
Kobe University Repository : Kernel

PDF issue: 2025-06-17

Evolutionary Game Dynamics with Environmental
Feedback in a Network with Two Communities

(Citation)
Bulletin of Mathematical Biology,86(7):84

(Issue Date)
2024-06-07

(Resource Type)
journal article

(Version)
Version of Record

(Rights)
© The Author(s) 2024
This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) a…
the source, provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are included in
the article's Creative Commons licence, unless indicated otherwise in a credit line to
the material. If material is not included in the article's Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

(URL)
https://hdl.handle.net/20.500.14094/0100490213

Betz, Katherine
Fu, Feng
Masuda, Naoki



Bulletin of Mathematical Biology           (2024) 86:84 
https://doi.org/10.1007/s11538-024-01310-3

ORIG INAL ART ICLE

Evolutionary Game Dynamics with Environmental
Feedback in a Network with Two Communities

Katherine Betz1 · Feng Fu2,3 · Naoki Masuda1,4,5

Received: 26 April 2024 / Accepted: 8 May 2024
© The Author(s) 2024

Abstract
Recent developments of eco-evolutionary models have shown that evolving feedbacks
between behavioral strategies and the environment of game interactions, leading to
changes in the underlying payoffmatrix, can impact the underlying population dynam-
ics in various manners. We propose and analyze an eco-evolutionary game dynamics
model on a networkwith two communities such that players interact with other players
in the same community and those in the opposite community at different rates. In our
model, we consider two-person matrix games with pairwise interactions occurring on
individual edges and assume that the environmental state depends on edges rather than
on nodes or being globally shared in the population. We analytically determine the
equilibria and their stability under a symmetric population structure assumption, and
we also numerically study the replicator dynamics of the general model. The model
shows rich dynamical behavior, such asmultiple transcritical bifurcations, multistabil-
ity, and anti-synchronous oscillations.Ourwork offers insights into understanding how
the presence of community structure impacts the eco-evolutionary dynamics within
and between niches.
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1 Introduction

Evolutionary game theory is the study of population changes driven by competition
among different strategies. A recent adjustment of evolutionary game models with
the aim of better representing the natural world is the inclusion of strategy-dependent
feedback, specifically, environmental feedback (Weitz et al. 2016). This type of game is
called an eco-evolutionary game. This type of strategy-dependent feedback can be seen
in many complex systems, such as ecological metacommunities (Leibold and Chase
2018), collectives of insect individuals (Hanski 2011; Stella et al. 2022b), microbial
populations (West et al. 2006; Sanchez and Gore 2013; Estrela et al. 2018), and human
social and reproductive structures (Mullon et al. 2017; Rand et al. 2017). A major
question with models of eco-evolutionary game dynamics is conditions under which
cooperation in a population can thrive when the payoff matrix, which we regard as the
environment, is influenced by the action of players. Extensions of the original eco-
evolutionary game dynamics models include the addition of finite carrying capacity
(Bairagya et al. 2021), renewable and decaying resources (Tilman et al. 2020; Wang
and Fu 2020; Yan et al. 2021), imitation and aspiration dynamics (Arefin and Tanimoto
2021), mutation of players (Gong et al. 2022), reciprocity dynamics (Ma et al. 2024),
and extension to public goods games (Shao et al. 2019; Wang and Fu 2020; Jiang et al.
2023; Han et al. 2024). The models can also be extended in terms of additional types
of dynamic feedback, such as non-constant enhancement or degradation rates of the
environmental variable, which depends on the payoff of players (Cao and Wu 2021),
and global and local environment fluctuations (Jiang et al. 2023).

Given that players of the game are embedded in structured populations in reality,
evolutionary gamemodels have been extended to the case of various networks (Nowak
2006; Szabó and Fáth 2007; Perc et al. 2013; Wang et al. 2024). Similarly, players
involved in an eco-evolutionary game may be better interpreted to inhabit on nodes
of a network. Therefore, eco-evolutionary games have been extended to the case of
networks. For example, in eco-evolutionary games on regular graphs, it was found that
a higher degree of the node creates oscillatory behavior in the population and that a
lower degree promotes spread of cooperation (Stella et al. 2022a; Zhang et al. 2023).
Spatial networks are also commonly used for exploring how environmental feedback
promotes cooperation (Jin et al. 2018; Szolnoki and Chen 2018; Wu et al. 2018, 2019;
Hauert et al. 2019; Lin and Weitz 2019; Yang and Zhang 2021; Ding et al. 2023; He
et al. 2023; Lu et al. 2023; Zhu 2023). Lastly, through the use of bimatrix payoffs,
which are equivalent to the complete bipartite graph as population structure in the case
of symmetric payoff matrices, periodic orbits in the state space have been proven to
exist (Gong et al. 2018; Kawano et al. 2019; Liu et al. 2020; Shu and Fu 2022).

However, there are somevital gapsmissing in the prior research on eco-evolutionary
games on networks. First, in complete bipartite graphs (Gong et al. 2018; Kawano
et al. 2019; Liu et al. 2020; Shu and Fu 2022), the players do not interact within
each community. This assumption is suitable for modeling situations in which the
population of players is divided into two different roles but otherwise not in general.
Second, in most of the previous studies, the environmental state is assumed to be either
a globally shared variable (Gong et al. 2018; Kawano et al. 2019; Liu et al. 2020; Shu
and Fu 2022; Stella et al. 2022a; Zhang et al. 2023) or local to each node (i.e., player)
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(Jin et al. 2018; Szolnoki and Chen 2018; Wu et al. 2018, 2019; Hauert et al. 2019;
Lin and Weitz 2019; Yang and Zhang 2021; Ding et al. 2023; He et al. 2023; Lu et al.
2023; Zhu 2023). However, it may be more realistic to assume that the environment
is shared across some, but not all, players (Fahimipour et al. 2022; Guimarães 2020).
For example, a meta-community in ecological systems may be an appropriately sized
unit for considering an environmental variable (Holyoak 2009; Brechtel et al. 2018;
Leibold and Chase 2018; Gross et al. 2020). Other eco-evolutionary game models
assume network structure and assign a local environmental variable to each edge
between a pair of players (He et al. 2023; Zhu 2023).

In the present study, we extend a previously proposed model of eco-evolutionary
dynamics (Weitz et al. 2016) to the case of networks with equally sized two commu-
nities. Unlike the complete bipartite graph models proposed in Gong et al. (2018),
Kawano et al. (2019), and Shu and Fu (2022) where the players in each community
only interact with those in the other community, we assume that players not only
interact with those in the other community but also with those in the same community.
Next, we assume that the state of the environment depends on the type of edge in
the network, similarly to He et al. (2023) and Zhu (2023). We crucially assign one
environmental variable to each type of edge, i.e., the edges within the first community,
those within the second community, and those connecting the two communities. In this
manner, we model the situation in which two players forming an edge may improve
or deteriorate their shared environment, which is assumed to be on the edge. We do
not distinguish between edges of the same type because of the symmetric population
structure assumed. Unlike the previous studies similarly assuming edge-dependent
environmental states (He et al. 2023; Zhu 2023), our two-community network model,
which is a minimal network model, allows analytical investigations.

Our paper is organized as follows. In Sect. 2, we describe our model in detail and
focus on eco-evolutionary dynamics with two network communities. In Sects. 3 and
4, respectively, we present our stability analysis of the simplified replicator dynamics
resulting from different symmetry assumptions. In Sect. 5, we numerically investigate
the rich dynamical behavior of the general model. Finally, we discuss contributions
of the current work along with an outlook for future work.

2 Model

Consider an eco-evolutionary game in a population composed of two communities.
Each player chooses either of the two actions, i.e., cooperation or defection.We assume
that there are N players in total and N/2 players in each community. We assume that
the entire population is infinite (i.e., N → ∞) and that the players interact with each
other player within the same community at rate 1− δ and with each player in the other
community at rate δ > 0. See Fig. 1 for a schematic.

We consider replicator dynamics for a population on the two-community network
with feedback-evolving games. Crucially, we assume that the state of the environment
depends on the type of edge in the network. We denote by n1 ∈ [0, 1] the state of
the environment in community 1, representing the edges within community 1, by
n2 ∈ [0, 1] the state of the environment in community 2, and by n12 ∈ [0, 1] the
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Fig. 1 Schematic of the two-community network. A filled circle represents a player. Two players from
the same community interact at rate 1 − δ. Two players from the opposite communities interact at rate δ.
Without loss of generality, we normalize the rate parameter 0 < δ < 1. We only show some edges for
visualization purposes

state of the environment used when a player in community 1 and one in community
2 interact. The environment-dependent payoff matrices for community 1, 2, and in
between are assumed to be given by

A(n) = (1 − n)

(
R0 S0
T0 P0

)
+ n

(
R1 S1
T1 P1

)
, (1)

where n is either n1, n2, or n12. We assume that, if n = 0, then cooperation is the
unique Nash equilibrium, i.e., R0 > T0 and S0 > P0. If n = 1, then defection is the
unique Nash equilibrium, i.e., R1 < T1 and S1 < P1. We label the prior inequalities
as

R0 > T0, S0 > P0, R1 < T1, S1 < P1. (2)

Let us define q1 and q2 as the two-dimensional payoff vector for a player in com-
munity 1 and 2, respectively. The first entry of the vector is the payoff for a cooperator.
The second entry of the vector is the payoff for a defector. Define x and y as the frac-
tion of cooperators in community 1 and 2, respectively. The fraction of defectors in
community 1 and 2 is 1 − x and 1 − y, respectively. We obtain

q1 = (1 − δ)A(n1)x + δA(n12)y, (3)

q2 = (1 − δ)A(n2)y + δA(n12)x, (4)

where x = (
x 1 − x

)�, y = (
y 1 − y

)�, and � denotes the transposition. The first
term on the right-hand side of Eqs. (3) and (4) is the payoff obtained by playing with
the other players in the same community. The second term is the payoff obtained by
playing with the players in the opposite community.
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We assume that the competition between cooperation and defection occurs only
within each community because players inhabiting different communities may per-
ceive the different environments due to the different state of the environment. Then,
the replicator dynamics are given by

ẋ = x(1 − x)(q11 − q12), (5)

ẏ = y(1 − y)(q21 − q22), (6)

where q11, q12, q21, and q22 are defined by

qi =
(
qi1
qi2

)
(7)

with i ∈ {1, 2}.
We give the dynamics of the environmental state of each type of edge by

ṅ1 = n1(1 − n1) [θ1x − (1 − x)] , (8)

ṅ2 = n2(1 − n2) [θ2y − (1 − y)] , (9)

ṅ12 = n12(1 − n12) [θ12z − (1 − z)] , (10)

where z is the fraction of cooperators in the entire population, i.e., z ≡ (x + y)/2,
and θ1 > 0, θ2 > 0, and θ12 > 0 are the ratio of enhancement to degradation of the
environmental variable for the respective edge type. For example, if θ1 is large, then
enhancement of the environment in community 1 occurs at a relatively small fraction
of cooperators, x .

We let R3 = R0 − R1, T3 = T0 − T1, P3 = P0 − P1, and S3 = S0 − S1. Then, we
obtain the five-dimensional dynamical system given by

ẋ =x(1 − x)[(R0 − T0 − S0 + P0)x + S0 − P0
− n1(S3 − P3) − δ[(R0 − T0 − S0 + P0)(x − y)

− (R3 − T3 − S3 + P3)(n1x − n12y) − (S3 − P3)(n1 − n12)]], (11)

ẏ =y(1 − y)[(R0 − T0 − S0 + P0)y + S0 − P0
− n2(S3 − P3) − δ[(R0 − T0 − S0 + P0)(y − x)

− (R3 − T3 − S3 + P3)(n2y − n12x) − (S3 − P3)(n2 − n12)]], (12)

and Eqs. (8), (9), and (10).

