
Kobe University Repository : Kernel

PDF issue: 2025-05-21

Study on AI-Powered Cybersecurity for Threat
Detection and Mitigation

(Degree)
博士（工学）

(Date of Degree)
2024-03-25

(Date of Publication)
2025-03-01

(Resource Type)
doctoral thesis

(Report Number)
甲第8933号

(URL)
https://hdl.handle.net/20.500.14094/0100490158

※ 当コンテンツは神戸大学の学術成果です。無断複製・不正使用等を禁じます。著作権法で認められている範囲内で、適切にご利用ください。

Thein, Thin Tharaphe

Doctoral Dissertation

Study on AI-Powered Cybersecurity for Threat
Detection and Mitigation

(脅威の検知と緩和のためのAIを活用したサイバーセキュリティに関する研究)

January 2024

Graduate School of Engineering,
Kobe University

THIN THARAPHE THEIN

Acknowledgements
First and foremost, I would like to extend my heartfelt gratitude to all those who have contributed
to the completion of this thesis. Especially, I would like to express my sincere gratitude to Prof.
Yoshiaki Shiraishi for his guidance as academic advisor and huge support in the progression of
this research. I am also deeply thankful for the mentorship provided by Prof. Masakatu Morii.
Furthermore, I am grateful to all individuals whom have engaged in constructive discussions and
provided feedback on my research during various research meetings and symposiums, which
have significantly contributed to the development of this research. I would like to give special
thanks to Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan for
providing me with a scholarship that enabled my study at Kobe University. Last but not least,
I greatly appreciate my family and friends for their continuous encouragement and unwavering
support throughout my academic journey.

i

Abstract
In today’s digital world, cyber security has become a significant concern as cyber threats
progressively evolve and become more complex. The ability to quickly detect, respond to, and
recover from emerging cyber-attacks has become a critical issue in cybersecurity operations.
The dynamic and stealthy nature of cyber-attacks often makes the static defense approach
ineffective. With the emergence of AI, AI can serve as a powerful technique for defending
against cyber-attacks. By automating repetitive analysis processes with massive amounts of
data, AI can generate intelligent data insights and predict outcomes with high precision. Many
research and development processes have been dedicated to AI-driven cybersecurity to detect
and mitigate large-scale cyber-attacks. However, with the ever-evolving and constantly changing
nature of threats, it is essential to regularly update and retrain the AI model to keep up with the
changing threat landscape.

Various security vendors and expert communities usually publish the newly emerged threat
information in the form of incident reports on the Internet. However, those reports are often
written in unstructured text (various formats), and they are not in the machine-readable format
to be automatically analyzed and utilized as threat intelligence. Therefore, in Chapter 2 of the
dissertation, we introduce the threat modeling techniques with the neural network model to
identify the cyber kill chain stages of the unstructured security text. Security experts can utilize
the seven stages of the cyber kill chain framework to understand the adversary’s specific goals
and actions, and they can implement necessary security controls to defend the organization’s
network.

The objective of this study is to develop a machine learning model that can automatically
identify cyber kill chain stages and extract the Indicator of Compromises (IoCs) (e.g., domain
names, IP, URL) from unstructured security text, which contains a lot of information about
specific security breaches. Moreover, we combine the cyber kill chain framework, which
emphasizes the steps involved in a cyberattack, and MITRE ATT&CK, which details the
techniques and tactics employed by the attackers, to provide the integrated analysis of threat
information. We utilize the example techniques from ATT&CK for Enterprise (each technique
is manually labeled with a specific cyber kill chain stage) as a training dataset, which is a novel
approach since the training data and test data are from different data contexts (i.e., the training
dataset contains techniques of ATT&CK and test dataset is security articles). The technique
in ATT&CK represents the adversary’s tactical goal and how it is achieved by performing a
specific action. The knowledge extracted from our model can be used to build threat taxonomy,

ii

or the derived IoCs can be utilized as a cyber threat intelligence feed. Though this study
presents a novel way to identify the unstructured threat information by combining ATT&CK
and cyber kill chain framework, the experimental results highlight the need for further research
and development to improve the model efficiency.

To further enrich the threat feeds, we also explored the detection of malicious domains by
leveraging the domain name’s semantic features, lexical, and DNS-based features in Chapter 3
of the dissertation. Our objective is to examine the utilization of different groups of features in
order to enhance the detection ability of the malicious domain. First, we introduce the analysis of
the Domain Name System (DNS) to find the footprints left by the malicious domain. We employ
active DNS to query the DNS-related data for the given domain name and subsequently build
the domains’ DNS information feature set. The DNS features include domain address records,
name server records, mail exchange records, time-to-live, active time, and lifetime of the domain.
Additionally, we make a second group of features called lexical features, which comprises the
number of consecutive characters, digits, words, and domain length. Furthermore, we introduce
semantic features by computing the domain reputation score by the N-gram method.

In the experiment, we examine the effectiveness of each feature group for detecting malicious
domains. The experimental results indicate incorporating all groups of features enhances the
recognition of the malicious domains. One significant limitation of this study is the collection of
the active DNS data since it takes time to query the DNS-related information for every domain
in the dataset. Moreover, due to the constraint of the DNS data collection, the dataset used in the
experiment is relatively small, which highlights further research and improvements to ensure
the robustness of the model.

While threat feeds can be utilized to protect the network from cyber-attacks, additional
measures are necessary to defend against newly emerging malware. Therefore, we extend
our study scope to network logs analysis to better understand threats and implement robust
countermeasures. The research findings of the network logs analysis are described in Chapters
4 and 5 of this dissertation.

We introduced a few-shot graph neural network model to identify malicious IoT network traffic
in Chapter 4. The existing malicious traffic detection systems that rely on supervised machine
learning require a considerable amount of malware and benign traffic samples to train the
effective learning model. Therefore, this study aims to identify the new type of malware traffic
with a few labeled traffic samples, thereby minimizing the requirement of model retraining and
labeling costs. Given that the primary goal of few-shot learning is to recognize new, unobserved
data categories with limited labeled data samples without requiring model retraining for the
newly emerged data categories, it aligns well with our objective.

iii

Since the input of our model is an image, we initially preprocess the bidirectional network
flow as an RGB color image. We also employed the CNN model pre-trained on ImageNet
to extract network features from the transformed network images. Our few-shot model learns
how close the two network flows are in the embedding space through training on various few-
shot tasks and subsequently generalizing this knowledge to recognize the new unseen attack
category. The evaluation results indicate that our model can recognize newly emerged network
traffic categories with limited labeled samples at the few-shot testing stage and outperform the
baseline models. While few-shot learning offers the advantage that the training and test data
categories do not exactly need to be the same, it has limitations. Since the number of classes is
fixed during the meta-training stage, if we train the model with 𝑁 classes, only 𝑁 classes can
be predicted at a time in the meta-testing stage. Moreover, the current methods have limitations
in the deployment of the real-time network as it has time complexity and cost associated with
internal graph construction. This highlights the need to develop a lightweight and efficient
model suitable for real-time deployment.

In Chapter 5, we further extend our network traffic identification model to the privacy-
preserving and distributed learning framework, where we can collaboratively train the model
and share the threat intelligence without privacy concerns. This time, our model emphasizes
tackling the challenges posed by applying federated learning to cybersecurity data, including
data heterogeneity and client poisoning attacks. We have analyzed data poisoning and model
poisoning attacks with different data partition scenarios (to simulate data heterogeneity) to
examine their effects and proposed a robust modeling technique accordingly. The experimental
results verify that our model outperforms almost all baseline methods. On a separate note,
our model is designed for cross-silo federated learning where the client number is relatively
small, and each client has sufficient computing power. In the experiment, we allow every client
to participate in every communication round. However, for large-scale IoT devices, this full
participation assumption is infeasible as the server needs to wait for all clients. The server must
wait indefinitely if one client struggles to complete the model training. This highlights the need
for further research and development on client selection and handling of the straggling clients
for the federated learning paradigm.

This thesis provides various modeling techniques for cybersecurity datasets, such as deep
neural networks, ensemble machine learning, graph neural networks, and federated learning.
We have performed comprehensive experiments to demonstrate the effectiveness of the proposed
models. We hope our methodologies, insights, and research findings will serve as a foundation
in advancing AI-driven cybersecurity.

iv

Contents

Acknowledgements i

Abstract ii

List of Figures viii

List of Tables ix

1 Introduction 1
1.1 Background and Motivation . 1
1.2 AI Techniques in Cybersecurity Domain . 3

1.2.1 Machine Learning and Deep Learning 3
1.2.2 Cybersecurity Dataset . 4
1.2.3 Performance Evaluation Criteria . 4

1.3 Data-driven Cyber Intelligence . 5
1.4 Cyber Threat Intelligence Feed . 6
1.5 Our Study . 7

1.5.1 Paragraph-based Estimation of Cyber Kill Chain Phase from Threat
Intelligence Reports . 8

1.5.2 Malicious Domain Detection Based on Decision Tree 8
1.5.3 Few-Shot Learning-Based Malicious IoT Traffic Detection with Proto-

typical Graph Neural Networks . 9
1.5.4 Personalized Federated Learning-based Intrusion Detection System:

Poisoning Attack and Defense . 9
1.6 Chapter Organizations . 9

2 Paragraph-based Estimation of Cyber Kill Chain Phase from Threat Intelligence
Reports 11
2.1 Abstract . 11
2.2 Introduction . 11
2.3 Background . 12

2.3.1 Cyber Kill Chain . 12
2.3.2 Diamond Model of Intrusion Analysis 14
2.3.3 Existing Study on Threat Modeling and Threat Extraction 14

2.4 Proposed Model . 15
2.4.1 Word Embedding . 16

v

2.4.2 Paragraph-based Estimation of the Cyber Kill Chain Phase 16
2.4.3 Core Features Extraction from Paragraph mainly with ATT&CK 18

2.5 Evaluation . 18
2.5.1 Results . 19

2.6 Conclusion . 19

3 Malicious Domain Detection Based on Decision Tree 21
3.1 Abstract . 21
3.2 Introduction . 21
3.3 Background . 23

3.3.1 Existing Study on Malicious Domain Detection 23
3.3.2 Domain Name System . 23
3.3.3 DNS Traffic Analysis . 25

3.4 Proposed Model . 26
3.4.1 Data Collector . 27
3.4.2 Feature Extraction . 27

3.5 Evaluation . 29
3.5.1 Results . 30

3.6 Conclusion . 31

4 Few-Shot Learning-Based Malicious IoT Traffic Detection with Prototypical Graph
Neural Networks 32
4.1 Abstract . 32
4.2 Introduction . 32
4.3 Background . 34

4.3.1 Network Intrusion Detection System 34
4.3.2 Signature-based vs. Anomaly-based IDS 36
4.3.3 Few-shot Learning . 36
4.3.4 Graph Neural Networks for Few-shot Learning 37
4.3.5 Existing Study on IoT Network Traffic Detection 38

4.4 Proposed Method . 40
4.4.1 Few-shot Learning Strategy . 40
4.4.2 Data Preprocessing . 41
4.4.3 Few-shot Prototypical Graph Neural Network 42
4.4.4 Training Objectives and Parameters 44

4.5 Evaluation . 46
4.5.1 Results . 47
4.5.2 Discussion . 48

4.6 Conclusion . 50

5 Personalized Federated Learning-based Intrusion Detection System: Poisoning
Attack and Defense 51
5.1 Abstract . 51
5.2 Introduction . 51
5.3 Background . 54

vi

5.3.1 Federated Learning . 54
5.3.2 Existing Study on Federated Learning-based IDS 56
5.3.3 Impact of Statistical Heterogeneity in Client Data 57
5.3.4 Poisoning Attacks against Federated Learning-based IDS 58
5.3.5 Defending Poisoning Attacks in Federated Learning 59

5.4 Proposed Method . 61
5.4.1 Convolutional Neural Network . 61
5.4.2 Local Training: A Personalized Local Model 62
5.4.3 Server-side Poisoned Client Detector 64

5.5 Evaluation . 67
5.5.1 Results . 70
5.5.2 Discussion . 71

5.6 Conclusion . 73

6 Conclusion of Our Study 75
6.1 Conclusion . 75
6.2 Contributions . 76
6.3 Future work . 78

References 79

List of Publications 87

vii

List of Figures

1.1 Overview of data-driven cyber intelligence . 6
1.2 Integration of external threat intelligence in SIEM system 8

2.1 Cyber kill chain . 13
2.2 Diamond model . 14
2.3 Outline of the paragraph-based cyber kill chain model 16
2.4 Proposed cyber kill chain phase classification model 17

3.1 Managing client requests in Domain Name System 25
3.2 Attackers using the Domain Generation Algorithm to compromise computer

system . 26
3.3 Overview of proposed malicious domain detection model 27

4.1 Network intrusion detection system . 35
4.2 Few-shot Learning . 37
4.3 Graph Convolutional Neural Networks . 38
4.4 Network traffic preprocessing . 40
4.5 Visual representation of network flows . 42
4.6 Proposed few-shot learning-based network traffic detection system 43
4.7 Confusion matrix of few-shot model on test dataset 49

5.1 Federated learning system . 55
5.2 The architecture of the federated learning-baed IDS model 59
5.3 Client drift in FedAvg algorithm . 62
5.4 The accuracy and F1 score of pFL-IDS with different ratios of malicious client 72

viii

List of Tables

1.1 Confusion matrix . 5

2.1 Kill chain phase classification result . 19

3.1 Domain features . 28
3.2 Domain reputation scores . 29
3.3 Experimental results for malicious domain detection 30

4.1 Color mapping by the Binvis binary data visualization tool 41
4.2 Statistics of image dataset used in experiment 46
4.3 Evaluation results of few-shot learning-based network traffic detection system . 47

5.1 A summary of existing works on federated learning-based IDS 56
5.2 Statistics of the mini-N-BaIoT dataset . 64
5.3 Hyperparameters . 64
5.4 Evaluation of non-IID data (scenario 1). 69
5.5 Evaluation of non-IID data (scenario 2). 69
5.6 Evaluation of IID data. 70

ix

Chapter 1

Introduction
In this chapter, we introduce the background and motivation of this study, offering the essential
concept of utilizing AI to automate the threat analysis process. We also discuss the previous
literature which enable to grasp the fundamental concepts that have motivated this research. In
addition, we introduce the AI-based methodologies explored in this study and the experimental
evaluation of our proposed techniques.

1.1 Background and Motivation
With the advancements in information technology, the Internet has become an indispensable
part of our lives. Undoubtedly, all devices connected to the Internet have the potential to be
compromised by malware attacks. As the world has become more and more interconnected,
it provides multiple interfaces for attackers to conduct cyberattacks. Cybersecurity refers to
different techniques, methods, and rules to defend cyberspace against threats, malware, fraud,
phishing, and spam. In today’s digital world, cybersecurity has become a significant concern
as cyber threats have progressively evolved and become more sophisticated. Therefore, the
capability to quickly detect, respond to, and recover from ever-growing cyber-attacks has become
a critical requirement in cybersecurity operations.

With the emergence of artificial intelligence, adversaries can now incorporate AI techniques to
launch targeted cyberattacks [1]. The dynamic and stealthy nature of cyberattacks often makes
the traditional defense approaches ineffective. The defense mechanisms that relied only on the
security expert’s knowledge and signature-based/rule-based strategy have become insufficient to
keep up with the growing threat landscape. There is a need for robust countermeasure techniques
that can detect both known and unknown threats. However, keeping up with the rapidly
expanding cyberspace while delivering an advanced threat detection model is challenging.

While AI is increasingly misused in cyberattacks, it can also serve as a powerful technique
for defending against cyberattacks, including AI-powered cyber threats [1]. AI-powered data-
driven cyber intelligence framework offers promising solutions to alleviate the ever-evolving
cyberattacks. AI can automate data analysis processes and analyze vast amounts of data
to identify potential security breaches in real-time. Moreover, AI-enabled data analysis can
recognize the threat behavior and patterns that analysts might miss, thereby providing security
experts with a deeper insight into the tactics, techniques, and procedures (TTP) utilized by threat

1

adversaries to make intelligent decisions for threat detection and mitigation. In general, we can
categorize the processes involved in data-driven cybersecurity as follows.

• Collection of massive data
• Data analytics with various techniques
• Real-time detection
• Threat mitigation & countermeasures (with expert knowledge)

The most commonly applied AI technique in the cybersecurity domain is machine learning,
which offers advantages over traditional detection methods [2]. Machine learning plays a
crucial role in combating cyber-attacks. The application areas include phishing detection [3],
spam detection [4], malware detection [5], malicious domain detection [6–8], intrusion detection
systems [9, 10], and much more. This research primarily focuses on AI-powered cybersecurity,
offering threat modeling approaches for unstructured cybersecurity text, malicious domain
detection, and intrusion detection systems. We introduce a brief explanation as follows.

• Unstructured text of cyber threat intelligence (CTI) reports: CTI is the collection and
analysis of vulnerability and threat information that can be utilized to develop various
defense mechanisms. CTI can be structured (e.g., STIX-Structured Threat Information
eXpression) or unstructured (e.g., blogs, SNS, websites) text. Various security vendors
usually publish the newly emerged threat information as incident reports (unstructured
text) on the Internet in a timely manner. However, those reports are not in the machine-
readable format to be automatically analyzed and utilized as threat intelligence. Research
efforts have been dedicated [11, 12] to the automated modeling of unstructured text of CTI
sources, which map threat actions to appropriate tactics, techniques, and procedures (TTP)
as well as cyber kill chain phases. Nevertheless, there remains potential for improvement.

• Malicious domain detection: Domains are fundamental components of the Internet.
The adversaries can utilize domain URLs as an attack communications medium and
compromise users into victims of phishing or spam. Typical defense approaches include
the use of domain blacklists, machine learning, and deep learning techniques. In machine
learning techniques, a variety of features such as domain lexical features, domain name
system features, domain semantics features, website ranking lists, and much more have
been proposed so far. Each approach offers advantages and disadvantages, and examining
the best strategies to detect the malicious domain is an ongoing area of interest.

• Intrusion detection system: A network intrusion detection system is a protection system
that scans network vulnerabilities, monitors computer networks to detect unauthorized in-
trusions, and eventually takes appropriate defense actions. The fundamental classification
approaches to detecting various network intrusions are signature-based, anomaly-based,
or a combination of both approaches. Machine learning techniques have also significantly
contributed to advancing intrusion detection systems. However, detection of zero-day
attacks, data labeling costs, and lack of labeled data are still substantial challenges for
machine learning-based intrusion detection systems.

2

In this study, we investigate the literature on AI-powered modeling techniques and focus on
improving the existing AI models in the context of cybersecurity datasets. This study aims to
extract valuable threat insights from cybersecurity data sources through AI techniques. Keep-
ing this objective, we propose and develop machine learning/deep learning models for various
security data (e.g., security articles, domain names, and network logs). To demonstrate the ef-
fectiveness of our proposed approaches, we conducted extensive experiments and a comparative
analysis with existing studies.

1.2 AI Techniques in Cybersecurity Domain
Cyber-attacks involve cybercriminals and other adversaries attempting to infiltrate computer
systems for personal gain. The victims can range from individual users to enterprises or even
government organizations. Until now, we have observed different types of attacks on cyberspace,
each imposing varying degrees of damage on the victims. The most common cyber threats and
attacks include malware, DDoS, phishing, spam, fraud, malicious code download, and malicious
domain/URL. The advancement of Artificial Intelligence (AI) offers a perfect opportunity to
detect and mitigate threats in the cybersecurity domain. AI enables the machine to perform
tasks that typically require human cognitive abilities. In recent years, AI has become a critical
component in cybersecurity as it can analyze millions of data and identify various threats in real-
time. Application areas include identifying zero-day vulnerabilities and recognizing malicious
behavior such as malware code download, phishing, and network intrusion.

1.2.1 Machine Learning and Deep Learning

Machine learning and deep learning are a sub-field of artificial intelligence that enables the
machine to learn hidden patterns and relation in data without being explicitly programmed. The
trained machine learning model can make precise predictions and decisions on new and unseen
data relevant to the training data. In contrast, the deep learning model is built upon artificial
neural networks, consisting of interconnected neurons with multiple hidden layers between the
input and output layers, to process the information. Due to the deep layers, deep neural networks
often require more training times compared to the machine learning model when training large
datasets. Convolutional neural network (CNN) is a variant of deep learning that is designed to
process data such as images and is the most commonly used method in computer vision. CNN
operates by stacking multiple convolution layers, pooling layers, batch normalization layers, and
fully connected layers to learn the spatial relations in data.

Machine learning can be further categorized into supervised, semi-supervised, and unsupervised
learning. In supervised learning, the model has knowledge of the targeted label associated with
the data; therefore, the model is trained on a fully labeled dataset. Supervised learning facilitates
the model to learn the output label associated with input data, subsequently enabling the model
to make predictions on unseen data. On the other hand, unsupervised learning is suitable for

3

training the unlabeled dataset since the model can learn patterns and relations in the data on its
own. Semi-supervised learning lies between supervised and unsupervised learning; the model
is trained on the dataset consisting of both label and unlabeled data.

1.2.2 Cybersecurity Dataset

Machine learning and deep learning techniques rely on the data to train the learning models. The
diversity of the data, the quality of the label, and the amount of data available play a significant
role in modeling the AI techniques. Various cybersecurity datasets have been studied in the
literature, including private and publicly available datasets. This section introduces some public
cybersecurity datasets utilized in the research community.

• CIC-IDS2017 [13]: This network intrusion detection dataset is obtained by simulating
a variety of attacks over a period of five days and contains benign and common cyber
attacks, which resemble the actual real-world data. The dataset includes 14 network
attacks and benign traffic, such as DoS, DDoS, Botnet, Infiltration, Heartbleed, PortScan,
and Web Attack. Moreover, it provides 84 network features retrieved from the analysis
with CICFlowMeter. This dataset has been a popular dataset in studying network intrusion
detection systems.

• UNSW-NB15 [14]: This network traffic dataset is created by combining real modern
normal activities and synthetic contemporary attack behaviors. The dataset has 49 network
features and contains normal traffic and nine types of attacks – Backdoors, DoS, Exploits,
Generic, Reconnaissance, Shellcode, Fuzzers, Analysis, and Worms.

• N-BaIoT [15]: This IoT network dataset contains a collection of network traffic from 9
commercial IoT devices infected with Mirai and BASHLITE. The dataset has 115 features
and more than 70 million traffic samples.

• CIC-AndMal2017 [16]: It is an Android malware dataset obtained from executing
malware and benign applications on real smartphones. It consists of four malware
categories: Adware, Ransomware, Scareware, and SMS malware. Moreover, the dataset
provides more than 80 features extracted by CICFlowMeter.

• ISCX-URL2016 [17]: It provides a lightweight dataset to detect and categorize malicious
URLs according to their attack type. It comprises 79 features and 5 URL categories –
benign, phishing, malware, defacement, and spam.

1.2.3 Performance Evaluation Criteria

The confusion matrix is a table that is used to measure the performance of the machine learning
and deep learning algorithms. Precisely, true positive (TP), true negative (TN), false positive

4

Table 1.1: Confusion matrix

Predicted Class
Benign Malicious

Actual Class Benign
Malicious

TP
FN

FP
TN

(FP), and false negative(FN) are used to compute the confusion matrix as indicated in Table 1.1.
FP indicates the number of normal data incorrectly classified as an attack, while FN represents
the number of attack samples incorrectly classified as normal. TP and TN denote the number of
normal or attack data that were accurately classified. The evaluation metrics, such as precision,
recall, F1 score, and accuracy, are computed based on these four values.

Accuracy =
TP + TN

TP + FP + TN + FN
, Precision =

TP
TP + FP

Recall =
TP

TP + FN
, F1 = 2 ∗ Precision × Recall

Precision + Recall

1.3 Data-driven Cyber Intelligence
The basic principle of forensic science is that every action left a trace, which we can analyze
to know what happened exactly. In the area of cybersecurity, a vast amount of data comes
from sources such as network logs, Portable Executable (PE) malware, and publicly available
threat information from expert communities. We can utilize such data to analyze, detect, and
build defense strategies to mitigate potential threats. Since AI can identify trends and hidden
patterns in the threat landscape, we can effectively employ AI to create a cyber defense system
[18]. Typically, data-driven cybersecurity involves automated data analysis and interpretation to
derive valuable knowledge from enormous threat data [19] [20]. Subsequently, these extracted
insights can further assist security experts in making countermeasure decisions to protect
critical infrastructure from cyber-attacks. Utilizing data-driven intelligence, we can automate
cybersecurity tasks such as network logs analysis, malware analysis, malicious domain detection,
and network intrusion detection. Subsequently, we can build the cybersecurity taxonomy or
knowledge graph to develop a more capable cyber defense system. Fig. 1.1 illustrates the data-
driven threat analysis framework, which combines the human expert’s knowledge and automated
data analytics to provide intelligent cyber solutions.

The following section discusses the processes involved in the data-driven threat intelligence
framework for cybersecurity risk management. To extract valuable knowledge from data,
gathering comprehensive data, data preprocessing, and effective modeling techniques are some
of the most important steps in the data-driven strategy. Collecting comprehensive cybersecurity

5

Open-source threat data

Enrich with external
organization data

Network monitoring

Cyber Data

Preprocess data

Extracted
knowledge

from raw data

Visualization Artificial
Intelligence

Data Analytics

Countermeasures
& Intelligence
Cyber Solutions

Collect data

A
na

ly
ze

Data Insights

Ex
pe

rt’
s

kn
ow

le
dg

e

Decide &

Implement

CERT/CSIRT

Fig. 1.1. Overview of data-driven cyber intelligence

data is extremely important, as the more data available, the better the AI model can learn.
Data can be gathered from network logs, network traffic security reports, PE malware, and
system events. We need to clean and preprocess the collected data as required by the AI model.
Following this, data can be labeled with expert knowledge; some synthetic data can be generated
if data categories are highly imbalanced. Moreover, it is necessary to extract important and
meaningful features from the processed data to fit the data into the target learning model. Finally,
we can develop a suitable AI model while considering the data’s specific characteristics. Various
models such as random forest, neural networks, graph neural networks, few-shot learning, and
federated learning can be utilized to develop a remarkable learning model. Subsequently, the
effectiveness of trained AI models can be evaluated using evaluation metrics such as accuracy,
precision, recall, or F1 score. Since the AI models are not 100% accurate, the extracted
knowledge supposedly need to be combined with security experts’ knowledge to make critical
decisions. Data-driven cyber intelligence can be applied in various application areas, such as
analyzing massive volumes of data generated by IoT devices and detecting anomalies in critical
infrastructure, digital twins, smart cities, industrial control systems, and healthcare.

1.4 Cyber Threat Intelligence Feed
A threat intelligence feed is a series of data comprising knowledge about potential cyberattacks
gathered from a variety of sources. The threat intelligence feed can be enriched in various ways,
some of which are described as follows.

