < 1/2. If n(l′∗) ≥ 2, then we can take a subbundle F ⊂ E satisfying F ∼= OP1(−1)
and F |ti = li,2, F |tj = lj,2 for some 1 ≤ i < j ≤ 3, and we have

−2− 3 degF +
3∑

i=1

3∑

j=1

αi,j(1− 3di,j(F )) ≤ 1− 3w < 0.

So n(l′∗) = 1. In this case, we can take a unique subbundle F ⊂ E such that F ∼= OP1(−2) and F |ti = li,2
for any i, and we have

−2− 3 degF +
3∑

i=1

3∑

j=1

αi,j(1− 3di,j(F )) = 4− 9w.

So Pw(−2) = ∅ if w > 4/9. Assume that 1/3 < w < 4/9. Suppose that #{i | OP1 |ti ⊂ li,1} ≥ 2. Then
we have

−2− 3 degOP1 +
3∑

i=1

3∑

j=1

αi,j(1− 3di,j(OP1)) ≤ −2 + 3w < 0.

So #{i | OP1 |ti ⊂ li,1} ≤ 1. We consider the case OP1 |ti $ li,1 for any i. Then we can take a unique
subbundle Fij ⊂ E such that Fij

∼= OP1(−1)⊕2, Fij |ti = li,1 and Fij |tj = lj,1 for each 1 ≤ i < j ≤ 3. If
lm,2 ⊂ Fij |tm for m ̸= i, j, then we have

−4− 3 degF +
3∑

i=1

3∑

j=1

αi,j(2− 3di,j(F )) = 2− 6w < 0.
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So such a parabolic bundle becomes w-unstable, which is a contradiction. We can see that such a parabolic
bundle pij ∈ PExt1((OP1(−1)⊕2, l′∗), (OP1 , ∅)) is unique for each 1 ≤ i < j ≤ 3. Next we consider the case
OP1 |ti $ lm,1 for some m. Let i, j be different elements of {1, 2, 3} \ {m}. Then we can take a unique
subbundle Fij ⊂ E such that Fij

∼= OP1(−1)⊕2, Fij |ti = li,1 and Fij |tj = lj,1. In the same reason of the
above, we have lm,2 $ F |tm . We can see that such a parabolic bundle pm is unique up to isomorphism.
Therefore we have

Pw(−2) ∼= (PExt1((OP1(−1)⊕2, l′∗), (OP1 , ∅)) \ {p12, p13, p23}) ⊔ {p1, p2, p3} ∼= P1.

As the above proof shows, p12, p13, p23 become w-unstable and p1, p2, p3 become w-stable when w
is across 1/3. Let us investigate this in detail. Assume that 2/9 < w < 1/3. In this case, a w-
stable parabolic bundle (E, l∗) fits into a nonsplit exact sequence (5.11). Then we can take nonzero
homomorphisms s1, s2 : OP1(−1) → E satisfying l1,2 = (Im s1)|t1 , l2,2 = (Im s2)|t2 , 0 ̸= (Im s1)|t2 ⊂ l2,1,
0 ̸= (Im s2)|t1 ⊂ l1,1. Let e1, e2 be local basis corresponding to s1, s2, respectively, and e0 be the nonzero
section of OP1 ⊂ E. Let us denote ae0 + be1 + ce2 by the matrix t(a b c). Since n(l′∗) = 1, we can wright
l∗ by the form