3 Three-Dimensional Systemwith �1 �= �12

In this section, we assume that θ1 = θ2, and that the initial condition satisfies x = y
and n1 = n2. Then, x = y and n1 = n2 hold true for any t > 0. We further assume
that θ1 = θ2 �= θ12. In this case, the original five-dimensional dynamical system is
reduced to the three-dimensional dynamical system given by
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ẋ = x(1 − x)[(R0 − T0 − S0 + P0)x + S0 − P0
− [n1(1 − δ) + δn12] [(R3 − S3 − T3 + P3)x + (S3 − P3)]], (13)

ṅ1 = n1(1 − n1)[θ1x − (1 − x)], (14)

ṅ12 = n12(1 − n12)[θ12x − (1 − x)]. (15)

We analyze the equilibria and dynamics of this three-dimensional dynamical system.
The Jacobian of this dynamical system is given by

J (x, n1, n12) =

⎛
⎜⎜⎜⎜⎜⎜⎝

x(1 − x) ∂g
∂x x(1 − x) ∂g

∂n1
x(1 − x) ∂g

∂n12+(1 − 2x)g(x, n1, n12)
−n1(θ1x + x − 1)

n1(1 − n1)(1 + θ1) +(1 − n1)(θ1x + x − 1) 0
−n12(θ1x + x − 1)

n12(1 − n12)(1 + θ1) 0 +(1 − n12)(θ1x + x − 1)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(16)
where

g(x, n1, n12) = q11 − q12, (17)

and q11 and q12 are given by Eq. (7).

3.1 Corner Equilibria

We denote by x∗ the equilibrium of x and similar for the other dynamical variables.
By setting x∗, n∗

1, and n
∗
12 to 0 or 1, specifying the corners of the unit cube defined by

0 ≤ x, n1, n12 ≤ 1, we obtain 8 corner equilibria. We show in Appendix A that each
corner equilibrium is a saddle.

3.2 Interior Equilibria

In this section, we seek interior equilibria, i.e., those in which 0 < x∗, n∗
1, n

∗
12 < 1. By

setting ṅ1 = 0 and ṅ12 = 0 in Eqs. (14) and (15), respectively, we obtain x∗ = 1
1+θ1

and x∗ = 1
1+θ12

, which is a contradiction, because we assumed θ1 �= θ12. Therefore,
there are no internal equilibria.

3.3 Edge Equilibria

Let us examine possible equilibria on the edge of the unit cube, which we call edge
equilibria. At an edge equilibrium, one variable out of x∗, n∗

1, or n
∗
12 is between 0 and

1, and the other two variables are either 0 or 1. If x∗ = 0 or 1, then Eqs. (14) and (15)
imply that n∗

1, n
∗
12 ∈ {0, 1}, leading to corner equilibria. Therefore, there is no edge

equilibrium satisfying x∗ ∈ {0, 1}. Therefore, we search for edge equilibria such that
0 < x∗ < 1 and n1, n12 ∈ {0, 1}. Pairs (n1, n12) = (0, 0) and (1, 1) violate Eq. (2).
The other two pairs, i.e., (n1, n12) = (0, 1) and (1, 0), provide equilibria.
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The edge equilibrium (x∗, n∗
1, n

∗
12) =

(
P0−S0−δ(P0−P1−S0+S1)

R0−T0−S0+P0−δγ
, 0, 1

)
, where

γ = R0 − R1 − T0 + T1 − S0 + S1 + P0 − P1, (18)

is stable if and only if

(P0 − S0)(R1 − T1) > (P1 − S1)(R0 − T0), (19)

δc,1 <δ < δc,2, (20)

and

θ12 > θ1, (21)

where

δc,1 ≡ R0 − T0 − P0θ1 + S0θ1
ρ1

, (22)

δc,2 ≡ R0 − T0 − P0θ12 + S0θ12
ρ12

, (23)

ρ1 =R0 − R1 − T0 + T1 − P0θ1 + P1θ1 + S0θ1 − S1θ1, (24)

ρ12 =R0 − R1 − T0 + T1 − P0θ12 + P1θ12 + S0θ12 − S1θ12. (25)

If either Eqs. (19), (20), or (21) is not met, the equilibrium is unstable. We derive
Eqs. (19), (20), and (21) in Appendix B.

The equilibrium (x∗, n∗
1, n

∗
12) =

(
P1−S1+δ(P0−P1−S0+S1)

R1−T1−S1+P1+δγ
, 1, 0

)
is stable if and only

if Eq. (19),
δc,3 < δ < δc,4, (26)

and
θ12 < θ1, (27)

where

δc,3 ≡ −R1 + T1 + P1θ1 − S1θ1
ρ1

(28)

and

δc,4 ≡ −R1 + T1 + P1θ12 − S1θ12
ρ12

, (29)

hold true. If either Eqs. (19), (26), or (27) is not met, the equilibrium is unstable. The
derivation is given in Appendix B.

3.4 Face Equilibria

In this section, we seek equilibria on the face of the unit cube, i.e., those in which just
one of x∗, n∗

1, or n
∗
12 is either 0 or 1 and the other two are between 0 and 1.We call these

equilibria face equilibria. Similarly to the case of the edge equilibria, if we let x∗ = 0
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Table 1 Face equilibria of the
three-dimensional dynamics
when θ1 �= θ12

x∗ n∗
1 n∗

12

1
1+θ1

R0−T0−P0θ1+S0θ1
(1−δ)ρ1

0

1
1+θ12

1 R1−T1−P1θ12+S1θ12+δρ12
δρ12

1
1+θ1

R0−T0−P0θ1+S0θ1−δρ1
(1−δ)ρ1

1

1
1+θ12

0 R0−T0−P0θ12+S0θ12
δρ12

We recall thatρ1 andρ12 are defined byEqs. (24) and (25), respectively

or 1, then we obtain a corner equilibrium. Therefore, we assume that 0 < x∗ < 1.
By setting just one of n∗

1 or n
∗
12 to 0 or 1, we obtain the four face equilibria shown in

Table 1.
For the equilibrium (x∗, n∗

1, n
∗
12) =

(
1

1+θ1
, R0−T0−P0θ1+S0θ1

(1−δ)ρ1
, 0

)
, the Jacobian is

given by

J =
⎛
⎜⎝
J (1)
11 J (1)

12 J (1)
13

J (1)
21 0 0
0 0 J (1)

33

⎞
⎟⎠ , (30)

where

J (1)
11 = [(P1 − S1)(R0 − T0) − (P0 − S0)(R1 − T1)] θ1

(1 + θ1)ρ1
, (31)

J (1)
12 = −(1 − δ)θ1ρ1

(1 + θ1)3
, (32)

J (1)
13 = −δθ1ρ1

(1 + θ1)3
, (33)

J (1)
21 = −(1 + θ1) [R0 − T0 − (P0 − S0)θ1] (R1 − T1 − P1θ1 + S1θ1 + δρ1)

(1 − δ)2ρ2
1

, (34)

J (1)
33 = θ12 − θ1

1 + θ1
. (35)

The characteristic equation is given by,

det(J − λI ) =
(
J (1)
33 − λ

) (
λ2 − J (1)

11 λ − J (1)
12 J (1)

21

)
= 0. (36)

Eigenvalue λ1 = J (1)
33 = θ12−θ1

1+θ1
is negative if and only if θ12 < θ1 (i.e., Eq. (27)). The

other two eigenvalues, denoted byλ2 andλ3, are solutions ofλ2−J (1)
11 λ−J (1)

12 J (1)
21 = 0.

The real part of λ2 and λ3 is negative if and only if −J (1)
11 > 0 and −J (1)

12 J (1)
21 > 0.

Equation (2) guarantees that both ρ1 and ρ12 are positive. Therefore,−J (1)
11 > 0 if and

only if Eq. (19) holds true. Equation (32) combined with ρ1 > 0 implies that J (1)
12 < 0.
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Fig. 2 Convergence to face equilibria. Shown are numerically obtained trajectories of the three-dimensional
systemgiven byEqs. (13), (14), and (15). The green dots represent the face equilibria given inTable 1.Weuse
the payoffmatrices given byEq. (38) and initial conditions (x, n1, n12) = (0.5, 0.4, 0.1) and (0.6, 0.5, 0.8),
of which the corresponding trajectories are shown in blue and orange, respectively. a θ1 = 8, θ12 = 5, and
δ = 0.6. b θ1 = 8, θ12 = 5, and δ = 0.8. c θ1 = 5, θ12 = 8, and δ = 0.2. d θ1 = 5, θ12 = 8, and δ = 0.4

Therefore, −J (1)
12 J (1)

21 > 0 if and only if J (1)
21 > 0, which holds true if and only if

δ < δc,3. (37)

Note that, in Eq. (34), R0−T0−(P0−S0)θ1 > 0 because R0−T0 > 0 and P0−S0 < 0.
Therefore, this equilibrium is marginally stable if and only if Eqs. (19), (27), and (37)
hold true.

For numerical demonstration, we set

(
R0 S0
T0 P0

)
=

(
5 1
3 0

)
and

(
R1 S1
T1 P1

)
=

(
3 0
8 2

)
, (38)

which satisfy Eq. (2). We also set θ1 = 8, θ12 = 5, and δ = 0.6, yielding λ1 = − 1
3

and λ2,3 = −0.014±0.437i . We show two numerically simulated trajectories starting
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fromdifferent initial conditions in Fig. 2a. Figure2a indicates that the trajectories spiral
into the presently discussed face equilibrium.

The derivation of the conditions for stability of the other three face equilibria is
similar; see Appendix C for the derivation.

Equilibrium (x∗, n∗
1, n

∗
12) =

(
1

1+θ12
, 1, R1−T1−P1θ12+S1θ12+δρ12

δρ12

)
is stable if and

only if Eqs. (19), (27), and
δ > δc,4 (39)

hold true. For numerical demonstration of this face equilibrium, we set θ1 = 8, θ12 =
5, and δ = 0.8, yielding λ1 = − 1

2 and λ2,3 = −0.019± 0.232i . As expected, Fig. 2b
shows that two trajectories starting from different initial conditions spiral into the
presently discussed face equilibrium.

Equilibrium (x∗, n∗
1, n

∗
12) =

(
1

1+θ1
,
R0−T0−P0θ1+S0θ1−δρ1

(1−δ)ρ1
, 1

)
is stable if and only

if (19), (21), and
δ < δc,1 (40)

hold true. For numerical simulations, we set θ1 = 5, θ12 = 8, and δ = 0.2, yielding
λ1 = − 1

2 and λ2,3 = −0.019±0.554i . As expected, two trajectories, shown in Fig. 2c,
spiral into the presently discussed face equilibrium.

Equilibrium (x∗, n∗
1, n

∗
12) =

(
1

1+θ12
, 0, R0−T0−P0θ12+S0θ12

δρ12

)
is stable if and only if

Eqs. (19), (21), and
δ > δc,2 (41)

hold true. For numerical simulations, we set θ1 = 5, θ12 = 8, and δ = 0.4, yielding
λ1 = − 1

3 and λ2,3 = −0.014± 0.437i . Two trajectories, shown in Fig. 2d, spiral into
the presently discussed face equilibrium.