• Monitoring and analysis of network traffic
• Malware analysis
• Web Crawling to identify attacks such as phishing
• Open-source security-related data

6

• Insights from security experts
• Adversaries’ Tactic, Technique, and Procedure (TTP)

This feed contains threat data such as IoCs, suspicious IPs and domains, and malware signatures
and is continuously being updated to include the latest information about the threats. By utilizing
this threat feed, it is expected to be able to predict future attacks by assessing interrelated
threat actions between existing attacks, enabling security professionals to implement proactive
countermeasures. This feed can be used to block known malicious sources, detect network
anomalies, and generate alerts if suspicious behaviors are observed. In addition, the threat
intelligence feeds can be in a structured format (e.g., STIX-Structured Threat Information
expression) or unstructured text (e.g., blog posts, SNS tweets, websites). The structured feeds
are machine-readable and can be utilized immediately by SIEM – security information and
event management – and other cybersecurity systems to block emerging threats at the earlier
stages. On the other hand, an unstructured text format allows human analysts to have a deeper
understanding of the new unseen threats since the detailed analysis of new threat information is
often published in a timely manner by security experts.

Generally, SIEM is a security solution designed to detect potential threats and is a key component
of the security operations center (SOC). SIEM system collects, evaluates, and analyzes the
network logs to recognize suspicious threat behaviors before they can compromise the entire
network. SIEM tools are great at detecting known attacks; however, the constant evolution of
threats imposes a major challenge for SIEM tools in keeping up with the new threat behaviors
and techniques employed. In addition, threat information of both structured and unstructured
formats should be utilized to comprehensively understand threat behaviors and improve network
protection. As illustrated in Fig. 1.2, the integration of SIEM with cyber threat intelligence feed
enables the SIEM tools to maximize theirs potential. Since threat feeds are obtained from diverse
sources, this integration provides the SIEM with threat insights from a more global perspective.
This dissertation focuses on modeling various cybersecurity data to extract valuable insights,
identify threat behaviors, and detect threats or suspicious network activities. The research
findings from this dissertation can serve as a foundation to create a cyber threat intelligence
feed, which, in turn, can be used together with SIEM services to empower the identification of
real-time cyber intrusion.

1.5 Our Study
In this study, with an emphasis on advancing AI-powered cybersecurity operations, we proposed
various machine learning/deep learning models using cyber data (e.g., adversaries techniques,
malware domain, and network traffic logs). Our objective is to automate the data analysis
processes and identify the data samples, providing deeper insights into threats with high-level
precision. We have employed a variety of learning approaches, such as deep neural networks,
ensemble machine learning, graph neural networks, and federated learning. Our research
findings are summarized in the following Section.

7

EDR

Diverse Threat
Intelligence Feeds

IPS/IDSFirewall

Incident
Response

Internal Data

External
Intelligence

EDR: Endpoint Detection and Response IPS: Intrusion Prevention System
IDS: Intrusion Detection System

Fig. 1.2. Integration of external threat intelligence in SIEM system

1.5.1 Paragraph-based Estimation of Cyber Kill Chain Phase from Threat
Intelligence Reports

In Chapter 2, we designed a neural network model to identify the cyber kill chain phase. The
objective is to automate the security text analysis process and to determine which security text
paragraph indicates a specific cyber kill chain phase so that we can have a deeper understanding of
the techniques utilized by the adversaries. Firstly, our model learns the adversary’s techniques
available in ATT&CK framework, enabling it to recognize context words related to specific
cyber kill chain phases. After that, we evaluated the trained model with the security reports,
predicting the kill chain phase for each paragraph of the reports. We employ word2vec to
understand semantic similarity among words. While there are 7 cyber kill chain phases, our
model is intended to identify the last 5 phases, as the first 2 phases are rarely described in
security reports.

1.5.2 Malicious Domain Detection Based on Decision Tree

In Chapter 3, we presented a modeling technique to detect malicious domain names. Given that
malicious domains are essential for adversaries to run malicious activities and to compromise
user devices, we aim to investigate the effectiveness of leveraging the domain name’s semantic
features in addition to the most commonly used DNS-based and lexical features. We evaluated
our proposal with random forest, XGBoost, and AdaBoost and demonstrated that incorporating
the semantic features enhances the recognition of the malicious domains.

8

1.5.3 Few-Shot Learning-Based Malicious IoT Traffic Detection with Pro-
totypical Graph Neural Networks

In Chapter 4, we designed a model utilizing few-shot learning and graph neural networks to
identify malicious IoT network traffic. Few-shot learning aims to recognize new, unobserved
data categories with limited labeled data samples without requiring model retraining for the
newly emerged data categories. In the data preprocessing process, we transform bidirectional
network flows into images to train the few-shot model. After that, the pre-trained CNN model
is employed to extract network features. The model learns how close the two network flows are
in the embedding space by the proposed prototypical graph neural network. The IoT-23 dataset
is used in the experiment to evaluate the performance of the proposed model; the results are
compared with the baseline models. We demonstrated that with a few labeled samples at the
inference (meta-testing) stage, the graph-based few-shot model can recognize newly emerged
network traffic categories (which are not observed during the meta-training stage).

1.5.4 Personalized Federated Learning-based Intrusion Detection Sys-
tem: Poisoning Attack and Defense

In Chapter 5, we introduced a robust federated learning-based intrusion detection system for het-
erogeneous IoT data. Data heterogeneity and poisoning attacks launched by malicious clients in
federated learning are the main focus of this study. We proposed a personalized federated learn-
ing approach to tackle the data heterogeneity problem and designed a poisoned client detector at
the server to combat the poisoning attacks. We examined two poisoning attacks: data poisoning
and model poisoning, and different data partition scenarios: IID (Independently and Identically
Distributed) and non-IID. With the extensive experiment conducted, we demonstrated that our
model is effective in defending against both poisoning attacks regardless of the data distribution
of the clients. Moreover, the empirical results indicated that our approach outperforms almost
all baseline methods when experimented with non-IID data and in the presence of poisoning
attacks.

1.6 Chapter Organizations
The remaining chapters are organized as follows.

• Chapter 2 introduces the modeling technique for the unstructured text of CTI resources,
which are critical in grasping the constantly evolving threat behaviors. The aim is to enrich
the cyber threat intelligence feeds with extracted IoCs and threat mapping of adversaries’
techniques to cyber kill chain phases, enabling the security professional to better defend
the organization’s network.

9

• Chapter 3 aims to enrich the cyber threat intelligence feed with information about mali-
cious domains. This chapter explores the integrated analysis of diverse features to enhance
detection accuracy.

• Chapter 4 broadens the research scope to network log analysis. This chapter explores the
few-shot learning model for network traffic analysis, thereby, minimizing the requirement
of model retraining and labeling costs associated with newly emerged attacks.

• Chapter 5 extends the network analysis model to a privacy-preserving and robust federated
learning approach. This chapter addresses the two key issues of the federated learning
model, data heterogeneity and poisoning attacks, with experimental results validating that
the proposed model effectively handles those issues.

• The final chapter, Chapter 6, provides a comprehensive summary, highlights key contri-
butions, and outlines the potential future research directions to enhance data-driven cyber
threat intelligence.

10

Chapter 2

Paragraph-based Estimation of Cyber Kill
Chain Phase from Threat Intelligence
Reports
2.1 Abstract
In order to keep up with the increasing number of cyberattacks, defense tactics require a timely
and accurate understanding of the threats and corresponding risks. Our proposal introduced
an approach for modeling threat information available in unstructured security text to predict
a specific cyber kill phase for each paragraph of the security articles. Subsequently, we also
extracted the core features of the diamond model from security articles. The experimental
results indicated that the model achieved an average F1-score of 0.67, with an average accuracy
of 65% in identifying the cyber kill chain phases. Moreover, 86% of the Diamond Model’s core
features are correctly extracted through pattern matching.

2.2 Introduction
A large number of network attacks, including Advanced Persistent Threat (APT), have been
targeting various organizations in recent years. Most APT attacks can evade detection and
conduct potentially destructive long-term attack activities using sophisticated intrusion routes.
To mitigate such attacks, many security operators, engineers, and researchers have focused on
the field of Cyber Threat Intelligence (CTI) for effective threat intelligence sharing. CTI is the
collection and analysis of vulnerability and threat information. It can be easily accessible and
employed in implementing various proactive defense measures. By utilizing CTI, it is expected
that future attacks can be predicted based on existing threat information by assessing interrelated
actions between various attacks. It is, therefore, necessary to analyze diverse threat information
from various trusted CTI sources.

SIEM is a critical tool in cybersecurity that collects, evaluates, and analyzes the network logs
to recognize suspicious threat behaviors. SIEM tools are great at detecting known attacks;
however, the constant evolution of threats imposes a major challenge for SIEM tools in keeping
up with the new threats. The integration of SIEM with the CTI feeds enables the SIEM tools

11

to maximize their potential. In general, CTI can be categorized as structured (e.g., STIX-
Structured Threat Information eXpression) or unstructured (e.g., blogs, SNS, websites) text.
Intending to increase cyber security awareness, various organizations often share analysis of
attack information in the form of security reports. In order to use the latest threat information
promptly, it is necessary to analyze and utilize unstructured threat data. The current challenge
is the lack of an automatic threat modeling procedure.

Therefore, this study proposes a neural network-based automated threat modeling approach to
analyze threat information from various security reports. This study assesses security reports at
a paragraph level, assuming each paragraph describes one cyber kill chain event. The proposed
model maps the cyber kill chain stages to each paragraph of the CTI reports and also extracts
IoCs from the reports. The contributions of this study are summarized as follows.

1. We propose an automated modeling of threat information from unstructured text of CTI
sources.

2. We combine the cyber kill chain framework, which emphasizes the steps involved in a
cyberattack, and MITRE ATT&CK, which details the techniques and tactics employed
by the attackers, to provide the integrated analysis of threat information.

3. We utilize the example techniques from ATT&CK for Enterprise as the training dataset,
while the testing dataset consists of CTI reports, providing a novel approach to mapping
threat information to adversaries’ techniques and cyber kill chain phases

4. We utilize the diverse word lists available on the Internet to extract the IoCs from the
security reports.

5. We discuss how the knowledge and IoCs extracted from the model can be used to build
threat taxonomy, utilizing it as a cyber threat intelligence feed in the field of data-driven
cybersecurity.

2.3 Background

2.3.1 Cyber Kill Chain

Cyber Kill Chain [21] is an intelligence-driven framework for analyzing intrusion detection and
attack activities. The model has seven distinct stages, as illustrated in Fig. 2.1. These stages
enable the security analysts to understand an adversary’s tactics, techniques, and procedures and
combat APTs, ransomware, and security breaches. To achieve their objectives, the adversary
must go through a series of stages (chain) from reconnaissance to actions on objectives. Any
disruption at any stage in this chain will interrupt the entire attack process. All cyberattacks
– whether phishing, ATP, or ransomware can be mapped to the cyber kill chain activities.
Generally, an APT goes through seven phases: Reconnaissance, Weaponization, Delivery,
Exploitation, Installation, Command and Control (C2), and Actions on Objectives.

12

Reconnaissance

Weaponization

Delivery

Exploitation

Installation

Command &
Control (C2)

Action on
Objectives

Adversary probe for
weakness, and select
target.

Build a deliverable
payload using an
exploit and back door

Send weaponized
bundle to target

Execute exploit on
target’s system

Install malware on
target system for
remote access

Command channel for
remote manipulation
of target’s system

Adversary executes
intended goals

Fig. 2.1. Cyber kill chain

1. Reconnaissance: It is the first stage in the cyber kill chain, where adversaries identify
potential victims and search for vulnerabilities to find the entry point to the target system.

2. Weaponization: This stage takes place after the reconnaissance stage, where the adver-
saries have obtained information about the potential vulnerabilities. The attackers create
a new type of malware or modify the existing malware to compromise the targets.

3. Delivery: This stage delivers the cyberweapons mentioned in stage 2 to infiltrate the target
system. The weapons can be transmitted via email attachments containing the phishing
URLs.

4. Exploitation: Once the weapon is successfully delivered, the malicious code starts
exploiting the vulnerabilities of the computer system.

5. Installation: Cybercriminals install a malware backdoor on the targeted system after
exploiting the target’s vulnerabilities to gain access to the computer system.

6. C2: The attackers communicate with the installed malicious system to carry out their
objectives. If the weapon is botnet malware, this malware overloads the C2 servers with
thousands of requests to compromise the victim machine as a botnet.

13

VICTIM

CAPABILITYINFRASTRUCTURE

ADVERSARY
Organization or
person profiting
from intrusion.

Contains exploits,
malware and
hacking tools, etc.

Organization or person
attacked by the
Adversary and their
assets such as email
addresses and data.

Contains IP address,
email address,
domain name etc.

Fig. 2.2. Diamond model

7. Actions on Objectives: After successfully completing all of the above stages, the attack-
ers carry out their objectives, which may be distributing malware to steal confidential
information or conducting DDoS attacks with botnet malware.

2.3.2 Diamond Model of Intrusion Analysis

The Diamond Model of intrusion analysis [22], typically used alongside the Cyber Kill Chain
model, integrates the series of attack activities performed by adversaries. As illustrated in Fig.
2.2, the Diamond Model has four core features: adversary, infrastructure, capability, and victim.
These components are referred to as events. Within this model, each event, which is a minimum
unit of the chain, is denoted by a diamond shape, with the four events positioned at four vertices
of the diamond. The adversary is either an attacker or an organization that leverages its capability
(tools and techniques) against the victim to achieve specific goals. The infrastructure, consisting
of the logical or physical communication system, is used by the adversary to deliver capability,
maintain control, and gain benefits from the victim. Such infrastructure may include e-mail
addresses, domain names, and IP addresses. The victim is the primary target of the adversary.
In summary, the main axiom of this model states that ”For every intrusion event, there exists
an adversary taking a step towards an intended goal by using a capability over infrastructure
against a victim to produce a result” [22].

2.3.3 Existing Study on Threat Modeling and Threat Extraction

There has been extensive research on modeling techniques that can automatically extract valuable
threat information from unstructured data in media such as online security forums, blogs, and
threat reports. Hutchins et al. [21] introduced a method that categorizes APT attacks into
various kill chain phases to better understand attacker actions, steps, and motives. Ito et al.
[23] proposed a modeling procedure for incident information described in the unstructured CTI

14

reports. The authors stated that the integrated analysis of the threat information can be obtained
by utilizing a relevant relation between CTI reports and threat models.

Husari et al. [12] proposed context-aware modeling to learn attack patterns from the unstruc-
tured text of CTI sources to develop the defense mechanism. They utilized Natural Language
Processing and information retrieval to extract threat actions based on a semantic relationship
and map the extracted threat actions to appropriate tactics, techniques, and a kill chain phase.
After that, the authors generates the CTI report formatted according to the STIX (Structured
Threat Information eXpression) standard, which is machine-readable.

Zhu et al. [11] proposed ChainSmith, a system that can automatically extract the Indicators of
Compromise (IoCs) from security articles and classify them according to their corresponding
kill chain phases. The key intuition behind this system is identifying the context words in
adjacent sentences in security articles, which denotes a specific kill chain phase. Furthermore,
the context words directly related to the IoC determined the level of maliciousness for that
IoC. To learn the semantics similarity among words, ChainSmith utilized a dependency-based
wording embedding technique [24], employing word dependencies rather than just context
words.

This study explores a novel threat modeling approach to identify the cyber kill chain stages of the
unstructured text of CTI reports. We use the adversaries’ techniques from MITRE ATT&CK for
Enterprise as training datasets, while the test dataset is composed of CTI reports from various
security vendors. This allows an innovative way of mapping threat actions from security reports
to adversaries’ techniques, eventually identifying the cyber kill chain stages described in the
paragraph level of CTI reports, differentiating this study from previous studies. Moreover, the
proposed model extracts IoCs from the CTI reports, which can be utilized as a threat intelligence
feed to detect potential threats automatically by combining them with the SIEM tools.

2.4 Proposed Model
The objective of this study is to establish a modeling technique to identify the kill chain phases
for threat information described in publicly available unstructured security text. We assumed
that the specific threat events are described in each paragraph level of security reports. The
proposed model was designed to do two operations: (i) analyze security articles at the paragraph
level and predict the corresponding cyber kill phases and (ii) extract core features of the Diamond
Model according to the predefined rules. Fig. 2.3 illustrates the two operations of our model.
Initially, the model estimated the kill chain phases of the unstructured text and then extracted
informative words related to the core features of the diamond model from each paragraph. To
further facilitate the core feature extraction process, we have utilized the ATT&CK [25] since
it provided comprehensive lists of attackers and malware and other word lists from Wikipedia
and the New General Service List (NGSL) [26]. These word lists are employed to extract the
Diamond Model’s core features through pattern matching.

15

Security Report

Paragraph 1
Paragraph 2
…
…
…

Phase Classification
Delivery
Exploitation
…
Action on Objectives

Core Features Extraction
URL
Spam mail
Threat
Malware

1

2

Fig. 2.3. Outline of the paragraph-based cyber kill chain model

2.4.1 Word Embedding

In order to find the semantic similarity among words, the state-of-the-art word2vec [27] algo-
rithm is used in the proposed method to parse words semantically. The word2vec takes the
text corpus as input and generates the numerical representations of word features. The word
vectors generated by word2vec occupy much less space than one-hot encoded vector. Moreover,
word2vec preserves the word’s semantics by grouping similar words within a shared vector
space.

2.4.2 Paragraph-based Estimation of the Cyber Kill Chain Phase

Since the security report hardly describes the Reconnaissance and Weaponization phase of
the cyber kill chain framework, the remaining five phases, Delivery, Exploitation, Installation,
Command and Control, and Action on Objectives, are the kill chain phases identified in this
study. Fig. 2.4 illustrates the procedures for estimating the cyber kill chain phases. Our
model employed five binary neural network classifiers, constructed in the same way described
in [11]. Zhu et al. [11] utilized multiple binary classifiers to predict which kill chain phases
each sentence represented. The authors aimed to extract IoCs from each sentence as much as
possible to construct the structured threat information.

Contrary to the previous approach, our study focused on labeling the cyber kill chain phases for
unstructured security articles at the paragraph level and deriving the Diamond event information.
Therefore, instead of predicting the kill chain phases of each sentence as indicated in [11], our
model operates at the text paragraph level. The proposed kill chain classification model is
trained by the example sentences from ATT&CK for Enterprise, a knowledge base managed
by MITRE corporation, which categorizes the attacker’s behavior in terms of Technique and
Tactics. After that, the trained neural network is employed to predict the kill chain phases of
the security reports at the paragraph level.

16

ATT & CK
Technique Examples

Preprocessing Word Embedding
3

4

5

1

2

Training

Kill Chain Phases
• Delivery
• Exploitation
• Installation
• Command & Control
• Action on objectives

Security Reports

Testing

N
eural N

etw
ork C

lassifier

Fig. 2.4. Proposed cyber kill chain phase classification model

Before the model training, the input text corpus is preprocessed with off-the-shelf Natural
Language Processing (NLP) techniques. This step performs lowercase conversion, removal of
stop-words, punctuation, and special characters. Next, each sentence is tokenized into words,
and lemmatization is applied to each word. After this process, each word is parsed using
word2vec, which puts semantically similar words in a close position in the vector space. The
word vector is trained with the embedding dimension of 100. In the next step, the kill chain
phases are estimated by five binary classifiers. The classifier is designed with input, output, and
one hidden layer with 50 nodes. This step identifies the features to be fed into the classifier.
Firstly, informative words are computed by using the following equation:

𝑆𝑐𝑜𝑟𝑒(𝑤) = max𝑘𝜀𝐾
𝑝(𝑤 |𝑘)
𝑝(𝑤) , (2.1)

where the word 𝑤 represents one of the words appearing in all documents, 𝑝(𝑤) represents the
probability of occurrence of the word 𝑤, 𝑘 represents one of the set 𝐾 of all kill chain phases,
and 𝑝(𝑤 |𝑘) is the probability of occurrence of the word 𝑤 in all documents describing 𝑘 . These
probabilities are used to calculate a score 𝑆𝑐𝑜𝑟𝑒(𝑤), which represents the degree to which the
word 𝑤 is specific to a particular kill chain phase. We consider informative words to be words
with a high score and a high occurrence. Following this, the context words for each sentence
that will be put into the classifiers are calculated. The context words are derived from two
statements: (i) informative words of the current sentence and (ii) informative words of previous
sentences if no informative words are found in current sentences. The average word embedding
of the context words, the words used in the title, and the number of IoCs in each paragraph
are then passed into the neural networks as input features. Finally, the classifiers are trained to
determine whether each paragraph unit of the security report corresponds to any of the five kill
chain phases.

17

2.4.3 Core Features Extraction from Paragraph mainly with ATT&CK

The objective of the proposed model is to extract core feature words of the Diamond Model,
without categorizing them into four types: Adversary, Infrastructure, Capability, and Victim.
Since the keywords related to victims are rarely described in the security text, our model extracts
only three categories of core features: Adversary, Infrastructure, and Capability. Moreover,
words that do not fit into these three categories but can be regarded as potential core features
are also retrieved. We put those words into the categories of Candidate core feature words.
As a result, the proposed model extracts four categories of core features without specifically
categorizing them. Since the core feature words are retrived from the security text through
predefined rules, the word lists for pattern matching are generated based on the following
statements.

1. Computer related words described in Wikipedia [28]
2. Software names such as malware and tools, etc. described in ATT&CK
3. Group names of attack activities described in ATT&CK
4. New General Service List (NGSL) [26]

The IP address, URL, e-mail address, file name, and CVE are retrieved using the IoCs extraction
tool called Cyobstract []. The extracted IP addresses, URLs, and e-mail addresses are categorized
as Infrastructure, while file names and CVEs are grouped under Capability. Next, we check the
remaining words to determine whether the words match the words lists stated by 1, 2, and 3. If
the words are matched, they are extracted and assigned to the categories of Candidate Words,
Capability, and Adversary, respectively. After that, we checked if the remaining words matched
the NGSL word list.

2.5 Evaluation
We evaluated the effectiveness of the proposed model with the manually labeled dataset since
no labeled datasets are available. This study aims to classify the cyber kill chain phase of the
security reports as correctly as possible, leveraging the knowledge acquired from the adversary
techniques from the ATT&CK framework.

Dataset: Since there were no publicly available labeled datasets for identifying the cyber kill
chain phases, we collected data from ATT&CK for Enterprise, Trend Micro [12], and McAfee
[13] and used it as the training and test dataset. We employed ATT&CK as a training dataset
since the adversary tactics and techniques of ATT&CK are correlated to the cyber kill chain
phases. We manually labeled a total of 3101 example sentences of adversary techniques to their
corresponding kill chain phases. Additionally, we gathered and tagged labels for four security
reports published by Trend Micro and McAfee between November 2018 and December 2018.
We assigned a cyber kill chain phase to each paragraph of security reports. This labeled dataset
is used as a ground truth in evaluating the effectiveness of the proposed model.

18

Table 2.1: Kill chain phase classification result

Kill chain phase Accuracy F1-score
Delivery 0.63 0.72
Exploitation 0.70 0.80
Installation 0.62 0.70
Command & Control (C2) 0.51 0.45
Action on Objectives 0.79 0.70
Average 0.65 0.67

2.5.1 Results

We trained our model on the manually labeled ATT&CK dataset and evaluated the gathered
unstructured security articles. The predicted cyber kill chain phases and extracted core features
of the Diamond Model are compared with the manually annotated ground truth data. Our
evaluation is based on the following two statements:

1. Can the model correctly identify the cyber kill chain phase associated with each paragraph
of the security report, evaluated in terms of accuracy and F1-score?

2. Can the model effectively extract the core features of the Diamond Model using recall
metrics? Our goal is to retrieve the core features as much as possible without categorizing
them into the four types.

The experimental results indicate that the proposed model achieves an average accuracy of 65%
and an F1-score of 0.67, as shown in Table 2.1. Out of five kill chain phases, while the accuracy
of C2 phase is relatively low, the remaining four phases perform pretty well; notably, the action
on objectives phase achieves approximately 80% accuracy. Furthermore, the model successfully
extracts the core features from the security reports with 86% recall.

While the proposed model has fulfilled its objective of implementing an automated modeling
procedure for threat information within the CTI reports, the experimental results highlight the
need for further improvement. One contributing factor to these results is the relatively small
size of the training dataset, which contains only 3101 short example sentences of the adversary
techniques (TTP). It is possible that the proposed model may not have been able to learn
the underlying semantics in the training data. Despite this, our study provides insights into
the innovative way of mapping adversaries’ techniques to cyber kill chain stages and utilizing
this data as the training dataset. It’s worth highlighting that the testing dataset contains CTI
reports, which have different text structures compared to the training data but still hold relevant
information.

2.6 Conclusion
We introduced a method for estimating the cyber kill chain phases and extracting core features of
the Diamond Model from the paragraph-level analysis of the security reports. The classification

19

model trained with ATT&CK in experiments, estimated the cyber kill chain phases with an
average F1-score of 0.67 and an average accuracy of 65%. Moreover, the model successfully
extracts the core features from the security reports with 86% recall. In future work, we can also
evaluate the current model on a dataset consisting of several technical reports garthered from
various reputable security blogs or forums. This study can be further extended to structure the
extracted threat information into STIX format to share our acquired threat knowledge through
the CTI feeds.

20

Chapter 3

Malicious Domain Detection Based on
Decision Tree
3.1 Abstract
Different types of malicious attacks have been increasing simultaneously and have become a
serious issue for cybersecurity. Malicious domains play a critical role in engaging in malicious
activities over the Internet. The attackers leverage domain URLs as an attack communications
medium and compromise users into victims of phishing or spam. While existing domain and
IP blacklists provide a way to block malicious domains, these blacklists cannot keep up with
the continual increase in newly registered domains. Furthermore, attackers employ a more
sophisticated method to evade domain blacklisting attempts, raising the difficulty level of the
malicious domain detection algorithms. To address these issues, we propose a machine learning-
based detection technique that automatically identifies a domain’s maliciousness. Our approach
incorporates DNS-based, lexical, and semantic features to enhance the detection capability.
The experimental results indicated the effectiveness of our proposal, highlighting the model’s
capability to detect malicious domains with an approximate accuracy of 0.927 with the random
forest classifier.

3.2 Introduction
With the advancements in information technology, the risk and complexity of cybersecurity
threats are increasing at an alarming rate, and various malicious cyber-attacks emerge daily.
Undoubtedly, all computers connected to the Internet have the potential to be compromised
by malware attacks. As early as 2007, security specialists believed that nearly 16-25% of the
devices connected to the Internet were part of the botnets [29]. In general, malicious domains
are vital for attackers to run malicious activities over the Internet and infect user devices.
Attackers can compromise users to be the victims of spam, phishing, and drive-by-download.
Subsequently, the attackers can compromise user privacy, install malware, or cause financial
losses. Therefore, it is critical to discover and block such malicious activities.