l1,2 = C

⎛

⎝
0
1
0

⎞

⎠ , l1,1 = C

⎛

⎝
0
1
0

⎞

⎠+ C

⎛

⎝
0
0
1

⎞

⎠ , l2,2 = C

⎛

⎝
0
0
1

⎞

⎠ , l2,1 = C

⎛

⎝
0
1
0

⎞

⎠+ C

⎛

⎝
0
0
1

⎞

⎠

l3,2 = C

⎛

⎝
a+ b
1
1

⎞

⎠ , l3,1 = C

⎛

⎝
a
1
0

⎞

⎠+ C

⎛

⎝
b
0
1

⎞

⎠ ,

where a, b ∈ C. The exact sequence (5.11) splits if and only if (a, b) = (0, 0), and parabolic bundles
defined by (a, b), (a′, b′) are isomorphic to each other if and only if (a, b), (a′, b′) are the same up to scalar
multiplicities. In this way, we also prove that Pw(−2) ∼= P1. The parabolic bundles p12, p13, p23 in the
proof of Proposition 5.2.1 correspond to the case a + b = 0, b = 0, a = 0, respectively. Let us fix a ̸= 0
and put µ = a+ b. Let l̃∗ be the parabolic structure defined by

l̃1,2 = C

⎛

⎝
0
1
0

⎞

⎠ , l̃1,1 = C

⎛

⎝
0
1
0

⎞

⎠+ C

⎛

⎝
0
0
1

⎞

⎠ , l̃2,2 = C

⎛

⎝
0
0
1

⎞

⎠ , l̃2,1 = C

⎛

⎝
0
1
0

⎞

⎠+ C

⎛

⎝
0
0
1

⎞

⎠

l̃3,2 = C

⎛

⎝
1
1
1

⎞

⎠ , l̃3,1 = C

⎛

⎝
1
µ
a
0

⎞

⎠+ C

⎛

⎝
1
1
1

⎞

⎠ .

When µ ̸= 0, the homomorphism defined by the matrix

⎛

⎝
µ 0 0
0 1 0
0 0 1

⎞

⎠

is an isomorphism from (E, l̃∗) to (E, l∗). When µ = 0, (E, l̃∗) and (E, l∗) are parabolic bundles corre-
sponding to p3 and p12 in the proof of Proposition 5.2.1, respectively. So p3 and p12 are infinitesimally
close to each other. In the same way, we can see that p1, p2 are infinitesimally close to p23, p13, respectively.

5.2.2 The moduli space of λ-connections

In this subsection, we consider the compactification of the moduli space of parabolic connections by using
λ-connections. Let Mw

3 (t,ν) be the moduli space of rank 3 w-stable ν-parabolic logarithmic connection
on (P1, t). Let Mw

3 (t,ν)0 be the moduli space of λν-parabolic λ-connections over (P1, t) whose underlying
parabolic bundle is w-stable, that is,

Mw
3 (t,ν)0 := {(λ, E,∇, l∗) | (E, l∗) ∈ Pw(−2)} / ∼ .
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Here two objects (λ1, E1,∇1, (l1)∗), (λ2, E2,∇2, (l2)∗) are equivalent if there exists an isomorphism σ : (E1, (l1)∗) →
(E2, (l2)∗) and µ ∈ C∗ such that the diagram

E1 E1 ⊗ Ω1
P1(D(t))

E2 E2 ⊗ Ω1
P1(D(t))

∇1

σ σ⊗id

µ∇2

commutes. The locus defined by λ = 0 on Mw
3 (t,ν)0 is isomorphic to the projectivization PT ∗Pw(−2)

of the cotangent bundle of Pw(−2). By definition,

Mw
3 (t,ν)0 := {λ ̸= 0} = Mw

3 (t,ν)0 \ PT ∗Pw(−2)

is just the moduli space of ν-parabolic connections whose underlying parabolic bundle is w-stable. The
following result when ν1,0 + ν2,0 + ν3,0 = 0 is a version of Proposition 4.6 in [LS] in the present setting.

Theorem 5.2.2. Assume that 2/9 < w < 1/3. Then we have

Mw
3 (t,ν)0 ∼=

{
P1 × P1 ν1,0 + ν2,0 + ν3,0 ̸= 0
P(OP1 ⊕OP1(−2)) ν1,0 + ν2,0 + ν3,0 = 0.