3.5 Movement of Stable Equilibria as ıVaries

The results in Sects. 3.1–3.4 indicate that, for given θ1 and θ12 ( �= θ1) values, there
are three equilibria, two of which are face equilibria and one is an edge equilibrium.
Just one of these three equilibria is stable for a given value of δ.

Specifically, when θ1 < θ12, a face equilibrium is stable when 0 < δ < δc,1, an
edge equilibrium is stable when δc,1 < δ < δc,2, and another face equilibrium is stable
when δc,2 < δ < 1; see Fig. 3a. As δ varies, the position of the stable equilibrium
continuously moves, including through δ = δc,1 and δ = δc,2. The dynamical system
undergoes a transcritical bifurcation at δ = δc,1, with which the face equilibrium and
the edge equilibrium exchange the stability. Another similar transcritical bifurcation
occurs at δ = δc,2. See Fig. 4a, b for visualization. When θ1 > θ12, a different set
of three equilibria, which reside on the opposite side of the unit-cube state space, are
stable for a respective range of δ, as shown in Fig. 3b. Similarly to the case of θ1 < θ12,
these equilibria undergo transcritical bifurcations at δ = δc,3 and δc,4.

We point out that, as the transcritical bifurcation is approached as δ gradually
increases from 0, the two eigenvalues are both first complex conjugates with negative
real parts and then change to real negative values. Figure5a shows the dependence
of the real part of the two eigenvalues on δ around δ = δc,1. When the stable face
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Fig. 3 Impact of the inter-community interaction rate δ on stability. Stable edge and face equilibria when
θ1 �= θ12 are shown as a function of δ. In both a and b, we use the payoff values given by Eq. (38). a
θ1 < θ12. The face equilibrium with n∗

12 = 1 is stable for δ < δc,1. The edge equilibrium (x∗
1 , n∗

1, n
∗
12) =(

P0−S0−δ(P0−P1−S0+S1)
R0−T0−S0+P0−δγ

, 0, 1
)
is stable for δc,1 < δ < δc,2. The face equilibrium with n∗

1 = 0 is stable

for δ > δc,2. b θ1 > θ12. The face equilibrium with n∗
12 = 0 is stable for δ < δc,3. The edge equilibrium

(x∗
1 , n∗

1, n
∗
12) =

(
P1−S1+δ(P0−P1−S0+S1)

R1−T1−S1+P1+δγ
, 1, 0

)
is stable for δc,3 < δ < δc,4. The face equilibrium with

n∗
1 = 1 is stable for δ > δc,4. In a, we set θ1 = 5 and θ12 = 8, yielding δc,1 = 7/22 and δc,2 = 10/21. In

b, we set θ1 = 8 and θ12 = 5, yielding δc,3 = 21/31 and δc,4 = 15/22

equilibrium approaches an edge of the unit cube, it becomes a sink, enabling the
transcritical bifurcation on the edge. The dependence of the Jacobian eigenvalues of
the three equilibria near δ = δc,2 is qualitatively the same as that near δ = δc,1 (see
Fig. 5b).

4 Three-Dimensional Systemwith �1 = �12

In this section, as in Sect. 3, we assume that θ1 = θ2 and that the initial condition
satisfies x = y and n1 = n2. Then, x = y and n1 = n2 hold true for any t > 0. We
now further assume that θ1 = θ2 = θ12.

4.1 Corner Equilibria

By setting x∗, n∗
1, and n∗

12 to 0 or 1, we obtain eight corner equilibria. Similar to the
case of θ1 �= θ12 (see Sect. 3.1), each corner equilibrium is a saddle. See Appendix D
for the proof.

4.2 Interior Equilibria

In this section,we look for equilibria in the interior of the unit cube, i.e., those satisfying
0 < x∗, n∗

1, n
∗
12 < 1. By setting ṅ1 = 0 and ṅ12 = 0 inEqs. (14) and (15), respectively,
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Fig. 4 Visualization of the transcritical bifurcations as δ varies. We use the payoff matrices given by
Eq. (38). The solid and dashed lines indicate stable and unstable equilibria, respectively, both disregarding
the 0 eigenvalues along the direction of L in the case of θ1 = θ12. a Movement of three equilibria in the
full state space as δ varies when θ1 = 5 and θ12 = 8. A transcritical bifurcation occurs involving the
face equilibrium on n12 = 1 and the edge equilibrium

(
x∗, 0, 1

)
, where x∗ = 1/6, at δ = 7/22. The

second transcritical bifurcation occurs involving the face equilibrium on n1 = 0 and the edge equilibirium(
x∗, 0, 1

)
, where x∗ = 1/9, at δ = 10/31. b Positions of all the same three edge and face equilibria as a

function of δ. The θ1 and θ12 values are the same as those used in a. In b, the three curves do not meet
at a single point, as shown in the inset, which is a magnification of the main panel. c Same as a but when
θ1 = θ12 = 5. A transcritical bifurcation occurs involving the face equilibrium on n12 = 1 and that on

n1 = 0 at
(
1
6 , 0, 1

)
when δ = 7/22. Edge equilibrium

(
x∗, 0, 1

)
also collides with the two face equilibria

at this value of δ. d Same as b but when θ1 = θ12 = 5. There is another triplet of equilibria in addition
to the triplet of equilibria shown in c. For this second set of triplet of equilibria, a transcritical bifurcation
occurs involving the face equilibrium on n12 = 0 and that on n1 = 1, and edge equilibrium

(
x∗, 1, 0

)
collides with the bifurcation point, at δ = 15/22. Note that x∗ is not constant along the trajectories in b,
whereas it is in d

with θ1 = θ12, and imposing n∗
1, n

∗
12 /∈ {0, 1}, we obtain

x∗ = 1

1 + θ1
. (42)

By substituting Eq. (42) in Eq. (13) and imposing ẋ = 0, we obtain

n∗
1(1 − δ) + n∗

12δ = R0 − T0 − P0θ1 + S0θ1
ρ1

. (43)
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Fig. 5 Real part of the eigenvalues of the Jacobian near transcritical bifurcations as a function of δ. We
use the payoff matrices given by Eq. (38). It should be noted that the third eigenvalue in a and b is always
negative and thus is not shown, and that the third eigenvalue in c and d is always 0. a θ1 = 5 and θ12 = 8.
Each color represents a face or edge equilibrium. Two eigenvalues become 0 at δ = δc,1 = 7/22 ≈ 0.31818,
and another two eigenvalues become 0 at δ = δc,2 = 10/31 ≈ 0.32258. Each of these δ values marks
a transcritical bifurcation. At δ ≈ 0.31822 and 0.32321, the eigenvalues of the stable face equilibrium
turns from real to imaginary and vice versa. b θ1 = 8 and θ12 = 5. Two eigenvalues become 0 at
δ = δc,3 = 21/31 ≈ 0.67742, and another two eigenvalues become 0 at δ = δc,4 = 15/22 ≈ 0.68182.
Each of these δ values marks a transcritical bifurcation. At δ ≈ 0.67732 and 0.68194, the eigenvalues of
the stable face equilibrium turns from real to imaginary and vice versa. c θ1 = θ12 = 5 and near the first
transcritical bifurcation at δ = δc, 1 = 7/22 ≈ 0.31818. At δ ≈ 0.31806 and 0.31830, the eigenvalues of
the stable face equilibrium turns from real to imaginary and vice versa. d θ1 = θ12 = 5 and near the second
transcritical bifurcation at δ = δc, 3 = 15/22 ≈ 0.68182. At δ ≈ 0.68170 and 0.68194, the eigenvalues of
the stable face equilibrium turns from real to imaginary and vice versa

Any point on this line is an equilibrium. We call Eq. (43) the line of equilibria and
denote it by L; it is the equilibrium manifold.

We show in Appendix E that L is neutrally stable along the direction of L and that
the other two eigenvalues, λ2 and λ3, have negative real part if Eqs. (2) and (19) hold
true. In this case, line L attracts trajectories near L .

To demonstrate L , we numerically simulate trajectories with θ1 = 5 and δ = 0.5,
for which λ2,3 = −0.019 ± 0.810i . We show trajectories of the dynamics starting
from two initial conditions in Fig. 6. The figure indicates that the solution spirals into
L as expected.
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Fig. 6 System’s behavior near the equilibrium manifold L . Shown are trajectories of the three dimensional
system given by Eqs. (13), (14), and (15) when θ1 = θ12 = 5 for two initial conditions. The green line
indicates L , the line of equilibria given by Eq. (43). We use the payoff matrices given by Eq. (38), initial
conditions (x, n1, n12) = (0.5, 0.4, 0.1), shown in blue, and (0.1, 0.9, 0.9), shown in orange, and set
δ = 0.5

4.3 Edge Equilibria

Let us examine possible edge equilibria. It should be noted that ρ1 = ρ12 when
θ1 = θ12; we recall that ρ1 and ρ12 are defined in Eqs. (24) and (25), respectively. We
find that there are just two edge equilibria when θ1 = θ12, which are the same as those
found for the case θ1 �= θ12 in Sect. 3.3. These two edge equilibria occur where line L
intersects the edge specified by n∗

1 = 0, n∗
12 = 1 or that specified by n∗

1 = 1, n∗
12 = 0.

We show in Appendix F that the edge equilibrium (x∗, n∗
1, n

∗
12) =(

P0−S0−δ(P0−P1−S0+S1)
R0−T0−S0+P0−δγ

, 0, 1
)
is marginally stable with two zero eigenvalues and one

negative eigenvalue if and only if Eq. (19) holds true and

δ = δc,1 = δc,2. (44)

When δ �= δc,1, the Jacobian has two positive eigenvalues and one negative eigen-

value. Similarly, the edge equilibrium (x∗, n∗
1, n

∗
12) =

(
P1−S1+δ(P0−P1−S0+S1)

R1−T1−S1+P1+δγ
, 1, 0

)
is marginally stable if and only if Eq. (19) holds true and

δ = δc,3 = δc,4. (45)

When δ �= δc,3, the Jacobian has two positive eigenvalues and one negative eigenvalue.
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Fig. 7 Existence of an invariant point on the line of equilibria, L , given by Eq. (43) for various values for
δ. The legend shows the value of δ for each line. We use the payoff matrices given by Eq. (38) and set
θ1 = θ12 = 5. Because x∗ = 1/6, we take the slice of the unit cube with x∗ = 1/6 to examine the position

of L as a function of n∗
1 and n

∗
12. Line L intercepts the point

(
1
6 , 0, 1

)
when δ = δc,1 = 7/22 and the point(

1
6 , 1, 0

)
when δ = δc,3 = 15/22. All the lines cross at

(
1
6 , 7

22 , 7
22

)
, which owes to Eq. (46)

4.4 Face Equilibria

Similarly to the case of the edge equilibria, if we let x∗ = 0 or 1, then we obtain a
corner equilibrium. Therefore, we assume that 0 < x∗ < 1. By setting just one of n∗

1
or n∗

12 to 0 or 1, we obtain the four face equilibria shown in Table 1 but with θ1 = θ12.
Therefore, x∗ = 1

1+θ1
for any face equilibria. These face equilibria are stable under

the same conditions as those found in Sect. 3.4, i.e., Eq. (19), and the conditions for
δ given by Eqs. (37), (39), (40), and (41), i.e., δ < δc,3, δ > δc,4(= δc,3), δ < δc,1,
and δ > δc,2(= δc,1), respectively. We also find that these stability requirements for
δ coincide with the requirements for the face equilibria to exist. For example, line L
intersects the n12 = 0 face of the unit cube defined by 0 ≤ x, n1, n12 ≤ 1 if and only
if δ satisfies Eq. (37), i.e., δ < δc,3.