Although the existing domain and IP blacklists can be used to block malicious domains, these
blacklists cannot keep up with the continual increase in newly registered domains. Moreover, the
attacker often utilizes command and control (C&C) servers to control the compromised hosts.

21

In earlier days, to establish the connection between the compromised hosts and the C&C servers,
attackers used hard-coded domain names or IP addresses of the C&C servers in malware binary.
Since those C&C servers with hard-coded IP or domain names can be reverse-engineered and
blocked easily by malware analysts, more sophisticated approaches are being employed by the
attackers to evade blacklisting attempts.

To avoid C&C servers from being discovered, the attacker frequently changes the domain names
for the C&C servers through the Domain-Flux technique. Domain-Flux employed the Domain
Generation Algorithm (DGA), which generates a large number of pseudo-random domain names
for the C&C server by a random seed. Out of these algorithmically generated domains, the
attacker only needs to register a small subset of the domain to C&C servers, where each domain
is associated with one or a few IP addresses. As a result, blocking these constantly changing
domain names becomes a hassle since these domains are short-lived.

Therefore, an effective approach for accurate and timely detection of malicious domains is
crucial in cybersecurity. The Domain Name System (DNS) is a remarkable resource for
malicious domain detection, and various detection techniques have been proposed in the research
community, which include the analysis of domains using DNS data, statistical features, and the
semantic relationship of the domain names. Moreover, the detection model can be featured-
based machine learning [6–8], which relies on human-engineered features extracted from domain
name strings, or featureless deep neural networks [30, 31], which generate features as part of
the training algorithm.

However, the previous studies [32–34] demonstrated that the domain detection algorithm, which
relied only on the analysis of the domain name string, can be easily manipulated to evade the
detection algorithm. Some researchers outlined that it is challenging for attackers to manipulate
the typical domain relationships in DNS traffic. Their observation suggested that if the domain
with unknown maliciousness has a strong association with the known malicious domains, then
that unknown domain is most likely to be malicious. Following this intuition, we propose the
malicious domain detection technique by incorporating the DNS-based, lexical, and semantic
features. Our classification model utilizes random forest, XGBoost, and AdaBoost to estimate
the maliciousness of a given domain. The contributions of our research are as follows.

1. We propose the malicious domain detection model by incorporating different groups of
features to enhance the detection capabilities.

2. We introduce the analysis of DNS traffic to examine the footprints left by the normal and
malicious domains. We employ active DNS to query the DNS-related data for the given
domain name.

3. We extract DNS features, lexical features, and semantic features from the domain names.
The DNS features comprise features such as domain address records, name server records,
mail exchange records, time-to-live, active time, and lifetime of the domain, while lexical

22

features comprise the number of consecutive characters, digits, words, and domain length.
The semantic feature is obtained from the domain reputation score computed by the N-
gram method.

4. Our experiment results indicate that incorporating all feature groups effectively enhances
the recognition of malicious domains.

3.3 Background

3.3.1 Existing Study on Malicious Domain Detection

The detection methods for malicious domains proposed in previous studies can be categorized
into classification-based and graph-based approaches.

1. Classification-based Approach: This approach mainly employs machine learning al-
gorithms with manually extracted features from domain names and DNS traffic data.
Examples of such features, which can differentiate the legitimate and malicious domains,
are the domain length, number of characters, number of digits, and time-to-live (TTL).
Bilge et al. [6] proposed a system known as EXPOSURE, which can detect malicious do-
main names by using a decision tree algorithm with features extracted from passive DNS
analysis. Similarly, Messabi et al. [7] introduced a decision tree-based malware detection
method that relies on DNS records and domain name features to identify malicious do-
mains. Chiba et al. [8] proposed the DomainProfiler system that utilized a random forest
classifier with time-series domain features to detect newly registered malicious domain
names.

2. Graph-based Approach: Previous studies on graph-based approaches used the associ-
ation between the domains and IP addresses or clients to form a domain graph. These
studies utilized graph-based learning algorithms such as belief propagation, label prop-
agation, and graph convolutional networks for domain classification. Khalil et al. [35]
proposed a domain–IP bipartite graph, utilizing the association between the domains and
IPs, followed by a path-based algorithm to discover potential malicious domains. Kazato
et al. [36] introduced a graph convolutional network-based malicious domain detection
method by building a domain relation graph. This approach incorporated the domain–IP
relationship, domain owner information, and autonomous system number to construct
the domain graph. In the graph-based domain classification approach, the association
between the domains significantly influences the classification accuracy.

3.3.2 Domain Name System

Domain name system serves as one of the fundamental protocols on the Internet. DNS is
a decentralized and hierarchical naming system for resources connected to the Internet. It

23

facilitates mapping human-readable domain names into their respective IP addresses or vice
versa (IP to domain name). The DNS namespace hierarchy starts with a root domain at the top,
represented by a dot(.). Under the root domain is the top-level domain (TLD), which contains
the generic top-level domain (gTLD) or country code top-level domain (ccTLD). Under the
TLD is the second level domain (SLD), and so on.

Fig. 3.1 illustrates the overview of how the DNS resolver handles the client request. In the
figure, the client initiates a DNS request to connect to the website “duolingo.com.”. The
recursive resolver (DNS resolver) handles the incoming DNS request and maps the domain
name to a corresponding IP address. If the recursive resolver has no cache data for the requested
domain, it sends a request to the root name server, which once more routes the request to the
.com TLD server. After that, the recursive resolver sends a direct request to the .com TLD
server, which in turn forwards the resolver to the SLD server to retrieve the IP address of
“duolingo.com.”. Finally, the IP address is returned to the recursive resolver, which caches this
information for future requests and returns the IP address to the client. The client can now
establish a connection with the “duolingo.com.” using the returned IP address.

There are four types of DNS nameservers in general: recursive resolver, root nameserver, TLD
nameserver, and authoritative nameserver.

1. Recursive Resolver: Recursive resolver is the first nameserver to receive the client’s DNS
request. It resolves the domain name to the corresponding IP address using its cache data.
If it has no cache data for the requested domain, the recursive resolver forwards the request
to the root name server, then to a TLD name server, and eventually to the authoritative
nameserver. The authoritative nameserver replies with an IP address, and the recursive
resolver forwards this information to the client.

2. Root Nameserver: The root server accepts a recursive resolver’s request, and based on
the TLD extension (.com, .org, .edu), it forwards the recursive resolver’s request to the
TLD nameserver.

3. TLD Nameserver: This server maintains the records related to all TLD domain names.
For instance, if the domain extension is .com, then the corresponding TLD nameserver
is the .com nameserver. Eventually, the TLD server instructs the recursive resolver to
contact the corresponding authoritative nameserver for the requested domain.

4. Authoritative Nameserver: A TLD nameserver forwards the recursive resolver’s request
to the authoritative nameserver, which maintains the IP address of the domain. If the
requested domain has a CNAME (alias) record, it replies with that alias domain. At that
time, the recursive resolver is required to make a new DNS request.

24

duolingo.com
duolingo.com

Go to .com TLD name server

duolingo.com

DNS resolver

DNS root-level
domain server

Name server
for .com top-level
domain

Second-level
domain server

1
2

3

4

Fig. 3.1. Managing client requests in Domain Name System

3.3.3 DNS Traffic Analysis

In order to avoid domains from being blacklisted, the attackers keep moving their compromised
domain names across the DNS. The two most commonly used techniques to get these behaviors
are Fast-Flux and Domain-Flux (IP-Flux). In Fast-FLux, each domain name is associated with
multiple IP addresses that are continuously changing to avoid blacklisting attempts. Domain-
Flux utilizes the widely abused Domain Generation Algorithm (DGA) technique to dynamically
create a large number of malware domain names, each associated with only one or a few IP
addresses. As a result, blocking the domain names becomes challenging since most of these
domains are short-lived. However, these techniques leave footprints within the DNS data. It is,
therefore, crucial to analyze those traces in the DNS traffic to detect the malicious domain. The
overview of how attackers utilize the domain generation algorithm to compromise the victims
is illustrated in Fig 3.2.

In general, DNS traffic data can be collected in two ways: active and passive DNS data. Active
DNS data are obtained by deliberately sending periodic DNS queries from the data collector.
The subsequent responses were recorded for further analysis. Since the data collector initiates
each query, the active DNS data does not provide any behavior of actual users, thereby easing
privacy concerns [37]. The active DNS data captures the DNS records of a given domain,
such as the IP address (A), name server (NS), and mail exchange (MX) records. Active DNS
data do not have privacy problems because they do not include information on the user query
domains. Thales [38] is an example of a privacy-preserving active DNS data collection system
that actively queries and collects a large volume of active DNS data using domain names from
various publicly accessible sources.

25

lkaqakdldumh.net
idlqppuxemskp.ru
dthlupmlrp.bz
msdfeliqsgvnwk.jp
ucjxkkdl.eu

auqcrhmne.biz
neepkv.com
soaian.com
yalmopdai.com
msfctioj.biz

Infected computers

Attacker

DNS Server

C&C server

Algorithmically generated
domains

DNS Query →lkaqakdldumh.net

DNS Query →cjxkkdl.eu

DNS Query →msfctioj.biz

NX domain  DNS reply

NX domain  DNS reply

76.122.166. 45  DNS reply

msfctioj.biz.com
76.122.166.45

C
on

ne
ct

in
g…

m

sf
ct

io
j.b

iz
Register

seed

Generate DGA domain

Fig. 3.2. Attackers using the Domain Generation Algorithm to compromise computer system

In contrast, passive DNS data provide historical records of the domain and contain richer
information than active DNS data. Passive DNS provides the fastest means of accessing
historical data that may no longer exist in the current DNS records. While the collection method
of passive DNS is more complex than active DNS, several paid services offer access to passive
DNS databases. Passive DNS data is gathered by deploying sensors on multiple DNS servers
and DNS server logs to obtain actual DNS queries and response information. However, certain
limitations and privacy issues regarding the collected data may arise depending on the placement
of sensors, especially if sensors are deployed between clients and resolvers.

Kountouras et al. [38] conducted an experiment comparing active DNS with passive DNS data.
They demonstrated that active DNS data has more DNS record types while passive DNS data
provides a tighter connection graph for a given domain. Moreover, according to [37], active
DNS data can be used to discover newly created and potentially malicious domains. Therefore,
in our proposed approach for domain classification, we solely employed the DNS records of the
domain from active DNS data.

3.4 Proposed Model
The overview of the proposed approach is illustrated in Fig. 3.3. The data collector module
first collects the DNS data and additional information relating to the domains. After that, three

26

Data
Collector

Feature
Extraction Classifiers

DNS server WHOIS

Domain
Dataset

Malicious

Benign

Fig. 3.3. Overview of proposed malicious domain detection model

groups of features (DNS-based, lexical, and semantic) are extracted for each domain name. The
ensemble classifiers performed maliciousness estimation of the domains.

3.4.1 Data Collector

The DNS traffic data associated with each domain are queried to collect active DNS data.
The DNS server then processes each query request and responds with the corresponding data.
Examples of responses include the domain’s A records, NS records, and TTL. This DNS
response data is further enriched by the domain WHOIS information, which comprises details
such as the domain registration, expiration, and updated dates. These collected DNS data are
used to evaluate the maliciousness of the domains.

3.4.2 Feature Extraction

During this step, the previously collected data are processed to extract the features that can
effectively distinguish malicious and benign domains. Based on the observation and analysis of
the large amount of DNS data acquired from the data collector, 11 features were identified and
extracted to build the classification model for malicious domain detection, as indicated in Table
3.1. The following section discusses how these features can be used to differentiate between
benign and malicious domains.

(1) DNS-based Features

The DNS response records of malicious domains differ significantly from those of benign
domains. Malicious domains tend to have more A (address) records and lower TTL values.

27

Table 3.1: Domain features

Type Features

DNS-based features

Number of A records
Number of NS records
Number of MX records
TTL
Active time of domain
Lifetime of domain

Lexical features

Number of consecutive characters
Number of digits
Length of domain
Number of words

Semantic features Domain reputation score

One of the reasons is the widespread use of the fast-flux domains [39]. The main idea behind
the fast-flux is that each malicious domain is hosted on many different IP addresses, which are
changed quickly to avoid being blacklisted. Moreover, a more sophisticated type of fast-flux
network, known as double-flux, introduced an additional layer to make it more challenging to
track malicious domains. The double-flux frequently changes both the DNS A records and NS
records in a round-robin manner with a very short lifespan. As a result, DNS lookup reveals a
higher count of A records and more distant NS records. Moreover, compared to benign domains,
malicious domains have fewer MX records. This is mainly because domains associated with
botnet attacks usually have no or fewer MX records [40], [41].

Furthermore, the lifetime and active time of benign domains are typically much longer than
those of malicious domains. The lifetime of the domain is defined as 𝐿𝑖 𝑓 𝑒𝑡𝑖𝑚𝑒 = 𝐷𝑎𝑡𝑒𝐸𝑥𝑝𝑖𝑟𝑒 −
𝐷𝑎𝑡𝑒𝐶𝑟𝑒𝑎𝑡𝑒,while active time is 𝐴𝑐𝑡𝑖𝑣𝑒𝑡𝑖𝑚𝑒 = 𝐷𝑎𝑡𝑒𝑈𝑝𝑑𝑎𝑡𝑒−𝐷𝑎𝑡𝑒𝐶𝑟𝑒𝑎𝑡𝑒. The domain’s lifetime
is the interval between the expiration date and the domain’s registration date. Similarly, the
active time of the domain is the interval between the updated date and the domain’s registration
date. Based on these insights, the following characteristics were chosen for the DNS-based
features: number of A records, number of NS records, number of MX records, TTL, active
time, and lifetime of the domain.

(2) Lexical Features

Typically, benign domain name strings are readily pronounceable and easily recognizable,
whereas malicious domain names tend to be non-pronounceable by humans [42], [43]. The
observation and analysis of numerous malicious domains revealed that malicious domains
contain a higher frequency of numbers. Moreover, the confusing mixture of numbers and words
makes it difficult to pronounce malicious domains. Therefore, the following characteristics were
selected for the lexical features of the domain: length of the domain, number of digits, number
of words, and number of consecutive characters.

28

Table 3.2: Domain reputation scores

Domain name Reputation score Label
duolingo.com 44.064 Benign
discord.com 62.8 Benign
dkdrlah12.0pe.kr 7.347 Malicious
dqy.qyuyu.com 0.567 Malicious
facebook.com 63.412 Benign
douate.com 20.185 Malicious

(3) Semantic Features

The traditional approaches [6], [44] for malicious domain detection include the use of DNS
data and lexical features. In this study, in addition to DNS-based and lexical features, we
incorporated the semantic features of the domain. The previous study [45] introduced the
detection of malicious domains using semantic features, whereby domains with the highest
access rates are identified as benign domains. Each domain name is segmented by the 𝑁-gram
method to create whitelist domain name substrings, which are then used to calculate a domain’s
reputation (maliciousness).

This study adopted a method similar to the previous approach to compute the reputation value
of a domain. First, to establish the whitelist domain substring as ground truth, the top 100,000
domain names from Alexa Top Sites [46] were collected and segmented by the 𝑁-gram method.
We set the lengths of 𝑁 to 3, 4, 5, 6, and 7. A total of 344,503 domain name substrings were
extracted from the top 100,000 domain names and used as the whitelist domain name substring.
After that, the reputation score of the domain is computed by

Reputation Score domain =

𝑘∑︁
𝑖=1

log2

(
𝑆𝑁 (𝑘)
𝑁

)
. (3.1)

𝑆𝑁 (𝑘) is the total number of occurrences of the 𝑘 𝑡ℎ domain name substrings in the whitelist
domain name substrings. 𝑁 is the length of the 𝑁-gram (𝑁 = 3, 4, 5, 6, 7). Table 3.2 presents
various domain reputation scores. It is evident that the reputation score of the benign domain
tended to be higher than that of the malicious domain, mainly due to the frequent occurrence of
segmented benign domain substrings in the whitelist domain name substrings.

3.5 Evaluation
We evaluated the performance of the proposed model on three ensemble classifiers: random
forest, XGBoost, and AdaBoost. Initially, we collected and labeled the publicly available benign
and malicious domain names to make the dataset. After that, the dataset is divided into training
and testing data to evaluate the effectiveness of the proposed model.

29

Table 3.3: Experimental results for malicious domain detection

Features Classifiers Accuracy Precision Recall

DNS
Random forest

AdaBoost
XGBoost

0.8973
0.9007
0.9007

0.8955
0.8741
0.8794

0.8824
0.9191
0.9118

DNS+Lexical
Random forest

AdaBoost
XGBoost

0.9041
0.9096
0.9068

0.9033
0.9092
0.9063

0.9050
0.9113
0.9084

DNS+Lexical+
Semantics

Random forest
AdaBoost
XGBoost

0.9270
0.9151
0.9123

0.9199
0.9146
0.9115

0.9219
0.9168
0.9131

Dataset: The dataset contained a total of 1,457 domain names, comprising 680 malicious
domains and 777 benign domains. The benign domains were gathered from Alexa Top Sites
[46], which ranks websites based on their popularity. We assumed that the top-ranked websites
were legitimate domains. The malicious domain names were collected from publicly published
domain blacklist services. The DNS-resolvable malicious domains were randomly selected
from malwaredomainlist.com [47] and a compromised domain list [48]. These domains were
known to be compromised by malware, command and control communication, and phishing
activities.

Evaluation metrics: We computed the number of true positive (TP), true negative (TN),
false positive (FP), and false negative(FN). FP indicates the number of normal data incorrectly
classified as an attack, while FN represents the number of attack samples incorrectly classified as
normal. TP and TN denote the number of normal or attack data that were accurately classified.
Based on these values, the evaluation metrics, such as precision and recall are computed as
follows.

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

. (3.2)

3.5.1 Results

In the experiments, three ensemble models – random forest, AdaBoost, and XGBoost – are
employed to measure the effectiveness of the proposed features in the identification of malicious
domains. We conducted three experiments. Each experiment is based on the different combina-
tions of feature sets: (i) using only DNS features, (ii) combining DNS and lexical features, and
(iii) integrating DNS, lexical, and semantics features. The experimental results are indicated in
Table 3.3.

In our experiment, the domain dataset was divided into 75% training data and 25% testing data.
All classifiers were trained and evaluated using 10-fold cross-validation. Despite a relatively
small domain dataset, all three classifiers consistently achieved above 89% accuracy in detecting

30

malicious domains across all experiment scenarios. The experimental results highlighted that
utilizing the combination of all feature sets outperformed the scenarios that utilized only DNS
features or the combination of DNS and Lexical features. Notably, random forest exhibited the
best performance across all evaluation metrics when all feature sets were incorporated into the
experiment. Moreover, the empirical results revealed that integrating DNS and lexical features
indicates a slightly higher model performance than just using DNS features.

3.6 Conclusion
We have proposed an approach to classify a domain as malicious or benign by leveraging
active DNS traffic data and WHOIS information. Moreover, we incorporated semantic features,
in addition to the commonly used lexical and DNS-based features, with the aim to improve
the detection of malicious domains. The experimental results demonstrated that the proposed
approach achieved an accuracy of up to 93% with the random forest classifier. However, the
current model is limited to identifying domains as either malicious or benign. To further provide
details on the malicious domains, we can categorize each malicious domain as spam, phishing,
command and control, or malware, thereby making it into a multiclass classification problem.
Moreover, using a combination of passive DNS and active DNS data could enhance the ability
to detect bad domains.

31

Chapter 4

Few-Shot Learning-Based Malicious IoT
Traffic Detection with Prototypical Graph
Neural Networks
4.1 Abstract
With a rapidly escalating number of sophisticated cyberattacks, protecting Internet of Things
(IoT) networks against unauthorized activity is a major concern. Detecting malicious network
traffic is thus crucial for IoT security to prevent unwanted traffic. However, existing malicious
traffic detection systems that rely on a supervised machine learning approach need a considerable
number of benign and malware traffic samples to train the machine learning models. Moreover,
in the cases of zero-day attacks, only a few labeled traffic samples are accessible for analysis. To
deal with this, we proposed a few-shot malicious IoT traffic detection system with a prototypical
graph neural network. The proposed approach does not require prior knowledge of network
payload binaries or network traffic signatures. The model is trained on labeled traffic data
and tested to evaluate its ability to detect new types of attacks when only a few labeled traffic
samples are available. The proposed detection system first categorizes the network traffic as
a bidirectional flow and visualizes the binary traffic flow as a color image. A neural network
is then applied to the visualized traffic to extract important features. After that, using the
proposed few-shot graph neural network approach, the model is trained on different few-shot
tasks to generalize it to new unseen attacks. We evaluated the proposed model on a network
traffic dataset consisting of benign traffic and traffic corresponding to six types of attacks. The
results revealed that our model achieved an F1 score of 0.91 and 0.94 in 5-shot and 10-shot
classification, respectively, outperforming the baseline models.

4.2 Introduction
The Internet of Things (IoT) has become one of the fastest-growing technologies in recent years.
With an increase in the extensive use of IoT devices in fields such as healthcare, smart homes,
smart cities, manufacturing, and the automotive industry, the importance of Internet-connected
devices in daily life has increased. In addition, with the increasing number of cyber-attacks, it
is critical to ensure that IoT devices are protected from potential cyber threats. However, most
IoT devices are known for their vulnerabilities and lack of on-device security controls to defend

32

against cyber-attacks [49–51]. This is because most IoT devices have resource constraints and
insufficient computing power, which allows only limited functions to be executed [51]. Attackers
exploit loopholes in IoT devices to perform malicious activities, such as using IoT devices for
botnet attacks. One example is the Mirai [52] botnet attack that occurred in 2016 and caused
massive Internet security breaches by exploiting insecure IoT devices.

To protect IoT networks from cyber-attacks, intrusion detection systems [9, 10, 53] have been
used extensively to monitor unauthorized activities and identify notorious network attack traffic
in the IoT ecosystem. Depending on the technique employed, intrusion detection systems can
be mainly categorized into signature-based and anomaly-based systems. The former systems
compare incoming traffic to predefined attack signatures in a database through pattern matching.
This technique is effective and highly accurate for previously seen (known) attacks. However, it
is ineffective in zero-day attack detection since the new attack signatures are not in the database
yet. Artificial intelligence enables anomaly-based intrusion detection systems to overcome
the limitations of the signature-based approach. The anomaly-based approach recognizes any
behavior that deviates from the observed norm as an anomaly. With recent advancements
in machine learning (ML), many studies have applied ML algorithms for the detection of
malicious attacks in the IoT network monitoring system (e.g., [9, 10, 53]). Providing that there
is a considerable number of labeled samples for training the ML models, the detection systems
can distinguish normal behavior from abnormal behavior with relatively high accuracy.

However, there are a couple of issues in ML-based IoT intrusion detection systems that must
be addressed. The amount of available benign traffic is enormous compared to abnormal
malicious traffic; moreover, some IoT malware attack types have significantly fewer samples.
As a result, the collected IoT dataset can be highly imbalanced [54]. Most importantly, new
IoT malware threats are constantly emerging; subsequently, ML-based detection systems face
a new challenge known as zero-day attacks [55], which are types of attacks that do not exist
at the time of model training. It may take time for security vendors and researchers to publish
a huge number of samples of the new threats; therefore, there is a need for a system that can
detect IoT network traffic by using a limited number of new malicious samples. This can be
effectively accomplished through a few-shot learning method. Few-shot learning is a type of
ML method that aims to make predictions with only a few labeled data in a supervised setting.
The previous studies [56–59] on few-shot learning used the principle of meta-learning, which
enables a certain number of correlated tasks to be learned during meta-training. In the meta-
testing stage, the trained learner can be utilized to predict unseen but related tasks by providing
only a few labeled samples.

To defend against potential cyber-attacks in the IoT ecosystem, malicious IoT traffic detection
systems are crucial. In this study, we propose a detection model based on the binary visualization
of network traffic and few-shot learning to detect unknown malware attacks on IoT networks.
The rationale for representing network traffic as an image is that a malware traffic image

33

exhibits significantly more clustered patterns than a benign traffic image, which exhibits a
more consistent and static pattern [60]. Furthermore, representing the captured IoT traffic
as an image provides a clearer comprehension of the network traffic since the same type of
malware attack generates similar image patterns [61] that can be recognized by a deep learning
model. This approach eliminates the need for manual feature engineering and prior domain
knowledge. According to [62] and [63], the deep convolutional neural network model performs
better on image datasets. The authors transformed the network traffic dataset into a three-
dimensional image and demonstrated that the neural network model trained upon the image-
based network traffic dataset is superior to conventional machine learning methods. Following
these approaches, in our study, we first transform the collected network traffic into the image
dataset. After that, we develop a model that can identify malicious IoT network traffic based
on the network image dataset and a few-shot learning-based prototypical graph neural network.
Our main contributions are as follows.

1. We propose a few-shot learning-based IoT network traffic detection system using binary
visualization and the prototypical graph neural network. Our model can detect and
identify new malware attack traffic using only a few labeled samples at the meta-testing
stage.

2. We convert the network traffic into a red–green–blue (RGB) image to build the dataset for
the malware traffic image. After that, a pre-trained convolutional neural network (CNN)
on the ImageNet dataset is employed to extract the features.

3. We conduct an extensive experiment to demonstrate the effectiveness of our proposed
model. The experimental results indicate that our model can detect new IoT network
attacks with a few labeled samples and is applicable to the detection of a diverse range of
malware attacks.

4.3 Background

4.3.1 Network Intrusion Detection System

The network Intrusion Detection System (IDS) plays a crucial role in the field of cybersecurity.
It monitors, detects, and responds to unauthorized activities in the computer network. The
primary role of IDS is to keep track of the network activities, analyze those activities, check the
potential vulnerabilities, identify attack signatures or patterns, detect network anomalies, and
generate alerts if the anomalies are discovered. The main components of IDS are illustrated in
Fig 4.1, and detailed explanations are provided as follows.

1. Network Monitoring and Data Collection: It is necessary to continuously monitor the
computer network to collect information related to network activities since the attackers
can perform the attacks by injecting malicious code or exploiting the vulnerabilities.

34

Network
monitoring

Data collection from
network traffic flow

Data preprocessing

Data analysis

Identify and store the
signature/attack patterns

Generate
Alerts

Fig. 4.1. Network intrusion detection system

Generally, the multiple network packets, which are the combination of packet header and
payload, can be gathered in this component. Both header and payload offer valuable
insights into the potential attack activities. Moreover, we can also collect information
related to the network flow, which is a sequence of packets grouped by five attributes:
source IP address, destination IP address, source port, destination port, and protocol. We
can build the network dataset and extract the packet-level and flow-level features from the
collected data to identify the network attacks.