Proof. Let U0 := C and U∞ := C. For a ∈ U0 and b ∈ U∞, let us define a parabolic structure (la)∗ and
(lb)∗ on OP1 ⊕OP1(−1)⊕OP1(−1) by

(la)1,2 = (lb)1,2 = C

⎛

⎝
0
1
0

⎞

⎠ , (la)1,1 = (lb)1,1 = C

⎛

⎝
0
1
0

⎞

⎠+ C

⎛

⎝
0
0
1

⎞

⎠ ,

(la)2,2 = (lb)2,2 = C

⎛

⎝
0
0
1

⎞

⎠ , (la)2,1 = (lb)2,1 = C

⎛

⎝
0
1
0

⎞

⎠+ C

⎛

⎝
0
0
1

⎞

⎠ ,

(la)3,2 = C

⎛

⎝
a+ 1
1
1

⎞

⎠ , (la)3,1 = C

⎛

⎝
a
1
0

⎞

⎠+ C

⎛

⎝
1
0
1

⎞

⎠ , (lb)3,2 = C

⎛

⎝
1 + b
1
1

⎞

⎠ , (lb)3,1 = C

⎛

⎝
1
1
0

⎞

⎠+ C

⎛

⎝
b
0
1

⎞

⎠ .

Then (U0, a) and (U∞, b) define coordinates on Pw(−2), and we have a = 1/b when a, b ̸= 0. Put

c11(z) = ν2,0(t2 − t3)(z − t1) + ν1,0(t1 − t3)(z − t2),

c22(z) = ν2,1(t2 − t3)(z − t1) + ν1,2(t1 − t3)(z − t2),

c33(z) = ν2,2(t2 − t3)(z − t1) + ν1,1(t1 − t3)(z − t2),

c012(a) = a(1+ν1,0+ν2,0−ν1,2−ν2,1)+(1−(ν1,2+ν2,1+ν3,1)), c
∞
12(b) = (1−ν1,2−ν2,1−ν3,0)+b((ν1,1+ν2,2+ν3,2)−1),

c013(a) = a((ν1,2+ν2,1+ν3,2)−1)+(1−(ν1,1+ν2,2+ν3,0)), c
∞
13(b) = (1−ν1,1−ν2,2−ν3,1)+b(1+ν1,0+ν2,0−ν1,1−ν2,2),

c031 = c∞21 = −(ν1,0 + ν2,0 + ν3,0),

c023 = (ν1,2 + ν2,1 + ν3,2)− 1, c∞23(b) = (ν1,2 + ν2,1 + ν3,2)− 1 + (1 + b)(ν1,0 + ν2,0 + ν3,0),

c032(a) = (ν1,1 + ν2,2 + ν3,2)− 1 + (a+ 1)(ν1,0 + ν2,0 + ν3,0), c
∞
32 = (ν1,1 + ν2,2 + ν3,2)− 1,

∇0(a) := d+

⎛

⎝
c11(z) c012(a)(z − t1)(z − t2) c013(a)(z − t1)(z − t2)

0 (z − t1)(z − t2) + c22(z) c023(t3 − t1)(z − t2)
c031h

′(t3) c032(a)(t3 − t2)(z − t1) (z − t1)(z − t2) + c33(z)

⎞

⎠ dz

h(z)
,

Φ0(a) :=

⎛

⎝
0 a(a+ 1)(z − t1)(z − t2) −a(a+ 1)(z − t1)(z − t2)

h′(t3) 0 −(a+ 1)(t3 − t1)(z − t2)
−ah′(t3) a(a+ 1)(t3 − t2)(z − t1) 0

⎞

⎠ dz

h(z)
,

∇∞(b) := d+

⎛

⎝
c11(z) c∞12(b)(z − t1)(z − t2) c∞13(b)(z − t1)(z − t2)

c∞21h
′(t3) (z − t1)(z − t2) + c22(z) c∞23(b)(t3 − t1)(z − t2)
0 c∞32(t3 − t2)(z − t1) (z − t1)(z − t2) + c33(z)

⎞

⎠ dz

h(z)
,
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Φ∞(b) :=

⎛

⎝
0 b(1 + b)(z − t1)(z − t2) −b(1 + b)(z − t1)(z − t2)

bh′(t3) 0 −b(1 + b)(t3 − t1)(z − t2)
−h′(t3) (1 + b)(t3 − t2)(z − t1) 0

⎞

⎠ dz

h(z)
.