To understand the location of the face equilibria depending on the value of δ,
we examine the movement of line L on the (n1, n12) plane as we vary δ. The two
intersections of L with the boundary of the square defined by 0 ≤ n1, n12 ≤ 1,
combined with x∗ = 1

1+θ1
, give the two face equilibria. When the intersection is at a

corner of the square, it is an edge equilibrium.We show L as a function of δ in Fig. 7 for
the payoff matrices given by Eq. (38). Figure7 indicates that the two edge equilibria
are realized at different δ values, which is consistent with the results shown in Sect. 4.3.
The figure also indicates that L passes through a particular point regardless of the δ

value. By setting both the coefficient of δ and the constant term to 0 in Eq. (43), we
obtain this point as follows:

(x∗, n∗
1, n

∗
12) =

(
1

1 + θ1
,
R0 − T0 − P0θ1 + S0θ1

ρ1
,
R0 − T0 − P0θ1 + S0θ1

ρ1

)
.

(46)
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Figure7 also indicates that, when δ is small, n∗
1 is highly variable between 0 and 1, but

the range of n∗
12 is small. When δ is large, the converse is true. This result is natural

because a larger δ implies that more interaction between players occur between the
two communities than in the same community.

As δ varies, our three-dimensional dynamical system undergoes two bifurcations
at δ = δc,1 and δ = δc,3. When 0 < δ < δc,1, the face equilibrium with n∗

12 = 1
is stable except along the direction of L (therefore, the Jacobian has two negative
eigenvalues and one 0 eigenvalue), and the edge equilibrium given by (x∗, n∗

1, n
∗
12) =(

P0−S0−δ(P0−P1−S0+S1)
R0−T0−S0+P0−δγ

, 0, 1
)
and the face equilibriumwith n∗

1 = 0 are saddles (when

disregarding the 0 eigenvalue along the direction of the line of equilibria; same in
the following text). When δ = δc,1, the dynamical system undergoes a transcritical
bifurcation and the stability of the two face equilibria switches. At δ = δc,1, the
edge equilibrium has two 0 eigenvalues and one negative eigenvalue. These three
equilibria collide at δ = δc,1, which we depict in Fig. 4c, d. When δc,1 < δ < 1,
the face equilibrium with n∗

12 = 1 and the edge equilibrium given by (x∗, n∗
1, n

∗
12) =(

P0−S0−δ(P0−P1−S0+S1)
R0−T0−S0+P0−δγ

, 0, 1
)
are saddles, and the face equilibrium with n∗

1 = 0 is

stable. There are three other equilibria located at the other end of L intersecting a face
or edge of the state space, i.e., the unit cube. The structure of the bifurcation occurring
at δ = δc,3, involving this second triplet of equilibria, which are composed of two face
equilibria (one with n∗

1 = 1 and the other with n∗
12 = 0) and one edge equilibrium

given by (x∗, n∗
1, n

∗
12) =

(
P1−S1+δ(P0−P1−S0+S1)

R1−T1−S1+P1+δγ
, 1, 0

)
, is qualitatively the same.

Similarly to when θ1 �= θ12, as δ gradually increases from 0 to approach the first
transcritical bifurcation, the two eigenvalues except the 0 eigenvalue are first complex
conjugates with negative real parts and then change to real negative values. Figure5c
shows the dependence of the real part of the two eigenvalues on δ around δ = δc,1.
Therefore, when L intersects the unit cube at a point not close to an edge, trajectories
on the face spiral into the stable face equilibria, which is consistent with the numerical
results shown in Fig. 6. When the stable face equilibrium approaches an edge of
the unit cube, it becomes a sink, enabling the transcritical bifurcation on the edge.
The dependence of the Jacobian eigenvalues of the three equilibria near δ = δc,3 is
qualitatively the same as that near δ = δc,1 (see Fig. 5d).

5 Five-Dimensional System

In this section, we analyze the five-dimensional dynamical system given by Eqs. (8)–
(12) without assuming symmetry between the two communities. We exhaustively
examine its equilibria as follows. First, we search for all possible combinations of
x, y, n1, n2, and n12 by classifying the value of each variable to be either 0, 1, or
between 0 and 1. Because three options are available for each variable, there are
35 = 243 possible combinations. Second, we find that the 25 = 32 corners of the state
space given by x, y, n1, n2, n12 ∈ {0, 1} are equilibria, more specifically, saddles.
Third, out of the remaining 211 combinations, we have found that 60 combinations are
equilibria; the other 151 combinations are not.We show these equilibria inAppendixG.
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Fig. 8 Rich dynamical behavior of the full model. Shown are time courses of trajectories of the five-
dimensional system for different parameter choices and initial conditions. a θ1 = 3, θ2 = 5, θ12 = 8, and
δ = 0.95 with initial condition (x, y, n1, n2, n12) = (0.5, 0.3, 0.5, 0.1, 0.5). b Same parameter values as
a but with initial condition (x, y, n1, n2, n12) = (0.4, 0.8, 0.8, 0.6, 0.2). c θ1 = 3, θ2 = 5, θ12 = 8, and
δ = 0.31 with initial condition (x, y, n1, n2, n12) = (0.1, 0.5, 0.1, 0.9, 0.5). d θ1 = 3, θ2 = 5, θ12 = 8,
and δ = 0.4 with initial condition (x, y, n1, n2, n12) = (0.1, 0.5, 0.1, 0.9, 0.5). e θ1 = 0.3, θ2 = 0.4,
θ12 = 0.45, and δ = 0.29 with initial condition (x, y, n1, n2, n12) = (0.5, 0.5, 0.5, 0.5, 0.5). f θ1 = 0.3,
θ2 = 0.4, θ12 = 0.45, and δ = 0.35 with initial condition (x, y, n1, n2, n12) = (0.5, 0.5, 0.5, 0.5, 0.5)

By analyzing the Jacobian of the 60 equilibria with the assistance of Mathematica, we
find that 21 of them are stable under some conditions (see Appendix G).

In contrast to the reduced three-dimensional dynamical system, there is multista-
bility in the present five-dimensional dynamical system. There are 11 multistable
pairs of equilibria, and these equilibria tend to be multistable when δ is large. Six
of these 11 pairs are multistable for any δ > 0.75. The other five pairs require δ

to be larger, approximately δ > 0.9. We demonstrate a multistable pair of equi-
libria in Fig. 8a, b, which show two trajectories for θ1 = 3, θ2 = 5, θ12 = 8,
and δ = 0.95. The initial condition is (x, y, n1, n2, n12) = (0.5, 0.3, 0.5, 0.1, 0.5)
in Fig. 8a and (x, y, n1, n2, n12) = (0.4, 0.8, 0.8, 0.6, 0.2) in Fig. 8b. The trajec-
tory converges towards (x∗, y∗, n∗

1, n
∗
2, n

∗
12) ≈ (0.222, 0, 0, 0, 0.523) in Fig. 8a and

≈ (0, 0.222, 0, 1, 0.450) in Fig. 8b.
Figure8c shows an oscillatory trajectory for θ1 = 3, θ2 = 5, θ12 = 8, δ = 0.31,

and initial condition (x, y, n1, n2, n12) = (0.1, 0.5, 0.1, 0.9, 0.5). The inset of the
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figure, showing the time courses of x and y, indicates anti-synchronization behavior
during the oscillatory dynamics. We point out the environmental state between the
two communities is bountiful (i.e., n12 ≈ 1) and almost constant despite the anti-
synchronous dynamics between x and y. When one increases δ to δ = 0.4, with all the
other parameter values being the same as those used in Fig. 8c, the oscillations become
apparently aperiodic while keeping anti-synchronous behavior between x and y (see
Fig. 8d). We observe n12 ≈ 1 and n2 ≈ 0 during this apparently aperiodic dynamics.
It should be noted that n1 is similarly aperiodic.

We show in Fig. 8e the trajectory for θ1 = 0.3, θ2 = 0.4, θ12 = 0.45, δ =
0.29, and initial condition (x, y, n1, n2, n12) = (0.5, 0.5, 0.5, 0.5, 0.5). Similar to
Fig. 8c, the trajectory shown in Fig. 8e shows apparent convergence to a limit cycle
and approximate anti-synchronization between x and y, but accompanying sudden
jumps in various variables in each cycle. When δ is increased to 0.35, the amplitude
of oscillation becomes larger, in particular in terms of n1 and n2 (see Fig. 8f).

6 Discussion

We extended a previously proposed model of eco-evolutionary dynamics (Weitz et al.
2016) to the case of networks with two equally sized communities. In the three-
dimensional dynamical system given by Eqs. (13), (14), and (15), which assumes
symmetry between the two communities, a further assumption that n1 = n12 lends the
model the same as the original well-mixed population model (Weitz et al. 2016), and
the requirement for the stability of equilibria, i.e., Eq. (19), is the same as that derived
in Weitz et al. (2016) as well.

Under the generic condition n1 �= n12, our stability requirement for the equilib-
ria again contained that of Weitz et al. (2016), i.e., Eq. (19). However, the stability
of the equilibria in our model also requires conditions on the edge weight between
two communities, i.e., δ, and on environment recovery rates, i.e., θ1 (= θ2) and
θ12. When θ1 = θ12, the line of equilibria, L , only requires Eq. (19) for stability,
but the position of L depends on θ1 and δ. This result implies that the network
has no effect on the stability requirements when θ1 = θ12. In contrast, when
θ1 �= θ12, the network and the environment recovery rates affect the stability of
the system. As a remark, it was mathematically found (Gong et al. 2022) that the
eco-evolutionary dynamical system proposed in Weitz et al. (2016) has no limit
cycles. This mathematical result corroborates with the theoretical results in Weitz
et al. (2016), in which it was proven that the oscillations converge to a hetero-
clinic cycle, and our numerical results; because we have analytically shown that
there is no internal unstable equilibrium, it is unlikely that our system has a limit
cycle.

There exists another commonly explored family of dynamic payoff matrices depen-
dent on environmental feedback, given by

A(n) = (1 − n)

(
T P
R S

)
+ n

(
R S
T P

)
, (47)
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where T > R and P > S (Weitz et al. 2016; Gong et al. 2018; Kawano et al. 2019;
Liu et al. 2020; Stella et al. 2022a; Zhang et al. 2023). With Eq. (47), we retain mutual
cooperation as a Nash equilibrium when n = 0 and mutual defection when n = 1.
In addition, this payoff matrix causes Eq. (19) to be satisfied with equality. By using
this payoff matrix and holding the assumption that θ1 = θ12, it is straightforward to
analytically obtain a neutrally stable interior line of equilibria, which implies closed
periodic orbits in the interior of the state space, corroborating the results inWeitz et al.
(2016). When θ1 �= θ12, our system with Eq. (47) in fact shows a closed periodic orbit
on a face of the hypercubic state space. Therefore, we claim that the closed periodic
orbits found in the previous studies with Eq. (47) are at least partially due to the
symmetry in the payoff matrix given by Eq. (47). In the absence of such a symmetry,
our results suggest that convergence to stable equilibria is a norm regardless of the
population structure.