2. Preprocessing: To apply the machine learning/deep learning techniques, the raw network
data should be preprocessed to extract important features. Techniques such as data
normalization, scaling, and handling of missing or null values are performed in this step.

3. Analysis: This step involves the detailed analysis of network packets to identify the known
attack signatures or patterns. These signatures are stored in the database to recognize
future attack behavior through pattern matching. Recently, with the emergence of artificial
intelligence, machine learning, and deep learning approaches have become mainstream
techniques for classifying anomalous network behavior. Given that the signature-based
approach is limited to identifying the known attack patterns, the incorporation of machine
learning techniques offers an effective way to recognize unknown attack signatures.

4. Generating Alert: After identifying the attack signatures/patterns or detecting the net-
work anomaly, an intrusion alert is generated and sent to the CERT/CSIRT team. The
security experts are responsible for making decisions on how to mitigate the cyberattacks
and prevent future attacks.

35

4.3.2 Signature-based vs. Anomaly-based IDS

Signature-based and anomaly-based approaches are the two main techniques utilized to identify
threats in the network intrusion detection system. In the signature-based IDS approach, a series
of known attack signatures or patterns are already predefined in the database. This approach
monitors the packet traversing the network and looks for intrusion events that match the already
existing signatures. It is an effective and highly accurate way to recognize the previously known
attacks. However, it is ineffective in zero-day attack detection since the new attack signatures
are not in the database yet, and thus, it fails to find the correlation between the new attack
patterns and existing known attack patterns.

On the other hand, the anomaly-based IDS approach utilizes machine learning techniques
to train the anomaly detection system. Rather than searching for the known signatures, the
anomaly-based approach compares the network activity with normal network patterns and
generates intrusion alerts if abnormal behavior is detected. The advantage of anomaly-based
IDS is zero-day attacks can be recognized by analyzing patterns, as slight deviations from
normal behaviors are considered anomalous. One disadvantage of this approach is that normal
behaviors can be wrongly recognized as abnormal, leading to multiple false positives (false
alarms) and subsequently increasing the workload on the security experts to investigate all these
alerts. Therefore, it is better to use the combination of both approaches to leverage the strengths
of each approach and enhance the overall detection capabilities.

4.3.3 Few-shot Learning

With the advancement of technologies in recent years, artificial intelligence has been in the
limelight due to its efficiency and human brain-like capability. One drawback of traditional
machine learning is that it requires enormous data to train the desired tasks. To learn the model
from the limited training data, a new machine learning paradigm called federated learning is
introduced [64]. In general, few-shot learning aims to recognize new unobserved tasks using a
small quantity of labeled training samples.

The 𝑁-way 𝐾-shot is the expression often used in few-shot learning. 𝐾-shot indicates the
number of samples per class used in the model learning. If 𝐾 is equal to 1, this scenario is
known as one-shot learning, where the model is trained with just one sample per class for each
training task. Various few-shot learning approaches utilize the meta-learning framework with
episodic training [56–59]. In these approaches, diverse few-shot tasks are sampled from the
meta-train dataset for each training episode during the model training. Each few-shot task is
made up of a known support set and an unknown query set. It is important to note that the
classes in the query set might never overlap with the support set. Instead of determining which
class each sample belongs to, the few-shot meta-learner learns the similarity or dissimilarity
between the support and query sets to assign label information from a support instance to a

36

1

1

2

2 3

3 4

4

2

1 3

1

Support Set Query Set
.
.
.

Task 1

O
ne Episode

Meta-training

Meta-testing

Flower Ice cream Apple Bird

1 2 3 4 ? ?

Support Set Query Set

4-way 1-shot

Task N

Testing one few-shot task

Fig. 4.2. Few-shot Learning

query instance. Fig. 4.2 illustrates the tasks involved in the meta-training and meta-testing
stages of few-shot learning.

The authors of [56–58] presented few-shot learning paradigms that compared labeled support
set and unknown query samples in a shared embedding space to predict the label information
for query instances. Matching Networks [56] utilizes the weighted nearest neighbor search with
the attention mechanism, while Relation Networks [57] trains the model to learn the nonlinear
relation between the support and query sets. Prototypical Networks [58] calculates the prototype
representation of each class in the support set in the embedding space, and the label of the query
sample is predicted by computing the Euclidean distance. The graph-based few-shot network
traffic detection method proposed in this paper follows the principle of Prototypical Networks.

4.3.4 Graph Neural Networks for Few-shot Learning

Artificial neural networks are capable of capturing hidden patterns in Euclidean data, such
as images, text, and audio. However, some data may have underlying graph structures with
complex relations and interdependencies. For example, the graph structure can be found on
social networks, knowledge graphs, and protein interaction networks. This has led to the
advancement of the Graph Neural Networks (GNNs). GNNs are a deep learning architecture
designed to analyze graph-structured data [65]. A graph consists of a set of vertices (nodes)
joined by edges. The graph neural network learns the current node representation by repeatedly
combining the features of neighboring nodes using the message-passing algorithm, thereby

37

… …

R
e
L
U

R
e
L
U

Input Output

Conv.
layer

Conv.
layer

𝜎(.)𝜎(.)

Feature Matrix: X
Adjacency Matrix: A

Node prediction

Fig. 4.3. Graph Convolutional Neural Networks

generating similar representations for strongly linked nodes. A graph convolutional neural
network, a well-known variant of GNNs, introduced by Kipf et al. [66] for semi-supervised
classification is depicted in Fig 4.3.

Due to the advantages of GNNs, some approaches [59, 67, 68] incorporated GNNs in the
few-shot learning domain and demonstrated promising results. In their GNNs, each support or
query sample is represented by a graph node. Each graph node has an attribute created through
the concatenation of the sample’s (support or query) feature embedding and label embedding.
The final classification layer is designed to predict the class probability of each query node.

The authors of the previous study [59] utilized a GNN as a label propagation module to
forecast the label of unlabeled nodes. In addition, the edge-labeling GNN (EGNN) for few-shot
learning proposed in [67] predicted the edge labels between the support and query sets by
iteratively updating the node and edge features to ensure intra-cluster similarity and inter-cluster
dissimilarity. Furthermore, the fuzzy GNN (FGNN)[68] employed the fuzzy membership
function to update the edge labels iteratively. After that, node classification was performed on
the constructed graph to predict the unlabeled nodes.

4.3.5 Existing Study on IoT Network Traffic Detection

With the growing number and accelerated use of IoT devices, their vulnerabilities have become
a target for cybercriminals, contributing to a surge in cyberattacks and information leakage. As
discussed below, security experts in the research community have dedicated vigorous efforts to
address security and privacy concerns in IoT networks.

38

In previous studies [9, 10], ML was the most commonly used approach to distinguish malicious
traffic intrusion in IoT networks. The intelligent integrated intrusion detection system proposed
by [9] used a deep learning algorithm to discover malicious attacks in real IoT network traffic.
After separating the incoming traffic into sessions, features such as the source and destination
IP address, transmission mode, duration, transmission and reception rate, and transmission-to-
reception ratio were extracted and forwarded to a deep neural network. An average precision of
95% and recall of 97% were achieved for five attack scenarios: blackhole, sinkhole, wormhole,
distributed denial-of-service (DDoS), and opportunistic service attacks.

In [10], the authors addressed cyber threats in a smart city infrastructure by proposing the
random forest classifier-based anomaly detection system in fog nodes. The authors claimed
that the proposed model could effectively detect compromised IoT devices. The classification
results on the UNSW-NB15 dataset indicated that the model predicted the normal class with an
F1 score of 0.99 and attack traffic with an F1 score of 0.86.

Some studies [69], [63] converted network traffic into an image based on the network packets,
flow, and session and applied a convolutional neural network (CNN) model to the produced
images to identify malicious traffic. In [69], the authors proposed a malicious IoT traffic
classification technique. They transformed network traffic as an image and utilized ResNet50 to
analyze the visualized data. The model was evaluated on a dataset of 1,000 PCAP files of benign
and malicious traffic and demonstrated promising results. Similar to [69], the methodology
proposed in [63] transformed traffic data packets and flow information into images. Then,
the resulting image dataset is classified with the residual neural network (ResNet) model.
The empirical results indicated the multi-class classification with the CICDDoS2019 dataset
achieved an F1 score of 0.86.

Network intrusion detection systems based on the few-shot learning paradigm have also been
proposed in recent studies [70, 71]. These previous studies have effectively demonstrated the
capability of the trained meta-learner to detect new attacks using just a few labeled data. Section
4.4.1 provides a detailed explanation of the meta-learning-based few-shot framework.

The system proposed in [70] consists of two main parts: deep-neural-network-based feature
extraction and feature comparison. The feature extraction part produces feature map pairs
for network traffic sample pairs, while the comparison part computes the delta score. The
comparison result indicates whether a pair of traffic samples belong to the same class. A few-
shot dataset was constructed from the ISCX2012 and CICIDS2017 datasets, and the authors
showcased that malicious traffic could be detected up to 99%.

In [71], the authors proposed an approach that performs feature embedding of traffic samples
with a trained embedding function and calculates the cosine distance between the samples to
predict which traffic samples are closer in the embedding space. The experimental results

39

Flow 1 Flow 2 Flow N…

Flow Generation

Flow 1 Flow 2 Flow N…

Image1 Image 2 Image N…

Image Representation

Image1 Image 2 Image N…

Network Traffic
Collection

B
in

vi
s

…

…

Fig. 4.4. Network traffic preprocessing

indicate that the choice of the embedding and distance functions affects the accuracy of the
classification model.

Our study differentiates itself from existing studies by specifically examining capabilities and
challenges encountered in applying graph-based few-shot learning to the intrusion detection
domain. Moreover, the transformation of network flow information to the RGB image dataset
by utilizing Binvis [72] is also a novel way in the domain of the few-shot learning-based intrusion
detection system.

4.4 Proposed Method

4.4.1 Few-shot Learning Strategy

The proposed few-shot learning approach follows the Prototypical Networks described in [58],
which utilizes the meta-learning framework with episodic training. Few-shot learning is also
known as M-way K-shot classification. M-way denotes how many classes are in each task T,
while K-shot signifies that each class has K samples. Like traditional supervised learning with
a training and test dataset, few-shot learning has a meta-training set 𝑀Train, and a meta-test set
𝑀Test.

Rather than training on the entire training dataset at once, the meta-learner is trained to learn
over diverse few-shot tasks T in multiple episodes. For every task T, T is made up of support
set S and query set Q, and the samples in both sets are of the same class. The support set
is labeled, while the query set is unlabeled and needs to be predicted. Therefore, for every
episode at the meta-training stage, we sample the M-way K-shot task T from dataset 𝑀Train

as 𝑆𝑇 =
{(
𝑥 𝑗 , 𝑦 𝑗

)
|𝑦 𝑗𝜀𝐶, 𝑗 = 1, ..., 𝐾 × 𝑁𝑆

}
, 𝑄𝑇 =

{
(𝑥𝑘 , 𝑦𝑘) |𝑦𝑘𝜀𝐶, 𝑘 = 1, ..., 𝐾 × 𝑁𝑄

}
, and

40

Table 4.1: Color mapping by the Binvis binary data visualization tool

Color Description of ASCII characters
White 0xFF
Black 0x00
Blue Printable
Green Control
Red Extended

𝑆𝑇 ∩ 𝑄𝑇 = ∅. The symbol 𝐶 denotes the set of train classes and 𝑁𝑆, 𝑁𝑄 represent the number
of samples for each class in the support set and query set, respectively.

During the training phase, the meta-training task 𝑇Train = (𝑆𝑇 , 𝑄𝑇)𝑖𝑇=1 is trained by i number
of episodes with known label information for both the support and query sets. The trained
model is then used to predict the label of the query sample of 𝑀Test, with a few labeled support
samples. The M-way K-shot task T for the meta-test dataset is prepared in the same way as
the meta-training task. Ideally, the classes used in the meta-training and meta-testing phases
are entirely different, which achieves the goal of predicting zero-day IoT network traffic attacks
with limited labeled data.

4.4.2 Data Preprocessing

Because the proposed model represents IoT network traffic as an image, some data preprocessing
must be carried out on the raw IoT network traffic. The data preprocessing step is illustrated
in Fig. 4.4. First, the individual bidirectional flows are separated from the collected network
traffic file. A network flow is a group of several associated packets [73] grouped by the 5-tuple:
source IP address, destination IP address, source port, destination port, and protocol. Each flow
contains the hexadecimal sequence of the time-adjacent packets identified by the same 5-tuple.

After that, the hexadecimal values in each flow are transformed into the RGB color image using
a binary data visualization tool called Binvis [72]. Binvis maps each hexadecimal value in a
flow to a predefined color conversion scheme, as illustrated in Table 4.1. The generated output
is the one-dimensional color sequence of each flow. The next step is to lay out each generated
color sequence as an RGB color image while preserving the proximity of the elements in the
one-dimensional sequence to be as near as possible in the two-dimensional image. This can be
achieved by means of the Hilbert space-filling curve [74]. After positioning the color sequence
of the network flow in a two-dimensional layout, the desired RGB color image can be produced.
When visualizing the individual flow as an image, we consider the whole packet (i.e., both
header and payload). In our approach, each IoT network traffic flow is visualized as a color
image of size 256 × 256. Examples of visualized network traffic are presented in Fig. 4.5.
One advantage of visual representation is that it provides a clearer view and comprehensive
understanding of the overall network traffic since the same malware traffic families tend to
generate similar image patterns.

41

Attack HeartBeat C&C PartOfAHori-
zontalPortScan

Okiru DDoS Benign Benign

Fig. 4.5. Visual representation of network flows

4.4.3 Few-shot Prototypical Graph Neural Network

An overview of the proposed few-shot GNN model is illustrated in Fig. 4.6. The architecture
consists of four main parts: feature extraction, a prototype encoder, a graph construction module,
and a graph neural network classifier.

Feature Extraction: The feature embedding function aims to extract important features in
the embedding space. Various CNNs or deep neural networks can be used to extract features.
The proposed model utilizes a pre-trained ResNet18 [75] as the feature embedding function.
ResNet18 is a CNN model that consists of 18 convolution layers. After removing the final fully
connected layer intended for classification, the remaining layers in ResNet18 can be regarded
as the feature embedding module. The feature extractor applied in our proposed scheme is
pre-trained on the ImageNet dataset [76]. The dimension of the output features vector is 512.

Prototype Computation: After feature embedding, the prototype of each class is computed
with the label information from the support set. The approach described in [58] is used to
obtain the prototype of each class by obtaining the mean of the support set’s feature embeddings
associated with that class. The following equation calculates the prototype belonging to class c:

𝑃𝑟𝑜𝑡𝑜𝑐 =
1
|𝑆𝑐 |

∑︁
(𝑥 𝑗 ,𝑦 𝑗)𝜀𝑆𝑐 𝑓𝜃

(
𝑥 𝑗
)
, (4.1)

where 𝑓𝜃
(
𝑥 𝑗
)

is the feature embedding of the jth class from the support set, while 𝑆𝑐 represents
the set of support samples belonging to class c. Next, the Euclidean distance is calculated, which
is the distance between the computed class prototype and the query instance. The minimum
distance is chosen as the initially predicted label for the query instance. Graph Construction:
Following the computation of the initial labels for the query set instances, a graph consisting
of support set images and query set images is constructed. Generally, a graph is formed by a
group of nodes with a link (edge) between nodes. In the proposed scheme, we consider images
from both the query and support sets as nodes. Since the labels of the instances in the support
set are already known, an edge is added between support nodes if they are from the same class.

42

Benign

Attack1

Attack2

Support Set

f

Query Set

Feature
Extractor

Graph
Construction

Prototype

Calculate Euclidean distance between
class prototype and query set imageR

es
N

et
18

Images from support set

Images from query set

Class center

Prototypical Graph Neural Networks

G
ra

ph
 C

on
v.

G
ra

ph
 C

on
v.

Loss

GCN
Prototype of the node’s embedding

Fig. 4.6. Proposed few-shot learning-based network traffic detection system

The relations between the support and query nodes are obtained from the previously computed
Euclidean distance. If the initially predicted class of the query node and the class of the support
nodes are the same, there is a relation (edge) between the nodes. The constructed graph and the
concatenated feature embeddings of both sets are forwarded to the GNN classifier.

Prototypical Graph Neural Networks: The proposed method employs a graph convolutional
network (GCN), a variant of a GNN proposed in [66], as the graph classifier. Similar to a
CNN, which is commonly used in computer vision, a GCN performs multilayer convolution on
graph-structured data. A GCN can be used for link prediction, graph classification, and node
classification. In the proposed approach, node classification is applied to the graph constructed
in the previous step to predict the label information of the unlabeled query nodes. The output
of the graph classifier is the predicted labels of the query set.

The multilayer GCN utilized in our proposed method for node classification is explained in the
following section. For a given graph G with vertices V and edges E, the input of the GCN is
the node features, adjacency matrix, and label information. The output of the GCN is the node
classification results, which predict the unlabeled nodes. A multilayer GCN [66] defines the
layer-wise propagation rule as follows:

𝐻 (𝑙+1) = 𝜎
(
𝐷̃ (− 1

2) 𝐴̃𝐷̃ (− 1
2)𝐻 (𝑙)𝑊 (𝑙)

)
. (4.2)

For an undirected graph 𝐺 = (𝑉, 𝐸) with nodes 𝑣𝑖𝜀𝑉 and edges
(
𝑣𝑖, 𝑣 𝑗

)
𝜀𝐸 , let 𝐴𝜀𝑅𝑁×𝑁 and

𝑋𝜀𝑅𝑁×𝐶 be the adjacency matrix and feature vector of G, respectively, and let𝐷 =
∑
𝑗 𝐴𝑖 𝑗𝜀𝑅

𝑁×𝑁

be the degree matrix of A, where 𝑖, 𝑗 = (1, ..., 𝑁), 𝑁 is the total number of vertices V, and C is
the dimension of the feature vector. In Eq. 4.2, 𝐻 (𝑙)𝜀𝑅𝑁×𝐷 is the feature vector that is input to
the lth layer of the GCN. Therefore, we can say that 𝐻0 is identical to the input feature vector
X. Here 𝜎 denotes the activation function, and𝑊 (𝑙) is the layer-specific trainable weight matrix
of the lth hidden layer. The notation 𝐷̃ (− 1

2) 𝐴̃𝐷̃ (− 1
2) is the normalized adjacency matrix with

43

a self-loop, where 𝐴̃ is the identity matrix of 𝐴, and 𝐷̃ is the degree matrix of 𝐴̃. The GCN
performs aggregation, combining steps recursively in each layer. Each node calculates the mean
value of the neighboring nodes’ features and its own features. The aggregated feature values
are then multiplied by weight𝑊 , and the status of every node in each layer is updated using the
ReLU activation function. 𝑊 is updated by the minimum cross-entropy loss function.

The prototypical graph neural network model used in the proposed approach is similar to
[66]. Our graph model is made up of two parts: two-layer graph convolution and prototype
computation of support node embedding. After the graph convolution layer computed the node
embeddings for each support and query node, we calculate the prototype of the support node
embeddings. The mean value of the support node embeddings belonging to the same classes is
calculated as the node prototypes (i.e., if the number of the support node class is four, then the
total node prototype is four). Then, we find the Euclidean distance between the node prototypes
and the query node embeddings. The graph classifier finally outputs the predicted class of the
query nodes based on the nearest distance between the node prototypes and the query nodes.

4.4.4 Training Objectives and Parameters

During the meta-training, the model is optimized with two cross-entropy loss functions to
make predictions for each query sample using its respective class prototypes. The first loss
function for the prototype computation module is computed via cross-entropy loss: 𝐿1 (𝛼) =
−∑ log𝑃𝛼 (𝑦 |𝑥, 𝑆𝑇), which is the negative log-likelihood of the true class of each query sample.
Similarly, the Prototypical Graph Neural Networks module is optimized again with the cross-
entropy loss function: 𝐿2 (𝛾) = −

∑
log𝑃𝛾 (𝑦 |𝑥, 𝑆𝑇). 𝑃𝛼 and 𝑃𝛾 denote the class probabilities

of the query sample in each episode over parameters 𝛼 and 𝛾. It can be calculated by taking the
softmax over the Euclidean distance between the query sample x and each class prototype 𝑃𝑐
as:

𝑃𝛼 (𝑦 = 𝑐 |𝑥) =
exp (−ED(𝑓𝛼 (𝑥), 𝑃𝑟𝑜𝑡𝑜𝑐))∑
𝑐′ exp (−ED(𝑓𝛼 (𝑥), 𝑃𝑟𝑜𝑡𝑜𝑐′))

, (4.3)

where, ED represents the euclidean distance and 𝑃𝑐′ is the prototype of the class 𝑐′. The
calculation of 𝑃𝛾 is similar to 𝑃𝛼. The total loss during meta-training is optimized by 𝐿𝑜𝑠𝑠 =
𝐿1 (𝛼) + 𝐿2 (𝛾), and the model parameters are updated by minimizing the total loss. The
complete training algorithm for one few-shot task is provided in Algorithm 1.

The proposed prototypical graph neural network model consists of 2 hidden graph convolution
layers with 8 hidden units. A dropout layer of 0.002 is applied in the graph model to avoid
over-fitting. The proposed model utilizes the Adam optimizer with a learning rate of 0.001 and
5e-5 weight decay. The model parameters are determined by tuning the hyperparameters.

44

Algorithm 1 The training algorithm for one few-shot task
Input: Meta-train dataset 𝑀train =

{(
𝑥 𝑗 , 𝑦 𝑗

)
|𝑦 𝑗𝜀𝐶

}
, 𝐶: the set of training classes, 𝑁𝐶 : the number of

classes in one few-shot task, 𝑁𝑆: the number of support samples per class, 𝑁𝑄: the number of query
samples per class

Requires: Feature extractor 𝑓

➢ 𝑅𝐴𝑁𝐷𝑂𝑀𝑆𝐴𝑀𝑃𝐿𝐸 (𝑀train, 𝑁) represents a set of N examples chosen randomly from 𝑀train
without replacement.

➢ GCN(g) denotes the graph convolutional neural network with input graph g.
➢ 𝐺𝑅𝐴𝑃𝐻 (𝑆𝑇 , 𝑄𝑇 , img dist) constructs each image in 𝑆𝑇 and 𝑄𝑇 as a node. The img dist is the

edge between the support node and the query node. The edges between the support nodes are
obtained from the label of the support set.

Output: Loss L for backpropagation
𝐿 ← 0 ⊲ initialize loss
for T in {1, 2, ..., 𝑁𝐶} do

𝑆𝑇 ← 𝑅𝐴𝑁𝐷𝑂𝑀𝑆𝐴𝑀𝑃𝐿𝐸 (𝑀train, 𝑁𝐶 × 𝑁𝑆) ⊲ select the support samples set
𝑄𝑇 ← 𝑅𝐴𝑁𝐷𝑂𝑀𝑆𝐴𝑀𝑃𝐿𝐸 (𝑀train 𝑆𝑇 , 𝑁𝐶 × 𝑁𝑄) ⊲ select the query samples set

end for

(1) Compute support feature 𝑓𝜃 (𝑥 𝑗) and query feature 𝑓𝛼 (𝑥 𝑗) from 𝑆𝑇 and 𝑄𝑇
for c in {1, 2, ..., 𝑁𝐶} do

𝑃𝑟𝑜𝑡𝑜𝑐 ← 1
|𝑆𝑐 |

∑
(𝑥 𝑗 ,𝑦 𝑗)𝜀𝑆𝑐 𝑓𝜃

(
𝑥 𝑗
)

⊲ compute image prototype for class c
end for

img dist𝑐 = min
(
euclidean dist

(
𝑓𝛼

(
𝑥 𝑗
)
, 𝑃𝑟𝑜𝑡𝑜𝑐

))
⊲ calculate Euclidean distance

𝐿1 (𝛼) = −
∑

log𝑃𝛼 (𝑦 |𝑥, 𝑆𝑇) , where, ⊲ loss for image prototype computation

𝑃𝛼 (𝑦 = 𝑐 |𝑥) =
exp(img dist𝑐)∑
𝑐′ exp(img dist𝑐′)

𝑔 = 𝐺𝑅𝐴𝑃𝐻 (𝑆𝑇 , 𝑄𝑇 , img dist𝑐) ⊲ construct graph
𝑜𝑢𝑡 = 𝐺𝐶𝑁 (𝑔) ⊲ (2) compute two-layer graph convolution on graph g

Compute the support node embedding 𝑓𝑔𝜃
(
𝑥 𝑗
)
and query node embedding 𝑓𝑔𝛼

(
𝑥 𝑗
)

from out

for c in {1, 2, ..., 𝑁𝐶} do
𝑛𝑃𝑟𝑜𝑡𝑜𝑐 ← 1

|𝑆𝑐 |
∑
(𝑥 𝑗 ,𝑦 𝑗)𝜀𝑆𝑐 𝑓𝑔𝜃

(
𝑥 𝑗
)

⊲ compute node prototype for class c
end for

node dist𝑐 = min
(
euclidean dist

(
𝑓𝑔𝛼

(
𝑥 𝑗
)
, 𝑛𝑃𝑟𝑜𝑡𝑜𝑐

))
𝐿2 (𝛾) = −

∑
log𝑃𝛾 (𝑦 |𝑥, 𝑆𝑇) , where, ⊲ loss for graph prototype computation

𝑃𝛾 (𝑦 = 𝑐 |𝑥) = exp(node dist𝑐)∑
𝑐′ exp(node dist𝑐′)

𝐿 ← 𝐿 + 𝐿1 + 𝐿2 ⊲ optimize loss

45

Table 4.2: Statistics of image dataset used in experiment

Class label Number of flows
Benign
Attack
Heartbeat
C&C
DDoS
Okiru
PartOfAHorizontalPortScan

4,871
1,327
3,678
2,139
28,041
22,409
21,033

Total 83,498

4.5 Evaluation
This section evaluates and discusses the efficiency of our proposed few-shot learning-based
IoT network traffic detection method. The IoT-23 dataset [77] is used in the experiment to
demonstrate the efficiency and performance of the proposed model. Moreover, we compared
the proposed method with two baseline methods: Prototype Networks [58] and FGNN [68].
The proposed model is trained on NVIDIA Quadro RTX 5000 with 16GB memory.