Then we have
Bun−1(U0) ∼= P(C∇0 ⊕ CΦ0), Bun

−1(U∞) ∼= P(C∇∞ ⊕ CΦ∞),

where Bun: Mw
3 (t,ν)0 → Pw(−2) is the forgetful map. We can see that

∇∞ =

⎛

⎝
a−1 0 0
0 1 0
0 0 1

⎞

⎠ (∇0−(ν1,0+ν2,0+ν3,0)a
−1Φ0)

⎛

⎝
a 0 0
0 1 0
0 0 1

⎞

⎠ , Φ∞ =

⎛

⎝
a−1 0 0
0 1 0
0 0 1

⎞

⎠ (a−2Φ0)

⎛

⎝
a 0 0
0 1 0
0 0 1

⎞

⎠ ,

and so we have

(∇∞,Φ∞) ∼= (∇0,Φ0)

(
1 0

−(ν1,0 + ν2,0 + ν3,0)a−1 a−2

)
.

Hence we obtain the theorem.

Let us consider the relation between the moduli space of ν-parabolic φ-connections Mα
3 (t,ν) and the

moduli space of λν-parabolic λ-connections Mw
3 (t,ν)0. We assume that νi,0 ̸= νi,1 ̸= νi,2 ̸= νi,0 for each i

for simplicity. Let ϕ : M̂α
3 (t,ν) → P(Ω1

P1(D(t))⊕OP1),ϕ′ : Mα
3 (t,ν) → P2 and ρ : P(Ω1

P1(D(t))⊕OP1) →
P2 be the morphism defined in Section 4 (see the diagram (4.28) in the proof of Theorem 4.1.1). Let
Di ⊂ P(Ω1

P1(D(t))⊕OP1) be the fiber over ti and D̂i be the strict transform of Di under ϕ. LetHi = ρ(Di)

and Ĥi be the strict transform of Hi under ϕ′. Let D0 be the section of P(Ω1
P1(D(t)) ⊕ OP1) over P1

defined by the injection Ω1
P1(D(t)) ↪→ Ω1

P1(D(t)) ⊕ OP1 . Let bi,j ∈ P(Ω1
P1(D(t)) ⊕ OP1) be the point

defined in the Subsection 4.7 and put ci,j = ρ(bi,j) ∈ P2. We can see that three points c1,i, c2,j , c3,k are
on the same line if and only if ν1,i + ν2,j + ν3,k = 1, and six points c1,i1 , c1,i2 , c2,j1 , c2,j2 , c3,k1 , c3,k2 are on
the same conic if and only if ν1,i1 + ν1,i2 + ν2,j1 + ν2,j2 + ν3,k1 + ν3,k2 = 2.

The following proposition follows from the proof of Proposition 4.7.1 and Proposition 4.7.3.

Proposition 5.2.3. Assume that 0 < αi,j ≪ 1 and νi,0 ̸= νi,1 ̸= νi,2 ̸= νi,0 for each i. Take (E,∇, l∗) ∈
Mα

3 (t,ν). Then the type of (E, l∗) is one of the following:

(i) E ∼= OP1 ⊕OP1(−1)⊕OP1(−1), #{i | OP1 |ti ⊂ l(i)1 } = 0, n(l′∗) = 1, and the condition (∗) holds.

(i)′ E ∼= OP1 ⊕OP1(−1)⊕OP1(−1), #{i | OP1 |ti ⊂ l(i)1 } = 0, n(l′∗) = 1, and the condition (∗) does not
hold.

(ii) E ∼= OP1 ⊕OP1(−1)⊕OP1(−1), #{i | OP1 |ti ⊂ l(i)1 } = 1, n(l′∗) = 1, and the condition (∗) holds.