When we removed the assumption of symmetry between the two communities by
allowing θ1 �= θ2, we obtained a rich repertoire of stable equilibria, some of which
coexist to realize multistability, especially when δ is large. Multistability was also
found in other eco-evolutionary models (Tilman et al. 2020; Bairagya et al. 2021),
but these models are ecological extensions of Weitz et al. (2016) and are not network-
based models as our model is. Bistability was also found in a spatial eco-evolutionary
model (Hauert et al. 2019), but for the trivial equilibria (i.e., bistability between an
equilibrium with no cooperators in a replete environment and an equilibrium only
with cooperators in a rich environment) and under the snowdrift game. In contrast
to these previous studies showing multistability in eco-evolutionary game dynamics,
our model is a direct network extension of the original model proposed in Weitz et al.
(2016) and without additional ecological assumptions. The present results suggest
that multistability may be commonly found in the same eco-evolutionary model on
various networks. We also found anti-synchronization behavior during oscillatory
population dynamics. This type of behavior was found in a prior complete bipartite
graph model (Liu et al. 2020), but for the division of labor game rather than the typical
prisoner’s dilemmagame.When our stability requirements are not satisfied, our system
may converge to a heteroclinic cycle. Further exploring different types of oscillatory
behavior in networked eco-evolutionary game dynamics may be interesting.

We emphasize that our model substantially varies from the previously proposed
model composed of two interacting subpopulations, or precisely, complete bipartite
graphs (Gong et al. 2018; Kawano et al. 2019; Shu and Fu 2022). Their model does
not allow interaction between players in the same subpopulation, whereas our model
does. Furthermore, these previous studies adopted the dynamic payoff matrix given
by Eq. (47), which led to closed periodic orbits, as we discussed above. In Gong
et al. (2018) and Kawano et al. (2019), such cyclic orbits do not accompany anti-
synchronous oscillation of the fraction of cooperation in the two subpopulations.
Instead, the cyclic behavior originates from interplay of the fraction of one of the two
subpopulations and the environmental variable. On the other hand, the orbits obtained
in Shu and Fu (2022) show largely in-phase synchronous oscillation between the
two subpopulations. The model in Gong et al. (2018) and Kawano et al. (2019) was
extended in Liu et al. (2020) to include a different form of A(n) and different influ-
ences of strategies in two subpopulations on the environment. The inclusion of these
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parameters produces periodic orbits as did the models proposed in Gong et al. (2018)
and Kawano et al. (2019). In contrast, our model showed anti-phase oscillations in
terms of the fraction of cooperators in the two communities (i.e., x and y) and mul-
tistability. Therefore, even within the family of two-subpopulation networks, which
is one of the simplest network model, qualitatively different dynamical behavior may
arise depending on the assumption on the environmental dynamics.

Prior extensions of the eco-evolutionary game models to larger networks include
those to spatial lattices and regular graphs. The spatial extensions have been to the
case of square lattices (Jin et al. 2018; Szolnoki and Chen 2018; Wu et al. 2018, 2019;
Hauert et al. 2019; Lin and Weitz 2019; Yang and Zhang 2021; Ding et al. 2023; He
et al. 2023;Lu et al. 2023;Zhu2023).A latticemodel of eco-evolutionary gamedynam-
ics assuming local environmental variables, meaning that each node (i.e., player) has
its own dynamical environmental state, resulted in spatiotemporal patterns, including
clustering, flickering, and wave-like patterns (Lin andWeitz 2019). Enhanced cooper-
ation due to the environmental feedback was also found in eco-evolutionary models on
square lattices (Jin et al. 2018; Szolnoki and Chen 2018; Wu et al. 2018, 2019; Ding
et al. 2023; He et al. 2023; Lu et al. 2023; Zhu 2023). Another type of network that
has been studied with eco-evolutionary feedback is regular graphs, in which all nodes
have degree k. Through the use of pair approximation, the extension of the original
model (Weitz et al. 2016) to regular graphs (therefore using the payoff matrix given
by Eq. (47)) has clarified that an increased k induces the internal stable equilibrium
to become neutrally stable, producing periodic orbits (Stella et al. 2022a; Zhang et al.
2023). These models are substantially different from ours not only in the network
structure but also in that their model assumes that the environment is global to all
nodes. Assigning an environmental state ni j to each edge (i, j), as has been done for
square lattices in previous studies (He et al. 2023; Zhu 2023) and for a two-community
network in the present study, in the case of regular graphs and general networks may
be an interesting generalization.

In addition to the extension of the network structure, edge-dependent environmental
state variable, andweighted networks,whichwe discussed above, there are further pos-
sible extensions of the present model as future work. First, in well-mixed populations,
incorporation of intrinsic environmental dynamics, such as resource growth and decay,
results in multistability and limit cycles (Tilman et al. 2020), which one can explore
for networks. Second, the incorporation of dynamic recovery and degradation rates
for the environmental state, which are boosted by cooperators’ and defectors’ payoffs
(Cao and Wu 2021), leads to the same stability requirement as that in Weitz et al.
(2016), i.e., Eq. (19). One can extend the present model to the case of dynamic rates of
environment recovery and degradation by letting, e.g., θ1 depend on x and n1. Third,
the use of finite carrying capacity in an environment, which excludes any periodic
orbits and enables bistability in the original model (Bairagya et al. 2021), should be
possible. Fourth, the incorporation of aspiration dynamics, with which players update
their strategies based on whether or not they are satisfied with their current payoff
(Arefin and Tanimoto 2021) is another possible direction of research. Lastly, although
we studied the prisoner’s dilemma, as other eco-evolutionary game dynamics models,
our model can be studied for other games such as the prisoner’s dilemma with volun-
tary participation (Liu et al. 2020; Li et al. 2021), coordination game (Weitz et al. 2016;
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Lin and Weitz 2019; Bairagya et al. 2021; Shu and Fu 2022), anti-coordination game
(Weitz et al. 2016; Lin and Weitz 2019; Bairagya et al. 2021), and division-of-labor
game (Liu et al. 2020).

In conclusion, we have studied an eco-evolutionary game dynamics model with
two distinct network communities. We find that the interaction rates both within and
between these communities significantly impact on the resulting dynamical behavior
and the determination of possible equilibrium classes (i.e., interior, face, edge, and
corner) of the system. In addition to numerical investigation of the full model, we have
performed comprehensive stability analysis of the simplified system under symmetry
conditions. Our work highlights the importance of community structures in impacting
eco-evolutionary dynamics across different ecological niches.

Appendix A: Corner Equilibria of the Three-Dimensional System with
�1 �= �12

By evaluating Eq. (16) at each corner equilibrium, we obtain

J (0, 0, 0) =
⎛
⎝S0 − P0 0 0

0 −1 0
0 0 −1

⎞
⎠ , (48)

J (0, 0, 1) =
⎛
⎝−P0(1 − δ) − P1δ + S0(1 − δ) + S1δ 0 0

0 −1 0
0 0 1

⎞
⎠ , (49)

J (0, 1, 0) =
⎛
⎝−P0δ − P1(1 − δ) + S0δ + S1(1 − δ) 0 0

0 1 0
0 0 −1

⎞
⎠ , (50)

J (0, 1, 1) =
⎛
⎝S1 − P1 0 0

0 1 0
0 0 1

⎞
⎠ , (51)

J (1, 0, 0) =
⎛
⎝T0 − R0 0 0

0 θ1 0
0 0 θ12

⎞
⎠ , (52)

J (1, 0, 1) =
⎛
⎝−R0(1 − δ) − R1δ + T0(1 − δ) + T1δ 0 0

0 θ1 0
0 0 −θ12

⎞
⎠ , (53)

J (1, 1, 0) =
⎛
⎝−R0δ − R1(1 − δ) + T0δ + T1(1 − δ) 0 0

0 −θ1 0
0 0 θ12

⎞
⎠ , (54)

J (1, 1, 1) =
⎛
⎝T1 − R1 0 0

0 −θ1 0
0 0 −θ12

⎞
⎠ . (55)
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By Eq. (2), we obtain that S0 − P0 > 0, T0 − R0 < 0, S1 − P1 < 0, and T1 − R1 > 0.
Therefore, each of these Jacobians has at least one positive eigenvalue and one negative
eigenvalue, and each corner equilibrium is a saddle.

Appendix B: Edge Equilibria of the Three-Dimensional System with
�1 �= �12

B.1 Equilibrium (x∗, n∗
1, n

∗
12) =

(
P0−S0−ı(P0−P1−S0+S1)

R0−T0−S0+P0−ı� , 0, 1
)

For the equilibrium (x∗, n∗
1, n

∗
12) =

(
P0−S0−δ(P0−P1−S0+S1)

R0−T0−S0+P0−δγ
, 0, 1

)
, the Jacobian,

Eq. (16), is reduced to

J =
⎛
⎜⎝
J (2)
11 J (2)

12 J (2)
13

0 J (2)
22 0

0 0 J (2)
33

⎞
⎟⎠ , (56)

where

J (2)
11 = [(P0 − S0)(1 − δ) + δ(P1 − S1)][(R0 − T0)(1 − δ) + δ(R1 − T1)]

R0 − T0 − S0 + P0 − δγ
, (57)

J (2)
12 = (1 − δ)ω[(P0 − S0)(1 − δ) + δ(P1 − S1)][(R0 − T0)(1 − δ) + δ(R1 − T1)]

(R0 − T0 − S0 + P0 − δγ )3
,

(58)

J (2)
13 = δω[(P0 − S0)(1 − δ) + δ(P1 − S1)][(R0 − T0)(1 − δ) + δ(R1 − T1)]

(R0 − T0 − S0 + P0 − δγ )3
, (59)

J (2)
22 = − R0 − T0 − P0θ1 + S0θ1 − δρ1

R0 − T0 − S0 + P0 − δγ
, (60)

J (2)
33 = R0 − T0 − P0θ12 + S0θ12 − δρ12

R0 − T0 − S0 + P0 − δγ
, (61)

and
ω = (P0 − S0)(R1 − T1) − (P1 − S1)(R0 − T0). (62)

The eigenvalues of J are given by λ = J (2)
11 , J (2)

22 , J (2)
33 . Using the fact that each

eigenvalue has a common denominator, which we refer to as

μ1 ≡ R0 − T0 − S0 + P0 − δγ, (63)

we determine the stability of the edge equilibrium by examining the following four
possible cases.

Case 1: � > 0 and�1 > 0

First, γ is positive if and only if

R0 − T0 − R1 + T1 > S0 − P0 − S1 + P1. (64)
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Under this condition, μ1 is positive if and only if

δ <
R0 − T0 − S0 + P0

γ
. (65)

For positive δ values satisfying Eq. (65) to exist, it must hold true that R0 − T0 >

S0 − P0.
Eigenvalues J (2)

22 and J (2)
33 are negative if and only if

δ <
R0 − T0 − P0θ1 + S0θ1

ρ1
(66)

and

δ >
R0 − T0 − P0θ12 + S0θ12

ρ12
, (67)

respectively. Lastly, eigenvalue J (2)
11 is negative if either

δ < min

{
P0 − S0

P0 − S0 − P1 + S1
,

R0 − T0
R0 − T0 − R1 + T1

}
(68)

or

δ > max

{
P0 − S0

P0 − S0 − P1 + S1
,

R0 − T0
R0 − T0 − R1 + T1

}
(69)

holds true. However, we find that there is no δ value that simultaneously satisfies
Eqs. (65), (66), (67), and (68), or one that simultaneously satisfies Eqs. (65), (66),
(67), and (69).

Case 2: � > 0 and�1 < 0

If γ > 0, then μ1 < 0 if and only if

δ >
R0 − T0 − S0 + P0

γ
. (70)

For positive δ values satisfying Eq. (70) to exist and be less than 1, it must hold true
that R1 − T1 < S1 − P1. Eigenvalues J

(2)
22 and J (2)

33 are negative if and only if

δ >
R0 − T0 − P0θ1 + S0θ1

ρ1
= δc,1 (71)

and

δ <
R0 − T0 − P0θ12 + S0θ12

ρ12
= δc,2, (72)
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respectively. For a δ value satisfying Eqs. (71) and (72) to exist, it must hold true that
θ12 > θ1.