Dataset: The experiment in this study was conducted on the IoT-23 dataset, which consists of
20 malware traffic captures and three benign traffic captures, collected from 2018 to 2019. The
benign traffic was gathered from a Philips Hue LED lamp, Amazon Echo, and Somfy smart door
lock, while the malicious traffic was generated by simulating various botnet attacks on those
IoT devices. The dataset includes the original captured network files (in PCAP format) and
the log files, generated by the Zeek network analyzer [78], with a total of 21 feature attributes,
including the label information. The dataset is made up of approximately 325 million labeled
traffic flows. Since our method converts network traffic flow into an image, we utilize the
original PCAP file of the IoT-23 dataset to build the dataset. Although the original dataset
consisted of millions of flows, our dataset contained only a tiny portion of the original dataset.
From the PCAP files, each bidirectional network flow was separated by SplitCap [79], and the
ground truth information for each flow was gathered from the conn.labeled.log file provided in
the original dataset. The statistics of the IoT traffic flow dataset utilized in the experiment are
presented in Table 4.2. The dataset had the following seven classes: Attack, Heartbeat, C&C,
PartOfAHorizontalPortScan, DDoS, Okiru, and Benign.

Evaluation metrics: We computed the number of true positive (TP), true negative (TN), false
positive (FP), and false negative(FN). FP indicates the number of normal data incorrectly
classified as an attack, while FN represents the number of attack samples incorrectly classified
as normal. TP and TN denote the number of normal or attack data that were accurately
classified. Based on these values, the evaluation metrics, such as precision, recall, and F1 score
are computed as described in Chapter 1.

46

Table 4.3: Evaluation results of few-shot learning-based network traffic detection system. The evaluation
metrics for multi-class classification are macro-averaged.

Model Test class 4-way 5-shot 4-way 10-shot
Precision Recall F1 score Precision Recall F1 score

Prototypical
Networks
[12]

Benign 0.7270 0.8230 0.7720 0.7707 0.8640 0.8147
DDoS 0.9738 0.8540 0.9100 0.9747 0.8640 0.9058
Okiru 0.9585 0.9010 0.9289 0.9935 0.9200 0.9555
PortScan 0.8354 0.8700 0.8562 0.8618 0.9300 0.9020
Average 0.8737 0.8620 0.8668 0.9002 0.8860 0.8945

FGNN [25]

Benign 0.9185 0.9010 0.9096 0.9409 0.9560 0.9484
DDoS 0.8863 0.8730 0.8796 0.9612 0.9260 0.9435
Okiru 0.8821 0.9800 0.9285 0.9306 0.9260 0.9283
PortScan 0.8613 0.7950 0.8268 0.8918 0.9150 0.9033
Average 0.8871 0.8873 0.8861 0.9313 0.9308 0.9306

Proposed

Benign 0.8293 0.8160 0.8226 0.8870 0.8870 0.8870
DDoS 0.9624 0.9730 0.9677 0.9677 0.9880 0.9777
Okiru 0.9594 0.9690 0.9642 0.9694 0.9510 0.9601
PortScan 0.8764 0.8720 0.8742 0.9339 0.9320 0.9329
Average 0.9069 0.9075 0.9072 0.9395 0.9395 0.9394

4.5.1 Results

The effectiveness of the model was measured on a dataset consisting of seven types of network
traffic, as illustrated in Table 4.2. The dataset was separated into a meta-training set, which
included benign traffic and three types of malicious traffic (Attack, Heartbeat, C&C), and a
meta-test set, which is made up of benign traffic and the rest of the malicious traffic. Selecting
the DDoS, Okiru, and PortScan classes as the meta-test dataset facilitates the examination of a
scenario involving a large volume of unseen and unlabeled malware traffic for analysis. Only
these three classes in our dataset satisfy the condition. Moreover, it is possible to train the
model with any combination of attack classes as long as the attack classes in the meta-train and
meta-test dataset do not overlap since the goal of our few-shot model is to investigate how well
the meta-trained model generalizes the unseen classes, given a small number of labeled samples
of each unseen class.

Both the training and test datasets had four classes, and the few-shot learning problem became a
4-way K-shot classification problem. Since benign traffic is used in both datasets, 1,690 benign
samples are used for training, thus making a total of 8,834 and 74,664 samples for meta-train and
meta-test datasets, respectively. As mentioned in Section 4.4.1, to train the few-shot model in an
episodic manner, we need to sample multiple tasks such that each task consists of a support set
and a query set. We did not explicitly split the meta-train dataset as a support set and query set.
Instead, the support and query examples for one training task are randomly sampled from the
meta-train dataset. For the meta-test dataset, the labeled 2% of the meta-test dataset is regarded
as the support test set and the rest of the unlabeled samples are considered as the query test
set. At the meta-testing stage, a test task consists of support and query examples are randomly
drawn from the support and query test sets.

47

As our purpose is to use limited labeled samples as much as possible, our model is trained and
tested with 5-shot and 10-shot samples, and the experiment results are presented in Table 4.3.
During the meta-training, we train a total of 30 episodes, with each episode consisting of 100
tasks. For instance, for 4-way 5-shot classification with one query image per class, we sample
a total of 4 × (5 + 1) = 24 images for each task based on the formula 𝑁way

(
𝑁shot + 𝑁query

)
.

Therefore, for each episode, we sample a total of 24 × 1000 = 2400 images from the meta-train
dataset. For simplicity, the number of query samples for one task is chosen as one per class, but
we can choose any number of query samples per class in one task.

The experimental results indicated the proposed model achieved an F1 score of 0.91 in 5-shot
classification and 0.94 in 10-shot classification. The average recall and precision in both 5-shot
and 10-shot classification was above 90%. To exhibit the efficiency of the proposed method,
we compared it to two baseline methods: Prototypical Networks [58] and FGNN [68]. The
former had an F1 score of 0.8945, while the latter had an F1 score of 0.9306 in a 10-shot
setting. The proposed approach outperforms both methods in terms of the average F1 score in
both 5-shot and 10-shot classification. Comparing our proposed method to FGNN in 10-shot
classification, our model performed only slightly better than FGNN in all average evaluation
metrics. However, in the 5-shot classification, all average evaluation metrics of our proposed
method were approximately 2% higher than those of FGNN. Thus, our proposed method can
effectively classify IoT network traffic using a few labeled samples.

Furthermore, to investigate how well the trained model performs on the attack, benign, C&C,
and Heartbeat classes, the evaluation results for those classes in the 4-way 5-shot scenario are
illustrated in Fig. 4.7. 10% of each test class is labeled, and used as the support set. The rest of
the samples are regarded as the query set that is needed to be predicted by the few-shot learner.
The overall accuracy is 93%. The model can correctly classify the attack class; however, the
classes C&C and Heartbeat incorrectly predict the output label as each other since the Heartbeat
class in the IoT-23 can be considered a sub-class of the C&C class.

4.5.2 Discussion

The proposed model visualizes the individual network flow as an image to train the model.
Therefore, the data preprocessing includes two steps: the individual network flow separation
and the conversion of each flow as an image. Since the size of the PCAP file in the IoT-23
dataset is large and the captured duration is long, generating the bidirectional network flows
from the IoT-23 dataset takes longer. However, just a few milliseconds are required to visualize
each flow as an image. Making the image dataset (i.e., Table 4.2) from the network flows
takes approximately 40 minutes. Since our few-shot model operates upon the graph structure,
it takes additional cost to construct the graph. As the graph is built for each few-shot task, for
instance, for 4-way 5-shot classification with one query image per class, each task consists of
20 support images and 4 query images, producing 24 nodes for the graph. Since the number

48

Fig. 4.7. Confusion matrix of few-shot model on test dataset. The 4-way 5-shot few-shot model is trained
on attack, benign, C&C, and Heartbeat classes

of nodes is small and the prototype computation module has already estimated the edges, the
graph can be generated immediately. The training time of the proposed model for 30 episodes,
excluding the data preprocessing time (i.e., network flow separation and image visualization),
takes approximately 20 minutes for 4-way 5-shot learning with 100 tasks in one episode.

Even though the proposed model exhibited excellent performance, it also has limitations, such
as the validity of the dataset and the deployment of the proposed model in a real environment.
The number of IoT devices deployed to create the IoT-23 dataset is somewhat small, and the
variations of the simulated attack are considerably fewer, which could further limit the real-world
capability of the IoT-23 dataset. Though the IoT-23 dataset used in the study was published in
2020, some IoT traffic was captured in 2018. It means the trained few-shot model is behind
the current IoT ecosystem by almost four years. Since IoT is an emerging technology, this
time gap enables various changes in IoT devices, such as protocol, firmware, and OS version.
Consequently, these changes can open up a potentially exploitable environment for malicious
attackers. Therefore, constant supervision and frequent updates of the IoT data are required to
maintain the model’s effectiveness.

Our insight on the possibility of deploying the proposed model in the real environment is that
as long as the individual network flow is provided into the proposed model in real-time, the
deployment of the trained model should be possible for real-time detection. The testing time
of the proposed model might be inferior to the conventional machine learning model. This is
because the model needs to construct the few-shot task from the meta-test dataset and create
the graph for traffic classification. However, considering the resource-limited IoT devices, the
size of the classifier and the data preprocessing step could be a heavy burden while deploying
on a single IoT device. Instead, the proposed model could be deployed in a place (e.g., an edge
server) with sufficient resources to analyze the network traffic transmitted by the IoT devices in
real-time. One advantage of the proposed few-shot learning over conventional machine learning

49

is that the model retraining is unnecessary if a new type of attack has emerged. We only need
to add a limited labeled sample of the unseen attack classes in the support set of the meta-test
dataset so that the trained model can classify the unseen classes.

4.6 Conclusion
In this study, we propose a few-shot meta-learning approach based on the prototypical graph
neural network to classify malicious network traffic in IoT devices. Although ML models
perform reasonably well in recognizing malicious samples, they require a considerable amount
of traffic samples to train the model. Our proposed method addresses this issue by utilizing an
episodic few-shot learning paradigm. We transform the bidirectional network flows into images,
and a pre-trained CNN model can automatically extract useful features from network packet
data. Our model is designed to learn how close the two network flows are in the embedding
space, by utilizing the Euclidean distance function. With this information, the model constructs
the traffic image as a graph structure and classifies it using the proposed approach.

The experimental results demonstrated that the proposed model outperformed the baseline
models. Our approach identifies malicious IoT traffic with an F1 score of 0.94 and 0.91 in 10-
shot and 5-shot classification, respectively. Even though the advantage of few-shot learning is
that the training and test classes do not need to be the same, it has limitations. Since the number
of classes is fixed during the meta-training, if we train the model with N classes, unfortunately,
only N classes can be predicted at a time in the meta-testing stage. Moreover, the IoT malware
attack categories studied in this research comprised only a few attack categories. Therefore, this
research can be further extended to experiment with the new attacks. Furthermore, the proposed
model is simulated in a controlled environment; therefore, we could not exactly elaborate on
the practical operational efficiency of our proposal in real-time.

50

Chapter 5

Personalized Federated Learning-based
Intrusion Detection System: Poisoning
Attack and Defense
5.1 Abstract
To deal with the increasing number of cyber-attacks, intrusion detection system (IDS) plays
an important role in monitoring and ensuring the security of the computer network. With the
power of machine learning and deep learning, intelligent IDS systems have gained increasing
attention due to their efficiency and high classification accuracy. However, the premise of
machine learning/deep learning is that the data must be in one central entity (e.g., server)
to train the model. This causes additional concerns, such as data transmission costs and
privacy leakage. Federated learning complements this shortcoming with a privacy-preserving
decentralized learning technique. In federated learning, the data are not shared with the server,
local model training is performed where the data reside and only the model parameters are
exchanged with the server. This study investigates the federated learning-based IDS approach
in the context of IoT data to tackle the main challenges imposed by federated learning. Data
heterogeneity and poisoning attacks launched by malicious clients are the main focus of this
study. As real-world IoT datasets are heterogeneous, we propose a personalized federated
learning-based IDS approach to handle imbalanced data distributions. Moreover, a curious yet
malicious client can poison the local data or model to corrupt the global intrusion detection
model due to the distributed nature of federated learning, where the central server has no control
over the client’s local training process. This study demonstrates that the existence of a malicious
client can degrade the performance of the federated learning-based IDS model. Accordingly,
we propose a robust approach called pFL-IDS to combat poisoning attacks against the federated
learning-enabled IDS on heterogeneous IoT data. In comparison with the baseline methods, we
demonstrate that our pFL-IDS can detect poisoning attacks without compromising performance.

5.2 Introduction
With the rapid development of the Internet, the world has become more connected, and the
deployment of the Internet of Things (IoT) devices has increased. It is reported that IoT
devices will reach 55.7 billion by 2025 [80]. The massive amount of data generated by these

51

devices, combined with their vulnerable nature, opens more attack interfaces and opportunities
for malicious parties to conduct cyber-attacks [81]. In 2016, the infamous Mirai botnet attack
triggered Internet security breaches by compromising massive IoT devices [52]. This further
signifies the need to strengthen the security of the IoT network ecosystem to protect the network
from cyber-attacks. Therefore, an in-depth network traffic analysis is necessary; the intrusion
detection system plays a vital role in detecting and mitigating unwanted attacks.

To date, different techniques have been utilized in network intrusion detection systems to
detect network anomalies, which are either signature-based or behavior-based approaches or
a combination of both [82]. Combined with its efficiency and effectiveness, the machine
learning/deep learning-based IDS was proven to be a perfect candidate with high detection
accuracy. However, the traditional machine learning-based method requires the data to be in
one central place to analyze the data gathered from all user devices. This increases the data
transmission costs and the risk of privacy leakage as the data from user devices contain sensitive
or confidential information.

To resolve these issues, McMahan et al. [83] proposed a privacy-preserving and distributed
federated learning paradigm for on-device learning. Federated learning is a client–server
architecture that comprises multiple clients tied to a central server. It enables clients/devices to
train a shared model collaboratively without the actual data exchange to guarantee user privacy,
reduce data transmission costs, and improve the overall model accuracy. In the context of IoT
networks, research on federated learning-based IDS has been emerging recently [82]. In this
system, the clients train the global intrusion detection model on their local dataset to compute
and upload local model updates to the server. The server combines local models to generate
the global intrusion detection model, which is sent back to the clients for further training. This
process is repeated until the global model converges.

Despite its benefit, federated learning still has some limitations, such as difficulty in handling the
heterogeneity in the data distribution of the client and the poisoning attacks executed by malicious
clients [82, 84, 85]. In realistic scenarios, the client data are confirmed non-independent and
identically distributed (non-IID) in contrast to the ideally assumed independent and identically
distributed (IID) scenarios seen in many research methodologies. In federated learning-based
IDS, some clients (devices) may only have attack traffic, while others may have normal traffic
only or consist of different kinds of attack traffic. Moreover, as demonstrated in recent studies
[86, 87], federated learning-based IDS is prone to data poisoning and model poisoning attacks
as the server has no control over the behavior of the client.

Poisoning on data can be done either by modifying the ground truth labels of the client dataset
(label-flipping attack) or injecting false training data (clean label attack). In model poisoning,
malicious clients can manipulate local model parameters to align the global model’s objective
closer to the attacker’s objective. Both poisonings can cause misjudgment in the IDS model,
for instance, recognizing benign traffic as attack traffic or vice versa. To alleviate these issues,

52

vigorous methodologies have been proposed by the research communities, including the min-
imization of the influence of the malicious client using robust aggregation techniques in the
server [88, 89] and detection and removal of the poisoned clients [90–92] before the global
model aggregation.

The objective of our study is to model the robust federated learning-based IDS that can effectively
detect network anomalies of IoT data. In line with the ongoing research efforts for federated
learning, our proposal explores two topics: the effect of data heterogeneity and the behavior
of the federated learning-based IDS when poisoning attacks occur. We examine two poisoning
attacks: label-flipping [93] and model update poisoning attacks [94], to understand the impact of
the poisoned clients against the federated learning-based IDS. First, we analyze the consequences
of these attacks and evaluate how well the existing robust server aggregators [88, 89] can defend
against these poisoning attacks. According to our findings, the existing robust aggregators cannot
effectively mitigate the influence of the poisoned clients when the client’s data heterogeneity is
significant.

Therefore, we designed the poisoned client detector on the server that can distinguish the
poisoned clients from the non-poisoned clients and restricted their participation from the global
model aggregation to achieve our objective of reducing the impact of poisoned clients on the
global intrusion detection model. The concept of detecting poisoned clients has been explored
in previous studies [90–92]. Nevertheless, existing approaches operate under the assumption
that the ratio of poisoned clients is small or they need a clean server dataset to compare the client
model with the server model. Otherwise, these approaches are not tailored to work well with
non-IID data. On the contrary, our detection approach can identify poisoned clients without
drastically degrading the overall performance, and it does not require an additional clean dataset
on the server.

In this study, we analyze the behavior of label-flipping attacks and model update poisoning
attacks against the federated learning-based IDS for IoT data under non-IID data scenarios. The
main contributions of this study are summarized as follows.

1. We propose personalized federated learning for intrusion detection system (pFL-IDS), a
robust federated learning-based IDS model with a poisoned client detector, to handle IoT
data heterogeneity and poisoning attacks.

2. With the logit adjustment loss, we model the personalized federated learning approach
customized to the client’s data distribution. We demonstrate that personalized logit
adjustment loss is suitable if the data distribution between clients varies considerably,
which is a common occurrence in IoT data.

3. To mitigate the influence of the poisoned clients from the global intrusion detection model,
we design a poisoned client detector at the server. Our detector can identify poisoned
clients and limit their participation in the global intrusion detection model aggregation.

53

4. We evaluate proposed pFL-IDS with the N-BaIoT dataset [15] to study the effectiveness
of our approach. We sample different data scenarios from the dataset to simulate the
imbalanced data and experiment with different poisoning attacks.

5. We demonstrate our pFL-IDS achieves better performance than state-of-the-art methods
[88, 89, 91] in the detection of IoT network traffic anomalies even if some clients are
deliberately poisoned in the federated training process.

5.3 Background

5.3.1 Federated Learning

Federated learning is a distributed machine learning technique that collaboratively trains the
learning algorithms on multiple edge devices or clients, assuming that the client’s private
information does not leave the local machine. Generally, federated learning can be viewed as
a client–server architecture that comprises multiple clients tied to a central server. Each client
trains the local model using local data and shares the trained model parameters (not data) with
the rest of the clients through a central server. The central server combines all local models to
create a unique global server model, which is sent back to the client for further training. After
several communication rounds, the global model that contains the knowledge of multiple clients
is obtained. As federated learning is iteratively trained, the learning model can be updated in
each round, improving overall accuracy.

Compared to traditional centralized machine learning, which requires the data to be placed in one
central location to train the model, a federated learning framework can train the model without
such constraint, subsequently reducing data transmission costs and privacy leakage. Moreover,
previous studies have demonstrated that federated learning performance is comparable to cen-
tralized learning. Since federated learning can realize data integration and model fusion while
developing high-precision learning models, it can be utilized in developing high-quality big
data services. As illustrated in Fig. 5.1, the typical procedure for federated learning includes
local training, model parameters exchange between clients and the server, and global model
aggregation. FedAvg [83] is the mainstream server aggregation algorithm to update the global
model by taking a weighted average of the client’s model parameters. Besides FedAvg, there are
other aggregation methods, such as FedProx [95], FedNova [96], Scaffold [97], MOON [98],
and Per-FedAvg [99]. These models are developed to address the communication overhead,
data privacy concerns, and data heterogeneity in federated learning.

Based on the client size, federated learning can be categorized into cross-device and cross-
silo federated learning. In cross-device federated learning, the client number is typically
large (e.g., up to millions), with each client likely to have a relatively small amount of data.

54

Fig. 5.1. Federated learning system

Examples include smartphones, edge devices, and wearable devices. On the other hand, cross-
silo federated learning is generally associated with large organizations or companies where the
participants are relatively small (e.g., up to a hundred) and have enough computing power. In
the cross-device scenario, the client’s participation in every communication round is infeasible
due to the large number of clients. Therefore, to avoid bottlenecks, only a few clients can
participate in every round. In contrast, every client is expected to participate in every round of
the cross-silo federated learning.

Moreover, depending on the type of data available, feature space, and the model exchange
method, federated learning can be categorized into horizontal, vertical, and federated transfer
learning. Horizontal federated learning is applicable if each client has a different dataset with the
same feature spaces. On the other hand, vertical federated learning is suitable if each client has
common entities with varying feature spaces. Federated transfer learning is appropriate if each
client has different domains or related tasks (e.g., transferring a pre-trained image classification
model to video classification). Due to its advantages, federated learning has been applied in
various fields, such as healthcare, the financial industry, and IoT networks. In this study, we
investigate the application of federated learning to the cybersecurity domain, especially for the
intrusion detection system. Since our approach involves a relatively small number of clients,
each equipped with different network traffic samples but shared feature spaces, we have utilized
the cross-silo and horizontal federated learning scenarios in our proposed model.

55

Table 5.1: A summary of existing works on federated learning-based IDS

Reference Personalized
FL

Defense methods
for poisoning attacks

Neural
network Main contributions

Val et al. [86] -
Coordinate-wise
median and
trimmed mean

MLP,
Autoencoder

Evaluate the resilience of FL models
against malicious clients

Popoola et al. [100] - - DNN Detection of zero-day IoT botnet attack

Fan et al. [101] ✓ - CNN Learn customized IDS model
using federated transfer learning

Mothukuri et al. [102] - -
GRUs with a
Random Forest
ensembler

Combine the output of different GRUs
layers with random forest ensembler

Attota et al. [103] - - ANN Utilize various data views of IoT traffic
to maximize the detection accuracy

Ferrang et al. [84] - - DNN, CNN,
and RNN

Comprehensive survey and experimental
analysis of FL for cyber security

Ours (pFL-IDS) ✓
Poisoned client
detector CNN Personalized FL-based IDS for non-IID data

with a poisoned client detector

5.3.2 Existing Study on Federated Learning-based IDS

Privacy-preserving federated learning has been extensively applied in the context of network
intrusion detection systems due to its reputation of not needing to exchange private data.
Val et al. [86] proposed federated learning-based IoT network anomaly detection based on
both supervised deep learning and unsupervised autoencoder. Moreover, they considered the
presence of adversarial poisoning attacks and evaluated how well the existing robust aggregators
[88, 89] can mitigate the impact of the poisoning attacks.

Popoola et al. [100] proposed zero-day botnet attack detection for IoT edge devices and
demonstrated that federated learning-based DNN outperformed the conventional DNN model
in terms of attack detection accuracy, low communication overhead, and data privacy. Fan
et al. [101] proposed IoTDefender, a transfer learning-based IDS for 5G IoT. IoTDefender
combined data using federated learning and learned personalized attack detection models by
transfer learning while ensuring privacy.

Monthukuri et al. [102] proposed federated learning-based anomaly detection for IoT networks
based on GRUs. They improved the classification accuracy by combining the predictions from
different layers of GRUs models with an ensemble of the random forest of models, demonstrating
the improvement of the attack detection compared to centralized machine learning. Attota et
al. [103] proposed MV-FLID, an ensemble multi-view federated learning for IoT intrusion
detection. MV-FLID learned three separate ANN models for three views of network traffic
(i.e., uniflow, bi-flow, and packet). The predictions of these models were combined through a
random forest model to improve the attack detection accuracy.

Ferrag et al. [84] provided a comprehensive survey on federated learning for IoT intrusion
detection systems. They demonstrated that federated learning outperformed centralized learning
by evaluating three IoT traffic datasets with different deep learning models. The aforementioned

56

studies, as summarized in Table 5.1, demonstrated the effectiveness of federated learning for
intrusion detection; however, most of them did not consider data heterogeneity and how to
combat the possible poisoning attacks launched by malicious clients. Therefore, our study
examines both issues to improve the federated learning-based IDS model.

5.3.3 Impact of Statistical Heterogeneity in Client Data

One of the significant challenges in implementing federated learning is the presence of statistical
heterogeneity in data (non-IID), which is more apparent in the cross-device federated learning
scenario. While centralized machine learning techniques assume the data to be independently
and identically distributed (IID), federated learning often has an issue with that assumption
due to its distributed nature, for example, non-IID data in client data distribution and other
statistical factors. This kind of statistical heterogeneity in data can cause client data bias
(causing client drift while updating local models), resulting in the performance degradation
of the aggregated global model. Generally, data heterogeneity can be classified into quantity
skew, label distribution skew, and feature distribution skew. Since our study is focused on label
distribution and quantity distribution skews, we only provided a detailed explanation of these
two scenarios.

Quantity skew: It refers to the situation where each client has different amount of data samples.
In practice, it is almost impossible for every client to have equal amount of data when training
the federated learning model. To simulate this scenario, the authors in [104] partitioned the
CIFAR-10 dataset with different amounts of data for each client, and experimented with the
partitioned datasets. Investigating how the uneven amount of data among clients impacts the
model performance is crucial in federated learning.

Label distribution skew: It refers to the variation in the distribution of data labels among the
clients. For example, in previous studies [105, 106], the Dirichlet distribution Dir(𝜂) is often
utilized to simulate the data distribution differences for evaluating the performance of federated
learning. Here, the value of 𝜂 controls the degree of data heterogeneity. The smaller 𝜂 value
means that the non-IIDness of the data is high [106]. Therefore, by manipulating the 𝜂 value,
we can generate various data distributions to examine the impact of the data heterogeneity on
the federated learning model. Furthermore, in studies such as [83, 95], the authors utilized
two label categories out of ten to simulate the non-IIDness of the data. For example, in the
case of the MNIST digit dataset (labels ranging from 0 to 9), the authors [83, 95] distributed
data containing only two digits to each client. Subsequently, each client’s data may or may not
overlap with other clients. In label distribution skew, the overall data quantity for all clients is
often fixed; for instance, the client may have 100 data samples corresponding to each label.

To address the negative influence of the non-IID data on federated learning, model personal-
ization approaches have recently received much attention in research communities. There are

57

various techniques for model personalization, such as local model fine-tuning, multi-task learn-
ing, model clustering, model parameter decoupling, and knowledge distillation [107]. Out of
these approaches, our proposed model deals with the non-IID data through a model decoupling
strategy. Decoupling means that the neural network model is partitioned into a feature extractor
(body) and classifier (head). Then, by applying the mini-batch logit adjustment loss to the head
classifier on top of the commonly used cross-entropy loss, which is explained in Section5.4.2,
the negative impact of non-IID data can be reduced. With these two losses, each client optimizes
its local model based on the importance of the underlying class distribution, making the global
model more resilient to the non-IID distribution.

5.3.4 Poisoning Attacks against Federated Learning-based IDS

We assume that the federated server is not compromised and only consider the poisoning attacks
that can occur at the client. The number of attackers is assumed to be less than 50% of the total
client. We define the attacker’s goals and capabilities as follows.

Attacker’s goals: The attacker aims to corrupt the global intrusion detection model either by
label-flipping or model poisoning such that the global model outputs wrong predictions on the
IoT network traffic. For instance, the global intrusion detection model will misjudge malicious
IoT traffic as benign or vice versa and reduce the performance of the model.

Attacker’s capability: The attacker can modify the labels of the local dataset or the trained
model parameters to achieve the desired goals, but it cannot modify the data. This study
investigates two kinds of poisoning attacks, such as label-flipping and model update poisoning
attacks, to understand the behavior of poisoning attacks on federated learning-based IDS.