(iii) E ∼= OP1 ⊕OP1(−1)⊕OP1(−1), #{i | OP1 |ti ⊂ l(i)1 } = 0, n(l′∗) ≥ 2, and the condition (∗) holds.

For (E, l∗) whose type is (iii), n(l′∗) = 3 when ν1,2+ν2,2+ν3,2 = 1 and n(l′∗) = 2 when ν1,2+ν2,2+ν3,2 ̸= 1

Assume that ν satisfies the condition

ν1,2 + ν2,2 + ν3,2 ̸= 1 (5.13)

and
ν1,j1 + ν2,2 + ν3,2 ̸= 1, ν1,2 + ν2,j2 + ν3,2 ̸= 1, ν1,2 + ν2,2 + ν3,j3 ̸= 1 (5.14)

for any j1, j2, j3 = 0, 1. When 2/9 < w < 1/3, Pw(−2) consists of parabolic bundles of the type (i) and

(i)′. We can obtain Mw
3 (t,ν)0 from M̂α

3 (t,ν) by the following three steps.
Step 1: contract the locus consisting of the type (ii) and (iii). We have

{(E,∇, l∗) ∈ Mα
3 (t,ν) | the type of (E, l∗) is (ii)} = (ϕ−1(b1,0)\D1)∪ (ϕ−1(b2,0)\D2)∪ (ϕ−1(b3,0)\D3).

By Proposition 4.7.3, ϕ−1(bi,j) is a (−1)-curve. From (4.25), the closure of the set

{(E,∇, l∗) ∈ Mα
3 (t,ν) | l′i and l′j lie on some subbundle OP1(−1) ∼= F ′ ⊂ OP1(−1)⊕OP1(−1)}

on Mα
3 (t,ν) is the closure of the locus defined by

(h′(ti)(νi,2 − resti(
dz

z−t3
))− p)(tj − q)− (h′(tj)(νj,2 − restj (

dz
z−t3

))− p)(ti − q) = 0,
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where (q, p) is the coordinate defined in the proof of Proposition 4.7.1, which is just the strict transform
L̂ij ⊂ Mα

3 (t,ν) of the line Lij ⊂ P2 passing through ci,2 and cj,2 under ϕ′. Since any cm,n for (m,n) ̸=
(i, 2), (j, 2) is not on Li,j from the condition (5.13) and (5.14), the intersection number of L̂ij is −1. By

contracting ϕ−1(b1,0),ϕ−1(b2,0),ϕ−1(b3,0) and the inverse images of L̂12, L̂23, L̂13 under PC, we obtain a

morphism ρ1 : M̂α
3 (t,ν) → X1, where X1 is a smooth projective surface.

Step 2: contract the locus defined by rank φ = 2. Since ϕ : M̂α
3 (t,ν) → P(Ω1

P1(D(t))⊕OP1) is the blow-

up at 9 points {bi,j}1≤i≤3
0≤j≤2, D̂i is a (−3)-curve for each i. Ĥi intersects with ϕ−1(ci,0) and L̂jm (j,m ̸= i)

at one point, respectively. So the image ρ1(D̂i) ⊂ X1 is a (−1)-curve. Contracting D̂1, D̂2, D̂3, we obtain
a morphism ρ2 : X1 → X2. When ν1,0 + ν2,0 + ν3,0 = 0, there exists a conic C ⊂ P2 passing through six

points c1,1, c1,2, c2,1, c2,2, c3,1, c3,2. Let Ĉ ⊂ M̂α
3 (t,ν) be the strict transform of C under ρ ◦ ϕ = ϕ′ ◦PC.

Then ρ1(Ĉ) ∼= ρ2(ρ1(Ĉ)) is a projective line and intersects with ρ2(ρ1(ϕ−1(bi,1))) for each i = 1, 2, 3.
So X2 is isomorphic to P(OP1 ⊕ OP1(−2)). Since C does not intersect with ϕ′−1(ci,0), and C intersects

with each Ĥi and L̂mn at two points, we have ρ2(ρ1(Ĉ))2 = ρ1(Ĉ)2 = Ĉ2 = −2. ρ2(ρ1(Ĉ)) is the unique
section whose intersection number is −2. When ν1,0+ν2,0+ν3,0 ̸= 0, there is no projective line contained
in X2 which intersects with ρ2(ρ1(ϕ−1(bi,1))) for each i = 1, 2, 3. So X2 is isomorphic to P1 × P1.