Lastly, because we have assumed that μ1 < 0, the numerator of Eq. (57) has to
be positive for eigenvalue J (2)

11 to be negative. Then, either both (P0 − S0)(1 − δ) +
δ(P1 − S1) and (R0 − T0)(1 − δ) + δ(R1 − T1) are positive or both are negative.

If both (P0 − S0)(1 − δ) + δ(P1 − S1) and (R0 − T0)(1 − δ) + δ(R1 − T1) are
positive, we obtain

δ >
P0 − S0

P0 − S0 − P1 + S1
(73)

and

δ <
R0 − T0

R0 − T0 − R1 + T1
. (74)

We find that there is no δ value that simultaneously satisfies Eqs. (70), (71), (72), (73),
and (74).

If both (P0 − S0)(1 − δ) + δ(P1 − S1) and (R0 − T0)(1 − δ) + δ(R1 − T1) are
negative, we obtain

δ <
P0 − S0

P0 − S0 − P1 + S1
(75)

and

δ >
R0 − T0

R0 − T0 − R1 + T1
. (76)

A δ value satisfying Eqs. (75) and (76) exists if and only if

R0 − T0
R0 − T0 − R1 + T1

<
P0 − S0

P0 − S0 − P1 + S1
, (77)

which is equivalent to Eq. (19).
Such a δ value satisfying δ ∈ (0, 1) exists if and only if the right-hand side (RHS)

of Eq. (75) is positive and that of Eq. (76) is less than 1. In fact, because P0 − S0 < 0
and S1− P1 < 0, the numerator and denominator on the RHS of Eq. (75) are negative,
which implies that the RHS is positive. The RHS of Eq. (76) is less than 1 because
we obtain R0 − T0 > 0 and R1 − T1 < 0 from Eq. (2). Lastly, the intersection of the
conditions derived for δ, given by Eqs. (70), (71), (72), (75), and (76), yields Eq. (20),
i.e., δc,1 < δ < δc,2.

Case 3: � < 0 and�1 > 0

In this section, we assume that γ < 0, i.e

R0 − T0 − R1 + T1 < S0 − P0 − S1 + P1. (78)
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Then, μ1 > 0 if and only if Eq. (70) is satisfied. For positive δ values satisfying
Eq. (70) to exist and be less than 1, it must hold true that R1 − T1 < S1 − P1. If
μ1 > 0, then we obtain Eqs. (66), (67), (68), and (69), and again find that there is no
δ value that simultaneously satisfies these inequalities.

Case 4: � < 0 and�1 < 0

In this section, we assume that γ < 0 and μ1 < 0, which requires Eq. (65) to
be satisfied. For positive δ values satisfying Eq. (65) to exist, it must hold true that
R0 − T0 > S0 − P0. The derivation of the stability of this case follows the same
derivation as Case 2, and we find that the equilibrium is stable if and only if Eqs. (19),
(20), and (27) hold true.

B.2 Equilibrium (x∗, n∗
1, n

∗
12) =

(
P1−S1+ı(P0−P1−S0+S1)

R1−T1−S1+P1+ı� , 1, 0
)

For the equilibrium (x∗, n∗
1, n

∗
12) =

(
P1−S1+δ(P0−P1−S0+S1)

R1−T1−S1+P1+δγ
, 1, 0

)
, the Jacobian is

given by

J =
⎛
⎜⎝
J (3)
11 J (3)

12 J (3)
13

0 J (3)
22 0

0 0 J (3)
33

⎞
⎟⎠ , (79)

where

J (3)
11 = [(P1 − S1)(1 − δ) + δ(P0 − S0)][(R1 − T1)(1 − δ) + δ(R0 − T0)]

R1 − T1 − S1 + P1 + δγ
, (80)

J (3)
12 = (1 − δ)ω[(P1 − S1)(1 − δ) + δ(P0 − S0)][(R1 − T1)(1 − δ) + δ(R0 − T0)]

(R1 − T1 − S1 + P1 + δγ )3
,

(81)

J (3)
13 = δω[(P1 − S1)(1 − δ) + δ(P0 − S0)][(R1 − T1)(1 − δ) + δ(R0 − T0)]

(R0 − T0 − S0 + P0 − δγ )3
,

(82)

J (3)
22 = R1 − T1 − P1θ1 + S1θ1 + δρ1

R1 − T1 − S1 + P1 + δγ
, (83)

J (3)
33 = − R1 − T1 − P1θ12 + S1θ12 + δρ12

R1 − T1 − S1 + P1 + δγ
. (84)

The eigenvalues of J are given by λ = J (3)
11 , J (3)

22 , J (3)
33 . Similarly to the prior equi-

librium, we see that each eigenvalue has a common denominator, which we refer to
as

μ2 ≡ R1 − T1 − S1 + P1 + δγ. (85)

We determine the stability of the edge equilibrium by examining the following four
possible cases.
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Case 1: � > 0 and�2 > 0

First, γ is positive if and only if Eq. (64) is satisfied. Then, μ2 is positive if and only
if

δ >
−(R1 − T1 − S1 + P1)

γ
. (86)

For positive δ values satisfying Eq. (86) to exist and be less than 1, it must hold true
that R0 − T0 > S0 − P0.

Eigenvalues J (3)
22 and J (3)

33 are negative if and only if

δ <
−(R1 − T1 − P1θ1 + S1θ1)

ρ1
(87)

and

δ >
−(R1 − T1 − P1θ12 + S1θ12)

ρ12
, (88)

respectively. Lastly, J (3)
11 is negative if either

δ < min

{ −(P1 − S1)

P0 − S0 − P1 + S1
,

−(R1 − T1)

R0 − T0 − R1 + T1

}
(89)

or

δ > max

{ −(P1 − S1)

P0 − S0 − P1 + S1
,

−(R1 − T1)

R0 − T0 − R1 + T1

}
(90)

holds true. However, we find that there is no δ value that simultaneously satisfies
Eqs. (86), (87), (88), and (89) or Eqs. (86), (87), (88), and (90).

Case 2: � > 0 and�2 < 0

If γ is positive, then μ2 < 0 if and only if

δ <
−(R1 − T1 − S1 + P1)

γ
. (91)

For positive δ values satisfying Eq. (91) to exist, it must hold true that R1 − T1 <

S1 − P1. Eigenvalues J
(3)
22 and J (3)

33 are negative if and only if

δ >
−R1 + T1 + P1θ1 − S1θ1

ρ1
= δc,3 (92)

and

δ <
−R1 + T1 + P1θ12 − S1θ12

ρ12
= δc,4, (93)
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respectively. For a δ value satisfying Eqs. (92) and (93) to exist, it must hold true that
θ12 < θ1.

Becausewe have assunmed thatμ2 < 0, the numerator of Eq. (80) has to be positive
for eigenvalue J (3)

11 to be negative. Then, either both (P1 − S1)(1 − δ) + δ(P0 − S0)
and (R1 − T1)(1 − δ) + δ(R0 − T0) are positive or both are negative.

If both (P1 − S1)(1 − δ) + δ(P0 − S0) and (R1 − T1)(1 − δ) + δ(R0 − T0) are
positive, we obtain

δ <
−(P1 − S1)

P0 − S0 − P1 + S1
(94)

and

δ >
−(R1 − T1)

R0 − T0 − R1 + T1
. (95)

We find that there is no δ value that simultaneously satisfies Eqs. (91), (92), (93), (94),
and (95).

If both (P1 − S1)(1 − δ) + δ(P0 − S0) and (R1 − T1)(1 − δ) + δ(R0 − T0) are
negative, we obtain

δ >
−(P1 − S1)

P0 − S0 − P1 + S1
(96)

and

δ <
−(R1 − T1)

R0 − T0 − R1 + T1
. (97)

A value of δ satisfying Eqs. (96) and (97) exists if and only if

−(R1 − T1)

R0 − T0 − R1 + T1
<

−(P1 − S1)

P0 − S0 − P1 + S1
, (98)

which is equivalent to Eq. (19). Such a δ value satisfying δ ∈ (0, 1) exists if and only
if the RHS of Eq. (96) is less than 1 and that of Eq. (97) is positive. In fact, the RHS of
Eq. (96) is less than 1 because we obtain P0 − S0 < 0 and P1 − S1 > 0 from Eq. (2).
Because R0 − T0 > 0 and T1 − R1 > 0, the numerator and denominator on the RHS
of Eq. (97) are positive, which implies that the RHS is positive. Lastly, the intersection
of the conditions derived for δ, given by Eqs. (91), (92), (93), (96), and (97), yields
Eq. (26), i.e., δc,3 < δ < δc,4.

Case 3: � < 0 and�2 > 0

In this section, we assume that γ < 0, i.e., Eq. (78). Then, μ2 > 0 if and only if
Eq. (91) is satisfied. For positive δ values satisfying Eq. (91) to exist, it must hold true
that R1 − T1 < S1 − P1. If μ2 > 0, then we obtain (87), (88), (89), (90) and (91).
However, there is no δ value that simultaneously satisfies these inequalities.
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Case 4: � < 0 and�2 < 0

In this section, we assume that γ < 0 and μ2 < 0, which requires Eq. (86). For
positive δ values satisfying Eq. (86) to exist and be less than 1, it must hold true that
R0 − T0 > S0 − P0. The derivation of the stability of this case follows the same
derivation as Case 2, and we find that the equilibrium is stable if and only if Eqs. (19),
(26), and (27) hold true.

Appendix C: Three Face Equilibria of the Three-Dimensional System
with �1 �= �12

In this section, we derive the stability conditions for three face equilibria of the three-
dimensional system with θ1 �= θ12.

C.1 Equilibrium (x∗, n∗
1, n

∗
12) =

(
1

1+�12
, 1, R1−T1−P1�12+S1�12+ı�12

ı�12

)

At (x∗, n∗
1, n

∗
12) =

(
1

1+θ12
, 1, R1−T1−P1θ12+S1θ12+δρ12

δρ12

)
, the Jacobian is reduced to

J =
⎛
⎜⎝
J (4)
11 J (4)

12 J (4)
13

0 J (4)
22 0

J (4)
31 0 0

⎞
⎟⎠ , (99)

where

J (4)
11 = [(P1 − S1)(R0 − T0) − (P0 − S0)(R1 − T1)] θ12

(1 + θ12)ρ12
, (100)

J (4)
12 = −(1 − δ)θ12ρ12

(1 + θ12)3
, (101)

J (4)
13 = −δθ12ρ12

(1 + θ12)3
, (102)

J (4)
22 = θ12 − θ1

θ12 + 1
, (103)

J (4)
31 = −(1 + θ12) [R1 − T1 − (P1 − S1)θ12] (R1 − T1 − P1θ12 + S1θ12 + δρ12)

δ2ρ2
12

.

(104)

The characteristic equation is given by

(
J (4)
22 − λ

) (
λ2 − J (4)

11 λ − J (4)
13 J (4)

31

)
= 0. (105)
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Eigenvalue λ1 = J (4)
22 = θ12−θ1

θ12+1 is negative if and only if θ12 < θ1 (i.e., Eq. (27)).

The real part of the other two eigenvalues is negative if and only if −J (4)
11 > 0 and

−J (4)
13 J (4)

31 > 0. Equation (100) combined with ρ12 > 0 implies that −J (4)
11 > 0 if and

only if Eq. (19) holds true. Because J (4)
13 < 0, condition −J (4)

13 J (4)
31 > 0 is equivalent

to J (4)
31 > 0, which holds true if and only if δ > δc,4 (i.e., Eq. (39)).
In sum, this face equilibrium is stable if and only if Eqs. (19), (27), and (39) hold

true.