Label-flipping Attack: The attackers manipulate the label of the local dataset to inject falsified
local model updates into the server aggregator. The attacker flips the selected source class of the
training data to the target class without modifying the features. In the federated learning-based
IDS system for anomaly detection, depending on the attacker’s goal, the label-flipping can be
done in three ways as follows.

1. Flip benign as the attack label: The goal is to always predict the traffic as an attack such
that the model will have a high false positive rate (FPR) (i.e., false alarms)

2. Flip attack as the benign label: As the goal is to always predict the traffic as benign, the
model will not correctly detect the attack traffic making the true negative rate (TNR) close
to zero.

3. Flip both labels to each other: The goal is to make the model’s accuracy close to zero.

Model Poisoning Attack: Two types of poisoning are examined by modifying the parameters
of the local model: the model update scaling and the same global model attacks.

58

Global model
Poisoning

Attack
Detector

1

3

4

1. Initialize and send global model to clients
2. Clients train personalized local model
3. Upload local model to server

5

Server

Client 2

Local
model 2

Client 1

Local
model
1

Client N

Local
model N

Σ

2

4. Server remove potentially malicious clients with poisoning attack detector
5. Aggregate the clean local model as identified by the detector

Feature Extractor

Classifier

FC

1D
C

on
v

1D
C

on
v

1D
C

on
v

Fu
lly

 C
on

ne
ct

ed
 L

ay
er ŷLA

ŷCE ℓCE

ℓLA

Dropout

ReLU

Personalized local model

Fig. 5.2. The architecture of the federated learning-baed IDS model

1. Model update scaling attack: Malicious clients poison the model by multiplying the local
model parameters with the negative scaling factor to corrupt the local model such that
the gradient of the poisoned model will be in the opposite direction as that of the benign
model. This attack is easy to perform and does not require prior knowledge of client data.

2. Same global model attack: Similar to the previous attack, this attack does not train the
local model at all but replaces the global model parameters with the same number for all
poisoned clients.

5.3.5 Defending Poisoning Attacks in Federated Learning

To defend against the poisoning attacks in federated learning, a variety of robust server aggrega-
tion algorithms have been introduced so far, such as coordinate-wise median [88], coordinate-
wise trimmed mean [88], and multi-Krum [89]. These methods are designed to deploy on the
server in the place of FedAvg and are intended to reduce the negative impact of the poisoning
attacks. In addition to these robust aggregators, there is also a method of detecting the poisoned
clients before starting the global model aggregation process. The intuition behind this approach
is that as the objective of the poisoned clients is different from the non-poisoned clients, their
gradients should be close to each other but far away from the rest of the non-poisoned clients.
Both techniques provide protection against poisoning attacks to some extent.

Existing studies on poisoning attacks and defense mechanisms in federated learning are mainly
centered around the image domain, utilizing datasets like CIFAR-10 and MNIST image datasets.
Very few research methodologies have been proposed so far in the cybersecurity domain, par-
ticularly for IDS systems. Val et al. [86] investigated data and model poisoning attacks against
the federated learning-based IoT network anomaly detection system and evaluated how well the
existing robust aggregators [88, 89] can mitigate the impact of the poisoning attacks. Zhang et

59

al. [87] proposed a robust federated learning-based IDS model by introducing a model-level
defense mechanism. Their defense mechanism is based on the online unsupervised poisoned
model detection on low-level model parameter representations. Most of the previous studies on
the federated learning-enabled IDS approach did not investigate resilience to both data poison-
ing and model poisoning attacks, especially under IoT data heterogeneity. Therefore, this study
delved into those unexplored aspects to provide valuable insights into the significant challenges
and novel findings. The following defense methods were implemented in the experiment to
compare and evaluate the effectiveness of our proposed defense mechanism.

Coordinate-wise median: It sorts the ith parameters of n local models and takes the median
of the ith parameters, which is 𝑤𝑖 = median

{
𝑤𝑖𝑛 : 𝑛𝜀𝑁

}
. When n is an even number, the mean

of the two middle values is the median value. When n is odd, the median is the middle parameter.

Coordinate-wise trimmed mean: Similar to the coordinate-wise median, it sorts the ith param-
eters of n local models and removes the smallest and largest parameters 𝛽 before the computation
of the mean of the rest of parameters 𝑛 − 2𝛽.

Multi-Krum: It is a variant of Krum [89], which computes the Euclidean distance between
model parameters and averages the top 𝑘 = 𝑛(total clients) − 𝑓 (poisoned client) − 2 nearest
neighbors to obtain the global model. If 𝑘 = 1, multi-Krum becomes Krum. If 𝑘 = 𝑛, it
becomes the same as FedAvg. The multi-Krum poorly performs on non-IID data since it is
designed to work with IID data.

Poisoned Client Detector: The goal is to detect the poisoned clients and limit their par-
ticipation in the global model aggregation such that the attacker’s goals cannot be achieved. The
previous work by Jebreel et al. [91] detects the poisoned client by calculating the cosine sim-
ilarity of the dimensional-reduced last-layer gradients of local models from the non-poisoned
centroid. They assumed that the number of poisoned clients is not larger than 20% so that
the normal centroid is always located in the range of the non-poisoned clients, and hence, the
poisoned clients can be efficiently identified and removed. As a result, the model performance
may be degraded if the poisoned client is larger than the assumed 20%. Moreover, even though
the authors have experimented with non-IID data distribution, their proposal did not investigate
how to deal with the non-IID data without compromising performance. Compared to [91],
our pFL-IDS can defend against poisoned clients up to 30% with a low attack success rate.
Moreover, our model is designed to handle performance degradation caused by non-IID clients.
The detail of our server-side poisoned client detector is presented in Section 5.4.3.

60

5.4 Proposed Method
The overview of the novel personalized federated learning approach for the intrusion detection
system that is designed to work with non-IID IoT data is described in this section. Considering
the vulnerabilities of federated learning against poisoning attacks, we propose a poisoned client
detector on the server before proceeding with the usual global model aggregation step of
federated learning. Fig. 5.2 shows the architecture of our pFL-IDS. The federated learning
process is as follows.

1. Global model initialization: At the start of the communication round, a global intrusion
model is initialized at the server and is sent to the clients.

2. Local training: Each client trains the global model with private data to produce the local
model.

3. Server Aggregation: The clients upload their local models to the server, which updates
the global model parameters with the aggregation of the client model parameters. The
aggregator FedAvg [83] is a simple weighted average of the client’s model parameters
as defined by 𝑤𝑡+1 ← ∑𝐾

𝑘=1
𝑛𝑘
𝑛
𝑤𝑡
𝑘
. Our model has an additional step before the global

model aggregation to mitigate the negative impact of the poisoning attacks on federated
learning. We identify the possible poisoned clients and prohibit them from joining the
global aggregation process. Our poisoned detector first analyzes the last layer of all
client models to determine the poisoned model updates. The proposed detector is based
on two-step client similarity alignment and re-weighting. In the first step, we take the
pre-computed global model by averaging all local models. As all poisoned clients have
the same objective, the poisoned model should be closer to the pre-computed global
model if the poisoning attempt is successful. Considering this, we can identify a potential
non-poisoned client. In the second step, we compute the angular deviation between local
model updates from the dimensionality-reduced centroid of the non-poisoned client. The
non-poisoned client will have a smaller angular deviation from the centroid compared to
the poisoned client. With that angular similarity, we re-weight each model and take the
average of the potentially clean models as a global model for the next round.

4. Model transmission: The updated global model is sent back to the clients for further
training.

Steps 2 to 4 is repeated for multiple communication rounds until a superior global intrusion
detection model is achieved.

5.4.1 Convolutional Neural Network

The remarkable performance and strong feature extraction ability of the two-dimensional CNN
have been demonstrated in image classification and computer vision areas. Meanwhile, the

61

� �� � � + 1

� 1
�

� 2
�

� 1
� + 1

� 2
� + 1

cli e nt 1

cli e nt 2

� 1
∗

� 2
∗

� ∗ � ��

� � + 1

� 1
�

� 2
�

� 1
� + 1

� 2
� + 1

cli e nt 1

cli e nt 2

gl o b al
o pti m u m
is s hift e d

� 1
∗

� 2
∗

� ∗

(a) II D (b) n o n-II D

gl o b al u p d at e

l o c al u p d at e l o c al m o d el

gl o b al o pti m u mgl o b al m o d el

l o c al o pti m u m
cli e nt drift

Fi g. 5. 3. Ill ustr ati o n of cli e nt drift i n F e d A v g al g orit h m f or t w o cli e nts wit h 2 l o c al u p d at e st e ps. (a) II D
d at a. T h e a v er a g e d gl o b al o pti m u m 𝑤 ∗ is l o c at e d e q u all y fr o m b ot h cli e nts’ l o c al o pti m a 𝑤 ∗

1 a n d 𝑤 ∗
2 . (b)

n o n-II D d at a. T h e a v er a g e d gl o b al o pti m u m 𝑤 ∗ is n ot e q ui dist a nt fr o m b ot h l o c al o pti m a d u e t o cli e nt
drift c a us e d b y cli e nt i m b al a n c e d d at a distri b uti o n. As a r es ult, t h e gl o b al o pti m u m 𝑤 ∗ is d e vi at e d fr o m

t h e tr u e gl o b al o pti m u m, a n d t h e gl o b al m o d el c a n n ot c o n v er g e.

o n e- di m e nsi o n al n e ur al n et w or k (1 D- C N N) is d esi g n e d t o w or k wit h s e q u e nti al d at a, s u c h as

a u di o si g n als, t e xt, or ti m e-s eri es d at a. We e m pl o y 1 D- C N N f or t h e cli e nt’s i ntr usi o n d et e cti o n

m o d el tr ai ni n g d u e t o its g o o d p erf or m a n c e o n ti m e s eri es d at a. Fi g. 5. 2 s h o ws o ur 1 D- C N N

ar c hit e ct ur e. It c o nsists of t hr e e c o n v ol uti o n l a y ers wit h k er n el si z e 1 a n d stri d e 1, f oll o w e d

b y t h e R e L U a cti v ati o n l a y er. T h e i n p ut of t h e first c o n v ol uti o n l a y er is 1 1 5, w hi c h is t h e t ot al

n u m b er of f e at ur es of t h e N- B aI o T d at as et us e d i n t h e e x p eri m e nt. T h e c o n v ol uti o n l a y ers

h a v e 2 5 6, 1 2 8, a n d 6 4 k er n el filt ers, r es p e cti v el y. A dr o p o ut l a y er wit h 𝑝 = 0 .2 is a d d e d t o

pr e v e nt o v er fitti n g. Aft er t h e c o n v ol uti o n l a y ers m a p t h e i n p ut t o t h e f e at ur e e m b e d di n g, t w o

f ull y c o n n e ct e d l a y ers ar e st a c k e d o n t o p t o o ut p ut t h e c orr e ct pr e di cti o ns f or t h e cli e nt i ntr usi o n

d et e cti o n m o d el.

5. 4. 2 L o c al Tr ai ni n g: A P e rs o n ali z e d L o c al M o d el

As t h e f e d er at e d l e ar ni n g pr o c ess i n v ol v es a g gr e g ati n g m ulti pl e l o c al m o d els t o pr o d u c e a

si n gl e gl o b al m o d el, if t h e i m b al a n c e d d at a distri b uti o n is o bs er v e d a m o n g cli e nts, p erf or m a n c e

d e gr a d ati o n h a p p e ns i n F e d A v g a g gr e g ati o n. T his p h e n o m e n o n is ill ustr at e d i n Fi g. 5. 3. Si n c e

t h e gl o b al m o d el is t h e w ei g ht e d a v er a g e of t h e cli e nt’s l o c al m o d els, t h e a g gr e g at e d gl o b al

m o d el m o v es t o w ar d t h e a v er a g e of t h e cli e nts’ o pti m a. W h e n t h e cli e nts h a v e II D d at a, t h e

gl o b al m o d el 𝑤 𝑡+ 1 is cl os er t o t h e tr u e gl o b al o pti m u m 𝑤 ∗ as it is t h e a v er a g e of t h e cli e nt

o pti m u m 𝑤 ∗
1 a n d 𝑤 ∗

2 . T h er ef or e, t h e gl o b al o pti m u m 𝑤 ∗ is l o c at e d e q u all y fr o m t h e l o c al

o pti m a, a n d t h e cli e nt drift di d n ot h a p p e n. H o w e v er, if t h e cli e nts h a v e n o n-II D d at a, t h e gl o b al

m o d el 𝑤 𝑡+ 1 c a n n ot b e e q u all y l o c at e d fr o m b ot h l o c al m o d els si n c e i m b al a n c e d d at a c a us es

cli e nt drift w h e n l o c al m o d els ar e u p d at e d (t h e gr e e n li n e i n Fi g. 5. 3 i n di c at es t h e d e gr e e of

6 2

the client drift). Therefore, the global optimum 𝑤∗ is shifted from the true global optimum,
resulting in global model divergence and performance degradation. For example, in Fig. 5.3(b),
𝑤∗ is closer to client1 optimum 𝑤∗1 instead of locating at the true global optimum.

The common approaches for learning class-imbalanced data in centralized machine learning
include re-weighting [108–110], which re-weights each class by applying a factor calculated
from the number of samples belonging to each class to make a customized loss function and
re-sampling [111, 112], which resamples the samples in mini-batch stochastic gradient descent.
In this study, according to the idea proposed by [109], we apply the logit adjustment loss function
in a mini-batch to balance the client data distribution during local model training.

Logit adjustment loss is a modified version of cross-entropy loss that manipulates the predicted
logits to calibrate the unbalanced data quantity of different classes in the logit space. In
federated learning, non-IID clients can degrade the performance of the global model, and the
logit adjustment loss applied in this work is intended to alleviate those adverse effects by making
all clients learn every class accurately. This results in more consistent local models among
clients, and the generated global model is more robust to the model divergence and performance
degradation. We regard this process as model personalization in federated learning.

Personalized federated learning has been introduced recently to learn a personalized model
tailored to each client’s data. Extensive efforts have been made to realize a personalized approach
for non-IID data in federated learning, including techniques such as multi-task learning, model
clustering, model parameter decoupling, and knowledge distillation [107, 113]. [114–117] used
the model decoupling approach to learn the personalized model. Similarly, our approach utilizes
a local model decoupling strategy for personalized federated learning. We decouple the neural
network model into two modules: feature extractor (body) and classifier (head). In this study,
our decoupling model includes one feature extractor and two classifiers optimized with two
different loss functions. This kind of model decoupling is proven to be effective for both IID
and non-IID data since it can optimize both objectives with two different loss functions [117].
In FedAvg [83], the entire network is optimized by the cross-entropy loss function given by

ℓCE (𝑦, 𝑓 (𝑥)) = −log
exp(𝑓𝑦 (𝑥))∑

𝑦′𝜀C exp(𝑓𝑦′ (𝑥))
, (5.1)

where C is the label space and 𝑓𝑦′ (𝑥) is the output logits for class 𝑦′. In this study, we introduce
the additional loss function called mini-batch logit adjustment loss besides the cross-entropy
loss to optimize each client’s local objective and learn the personalized model for each client,
which is defined by

ℓLA (𝑦, 𝑓 (𝑥)) = −log
exp(𝑓𝑦 (𝑥) + 𝜏.log𝛼𝑦)∑

𝑦′𝜀C exp(𝑓𝑦′ (𝑥) + 𝜏.log𝛼𝑦′)
, (5.2)

63

Table 5.2: Statistics of the mini-N-BaIoT
dataset

Type Number of samples

Mirai

Scan
UDP
UDPplain
Syn
Ack

7,000
7,000
7,000
7,000
7,000

BASHLITE

Scan
Junk
UDP
TCP
Combo

9,000
9,000
9,000
9,000
9,000

Benign 90,000

Table 5.3: Hyperparameters

Neural network parameters
Local model 1DCNN
Number of conv layer 3
Kernel filters in each conv layer 256, 128, and 64
Number of fully connected layer 2
Number of units in each FC layer 32, 2
Activation function ReLU
Dropout 0.2
Optimizer SGD
Learning rate 0.001
Momentum 0.9
Batch size 64
Federated learning parameters
Number of clients 20
Local training epoch 4
Communication round 50

where, 𝜏 is the temperature scaling parameter to re-weight the logit adjustment loss. For
simplicity, we set 𝜏 as 1. The model learns the feature embedding, followed by the first classifier
(head), which is optimized with the logit adjustment loss. We compute the logit-adjusted loss
in a mini-batch since it is proven to be effective in handling imbalanced data [118]. After
optimizing the first classifier, the second and first classifiers are optimized again with the cross-
entropy loss. With these two loss functions, each client learns the local model based on the
importance of the underlying class distribution, making the global model more resilient to the
non-IID distribution. In summary, our pFL-IDS optimizes the local model with the loss function
ℓLA + ℓCE.

5.4.3 Server-side Poisoned Client Detector

The poisoning attacks aim to reduce the performance of the intrusion detection model such that
the model cannot protect the ICT system. It is important to mitigate the influence of poisoned
clients from the global intrusion detection model. Therefore, we have proposed a poisoned client
detector at the server to identify potential poisoned clients and have limited their participation
in the global intrusion detection model aggregation. The detector first analyzes the last layer
of all client’s models to determine the poisoned model updates. According to [90, 91], the
last-layer parameters of the poisoned model behave differently from the non-poisoned model.
Therefore, comparing the model’s last layer provides sufficient information to distinguish the
poisoned models.

Since we aim to restrict the influence of the poisoned clients from the global model aggregation,
it is necessary to identify them first before the aggregation. Therefore, we designed the poisoned
client detector with the two-step client similarity alignment, followed by model re-weighting.
The first similarity computation predicts the potentially normal clients. Then, the normal
centroid of the client model is computed from that prediction, and the cosine similarity between

64

Algorithm 2 Personalized federated learning-based IDS with poisoned client detection
Input: Local dataset {𝐷1, 𝐷2, ..., 𝐷𝑘}, Clients 𝑘𝜀𝐾𝑡 = {1, 2, ..., 𝑘}, Initial global model 𝑤𝑡−1(𝑤0)
Output: Global model
Server executes:

for each round 𝑡 = {1, 2, ..., 𝑇} do
for every client 𝑘𝜀𝐾𝑡 do

𝑤𝑡
𝑘
← Client Update(𝑘, 𝑤𝑡−1) ⊲ local model

end for
end for
{𝛿𝑘 |𝑘𝜀𝐾𝑡 } ← Poison Detector

(
𝑤𝑡
𝑘
|𝑘𝜀𝐾𝑡 , 𝑤𝑡−1

)
⊲ compute the weighted similarity value for clients

𝑤𝑡+1 ← ∑𝐾
𝑘=1

𝑛𝑘
𝑛
𝑤𝑡
𝑘
∗ 𝛿𝑘 ⊲ re-weight and combine the client models to produce global model

Client Update (k, w):
𝐵← split local dataset into batches of size |𝐵 |
for local epoch 𝑖 from 1 to 𝐸 do

for batch 𝑏𝜀𝐵 do
𝑤 ← 𝑤 − 𝜂Δℓ (𝑤; 𝑏)

end for
end for
return 𝑤 to server

Poison Detector
(
𝑤𝑡
𝑘
|𝑘𝜀𝐾𝑡 , 𝑤𝑡−1

)
:

𝑤𝑡pre ←
∑𝐾
𝑘=1

𝑛𝑘
𝑛
𝑤𝑡
𝑘

⊲ pre-computed global model

Let Δ𝑤𝑡
𝑘
,Δ𝑤𝑡−1, and Δ𝑤𝑡pre be the parameters of the last layer of

{
𝑤𝑡
𝑘
|𝑘𝜀𝐾𝑡

}
, 𝑤𝑡−1, and 𝑤𝑡pre, respec-

tively{
𝛿1, 𝛿2, ..., 𝛿𝑘

}
𝜀𝛿1
𝑘
← 𝑐𝑜𝑠

(
Δ𝑤𝑡pre,Δ𝑤

𝑡−1 − Δ𝑤𝑡
𝑘

)
⊲ cosine similarity of pre-computed global model

and local model{
Δ𝑤ℎnc

}𝐻
ℎ=1 ← 𝛿1

𝑘
< 0 ⊲ identify the normal updates{

𝛿∗1, 𝛿
∗
2, ..., 𝛿

∗
𝑘

}
𝜀𝛿2
𝑘
← 𝑐𝑜𝑠

(
median

({
Δ𝑤̂ℎnc

}𝐻
ℎ=1

)
,Δ𝑤̂𝑡−1 − Δ𝑤̂𝑡

𝑘

)
⊲ calculate cosine similarity

𝛿𝑘 = −𝛿2
𝑘
+ 𝛿1

𝑘
⊲ combine two similarity vectors

𝛿𝑘 = 0, if 𝛿𝑘 < 0 ⊲ normalize the similarity score to [0,1]
𝛿𝑘 = 1, otherwise
return {𝛿𝑘 |𝑘𝜀𝐾𝑡 }

65

the client models and the forecasted normal centroid is calculated again. After that, these two
similarity scores are aligned and normalized into the range of [0,1]. Finally, the client models are
re-weighted by the normalized scores during the global model aggregation. First of all, as soon
as clients upload the local models, the poison detector at the server calculates the pre-computed
global model 𝑤𝑡pre, which is the weighted average of all local models as

𝑤𝑡pre =

𝐾∑︁
𝑘=1

𝑛𝑘

𝑛
𝑤𝑡𝑘 , 𝑘𝜀𝐾𝑡 , (5.3)

where, 𝑤𝑡
𝑘

is the local model of client 𝑘 and 𝐾𝑡 is the total number of clients. After that, we
calculate the cosine similarity between the pre-global model and local models as{

𝛿1, 𝛿2, ..., 𝛿𝑘
}
= 𝑐𝑜𝑠

(
Δ𝑤𝑡pre,Δ𝑤

𝑡−1 − Δ𝑤𝑡𝑘
)
, 𝑘𝜀𝐾𝑡 , (5.4)

whereΔ indicates the last layer parameters of the neural networks model and𝑤𝑡−1 is the previous
round global model. The intuition is that the poisoned model should be similar to the pre-global
model if the poisoning attempt is successful, as all poisoned clients have the same objective
throughout the learning process. Since the cosine similarity value is in the range of [-1,1],
according to the above assumption, the similarity values of poisoned clients will be closer to 1
than normal clients. After putting a threshold on the similarity values, we separate the clients
into poisoned and normal groups. If the client similarity value is less than 0, we define that
client as normal, given by the equation{

𝑤ℎnc
}𝐻
ℎ=1 = 𝛿1

𝑘 < 0, (5.5)

where 𝛿1
𝑘
𝜀
{
𝛿1, 𝛿2, ..., 𝛿𝑘

}
and 𝐻 is the number of normal clients. The median

({
Δ𝑤̂ℎnc

}𝐻
ℎ=1

)
is

the dimension-reduced centroid of normal clients. After that, the angular deviations of local
models from the normal centroid are computed again by{

𝛿∗1, 𝛿
∗
2, ..., 𝛿

∗
𝑘

}
= 𝑐𝑜𝑠

(
median

({
Δ𝑤̂ℎnc

}𝐻
ℎ=1

)
,Δ𝑤̂𝑡−1 − Δ𝑤̂𝑡𝑘

)
, (5.6)

where 𝛿2
𝑘
𝜀
{
𝛿∗1, 𝛿

∗
2, ..., 𝛿

∗
𝑘

}
and ˆ𝐻𝑎𝑡 sign refers to the dimension-reduced parameters. The

normal client will have a smaller angular deviation from the centroid than the poisoned client.
We aligned two similarities as 𝛿𝑘 = −𝛿1

𝑘
+𝛿2

𝑘
and normalized it into the range of [0,1] as follows:

𝛿𝑘 = 0, if 𝛿𝑘 < 0,
𝛿𝑘 = 1, otherwise.

(5.7)

66

Finally, the local models are reweighted by the normalized similarity scores. The global model
for the next round is computed by

𝑤𝑡+1 =

𝐾∑︁
𝑘=1

𝑛𝑘

𝑛
𝑤𝑡𝑘 ∗ 𝛿𝑘 , 𝑘𝜀𝐾𝑡 . (5.8)

The detailed procedure of our proposed model is shown in Algorithm 2.

5.5 Evaluation
We evaluated the performance of our pFL-IDS with the N-BaIoT dataset and compared it with
several state-of-the-art approaches to investigate the effectiveness of the proposed method. We
evaluated the proposed model from the client side. All the experiments are conducted with the
PyTorch framework and executed on the PC with Intel Core i7-10750H CPU @ 2.60 GHz, 64
GB RAM.

Dataset: The experiment was performed on the publicly available N-BaIoT dataset [15], which
is a collection of network traffic from 9 commercial IoT devices infected with Mirai and
BASHLITE. The dataset has 115 features and more than 70 million traffic samples. The dataset
has two traffic categories for binary classification (i.e., benign and attack) and 10 sub-categories
of attack carried by Mirai and BASHLITE. Since the original dataset has millions of data
records, training such a large dataset requires expensive computational resources and higher
time complexity. Therefore, we construct a small dataset from the 11 classes of the 9 IoT devices
from the original dataset. We take 1,000 traffic records per attack class from each device to
build the mini-size N-BaIoT dataset. For example, for the benign class, we select 10,000 traffic
data in each device. After combining all the selected traffic records, a mini dataset of 170,000
traffic samples is obtained, as shown in Table 5.2.

We partitioned the mini-N-BaIoT in the ratio of 70 to 30 as the training and test datasets. The
training dataset was distributed among the number of participating clients, and the test dataset
was used to measure the performance of the federated intrusion detection model. In the practical
cross-silo federated learning scenario, the number of clients could be up to a hundred, and to
simulate this situation, we further partitioned the training dataset according to the total number
of clients. We set the total number of clients used in the experiment as 20. This way of dividing
a dataset to mimic the multiple clients has been a well-known approach in the federated learning
literature. The hyperparameters used in the experiment are shown in Table 5.3.

Data distribution: The training dataset is further partitioned for 𝑁 clients to mimic the
setting of federated learning. Depending on the data distribution mode (i.e., IID or non-IID), we
sampled the client’s local dataset from the training dataset. The total number of clients in the

67

experiment is 20, and we assumed that all clients participated in local training at every round.
The following data distribution scenarios are conducted in the experiment.

1. Non-IID: Dirichlet distribution with 𝜂 = 0.1
2. Non-IID: Half of the clients have only benign samples and the rest have only attack

samples
3. IID: Benign 50%, Attack 50%

In the case of IID, the number of benign and attack samples in the dataset is the same. Non-IID
scenario 1 is simulated by the Dirichlet distribution with 𝜂 = 0.1. In non-IID scenario 2, we
have omitted the attack samples for half of the clients, since the ratio of benign traffic is much
larger in the real world and not all IoT devices are compromised. For scenarios 1 and 3, the total
number of samples per client is fixed at 1,000. For scenario 2, 500 samples are apportioned to
the client that has only benign samples, and 1,000 samples are employed for the rest of the clients.