Step 3: change D0 to PT ∗Pw(−2). D0 and PT ∗Pw(−2) are infinitesimally close to each other. A
ν-parabolic connection

φ =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ , ∇ = d+

⎛

⎝
0 a12(z) a13(z)
1 (z − t1)(z − t2)− p 0
0 z − q (z − t1)(z − t2) + p

⎞

⎠ dz

h(z)

whose apparent singularity q is not t1, t2 and t3 has the limits

(
p−2 0 0
0 p−2 0
0 0 1

)
(φ,∇)

(
p2 0 0
0 1 0
0 0 p−1

) ((
1 0 0
0 0 0
0 0 0

)
,

(
0 −1 g(z)
1 0 0
0 z − q 1

)
dz
h(z)

)
,

p→∞
(5.15)

(
1 0 0
0 p 0
0 0 p2

)
(φ,∇)

(
p−1 0 0
0 p−2 0
0 0 p−3

) ((
0 0 0
0 0 0
0 0 0

)
,

(
0 −1 g(z)
1 −1 0
0 z − q 1

)
dz
h(z)

)
,

p→∞
(5.16)

where g(z) =
∑3

i=1
1

(q−ti)h′(ti)

∏
j ̸=i(z − tj). Put

C(q; z) :=

⎛

⎜⎝

(t3−t1)h
′(t3)

(t2−t1)(q−t1)(q−t3)
(t3−t2)(z+q−t1−t2)

(t1−t2)(q−t2)
(t3−t1)(z+q−t1−t2)

(t2−t1)(q−t1)

0 t3−t2
t1−t2

t3−t1
t2−t1

0 (t3−t2)(q−t1)
t1−t2

(t3−t1)(q−t2)
t2−t1

⎞

⎟⎠ ,

C1(q; z) :=

⎛

⎝
−(q − t2)(q − t3) 0 z + q − t2 − t3

0 −(q − t2)(q − t3) 0
0 0 1

⎞

⎠ ,
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C2(q; z) :=

⎛

⎝
−(q − t2)−1(q − t3)−1 0 0

0 1 1
0 0 q − t1

⎞

⎠ .

Then we have

C1(q; z)

⎛

⎝

⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ ,

⎛

⎝
0 −1 g(z)
1 0 0
0 z − q 1

⎞

⎠ dz

h(z)

⎞

⎠C2(q; z) =

⎛

⎝

⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ ,

⎛

⎝
0 (z − t2)(z − t3) 0
1 0 0
0 z − q z − t1

⎞

⎠ dz

h(z)

⎞

⎠ ,

and

C(q; z)−1

⎛

⎝
0 −1 g(z)
1 −1 0
0 z − q 1

⎞

⎠ dz

h(z)
C(q; z) =

(t3 − t1)(q − t2)

h′(t2)(q − t1)(q − t3)
Φ0(− (t3−t2)(q−t1)

(t3−t1)(q−t2)
).

So a ν-parabolic φ-connection with rankφ = 1 and a parabolic Higgs bundle is infinitesimally closed to
each other. In the case of q = t1, t2, t3, we can also see it by using (4.27) and (4.29). Therefore we can

obtain Mw
3 (t,ν)0 from M̂α

3 (t,ν).