C.2 Equilibrium (x∗, n∗
1, n

∗
12) =

(
1

1+�1
,
R0−T0−P0�1+S0�1−ı�1

(1−ı)�1
, 1

)

At (x∗, n∗
1, n

∗
12) =

(
1

1+θ1
,
R0−T0−P0θ1+S0θ1−δρ1

(1−δ)ρ1
, 1

)
, the Jacobian is reduced to

J =
⎛
⎜⎝
J (5)
11 J (5)

12 J (5)
13

J (5)
21 0 0
0 0 J (5)

33

⎞
⎟⎠ , (106)

where

J (5)
11 = J (1)

11 , (107)

J (5)
12 = J (1)

12 , (108)

J (5)
13 = J (1)

13 , (109)

J (5)
21 = −(1 + θ1) [R1 − T1 − (P1 − S1)θ1] (R0 − T0 − P0θ1 + S0θ1 − δρ1)

(1 − δ)2ρ2
1

,

(110)

J (5)
33 = −J (1)

33 . (111)

The characteristic equation is given by

(
J (5)
33 − λ

) (
λ2 − J (5)

11 λ − J (5)
12 J (5)

21

)
= 0. (112)

Eigenvalue λ1 = J (5)
33 = θ1−θ12

θ1+1 is negative if and only if θ12 > θ1 (i.e., Eq. (21)).

The real part of the other two eigenvalues is negative if and only if −J (5)
11 > 0 and

−J (5)
12 J (5)

21 > 0. Recall that −J (5)
11 = −J (1)

11 > 0 if and only if Eq. (19) holds true.

Becauseρ1 and θ1 are positive, J
(5)
12 is negative. Therefore,−J (5)

12 J (5)
21 > 0 is equivalent

to J (5)
21 > 0, which holds true if and only if δ < δc,1 (i.e., Eq. (40)).
In sum, this face equilibrium is stable if and only if Eqs. (19), (21), and (40) hold

true.
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C.3 Equilibrium (x∗, n∗
1, n

∗
12) =

(
1

1+�12
, 0, R0−T0−P0�12+S0�12

ı�12

)

At (x∗, n∗
1, n

∗
12) =

(
1

1+θ12
, 0, R0−T0−P0θ12+S0θ12

δρ12

)
, the Jacobian is reduced to

J =
⎛
⎜⎝
J (6)
11 J (6)

12 J (6)
13

0 J (6)
22 0

J (6)
31 0 0

⎞
⎟⎠ , (113)

where

J (6)
11 = J (4)

11 , (114)

J (6)
12 = J (4)

12 , (115)

J (6)
13 = J (4)

13 , (116)

J (6)
22 = −J (4)

22 , (117)

J (6)
31 = −(1 + θ12) [R0 − T0 − (P0 − S0)θ12] (R0 − T0 − P0θ12 + S0θ12 − δρ12)

δ2ρ2
12

.

(118)

The characteristic equation is given by

(
J (6)
22 − λ

) (
λ2 − J (6)

11 λ − J (6)
13 J (6)

31

)
= 0. (119)

Eigenvalue λ1 = J (6)
22 = θ1−θ12

θ12+1 is negative if and only if θ12 > θ1 (i.e., Eq. (21)).

The real part of the other two eigenvalues is negative if and only if −J (6)
11 > 0

and −J (6)
13 J (6)

31 > 0. Recall that −J (6)
11 = −J (4)

11 > 0 if and only if Eq. (19) holds

true. Because ρ12 and θ12 are positive, J
(6)
13 is negative. Therefore, −J (6)

13 J (6)
31 > 0 is

equivalent to J (6)
31 > 0, which holds true if and only if δ > δc,2 (i.e., Eq. (41)).

In sum, this face equilibrium is stable if and only if Eqs. (19), (21), and (41) hold
true.

Appendix D: Corner Equilibria of the Three-Dimensional System with
�1 = �12

By evaluating Eq. (16) at each corner equilibrium, we obtain the same Jacobians as
those in Appendix A with θ1 = θ12. The stability analysis of these corner equilibria is
the same as that in Appendix A, and we find that each Jacobian has at least one positive
eigenvalue and one negative eigenvalue. Therefore, each of these corner equilibria is
a saddle.
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Appendix E: Interior Equilibria of the Three-Dimensional Systemwith
�1 = �12

In this section, we derive the stability requirements for the line of interior equilibria,
L . By setting θ1 = θ12 and x∗ = 1

1+θ1
, we obtain the (2, 2) and (3, 3) entries of the

Jacobian given by Eq. (16) as follows:

− n1(θ1x + x − 1) + (1 − n1)(θ1x + x − 1) = 0 (120)

and
− n12(θ1x + x − 1) + (1 − n12)(θ1x + x − 1) = 0. (121)

Therefore, we obtain

J (x, n1, n12) =

⎛
⎜⎜⎝

x(1 − x) ∂g
∂x x(1 − x) ∂g

∂n1
x(1 − x) ∂g

∂n12+(1 − 2x)g(x, n1, n12)
n1(1 − n1)(1 + θ1) 0 0
n12(1 − n12)(1 + θ1) 0 0

⎞
⎟⎟⎠ . (122)

By substituting x∗ = 1
1+θ1

, we obtain

∂g

∂n1
= ∂q11

∂n1
− ∂q12

∂n1
= −x(R3 − S3 − T3 + P3) − (S3 − P3) + δ(R3 − T3 − S3 + P3)x

= −(R3 − T3)(1 − δ) − (S3 − P3)(θ1 + δ)

1 + θ1
. (123)

Therefore, we obtain

x(1 − x)
∂g

∂n1
= 1

1 + θ1

(
1 − 1

1 + θ1

) −(R3 − T3 − P3θ1 + S3θ1) + δ(R3 − S3 − T3 + P3)

1 + θ1

= −θ1[(R3 − T3)(1 − δ) + (S3 − P3)(θ1 + δ)]
(θ1 + 1)3

≡ σ2. (124)

Likewise, using x∗ = 1
1+θ1

, we obtain

∂g

∂n12
= −δ[(R3 − T3 − S3 + P3) + (S3 − P3)(1 + θ1)]

1 + θ1
(125)

and

x(1 − x)
∂g

∂n12
= 1

1 + θ1

(
1 − 1

1 + θ1

) −δ(R3 − T3 + S3θ1 − P3θ1)

1 + θ1

= −δθ1(R3 − T3 + S3θ1 − P3θ1)

(θ1 + 1)3
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≡ σ3. (126)

Now, let us calculate the quantity for x(1− x) ∂g
∂x + (1− 2x)g(x, n1, n12). We obtain

∂g

∂x
= ∂q11

∂x
− ∂q12

∂x
= (R0 − T0 − S0 + P0) − (R3 − S3 − T3 + P3) [n1(1 − δ) + n12δ] . (127)

By substituting Eq. (43) in Eq. (127), we obtain

∂g

∂x
= (R0 − T0 − S0 + P0) − (R3 − S3 − T3 + P3)

R0 − T0 − P0θ1 + S0θ1
R3 − T3 − P3θ1 + S3θ1

= (θ1 + 1)[(P1 − S1)(R0 − T0) + (R1 − T1)(S0 − P0)]
R0 − R1 − T0 + T1 − P0θ1 + P1θ1 + S0θ1 − S1θ1

. (128)

Next, using x∗ = 1
1+θ1

and Eq. (43), we find

g(x, n1, n12) = q11 − q12
= (R0 − T0 − S0 + P0)x + S0 − P0

− [n1(1 − δ) + δn12] [(R3 − S3 − T3 + P3)x + (S3 − P3)]
= 0. (129)

Using Eqs. (128) and (129), we obtain

x(1 − x)
∂g

∂x
= θ1[(P1 − S1)(R0 − T0) + (R1 − T1)(S0 − P0)]

(θ1 + 1)(R0 − R1 − T0 + T1 − P0θ1 + P1θ1 + S0θ1 − S1θ1)

≡σ1. (130)

Using Eqs. (124), (126), and (130), we find that the Jacobian at any point of L is given
by

J =
⎛
⎝σ1 σ2 σ3

σ4 0 0
σ5 0 0

⎞
⎠ , (131)

where

σ4 = n∗
1(1 − n∗

1)(1 + θ1), (132)

σ5 = n∗
12(1 − n∗

12)(1 + θ1). (133)

The characteristic equation is given by

λ
[
λ2 − σ1λ − (σ2σ4 + σ3σ5)

]
= 0. (134)
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Eigenvalue λ1 = 0 reflects the fact that the line of equilibria, L , is neutrally stable
along the direction of L . The other two eigenvalues, λ2 and λ3, are given by

λ2,3 =
σ1 ±

√
σ 2
1 + 4(σ2σ4 + σ3σ5)

2
. (135)

Let α = −σ1 and β = −σ2σ4−σ3σ5. The real part of λ2 and λ3 is negative if and only
if α > 0 and β > 0. Because the denominator of Eq. (130) is positive, then α > 0 if
and only if Eq. (19) holds true.

Now we seek the conditions under which β > 0. Because n∗
1 and n∗

12 are positive,
we obtain σ4 > 0 and σ5 > 0. Therefore, a sufficient condition for β > 0 is that both
σ2 and σ3 are negative. Using the assumptions in Eq. (2), we find that the numerators
of σ2 and σ3 are always negative. Thus, under Eqs. (2) and (19), we obtain α > 0 and
β > 0 such that the real parts of λ2 and λ3 are negative.

Appendix F: Edge Equilibria of the Three-Dimensional System with
�1 = �12

F.1 Equilibrium (x∗, n∗
1, n

∗
12) =

(
P0−S0−ı(P0−P1−S0+S1)

R0−T0−S0+P0−ı� , 0, 1
)

For the equilibrium (x∗, n∗
1, n

∗
12) =

(
P0−S0−δ(P0−P1−S0+S1)

R0−T0−S0+P0−δγ
, 0, 1

)
, the Jacobian,

Eq. (16), is reduced to

J =
⎛
⎜⎝
J (7)
11 J (7)

12 J (7)
13

0 J (7)
22 0

0 0 J (7)
33

⎞
⎟⎠ , (136)

where

J (7)
11 = [(P0 − S0)(1 − δ) + δ(P1 − S1)][(R0 − T0)(1 − δ) + δ(R1 − T1)]

R0 − T0 − S0 + P0 − δγ
, (137)

J (7)
12 = (1 − δ)ω[(P0 − S0)(1 − δ) + δ(P1 − S1)][(R0 − T0)(1 − δ) + δ(R1 − T1)]

(R0 − T0 − S0 + P0 − δγ )3
,

(138)

J (7)
13 = δω[(P0 − S0)(1 − δ) + δ(P1 − S1)][(R0 − T0)(1 − δ) + δ(R1 − T1)]

(R0 − T0 − S0 + P0 − δγ )3
, (139)

J (7)
22 = − R0 − T0 − P0θ1 + S0θ1 − δρ1

R0 − T0 − S0 + P0 − δγ
, (140)

J (7)
33 = −J (7)

22 , (141)

and
ω = (P0 − S0)(R1 − T1) − (P1 − S1)(R0 − T0). (142)
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The eigenvalues of J are given by λ = J (7)
11 , J (7)

22 , and J (7)
33 . Using the fact that each

eigenvalue has a common denominator, which we refer to as

μ3 ≡ R0 − T0 − S0 + P0 − δγ, (143)

we determine the stability of the edge equilibrium by examining the following four
possible cases.