Poisoning Attack Setting: The behaviors of three label-flipping attacks and two model update
poisoning attacks are examined. We assumed that the malicious client is at 30% of the total
clients and compared the performance of our pFL-IDS with other baseline methods. Therefore,
to give a fair comparison, in the experiment settings of the trimmed mean and multi-Krum,
we set the trim ratio 𝛽 as 0.3 and the poisoned client 𝑓 as 5. For model update scaling
attacks, the gradients are multiplied by a factor of -1 to simulate the attacks. Similarly, all gradi-
ents of the poisoned models are replaced by a factor of -3 to mimic the same global model attack.

Evaluation metrics: We compute the number of true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) from the experiment results. FP indicates the number
of normal data incorrectly classified as an attack, while FN represents the number of attack
samples incorrectly classified as normal. TP and TN denote the number of normal or attack data
that were accurately classified. Based on these values, the evaluation metrics, such as accuracy,
precision, recall, and F1 score are computed. We also calculated the attack success rate (ASR)
to measure the accomplishment of the poisoned clients based on their attack objective. If the
attack is successful, ASR is 1 (i.e., the global intrusion detection model outputs the target class
as desired by the poisoned client instead of the source class); otherwise, it is 0. ASR for
label-flipping attacks and model update poisoning attacks are computed as

ASR lf =
Test target class

Test source class
,ASR mp =

FP + FN
Total test samples

. (5.9)

Keeping ASR as low as possible while maintaining good performance for the intrusion detection
system is necessary for the federated learning-based IDS model to become an effective defense
mechanism against poisoning attacks.

68

Table 5.4: Evaluation of non-IID data (scenario 1). The attack ratio is 30%. The best results are bolded.

Poisoning Attack Metrics FedAvg Median Trimmed mean Multi-Krum FL-Defender Ours

None
Accuracy
F1
ASR

0.9909
0.9904
-

0.9794
0.9778
-

0.9859
0.9849
-

0.9885
0.9879
-

0.9823
0.9810
-

0.9822
0.9809
-

Benign
Accuracy
F1
ASR

0.9857
0.9850
0.0267

0.4706
0.6400
1.0000

0.4706
0.6400
1.0000

0.4706
0.6400
1.0000

0.4706
0.6400
1.0000

0.9511
0.9457
0.0066

Label-flipping Attack
Accuracy
F1
ASR

0.9281
0.9179
0.1460

0.5294
0.0000
1.0000

0.9443
0.9375
0.1123

0.7479
0.6359
0.5321

0.5294
0.0000
1.0000

0.9613
0.9575
0.0741

Both
Accuracy
F1
ASR

0.8378
0.8316
0.1622

0.4706
0.6400
0.5294

0.9723
0.9700
0.0277

0.4706
0.6400
0.5294

0.4706
0.6400
0.5294

0.9598
0.9558
0.0402

Model Scaling Attack
Accuracy
F1
ASR

0.4706
0.6400
0.5294

0.4706
0.6400
0.5294

0.4706
0.6400
0.5294

0.4706
0.6400
0.5294

0.9776
0.9759
0.0224

0.9642
0.9607
0.0358

Same Model attack
Accuracy
F1
ASR

0.4706
0.6400
0.5294

0.7367
0.6117
0.2633

0.9537
0.9531
0.0463

0.9902
0.9896
0.0098

0.5294
0.0000
0.4706

0.9651
0.9618
0.0349

Table 5.5: Evaluation of Non-IID data (scenario 2). The attack ratio is 30%. The best results are bolded.

Poisoning Attack Metrics FedAvg Median Trimmed mean Multi-Krum FL-Defender Ours

None
Accuracy
F1
ASR

0.9786
0.9771
-

0.7445
0.6275
-

0.7807
0.6979
-

0.7782
0.6934
-

0.5294
0.0000
-

0.9871
0.9864
-

Benign
Accuracy
F1
ASR

0.9567
0.9560
0.0811

0.8544
0.8184
0.0060

0.9658
0.9628
0.0110

0.8646
0.8352
0.0146

0.8190
0.7627
0.0024

0.9891
0.9885
0.0131

Label-flipping Attack
Accuracy
F1
ASR

0.7610
0.6609
0.5051

0.5294
0.0000
1.0000

0.5294
0.0000
1.0000

0.6369
0.3749
0.7686

0.5294
0.0000
1.0000

0.9885
0.9878
0.0098

Both
Accuracy
F1
ASR

0.7743
0.6883
0.2257

0.6405
0.3850
0.3595

0.7075
0.5510
0.2925

0.6810
0.4905
0.3190

0.9721
0.9697
0.0279

0.9893
0.9886
0.0107

Model Scaling Attack
Accuracy
F1
ASR

0.6715
0.4667
0.3285

0.5294
0.0000
0.4706

0.5297
0.0011
0.4703

0.7046
0.5454
0.2954

0.9549
0.9501
0.0451

0.9915
0.9910
0.0085

Same Model attack
Accuracy
F1
ASR

0.5294
0.0000
0.4706

0.6639
0.4465
0.3361

0.8249
0.7724
0.1751

0.8605
0.8284
0.1395

0.5294
0.0000
0.4706

0.9842
0.9833
0.0158

69

Table 5.6: Evaluation of IID data. The attack ratio is 30%. The best results are bolded.

Poisoning Attack Metrics FedAvg Median Trimmed Mean Multi-krum FL-Defender Ours

None
Accuracy
F1
ASR

0.9904
0.9898
-

0.9815
0.9802
-

0.9870
0.9861
-

0.9896
0.9890
-

0.9847
0.9838
-

0.9894
0.9888
-

Benign
Accuracy
F1
ASR

0.9892
0.9886
0.0203

0.9895
0.9888
0.0105

0.9852
0.9844
0.0201

0.9886
0.9879
0.0094

0.9881
0.9874
0.0097

0.9904
0.9899
0.0111

Label-flipping Attack
Accuracy
F1
ASR

0.9329
0.9235
0.1385

0.8515
0.8135
0.3120

0.9685
0.9657
0.0600

0.9876
0.9869
0.0113

0.9893
0.9886
0.0145

0.9890
0.9883
0.0099

Both
Accuracy
F1
ASR

0.9271
0.9164
0.0729

0.9802
0.9787
0.0198

0.9786
0.9769
0.0214

0.9887
0.9880
0.0113

0.9886
0.9878
0.0114

0.9877
0.9871
0.0123

Model Scaling Attack
Accuracy
F1
ASR

0.9453
0.9386
0.0547

0.9628
0.9592
0.0372

0.9662
0.9630
0.0338

0.9877
0.9870
0.0123

0.9876
0.9868
0.0124

0.9885
0.9879
0.0115

Same Model attack
Accuracy
F1
ASR

0.4706
0.6400
0.5294

0.9831
0.9819
0.0169

0.9879
0.9871
0.0121

0.9894
0.9887
0.0106

0.9894
0.9887
0.0106

0.9897
0.9891
0.0103

5.5.1 Results

To demonstrate the effectiveness of our proposal against the poisoning attacks on imbalanced
data, the experiment was performed on three data distribution scenarios, and the results are
presented in Tables 5.4, 5.5, and 5.6. Moreover, we have compared our pFL-IDS with FedAvg,
coordinate-wise median, trimmed mean, multi-Krum, and FL-Detector to study the effectiveness
of each model. In addition, the behavior of different kinds of poisoning attacks on non-IID data
was also investigated. When the data are IID, most models performed well except the FedAvg,
which has the worst performance in the same model poisoning attack scenario. Multi-Krum,
FL-Defender, and our pFL-IDS can defend against all poisoning attacks and achieve comparable
performance in all evaluation metrics for the IID data. The experimental results for IID data are
presented in Table 5.6.

The behavior of poisoning attacks on non-IID data (scenario 1): We sample the non-IID
dataset using Dirichlet distribution with 𝜂 = 0.1. We choose 𝜂 = 0.1 to simulate an extremely
imbalanced dataset. The Dirichlet distribution is commonly used in previous studies [90, 91]
to sample the non-IID distribution for federated learning. When there is no attack, all models
achieve remarkable accuracy and F1 score. However, when facing the non-IID data scenario, our
pFL-IDS experiences an approximate 1% accuracy drop compared to the IID data scenario. As
shown in Table 5.4, the proposed model has excellent performance and a low ASR value while
defending all poisoning attacks. The trimmed mean, and FedAvg are the second-best models,
which can defend 3 out of 5 poisoning attacks. The FL-Defender, multi-Krum, trimmed mean
and coordinate-wise median cannot absolutely defend against the benign label-flipping attack,
with an ASR of 1 indicating that the attacker’s goal is 100% achieved. Similarly, a 100% attack

70

success rate is also observed in the attack label-flipping against the FL-Defender and coordinate-
wise median. For model scaling attacks, FedAvg, median, trimmed mean, and multi-Krum have
an F1 score of 0.64 with a 0.4706 accuracy. This situation indicates that the intrusion detection
model cannot classify the benign label at all (i.e., false alarms will be continuously raised). A
similar false alarm situation is also discovered in the same model poisoning attack against the
FedAvg model. Meanwhile, our pFL-IDS can defend against both model poisoning attacks with
2-3% accuracy difference from the situation in which no poisoning attacks have occurred.

The behavior of poisoning attacks on non-IID data (scenario 2): In this scenario, the
labeled attack samples were absent in half of the clients. Considering not all IoT devices are
compromised in real situations, and the labeled attack samples are scarce, the assumption of not
having the attack samples in all client’s devices is aligned with reality. The empirical results
in Table 5.5 indicate that our model performs better than all baseline methods. Even when
there are no poisoning attacks, only FedAvg, and our model perform well, while the accuracy
of the three robust aggregators drops substantially. FL-Defender has the worst accuracy and
F1, with the F1 score being close to zero (i.e., the model cannot classify almost all of the attack
samples). This phenomenon is due to having only benign samples in some clients, causing
the FL-Defender model to incorrectly identify the clients having both samples as anomalous,
subsequently reducing their influence on the global model. Therefore, the resulting global
model has little or no knowledge of the attack samples and cannot classify the attack samples.
When flipping the label of benign samples as an attack, all baseline models can defend the attack
to a certain extent. When attack labels are flipped as benign, besides FedAvg, multi-krum, and
our model, the rest of the models have an ASR of 1, implying the goal of the poisoned clients
is successfully achieved.

In model update scaling attacks, the attack success rate of all baseline models except the FL-
Defender is pretty high, especially 47% ASR and an F1 score close to zero is observed in
median and trimmed mean models. This means that the model classified all testing samples
as benign, and thus, it cannot detect the intrusion attack samples at all. This situation is the
worst as the objective of the intrusion detection system is to classify the attack samples as much
as possible while keeping a low false positive rate. For the case of the same model poisoning
attack, the aforementioned behavior is observed in FedAvg and FL-Defender. The rest of the
baseline models can protect against poisoning to some extent. However, only our methods can
effectively protect against all poisoning attacks with excellent performance while preserving
superior accuracy and keeping the ASR as low as possible.

5.5.2 Discussion

As the robust aggregators (i.e., median, trimmed mean, multi-Krum) are designed to work with
the IID data, they cannot defend against the poisoning attacks when the data are non-IID. As the
trimmed mean and multi-Krum must choose the ratio of the malicious attackers, performance

71

Fig. 5.4. The accuracy and F1 score of pFL-IDS with different ratios of malicious client

degradation could happen if the predefined ratio is less than that of the attackers. The FL-
Defender model can correctly detect and migrate the influence of the poisoned clients in the
IID mode; however, it cannot protect against all poisoning attacks in non-IID mode, particularly
if one class is missing in the client local dataset, as shown in our experimental setting. Due
to the client global optima drift phenomenon in non-IID data, the poisoned client detector of
FL-Defender may wrongly recognize the benign model as the poisoned model (i.e., caused by
client drift). As our pFL-IDS is customized to handle imbalanced data, it works well with
non-IID data. The empirical results of all experimented models are presented in Tables 5.4, 5.5,
and 5.6.

Impact of different percentages of poisoned clients: The previous studies for poisoning
attacks assumed that the portion of the compromised clients is less than 50%, with the poisoned
client range of 10%-25% being the most studied one. Accordingly, our study adopted that
assumption (<50%). To examine to which extent our pFL-IDS is resilient to poisoning attacks,
we first stress-test with a higher ratio of the poisoned clients, and we discovered that pFL-IDS
can withstand up to 30% of poisoned clients for all poisoning attacks with a low attack success
rate as shown in Tables 5.4, 5.5, and 5.6. The other defense methods collapsed in some poisoning
attacks compared to ours, especially apparent in non-IID cases. Even though it is desirable to
implement a robust model that can defend as many poisoned clients as possible, having more
than 20%-30% of malicious clients in actual practice is rare. Since our model experiments
with a few clients (just 20), poisoning 30% of clients required compromising only six clients.
However, in large-scale IoT scenarios with millions of clients, even if the attacker wants to poison
just a tiny fraction of clients, the attacker needs to compromise multiple clients. This poisoning
situation is somewhat impractical and unlikely to happen in the real world. Nevertheless, we
investigated the impact of the different ratios of the poisoned clients for label-flipping and model
poisoning attacks on our model, and the results are illustrated in Fig. 5.4. When the poisoning
ratio reaches 40%, our model cannot defend against the same model poisoning attack despite

72

being resilient to other poisoning attacks. In principle, our pFL-IDS can protect up to 30% of
the poisoning attacks while achieving excellent performance for all evaluation metrics.

Support on large-scale IoT devices: Our proposed model is designed for cross-silo federated
learning where the client number is usually small, and each client has sufficient computing
power. Thus, in the experiment, we set the total number of clients as 20 and allowed every
client to participate in one communication round. However, for large-scale IoT devices, this
full participation assumption is infeasible as the server needs to communicate with a large
number of IoT devices in each round, which can cause significant communication overhead
and computation at the server. Especially since the server needs to wait for all clients to finish
uploading the local model to generate a global model, if some clients are struggling to complete
the model training, the server needs to wait indefinitely. To support large-scale IoT devices with
our method, we can apply the client selection procedure to choose a fraction of the total clients
to train in one round. This kind of client selection is commonly utilized in the existing literature.
Moreover, to deal with the clients who cannot upload the models in the specified period, we can
consider dropping those clients to avoid further delay. Currently, both issues (client selection
and handling of the straggling clients) are being vigorously studied in the research community,
and we also hope to contribute improvement in that direction in our future work.

5.6 Conclusion
In this study, we investigated the behavior of label-flipping attacks and model update poisoning
attacks against the federated learning-based IDS for IoT data under different non-IID data
scenarios. Based on our research findings, we designed a robust pFL-IDS model to detect
poisoning attacks in federated learning-based IDS. We introduced the logit adjustment loss
during local model training to handle data heterogeneity. As real-world IoT network data
are undoubtedly imbalanced, we proposed a personalized IDS model for local model training.
The empirical results indicated that the existence of malicious clients can degrade the IDS
model performance, which is even more severe if the clients have non-IID data. Therefore,
we designed a poisoned client detector at the server to identify poisoned clients and limit their
participation from the global model aggregation. By conducting extensive experiments, we
have demonstrated that our pFL-IDS is effective in combating both poisoning attacks regardless
of the client’s underlying data distribution. Moreover, the empirical results demonstrated our
pFL-IDS outperformed all baseline methods on non-IID data scenarios and proved that it could
work well with both IID and non-IID data.

In addition to our research findings outlined in this study, we also acknowledge there are
certain limitations. The proposed model is designed for cross-silo federated learning, where
the client number is usually small, and each client has sufficient computing power. Therefore,
the feasibility of this model for large-scale IoT devices may be limited. Moreover, this study
only examined two types of model poisoning attacks, and thus, there is a possibility that the

73

proposed model cannot defend against more sophisticated poisoning attacks. Furthermore, the
experiments were conducted in a controlled environment on a single machine rather than the
real client-server architecture; therefore, we could not provide insights into the efficiency of our
model for practical operations.

74

Chapter 6

Conclusion of Our Study

6.1 Conclusion
This research focuses on studying data-driven cybersecurity, particularly utilizing AI techniques
to analyze cyber data, revolutionizing the realm of cybersecurity. AI-powered cybersecurity is
critical in identifying threat patterns, predicting potential breaches, and deciding the counter-
measures. Chapter 1 introduces the background and motivation that has led to this research,
highlighting the significance of AI in combating cyberattacks. Moreover, the chapter introduces
the basics of AI techniques, their role in data-driven cybersecurity, and how AI can be leveraged
to analyze security data. The background of the data-driven cyber intelligence framework,
which plays a pivotal role in managing cybersecurity risks, is also discussed. This study centers
on developing AI techniques for three categories of cybersecurity data – unstructured text of CTI
reports, malicious domain, and network intrusion detection system. To this end, the chapter also
elaborates a concise introduction of the research findings on those datasets, which are relevant
for the improvement of AI-powered cybersecurity.

Chapter 2 offers a threat modeling technique with the neural network model to identify the
cyber kill chain stages of the unstructured text of CTI reports at paragraph-level semantics and
to extract the IoCs. The extracted IoCs can be utilized as a threat feed to automatically detect
potential threats. This Chapter aims to utilize the example techniques sentences from ATTCK
for Enterprise as a training dataset, which is a novel way to classify the cyber kill chain stages
for the CTI reports. The experimental results outlined that the proposed model can predict
the cyber kill chain phase with an average F1 score of 0.67, highlighting the need for further
research and development to improve the model’s efficiency.

To further enrich the threat feeds, Chapter 3 of the dissertation introduces a malicious domain
detection approach by leveraging active DNS traffic data and WHOIS information. Moreover,
this Chapter experimentally verified that incorporating semantic features, in addition to the
commonly used lexical and DNS-based features, is effective in detecting malicious domains.
The experimental results demonstrated that the proposed approach achieved an accuracy of up
to 93% with the random forest classifier. In addition, as a future work, we can further extend
the current model to recognize each domain as spam, phishing, or command and control.

75

While threat feeds can be utilized to protect the network from cyber-attacks, additional measures
are necessary to defend against newly emerging malware. Therefore, we shift our study scope
to network logs analysis to better understand threats, thereby implementing robust counter-
measures. Chapter 4 introduces a few-shot learning-based prototypical graph neural network
model that can identify malicious IoT traffic. This Chapter aims to identify the new type
of malware traffic with a few labeled traffic samples, thereby minimizing the requirement for
model retraining and labeling costs. This study uses the CNN model pre-trained on ImageNet
to extract network features from the network images, which is transformed through a tool called
Binvis. The proposed model has the ability to learn how close the two network flows are in the
embedding space through training on various few-shot tasks, thereby generalizing the acquired
knowledge to recognize the new unseen attacks. The extensive experiment revealed that ma-
licious IoT traffic could be predicted with an F1 score of 0.94 and 0.91 in 10-shot and 5-shot
classification, respectively.

In Chapter 5, we expand our study of network log analysis to the privacy-preserving and
distributed learning framework. This Chapter emphasizes tackling the challenges posed by
applying federated learning to cybersecurity data, including data heterogeneity and client poi-
soning attacks. Moreover, this Chapter discusses the impacts of data poisoning and model
poisoning attacks with different data partition scenarios (to simulate data heterogeneity) to
propose a robust modeling technique accordingly. The comprehensive experiment indicated
that the presence of malicious clients can degrade the federated learning-based IDS model
performance, which is more severe if the clients have non-IID data. Therefore, this study
proposes a poisoned client detector at the server to combat the poisoning attacks and applies
personalization to the federated learning to handle non-IID data. Two poisoning attacks, data
poisoning and model poisoning, are experimented with different data partition scenarios: IID
and non-IID. With the extensive experiment conducted, we demonstrated that our model is
effective in defending against both poisoning attacks regardless of the data distribution of the
clients, outperforming almost all baseline methods when experimented with non-IID data and
in the presence of poisoning attacks. This success is partly due to the proposed poison client
detector, which identifies and blocks the poisoned clients from participating in every round of
federated training.

6.2 Contributions
This dissertation makes notable key contributions throughout its four chapters. Chapter 2
introduces a novel threat modeling approach to identify the cyber kill chain stages of the
unstructured text of CTI reports. It uses the adversaries’ techniques from MITRE ATT&CK
for Enterprise as training datasets, while the test dataset is composed of CTI reports from
various security vendors. This allows a unique way of mapping threat actions from security text
to adversaries’ techniques, eventually identifying the cyber kill chain stages described in the
paragraph level of CTI reports. Moreover, we can extract IoCs from the CTI reports with the

76

proposed model, which can be utilized as a threat feed to detect potential threats automatically.
This study utilizes various word lists across the Internet to extract IoCs. Though the experiment
results outline the potential success of mapping CTI reports to adversaries’ techniques, which in
turn are labeled with cyber kill chain stages, there is room for further research and development
to improve the current state of the model.

Chapter 3 explores the use of different types of features to detect malicious domains, aiming
to improve the detection capability. This Chapter introduces 3 groups of features: statistical
features, DNS-based features, and domain semantic features. Statistical features offer the fun-
damental way to identify malicious domains, while DNS-based features provide the association
of the domains in the domain name system. As a domain semantic feature, this study computes
the domain reputation score with the N-gram methods. We observe that the reputation score
of benign domains is higher than that of malicious domains, providing critical insights into
differentiating between malicious and benign domains. The incorporation of these three groups
of features allows a significant improvement in detecting malicious domains.

Chapter 4 of this dissertation explores the analysis of network logs, particularly IoT network
intrusion data, to improve the detection of malicious network traffic. This study also explores
the use of the CNN model pre-trained on ImageNet to extract network features from the network
images, which is transformed through a tool called Binvis. This chapter offers an innovative way
of detecting malicious IoT traffic with the few-shot learning model, which aims to identify the
new type of malware with a minimum amount of labeled samples. Specifically, we introduce
a novel prototypical graph neural network-based few-shot learning model, which is great for
learning how close the two network flows are in the embedding space. Moreover, this approach
minimizes the requirement for model retraining and expensive labeling costs associated with
newly emerged malware. Our study is the first to challenge the application of graph-based
few-shot learning in identifying malicious network traffic. Therefore, Chapter 4 presents the
significant research findings and the challenges encountered while implementing the few-shot
model.

Chapter 5 introduces a novel federated learning-based network intrusion detection system. This
Chapter emphasizes handling the key challenges in federated learning – data heterogeneity
and client poisoning attacks. Two poisoning attacks, data poisoning and model poisoning,
are examined with different data partition scenarios: IID and non-IID. This study proposes
a novel poisoned client detector at the server to combat the poisoning attacks and applies
personalization to the federated learning to handle non-IID data. Additionally, this Chapter
presents a comparison with other defense models, validating the effectiveness of the proposed
model in combating poisoning attacks. Furthermore, our findings highlight the significance of
model personalization in handling data heterogeneity in federated learning.

77

6.3 Future work
This section outlines several research areas that can be further extended as future work to
enhance the current state of data-driven cybersecurity.

• Data Quality and Availability: The issue with incorporating data-driven intelligence in
cybersecurity domain is the availability of high-quality data. Gathering high-quality data
from diverse sources is quite challenging as the data may contain confidential information.
In addition, most of the AI techniques in the cybersecurity research community are trained
on publicly available datasets. Most of those datasets are generated in the simulated
network environment. Therefore, it might not reflect the actual sophisticated cyber-
attacks. Therefore, experiments on real-world cyber datasets are essential to improve the
state-of-the-art detection model.

• Real-time Implementation: The experiments in this study are conducted offline using
public datasets. Therefore, it is crucial to test the methods mentioned in this study in
real-time to assess the effectiveness of the AI models.

• Privacy Concerns: The collection of large amounts of cyber data raises major privacy and
ethical concerns, as data may contain sensitive information. Extracting valuable insights
from data while ensuring data privacy is an ongoing area of research in the research
community. Techniques such as differential privacy and federated learning outlined in
this dissertation offer a way to alleviate data privacy concerns.

• Model Interpretability: The use of AI in data-driven cybersecurity may raise challenges
such as model interpretability. Being able to understand how AI models make predictions
is critical, especially in the cybersecurity domain, where the experts need to decide and
validate how much they can trust the predictions made by AI models. Explainable AI
offers a way to interpret AI models, and future works should focus on advancing the
interpretability of the AI models.

• Adversarial attacks: The adversarial attacks aim to degrade the performance of the
AI models by injecting false data (adversarial examples) that are designed to fool the
models. Therefore, there is an urgent need to develop AI models that are able to withstand
adversarial attacks.

78

References

[1] N. Kaloudi and J. Li, “The ai-based cyber threat landscape: A survey,” ACM Computing
Surveys (CSUR), vol. 53, no. 1, pp. 1–34, 2020.

[2] I. Firdausi, A. Erwin, A. S. Nugroho, et al., “Analysis of machine learning techniques
used in behavior-based malware detection,” in 2010 second international conference
on advances in computing, control, and telecommunication technologies, pp. 201–203,
IEEE, 2010.

[3] R. S. Rao and A. R. Pais, “Detection of phishing websites using an efficient feature-based
machine learning framework,” Neural Computing and applications, vol. 31, pp. 3851–
3873, 2019.

[4] E. G. Dada, J. S. Bassi, H. Chiroma, A. O. Adetunmbi, O. E. Ajibuwa, et al., “Machine
learning for email spam filtering: review, approaches and open research problems,”
Heliyon, vol. 5, no. 6, 2019.

[5] P. Jain, “Machine learning versus deep learning for malware detection,” 2019.
[6] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi, “Exposure: Finding malicious domains

using passive dns analysis.,” in Ndss, pp. 1–17, 2011.
[7] K. A. Messabi, M. Aldwairi, A. A. Yousif, A. Thoban, and F. Belqasmi, “Malware

detection using dns records and domain name features,” in Proceedings of the 2nd
International Conference on Future Networks and Distributed Systems, pp. 1–7, 2018.

[8] D. Chiba, T. Yagi, M. Akiyama, T. Shibahara, T. Yada, T. Mori, and S. Goto, “Domain-
profiler: Discovering domain names abused in future,” in 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pp. 491–502,
IEEE, 2016.

[9] G. Thamilarasu and S. Chawla, “Towards deep-learning-driven intrusion detection for
the internet of things,” Sensors, vol. 19, no. 9, p. 1977, 2019.

[10] I. Alrashdi, A. Alqazzaz, E. Aloufi, R. Alharthi, M. Zohdy, and H. Ming, “Ad-iot:
Anomaly detection of iot cyberattacks in smart city using machine learning,” in 2019
IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC),
pp. 0305–0310, IEEE, 2019.