5.2.3 Parabolic bundles and the apparent singularities

We fix 2/9 < w < 1/3. Let V0 ⊂ Pw(−2) be the subset consisting of parabolic bundles of the type
(i). The set V0 is the set of Pw(−2) minus 3 points by Proposition 5.2.1. Let (E, l∗) ∈ V0 and ∇ be a
λν-logarithmic λ-connection on (E, l∗). Assume that ν1,0 + ν2,0 + ν3,0 ̸= 0. Then there exists a unique
filtration E =: F0 ⊃ F1 ⊃ F2 ⊃ 0 such that F2

∼= OP1 , F1
∼= OP1 ⊕OP1(−1), and ∇(F2) ⊂ F1⊗Ω1

P1(D(t)).
We define the apparent singularity App(E,∇, l∗) by the zero of the nonzero homomorphism

OP1(−1) ∼= F1/F2
∇→ (E/F1)⊗ Ω1

P1(D(t)) ∼= OP1 .

When λ ̸= 0, this definition is the same of the definition in Subsection 4.3.

Remark 5.2.4. Assume that (E, l∗) ∈ Pw(−2) \ V0. Then for any parabolic connection ∇ over (E, l∗),
there exists a unique filtration E = F0 ⊃ F1 ⊃ F2 ⊃ 0 such that F2

∼= OP1 , F1
∼= OP1 ⊕ OP1(−1), and

∇(F2) ⊂ F1 ⊗ Ω1
P1(D(t)). However, we can see that for a parabolic Higgs field Φ over (E, l∗), such

filtration is not unique. So we can not define the apparent map App over Mw
3 (t,ν)0.

The following is a version of Theorem 4.3 in [LS] in the present setting.

Proposition 5.2.5. We fix 2/9 < w < 1/3 and assume that ν1,0 + ν2,0 + ν3,0 ̸= 0. Then the morphism

App× Bun: Bun−1(V0) −→ P1 × V0

is finite and its generic fiber consists of three points.

Proof. Consider fibers of App× Bun. We have

(µ∇0 + λΦ0)

⎛

⎝
1
0
0

⎞

⎠ =

⎛

⎝
µc11(z)
λh′(t3)

(µc031 − λa)h′(t3)

⎞

⎠ dz

h(z)
.

So F1 is generated by the sections t(1, 0, 0) and t(0,λ, (µc031 − λa)). Since

(µ∇0+λΦ0)

⎛

⎝
0
λ

µc031 − λa

⎞

⎠ =

⎛

⎝
∗

µλ((z − t1)(z − t2) + c22(z)) + (µc031 − λa)(µc023 − λ(a+ 1))(t3 − t1)(z − t2)
λ(µc032(a) + λa(a+ 1))(t3 − t2)(z − t1) + µ(µc031 − λa)((z − t1)(z − t2) + c33(z))

⎞

⎠ ,

the apparent singularity of µ∇0 + λΦ0 is the zero of the polynomial

λ{λ(µc032(a) + λa(a+ 1))(t3 − t2)(z − t1) + µ(µc031 − λa)((z − t1)(z − t2) + c33(z))}
− (µc031 − λa){µλ((z − t1)(z − t2) + c22(z)) + (µc031 − λa)(µc023 − λ(a+ 1))(t3 − t1)(z − t2)}

=f1(a;µ,λ)(z − t1) + f2(a;µ,λ)(z − t2),

57



where

f1(a;µ,λ) =(t3 − t2){a(a+ 1)λ3 + (c032(a) + (ν2,2 − ν2,1)a)λ
2µ− (ν2,2 − ν2,1)c

0
31µ

2λ},
f2(a;µ,λ) =(t3 − t1){a2(a+ 1)λ3 − ((ν1,2 − ν1,1)a+ 2a(a+ 1)c031 + a2c032(a))λ

2µ

+ ((ν1,2 − ν1,1)c
0
31 + 2ac031c

0
23 + (a+ 1)(c031)

2)λµ2 − (c031)
2c023µ

3}.

Hence App: Bun−1((E, (la)∗)) ∼= P(C∇0(a)⊕ CΦ0(a)) → P1 is defined by

App(µ∇0 + λΦ0) = (f1(a;µ,λ) + f2(a;µ,λ) : t1f1(a;µ,λ) + t2f2(a;µ,λ)),

which implies that a generic fiber consists of three points. Since App × Bun is proper, App × Bun is
finite.
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