Case 1: � > 0 and�3 > 0

First, γ is positive if and only if

R0 − T0 − R1 + T1 > S0 − P0 − S1 + P1. (144)

Under this condition, μ3 is positive if and only if

δ <
R0 − T0 − S0 + P0

γ
. (145)

For positive δ values satisfying Eq. (145) to exist, it must hold true that R0 − T0 >

S0 − P0.
Eigenvalues J (7)

22 and J (7)
33 are non-positive if and only if

δ ≤ R0 − T0 − P0θ1 + S0θ1
ρ1

(146)

and

δ ≥ R0 − T0 − P0θ1 + S0θ1
ρ1

, (147)

respectively, which implies that

δ = R0 − T0 − P0θ1 + S0θ1
ρ1

. (148)

Lastly, eigenvalue J (7)
11 is negative if either

δ < min

{
P0 − S0

P0 − S0 − P1 + S1
,

R0 − T0
R0 − T0 − R1 + T1

}
(149)

or

δ > max

{
P0 − S0

P0 − S0 − P1 + S1
,

R0 − T0
R0 − T0 − R1 + T1

}
(150)
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holds true. However, we find that there is no δ value that simultaneously satisfies
Eqs. (145), (148), and (149), or one that simultaneously satisfies Eqs. (145), (148),
and (150).

Case 2: � > 0 and�3 < 0

If γ > 0, then μ3 < 0 if and only if

δ >
R0 − T0 − S0 + P0

γ
. (151)

For positive δ values satisfying Eq. (151) to exist and be less than 1, it must hold true
that R1 − T1 < S1 − P1. Eigenvalues J

(7)
22 and J (7)

33 are non-positive if and only if

δ ≥ R0 − T0 − P0θ1 + S0θ1
ρ1

(152)

and

δ ≤ R0 − T0 − P0θ1 + S0θ1
ρ1

, (153)

respectively, which implies that

δ = R0 − T0 − P0θ1 + S0θ1
ρ1

. (154)

Because we have assumed that μ3 < 0, the numerator of Eq. (137) has to be positive
for eigenvalue J (7)

11 to be negative. Then, either both (P0 − S0)(1 − δ) + δ(P1 − S1)
and (R0 − T0)(1 − δ) + δ(R1 − T1) are positive or both are negative.

If both (P0 − S0)(1 − δ) + δ(P1 − S1) and (R0 − T0)(1 − δ) + δ(R1 − T1) are
positive, we obtain

δ >
P0 − S0

P0 − S0 − P1 + S1
(155)

and

δ <
R0 − T0

R0 − T0 − R1 + T1
. (156)

We find that there is no δ value that simultaneously satisfies Eqs. (151), (154), (155),
and (156).

If both (P0 − S0)(1 − δ) + δ(P1 − S1) and (R0 − T0)(1 − δ) + δ(R1 − T1) are
negative, we obtain

δ <
P0 − S0

P0 − S0 − P1 + S1
(157)
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and

δ >
R0 − T0

R0 − T0 − R1 + T1
. (158)

A δ value satisfying Eqs. (157) and (158) exists if and only if

R0 − T0
R0 − T0 − R1 + T1

<
P0 − S0

P0 − S0 − P1 + S1
, (159)

which is equivalent to Eq. (19).
Such a δ value satisfying δ ∈ (0, 1) exists if and only if the RHS of Eq. (157)

is positive and that of Eq. (158) is less than 1. In fact, because P0 − S0 < 0 and
S1 − P1 < 0, the numerator and denominator on the RHS of Eq. (157) are negative,
which implies that the RHS is positive. The RHS of Eq. (158) is less than 1 because
we obtain R0 − T0 > 0 and R1 − T1 < 0 from Eq. (2). Lastly, the intersection of the
conditions derived for δ, given by Eqs. (151), (154), (157), and (158), yields Eq. (44),
i.e., δc,1 = δc,2.

Case 3: � < 0 and�3 > 0

In this section, we assume that γ < 0, i.e

R0 − T0 − R1 + T1 < S0 − P0 − S1 + P1. (160)

Then, μ3 > 0 if and only if Eq. (151) is satisfied. For positive δ values satisfying
Eq. (151) to exist and be less than 1, it must hold true that R1 − T1 < S1 − P1. If
μ3 > 0, then we obtain Eqs. (148), (149), and (150), and again find that there is no δ

value that simultaneously satisfies these inequalities.

Case 4: � < 0 and�3 < 0

In this section, we assume that γ < 0 and μ3 < 0, which requires Eq. (145) to be
satisfied. For positive δ values satisfying Eq. (145) to exist, it must hold true that
R0 − T0 > S0 − P0. The derivation of the stability of this case follows the same
derivation as Case 2, and we find that the equilibrium is marginally stable if and only
if Eqs. (19) and (44) hold true.

F.2 Equilibrium (x∗, n∗
1, n

∗
12) =

(
P1−S1+ı(P0−P1−S0+S1)

R1−T1−S1+P1+ı� , 1, 0
)

For the equilibrium (x∗, n∗
1, n

∗
12) =

(
P1−S1+δ(P0−P1−S0+S1)

R1−T1−S1+P1+δγ
, 1, 0

)
, the Jacobian,

Eq. (16), is reduced to

J =
⎛
⎜⎝
J (8)
11 J (8)

12 J (8)
13

0 J (8)
22 0

0 0 J (8)
33

⎞
⎟⎠ , (161)
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where

J (8)
11 = [(P1 − S1)(1 − δ) + δ(P0 − S0)][(R1 − T1)(1 − δ) + δ(R0 − T0)]

R1 − T1 − S1 + P1 + δγ
, (162)

J (8)
12 = (1 − δ)ω[(P1 − S1)(1 − δ) + δ(P0 − S0)][(R1 − T1)(1 − δ) + δ(R0 − T0)]

(R1 − T1 − S1 + P1 + δγ )3
,

(163)

J (8)
13 = δω[(P1 − S1)(1 − δ) + δ(P0 − S0)][(R1 − T1)(1 − δ) + δ(R0 − T0)]

(R0 − T0 − S0 + P0 − δγ )3
, (164)

J (8)
22 = − R1 − T1 − P1θ1 + S1θ1 + δρ1

R1 − T1 − S1 + P1 + δγ
, (165)

J (8)
33 = −J (8)

22 . (166)

The eigenvalues of J are given by λ = J (8)
11 , J (8)

22 , and J (8)
33 . Similarly to the prior

equilibrium, each eigenvalue has a common denominator, which we refer to as

μ4 ≡ R1 − T1 − S1 + P1 + δγ. (167)

We determine the stability of the edge equilibrium by examining the following four
possible cases.

Case 1: � > 0 and�4 > 0

First, γ is positive if and only if Eq. (144) is satisfied. When γ > 0 is satisfied, μ4 is
positive if and only if

δ >
−(R1 − T1 − S1 + P1)

γ
. (168)

For positive δ values satisfying Eq. (168) to exist and be less than 1, it must hold true
that R0 − T0 > S0 − P0.

Eigenvalues J (8)
22 and J (8)

33 are non-positive if and only if

δ ≤ −(R1 − T1 − P1θ1 + S1θ1)

ρ1
(169)

and

δ ≥ −(R1 − T1 − P1θ1 + S1θ1)

ρ1
, (170)

respectively, which implies that

δ = −(R1 − T1 − P1θ1 + S1θ1)

ρ1
. (171)
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Lastly, J (8)
11 is negative if either

δ < min

{ −(P1 − S1)

P0 − S0 − P1 + S1
,

−(R1 − T1)

R0 − T0 − R1 + T1

}
(172)

or

δ > max

{ −(P1 − S1)

P0 − S0 − P1 + S1
,

−(R1 − T1)

R0 − T0 − R1 + T1

}
(173)

holds true. However, we find that there is no δ value that simultaneously satisfies
Eqs. (168), (171), and (172) or Eqs. (168), (171), and (173).

Case 2: � > 0 and�4 < 0

If γ is positive, then μ4 < 0 if and only if

δ <
−(R1 − T1 − S1 + P1)

γ
. (174)

For positive δ values satisfying Eq. (174) to exist, it must hold true that R1 − T1 <

S1 − P1. Eigenvalues J
(8)
22 and J (8)

33 are non-positive if and only if

δ ≤ −R1 − T1 − P1θ1 + S1θ1
ρ1

(175)

and

δ ≥ −R1 − T1 − P1θ1 + S1θ1
ρ1

, (176)

respectively, which implies that

δ = −(R1 − T1 − P1θ1 + S1θ1)

ρ1
. (177)

Because we have assumed that μ4 < 0, the numerator of Eq. (162) has to be positive
for eigenvalue J (8)

11 to be negative. Then, either both (P1 − S1)(1 − δ) + δ(P0 − S0)
and (R1 − T1)(1 − δ) + δ(R0 − T0) are positive or both are negative.

If both (P1 − S1)(1 − δ) + δ(P0 − S0) and (R1 − T1)(1 − δ) + δ(R0 − T0) are
positive, we obtain

δ <
−(P1 − S1)

P0 − S0 − P1 + S1
(178)
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and

δ >
−(R1 − T1)

R0 − T0 − R1 + T1
. (179)

We find that there is no δ value that satisfies Eqs. (174), (177), (178), and (179).
If both (P1 − S1)(1 − δ) + δ(P0 − S0) and (R1 − T1)(1 − δ) + δ(R0 − T0) are

negative, we obtain

δ >
−(P1 − S1)

P0 − S0 − P1 + S1
(180)

and

δ <
−(R1 − T1)

R0 − T0 − R1 + T1
. (181)

A value of δ satisfying Eqs. (180) and (181) exists if and only if

−(R1 − T1)

R0 − T0 − R1 + T1
<

−(P1 − S1)

P0 − S0 − P1 + S1
, (182)

which is equivalent to Eq. (19). Such a δ value satisfying δ ∈ (0, 1) exists if and only
if the RHS of Eq. (180) is less than 1 and that of Eq. (181) is positive. In fact, the
RHS of Eq. (180) is less than 1 because we obtain P0 − S0 < 0 and P1 − S1 > 0
from Eq. (2). Because R0 − T0 > 0 and T1 − R1 > 0, the numerator and denominator
on the RHS of Eq. (181) are positive, which implies that the RHS is positive. Lastly,
the intersection of the conditions derived for δ, given by Eqs. (174), (177), (180), and
(181), yields Eq. (45), i.e., δc,3 = δc,4.

Case 3: � < 0 and�4 > 0

In this section, we assume that γ < 0, i.e., Eq. (78). Then, μ4 > 0 if and only if
Eq. (174) is satisfied. For positive δ values satisfying Eq. (174) to exist, it must hold
true that R1 − T1 < S1 − P1. If μ4 > 0, then we obtain Eqs. (171), (172), (173), and
(174), and find that there is no δ value that simultaneously satisfies these inequalities.

Case 4: � < 0 and�4 < 0

In this section, we assume that γ < 0 and μ4 < 0, which requires Eq. (168). For
positive δ values satisfying Eq. (168) to exist and be less than 1, it must hold true
that R0 − T0 > S0 − P0. The derivation of the stability of this case follows the same
derivation as Case 2, and we find that the equilibrium is stable if and only if Eqs. (19)
and (45) hold true.

Appendix G: Equilibria of the Five-Dimensional System

We show the 60 equilibria of the five-dimensional system with their stability require-
ments in Table 2.
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