[11] Z. Zhu and T. Dumitras, “Chainsmith: Automatically learning the semantics of malicious
campaigns by mining threat intelligence reports,” in 2018 IEEE European symposium on
security and privacy (EuroS&P), pp. 458–472, IEEE, 2018.

[12] G. Husari, E. Al-Shaer, M. Ahmed, B. Chu, and X. Niu, “Ttpdrill: Automatic and accurate
extraction of threat actions from unstructured text of cti sources,” in Proceedings of the
33rd annual computer security applications conference, pp. 103–115, 2017.

79

[13] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a new intrusion
detection dataset and intrusion traffic characterization.,” ICISSp, vol. 1, pp. 108–116,
2018.

[14] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for network intrusion
detection systems (unsw-nb15 network data set),” in 2015 military communications and
information systems conference (MilCIS), pp. 1–6, IEEE, 2015.

[15] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breitenbacher, and
Y. Elovici, “N-baiot—network-based detection of iot botnet attacks using deep autoen-
coders,” IEEE Pervasive Computing, vol. 17, no. 3, pp. 12–22, 2018.

[16] A. H. Lashkari, A. F. A. Kadir, L. Taheri, and A. A. Ghorbani, “Toward developing a
systematic approach to generate benchmark android malware datasets and classification,”
in 2018 International Carnahan conference on security technology (ICCST), pp. 1–7,
IEEE, 2018.

[17] M. S. I. Mamun, M. A. Rathore, A. H. Lashkari, N. Stakhanova, and A. A. Ghorbani,
“Detecting malicious urls using lexical analysis,” in Network and System Security: 10th
International Conference, NSS 2016, Taipei, Taiwan, September 28-30, 2016, Proceed-
ings 10, pp. 467–482, Springer, 2016.

[18] I. H. Sarker, “Cyberlearning: Effectiveness analysis of machine learning security model-
ing to detect cyber-anomalies and multi-attacks,” Internet of Things, vol. 14, p. 100393,
2021.

[19] D. B. Rawat, R. Doku, and M. Garuba, “Cybersecurity in big data era: From securing big
data to data-driven security,” IEEE Transactions on Services Computing, vol. 14, no. 6,
pp. 2055–2072, 2019.

[20] I. H. Sarker, H. Janicke, L. Maglaras, and S. Camtepe, “Data-driven intelligence
can revolutionize today’s cybersecurity world: A position paper,” arXiv preprint
arXiv:2308.05126, 2023.

[21] E. M. Hutchins, M. J. Cloppert, R. M. Amin, et al., “Intelligence-driven computer network
defense informed by analysis of adversary campaigns and intrusion kill chains,” Leading
Issues in Information Warfare & Security Research, vol. 1, no. 1, p. 80, 2011.

[22] S. Caltagirone, A. Pendergast, and C. Betz, “The diamond model of intrusion analysis,”
Threat Connect, vol. 298, no. 0704, pp. 1–61, 2013.

[23] D. Ito, K. Nomura, M. Kamizono, Y. Shiraishi, Y. Takano, M. Mohri, and M. Morii,
“Modeling attack activity for integrated analysis of threat information,” IEICE TRANS-
ACTIONS on Information and Systems, vol. 101, no. 11, pp. 2658–2664, 2018.

[24] O. Levy and Y. Goldberg, “Dependency-based word embeddings,” in Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), pp. 302–308, 2014.

[25] “MITRE ATT&CK.” https://attack.mitre.org/.
[26] “The New General Service List.” http://www.newgeneralservicelist.org, Ac-

cessed on 2019.
[27] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representa-

tions of words and phrases and their compositionality,” Advances in neural information
processing systems, vol. 26, 2013.

[28] “Wikipedia: List of words about computers.” https://simple.wikipedia.org/
wiki/List_of_words_about_computers, Accessed on 2019.

80

https://attack.mitre.org/
http://www.newgeneralservicelist.org
https://simple.wikipedia.org/wiki/List_of_words_about_computers
https://simple.wikipedia.org/wiki/List_of_words_about_computers

[29] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “A multifaceted approach to
understanding the botnet phenomenon,” in Proceedings of the 6th ACM SIGCOMM
conference on Internet measurement, pp. 41–52, 2006.

[30] J. Woodbridge, H. S. Anderson, A. Ahuja, and D. Grant, “Predicting domain generation
algorithms with long short-term memory networks,” arXiv preprint arXiv:1611.00791,
2016.

[31] B. Yu, J. Pan, J. Hu, A. Nascimento, and M. De Cock, “Character level based detection of
dga domain names,” in 2018 international joint conference on neural networks (IJCNN),
pp. 1–8, IEEE, 2018.

[32] H. S. Anderson, J. Woodbridge, and B. Filar, “Deepdga: Adversarially-tuned domain
generation and detection,” in Proceedings of the 2016 ACM workshop on artificial intel-
ligence and security, pp. 13–21, 2016.

[33] J. Peck, C. Nie, R. Sivaguru, C. Grumer, F. Olumofin, B. Yu, A. Nascimento, and
M. De Cock, “Charbot: A simple and effective method for evading dga classifiers,” IEEE
Access, vol. 7, pp. 91759–91771, 2019.

[34] L. Sidi, A. Nadler, and A. Shabtai, “Maskdga: A black-box evasion technique against
dga classifiers and adversarial defenses,” arXiv preprint arXiv:1902.08909, 2019.

[35] I. Khalil, T. Yu, and B. Guan, “Discovering malicious domains through passive dns data
graph analysis,” in Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, pp. 663–674, 2016.

[36] Y. Kazato, Y. Nakagawa, and Y. Nakatani, “Improving maliciousness estimation of
indicator of compromise using graph convolutional networks,” in 2020 IEEE 17th Annual
Consumer Communications & Networking Conference (CCNC), pp. 1–7, IEEE, 2020.

[37] Y. Zhauniarovich, I. Khalil, T. Yu, and M. Dacier, “A survey on malicious domains
detection through dns data analysis,” ACM Computing Surveys (CSUR), vol. 51, no. 4,
pp. 1–36, 2018.

[38] A. Kountouras, P. Kintis, C. Lever, Y. Chen, Y. Nadji, D. Dagon, M. Antonakakis, and
R. Joffe, “Enabling network security through active dns datasets,” in Research in Attacks,
Intrusions, and Defenses: 19th International Symposium, RAID 2016, Paris, France,
September 19-21, 2016, Proceedings 19, pp. 188–208, Springer, 2016.

[39] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling, “Measuring and detecting fast-flux
service networks.,” in Ndss, 2008.

[40] I. Prieto, E. Magaña, D. Morató, and M. Izal, “Botnet detection based on dns records
and active probing,” in Proceedings of the International Conference on Security and
Cryptography, pp. 307–316, IEEE, 2011.

[41] S. Hao, N. Feamster, and R. Pandrangi, “Monitoring the initial dns behavior of mali-
cious domains,” in Proceedings of the 2011 ACM SIGCOMM conference on Internet
measurement conference, pp. 269–278, 2011.

[42] S. Yadav, A. K. K. Reddy, A. N. Reddy, and S. Ranjan, “Detecting algorithmically gener-
ated malicious domain names,” in Proceedings of the 10th ACM SIGCOMM conference
on Internet measurement, pp. 48–61, 2010.

[43] S. Yadav, A. K. K. Reddy, A. N. Reddy, and S. Ranjan, “Detecting algorithmically
generated domain-flux attacks with dns traffic analysis,” IEEE/Acm Transactions on
Networking, vol. 20, no. 5, pp. 1663–1677, 2012.

81

[44] Z. Liu, Y. Zeng, P. Zhang, J. Xue, J. Zhang, and J. Liu, “An imbalanced malicious domains
detection method based on passive dns traffic analysis,” Security and Communication
Networks, vol. 2018, 2018.

[45] R. Sharifnya and M. Abadi, “A novel reputation system to detect dga-based botnets,” in
ICCKE 2013, pp. 417–423, IEEE, 2013.

[46] “Alexa Top Sites.” https://www.alexa.com/topsites Accesssed on June, 2020.
[47] “Malware Domain List.” https://www.malwaredomainlist.comAccesssed on June,

2020.
[48] “Compromised Domain List.” https://zonefiles.io/

compromised-domain-list Accesssed on June, 2020.
[49] Y. Yang, L. Wu, G. Yin, L. Li, and H. Zhao, “A survey on security and privacy issues in

internet-of-things,” IEEE Internet of things Journal, vol. 4, no. 5, pp. 1250–1258, 2017.
[50] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey on internet

of things: Architecture, enabling technologies, security and privacy, and applications,”
IEEE internet of things journal, vol. 4, no. 5, pp. 1125–1142, 2017.

[51] W. H. Hassan et al., “Current research on internet of things (iot) security: A survey,”
Computer networks, vol. 148, pp. 283–294, 2019.

[52] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Du-
rumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, et al., “Understanding the mirai
botnet,” in 26th USENIX security symposium (USENIX Security 17), pp. 1093–1110,
2017.

[53] M. Almiani, A. AbuGhazleh, A. Al-Rahayfeh, S. Atiewi, and A. Razaque, “Deep recur-
rent neural network for iot intrusion detection system,” Simulation Modelling Practice
and Theory, vol. 101, p. 102031, 2020.

[54] J. L. Leevy, T. M. Khoshgoftaar, and J. M. Peterson, “Mitigating class imbalance for iot
network intrusion detection: a survey,” in 2021 IEEE Seventh International Conference
on Big Data Computing Service and Applications (BigDataService), pp. 143–148, IEEE,
2021.

[55] L. Bilge and T. Dumitraş, “Before we knew it: an empirical study of zero-day attacks in
the real world,” in Proceedings of the 2012 ACM conference on Computer and commu-
nications security, pp. 833–844, 2012.

[56] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al., “Matching networks for one shot
learning,” Advances in neural information processing systems, vol. 29, 2016.

[57] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales, “Learning to
compare: Relation network for few-shot learning,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1199–1208, 2018.

[58] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot learning,”
Advances in neural information processing systems, vol. 30, 2017.

[59] V. Garcia and J. Bruna, “Few-shot learning with graph neural networks,” arXiv preprint
arXiv:1711.04043, 2017.

[60] R. Shire, S. Shiaeles, K. Bendiab, B. Ghita, and N. Kolokotronis, “Malware squid: A
novel iot malware traffic analysis framework using convolutional neural network and
binary visualisation,” in Internet of Things, Smart Spaces, and Next Generation Networks
and Systems: 19th International Conference, NEW2AN 2019, and 12th Conference,
ruSMART 2019, St. Petersburg, Russia, August 26–28, 2019, Proceedings 19, pp. 65–76,
Springer, 2019.

82

https://www.alexa.com/topsites
https://www.malwaredomainlist.com
https://zonefiles.io/compromised-domain-list
https://zonefiles.io/compromised-domain-list

[61] G. Conti, E. Dean, M. Sinda, and B. Sangster, “Visual reverse engineering of binary and
data files,” in International Workshop on Visualization for Computer Security, pp. 1–17,
Springer, 2008.

[62] W. Liu, X. Liu, X. Di, and H. Qi, “A novel network intrusion detection algorithm based on
fast fourier transformation,” in 2019 1st international conference on Industrial Artificial
Intelligence (IAI), pp. 1–6, IEEE, 2019.

[63] F. Hussain, S. G. Abbas, M. Husnain, U. U. Fayyaz, F. Shahzad, and G. A. Shah, “Iot
dos and ddos attack detection using resnet,” in 2020 IEEE 23rd International Multitopic
Conference (INMIC), pp. 1–6, IEEE, 2020.

[64] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few examples: A
survey on few-shot learning,” ACM computing surveys (csur), vol. 53, no. 3, pp. 1–34,
2020.

[65] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph
neural network model,” IEEE transactions on neural networks, vol. 20, no. 1, pp. 61–80,
2008.

[66] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” arXiv preprint arXiv:1609.02907, 2016.

[67] J. Kim, T. Kim, S. Kim, and C. D. Yoo, “Edge-labeling graph neural network for few-shot
learning,” in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11–20, 2019.

[68] T. Wei, J. Hou, and R. Feng, “Fuzzy graph neural network for few-shot learning,” in 2020
International joint conference on neural networks (IJCNN), pp. 1–8, IEEE, 2020.

[69] G. Bendiab, S. Shiaeles, A. Alruban, and N. Kolokotronis, “Iot malware network traffic
classification using visual representation and deep learning,” in 2020 6th IEEE Conference
on Network Softwarization (NetSoft), pp. 444–449, IEEE, 2020.

[70] C. Xu, J. Shen, and X. Du, “A method of few-shot network intrusion detection based on
meta-learning framework,” IEEE Transactions on Information Forensics and Security,
vol. 15, pp. 3540–3552, 2020.

[71] Y. Yu and N. Bian, “An intrusion detection method using few-shot learning,” IEEE
Access, vol. 8, pp. 49730–49740, 2020.

[72] “Visual analysis of binary files.” http://binvis.io.
[73] A. Dainotti, A. Pescape, and K. C. Claffy, “Issues and future directions in traffic classifi-

cation,” IEEE network, vol. 26, no. 1, pp. 35–40, 2012.
[74] H. Sagan, Space-filling curves. Springer Science & Business Media, 2012.
[75] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

[76] J. Deng, “A large-scale hierarchical image database,” Proc. of IEEE Computer Vision
and Pattern Recognition, 2009, 2009.

[77] A. P. M. J. E. Sebastian Garcia, “Iot23: A labeled dataset with malicious and benign iot
network traffic,” Zenodo, 2020.

[78] “An open source network monitoring tool.” https://zeek.org.
[79] “SplitCap.” https://www.netresec.com/?page=SplitCap.
[80] “Future of industry ecosystems: Shared data and in-

sights,” 2021. https://blogs.idc.com/2021/01/06/

83

http://binvis.io
https://zeek.org
https://www.netresec.com/?page=SplitCap
https://blogs.idc.com/2021/01/06/future-of-industry-ecosystems-shared-data-and-insights/
https://blogs.idc.com/2021/01/06/future-of-industry-ecosystems-shared-data-and-insights/

future-of-industry-ecosystems-shared-data-and-insights/ Last accessed
on 2022-12-18.

[81] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani, “Demystifying
iot security: an exhaustive survey on iot vulnerabilities and a first empirical look on
internet-scale iot exploitations,” IEEE Communications Surveys & Tutorials, vol. 21,
no. 3, pp. 2702–2733, 2019.

[82] S. Agrawal, S. Sarkar, O. Aouedi, G. Yenduri, K. Piamrat, M. Alazab, S. Bhattacharya,
P. K. R. Maddikunta, and T. R. Gadekallu, “Federated learning for intrusion detection
system: Concepts, challenges and future directions,” Computer Communications, 2022.

[83] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-
efficient learning of deep networks from decentralized data,” in Artificial intelligence and
statistics, pp. 1273–1282, PMLR, 2017.

[84] M. A. Ferrag, O. Friha, L. Maglaras, H. Janicke, and L. Shu, “Federated deep learning
for cyber security in the internet of things: Concepts, applications, and experimental
analysis,” IEEE Access, vol. 9, pp. 138509–138542, 2021.

[85] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, and G. Srivastava,
“A survey on security and privacy of federated learning,” Future Generation Computer
Systems, vol. 115, pp. 619–640, 2021.

[86] V. Rey, P. M. S. Sánchez, A. H. Celdrán, and G. Bovet, “Federated learning for malware
detection in iot devices,” Computer Networks, vol. 204, p. 108693, 2022.

[87] Z. Zhang, Y. Zhang, D. Guo, L. Yao, and Z. Li, “Secfednids: Robust defense for
poisoning attack against federated learning-based network intrusion detection system,”
Future Generation Computer Systems, vol. 134, pp. 154–169, 2022.

[88] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust distributed learning:
Towards optimal statistical rates,” in International Conference on Machine Learning,
pp. 5650–5659, PMLR, 2018.

[89] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine learning with
adversaries: Byzantine tolerant gradient descent,” Advances in neural information pro-
cessing systems, vol. 30, 2017.

[90] S. Awan, B. Luo, and F. Li, “Contra: Defending against poisoning attacks in federated
learning,” in Computer Security–ESORICS 2021: 26th European Symposium on Re-
search in Computer Security, Darmstadt, Germany, October 4–8, 2021, Proceedings,
Part I 26, pp. 455–475, Springer, 2021.

[91] N. M. Jebreel and J. Domingo-Ferrer, “Fl-defender: Combating targeted attacks in
federated learning,” Knowledge-Based Systems, vol. 260, p. 110178, 2023.

[92] X. Cao, M. Fang, J. Liu, and N. Z. Gong, “Fltrust: Byzantine-robust federated learning
via trust bootstrapping,” arXiv preprint arXiv:2012.13995, 2020.

[93] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support vector machines,”
arXiv preprint arXiv:1206.6389, 2012.

[94] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to backdoor
federated learning,” in International Conference on Artificial Intelligence and Statistics,
pp. 2938–2948, PMLR, 2020.

[95] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated
optimization in heterogeneous networks,” Proceedings of Machine learning and systems,
vol. 2, pp. 429–450, 2020.

84

https://blogs.idc.com/2021/01/06/future-of-industry-ecosystems-shared-data-and-insights/
https://blogs.idc.com/2021/01/06/future-of-industry-ecosystems-shared-data-and-insights/

[96] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the objective inconsis-
tency problem in heterogeneous federated optimization,” Advances in neural information
processing systems, vol. 33, pp. 7611–7623, 2020.

[97] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T. Suresh, “Scaffold:
Stochastic controlled averaging for federated learning,” in International conference on
machine learning, pp. 5132–5143, PMLR, 2020.

[98] Q. Li, B. He, and D. Song, “Model-contrastive federated learning,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 10713–10722,
2021.

[99] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated learning with the-
oretical guarantees: A model-agnostic meta-learning approach,” Advances in Neural
Information Processing Systems, vol. 33, pp. 3557–3568, 2020.

[100] S. I. Popoola, R. Ande, B. Adebisi, G. Gui, M. Hammoudeh, and O. Jogunola, “Federated
deep learning for zero-day botnet attack detection in iot-edge devices,” IEEE Internet of
Things Journal, vol. 9, no. 5, pp. 3930–3944, 2021.

[101] Y. Fan, Y. Li, M. Zhan, H. Cui, and Y. Zhang, “Iotdefender: A federated transfer learning
intrusion detection framework for 5g iot,” in 2020 IEEE 14th international conference
on big data science and engineering (BigDataSE), pp. 88–95, IEEE, 2020.

[102] V. Mothukuri, P. Khare, R. M. Parizi, S. Pouriyeh, A. Dehghantanha, and G. Srivastava,
“Federated-learning-based anomaly detection for iot security attacks,” IEEE Internet of
Things Journal, vol. 9, no. 4, pp. 2545–2554, 2021.

[103] D. C. Attota, V. Mothukuri, R. M. Parizi, and S. Pouriyeh, “An ensemble multi-view
federated learning intrusion detection for iot,” IEEE Access, vol. 9, pp. 117734–117745,
2021.

[104] H. Zhu, Y. Zhou, H. Qian, Y. Shi, X. Chen, and Y. Yang, “Online client selection
for asynchronous federated learning with fairness consideration,” IEEE Transactions on
Wireless Communications, vol. 22, no. 4, pp. 2493–2506, 2022.

[105] M. Yurochkin, M. Agarwal, S. Ghosh, K. Greenewald, N. Hoang, and Y. Khazaeni,
“Bayesian nonparametric federated learning of neural networks,” in International con-
ference on machine learning, pp. 7252–7261, PMLR, 2019.

[106] Z. Zhu, J. Hong, and J. Zhou, “Data-free knowledge distillation for heterogeneous fed-
erated learning,” in International conference on machine learning, pp. 12878–12889,
PMLR, 2021.

[107] A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized federated learning,” IEEE
Transactions on Neural Networks and Learning Systems, 2022.

[108] Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie, “Class-balanced loss based on
effective number of samples,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 9268–9277, 2019.

[109] A. K. Menon, S. Jayasumana, A. S. Rawat, H. Jain, A. Veit, and S. Kumar, “Long-tail
learning via logit adjustment,” arXiv preprint arXiv:2007.07314, 2020.

[110] J. Ren, C. Yu, X. Ma, H. Zhao, S. Yi, et al., “Balanced meta-softmax for long-tailed visual
recognition,” Advances in neural information processing systems, vol. 33, pp. 4175–4186,
2020.

[111] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: synthetic
minority over-sampling technique,” Journal of artificial intelligence research, vol. 16,
pp. 321–357, 2002.

85

[112] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions on knowl-
edge and data engineering, vol. 21, no. 9, pp. 1263–1284, 2009.

[113] X. Mu, Y. Shen, K. Cheng, X. Geng, J. Fu, T. Zhang, and Z. Zhang, “Fedproc: Pro-
totypical contrastive federated learning on non-iid data,” Future Generation Computer
Systems, 2023.

[114] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choudhary, “Federated learning
with personalization layers,” arXiv preprint arXiv:1912.00818, 2019.

[115] P. P. Liang, T. Liu, L. Ziyin, N. B. Allen, R. P. Auerbach, D. Brent, R. Salakhutdinov,
and L.-P. Morency, “Think locally, act globally: Federated learning with local and global
representations,” arXiv preprint arXiv:2001.01523, 2020.

[116] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Exploiting shared represen-
tations for personalized federated learning,” in International Conference on Machine
Learning, pp. 2089–2099, PMLR, 2021.

[117] H.-Y. Chen and W.-L. Chao, “On bridging generic and personalized federated learning
for image classification,” arXiv preprint arXiv:2107.00778, 2021.

[118] H. Lee, S. Shin, and H. Kim, “Abc: Auxiliary balanced classifier for class-imbalanced
semi-supervised learning,” Advances in Neural Information Processing Systems, vol. 34,
pp. 7082–7094, 2021.

86

List of Publications

Journals and Transcations

1. T.T. Thein, Y. Ezawa, S. Nakagawa, K. Furumoto, Y. Shiraishi, M. Mohri, Y. Takano,
and M. Morii, “Paragraph-based Estimation of Cyber Kill Chain Phase from Threat
Intelligence Reports,” Journal of Information Processing, Vol. 28, pp. 1025–1029, 2020.

2. T.T. Thein, Y. Shiraishi, and M. Morii, “Malicious domain detection based on decision
tree,” IEICE Transactions on Information Systems, Vol. E106-D, No. 9, pp.1490–1494,
2023.

3. T.T. Thein, Y. Shiraishi, and M. Morii, “Few-shot Learning-based Malicious IoT Traffic
Detection with Prototypical Graph Neural Networks,” IEICE Transactions on Information
Systems, Vol. E106-D, No. 9, pp. 1480–1489, 2023.

4. T.T. Thein, Y. Shiraishi, and M. Morii, “Personalized federated learning-based intrusion
detection system: Poisoning attack and defense,” Future Generation Computer Systems,
DOI:10.1016/j.future.2023.10.005, 2023.

87

Doctoral Dissertation, Kobe University
“Study on AI-Powered Cybersecurity for Threat Detection and Mitigation”, 88 pages
Submitted on January 16, 2024
When published on the Kobe University institutional repository /Kernel/, the publication date
shall appear on the cover of the repository version.

© THIN THARAPHE THEIN
All Right Reserved, 2024

88

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background and Motivation
	1.2 AI Techniques in Cybersecurity Domain
	1.2.1 Machine Learning and Deep Learning
	1.2.2 Cybersecurity Dataset
	1.2.3 Performance Evaluation Criteria

	1.3 Data-driven Cyber Intelligence
	1.4 Cyber Threat Intelligence Feed
	1.5 Our Study
	1.5.1 Paragraph-based Estimation of Cyber Kill Chain Phase from Threat Intelligence Reports
	1.5.2 Malicious Domain Detection Based on Decision Tree
	1.5.3 Few-Shot Learning-Based Malicious IoT Traffic Detection with Prototypical Graph Neural Networks
	1.5.4 Personalized Federated Learning-based Intrusion Detection System: Poisoning Attack and Defense

	1.6 Chapter Organizations

	2 Paragraph-based Estimation of Cyber Kill Chain Phase from Threat Intelligence Reports
	2.1 Abstract
	2.2 Introduction
	2.3 Background
	2.3.1 Cyber Kill Chain
	2.3.2 Diamond Model of Intrusion Analysis
	2.3.3 Existing Study on Threat Modeling and Threat Extraction

	2.4 Proposed Model
	2.4.1 Word Embedding
	2.4.2 Paragraph-based Estimation of the Cyber Kill Chain Phase
	2.4.3 Core Features Extraction from Paragraph mainly with ATT&CK

	2.5 Evaluation
	2.5.1 Results

	2.6 Conclusion

	3 Malicious Domain Detection Based on Decision Tree
	3.1 Abstract
	3.2 Introduction
	3.3 Background
	3.3.1 Existing Study on Malicious Domain Detection
	3.3.2 Domain Name System
	3.3.3 DNS Traffic Analysis

	3.4 Proposed Model
	3.4.1 Data Collector
	3.4.2 Feature Extraction

	3.5 Evaluation
	3.5.1 Results

	3.6 Conclusion

	4 Few-Shot Learning-Based Malicious IoT Traffic Detection with Prototypical Graph Neural Networks
	4.1 Abstract
	4.2 Introduction
	4.3 Background
	4.3.1 Network Intrusion Detection System
	4.3.2 Signature-based vs. Anomaly-based IDS
	4.3.3 Few-shot Learning
	4.3.4 Graph Neural Networks for Few-shot Learning
	4.3.5 Existing Study on IoT Network Traffic Detection

	4.4 Proposed Method
	4.4.1 Few-shot Learning Strategy
	4.4.2 Data Preprocessing
	4.4.3 Few-shot Prototypical Graph Neural Network
	4.4.4 Training Objectives and Parameters

	4.5 Evaluation
	4.5.1 Results
	4.5.2 Discussion

	4.6 Conclusion

	5 Personalized Federated Learning-based Intrusion Detection System: Poisoning Attack and Defense
	5.1 Abstract
	5.2 Introduction
	5.3 Background
	5.3.1 Federated Learning
	5.3.2 Existing Study on Federated Learning-based IDS
	5.3.3 Impact of Statistical Heterogeneity in Client Data
	5.3.4 Poisoning Attacks against Federated Learning-based IDS
	5.3.5 Defending Poisoning Attacks in Federated Learning

	5.4 Proposed Method
	5.4.1 Convolutional Neural Network
	5.4.2 Local Training: A Personalized Local Model
	5.4.3 Server-side Poisoned Client Detector

	5.5 Evaluation
	5.5.1 Results
	5.5.2 Discussion

	5.6 Conclusion

	6 Conclusion of Our Study
	6.1 Conclusion
	6.2 Contributions
	6.3 Future work

	References
	List of Publications

