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Abstract
Background and Objectives
Interleukin-6 receptor antibodies (IL-6R Abs), including satralizumab, are increasingly used to
prevent relapse for neuromyelitis optica spectrum disorder (NMOSD). However, the detailed
mechanism of action of this treatment on the lymphocyte phenotype remains unclear. This
study focused on B cells in patients with NMOSD, hypothesizing that IL-6R Ab enables B cells
to acquire regulatory functions by producing the anti-inflammatory cytokine IL-10.

Methods
Peripheral blood mononuclear cells were stimulated in vitro to induce the expansion of B-cell
subsets, double-negative B cells (DNs; CD19+ IgD−, CD27−) and plasmablasts (PBs; CD19+,
CD27hi, CD38hi). Whole B cells, DNs, or PBs were isolated after culture with IL-6R Ab, and IL-
10 expression was quantified using quantitative PCR and a cytometric bead array. RNA se-
quencing was performed to identify the marker of regulatory PBs induced by IL-6R Ab.

Results
DNs and PBs were observed to expand in patients with NMSOD during the acute attacks. In
the in vitro model, IL-6R Ab increased IL-10 expression in B cells. Notably, IL-10 expression
increased in PBs but not in DNs. Using RNA sequencing, CD200 was identified as a marker of
regulatory PBs among the differentially expressed upregulated genes. CD200+ PBs produced
more IL-10 than CD200− PBs. Furthermore, patients with NMOSDwho received satralizumab
had a higher proportion of CD200+ PBs than patients during the acute attacks.

Discussion
Treatment with IL-6 signaling blockade elicited a regulatory phenotype in B cells and PBs.
CD200+ PBs may be a marker of treatment responsiveness in the context of NMOSD
pathophysiology.

Introduction
Neuromyelitis optica spectrum disorder (NMOSD) is a rare autoimmune disease charac-
terized by relapsing inflammation affecting predominantly the optic nerve, spinal cord, and
brainstem. Autoantibodies directed against the water channel aquaporin-4 (AQP4) are be-
lieved to play a pivotal role in the pathogenesis of NMOSD.1,2 Several reports revealed that
B-cell subsets were altered in both peripheral blood mononuclear cells (PBMCs) and CSF in
patients with NMOSD.3-6 For example, high proportions of plasmablasts (PBs), a mature and
differentiated B-cell subset, have been observed in the PBMCs and CSF of patients with
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NMOSD and are associated with disease activity.3 In addi-
tion, elevated interleukin (IL)-6 levels in both serum and
CSF highlight its detrimental role in the underlying
NMOSD pathophysiology7,8 and its significance as a survival
factor for PBs that produce anti-AQP4 antibodies.3

Based on these findings, randomized placebo-controlled
trials with satralizumab, a humanized monoclonal antibody
targeting the IL-6 receptor (IL-6R), have been successfully
conducted to prevent NMOSD relapse.9,10 Because IL-6 is a
pleiotropic cytokine that plays a key role in several biological
processes,11 it remains elucidated how IL-6R signaling
blockade alters lymphocyte phenotypes in patients with
NMOSD. In addition, the criteria for appropriate patient
selection for satralizumab or other therapies are not estab-
lished, and specific biomarkers are needed. IL-6 was origi-
nally identified as a cytokine promoting the differentiation of
B cells into antibody-secreting cells.12 However, IL-6R
blockade therapy does not completely abolish B-cell differ-
entiation in vivo. Instead, it promotes the secretion of several
cytokines from B cells in patients with rheumatoid arthritis
receiving tocilizumab, another anti-IL-6R monoclonal
antibody.13

This study aimed to investigate the hypothesis that disrup-
tion in regulatory B cells (Bregs) contributes to the patho-
genesis of NMOSD and that their function can be restored
by IL-6R blockade therapy. Bregs are commonly character-
ized cells that secrete the anti-inflammatory cytokine IL-
10.14 However, the role of Bregs in the pathogenesis of
NMOSD and their association with IL-6R blockade therapy
remain unknown. To clarify them, first, we performed lon-
gitudinal analysis of peripheral blood B cells from patients
with NMOSD. This analysis revealed an expansion of B-cell
subsets, such as double-negative B cells (DNs) and PBs,
during acute disease flares and a subsequent decrease during
remission. Second, using an in vitro model, we found that IL-
6R blockade boosted the IL-10 expression of whole B cells
and PBs, but not of DNs. Finally, we identified CD200 as a
potential marker of regulatory PBs and validated its clinical
relevance in patients with NMOSD treated with IL-6R
blockade.

Methods
Participants and Specimens
A total of 31 patients with NMOSD who visited Kobe Uni-
versity Hospital between 2018 and 2023 were recruited for
this study. Diagnosis of NMOSD was based on the 2015
criteria,15 and all patients were seropositive for AQP4-IgG.
Thirty-three age-matched and sex-matched healthy controls
(HC) were also recruited. Baseline characteristics of patients
with NMOSD and healthy controls are provided in eTable 1.
A sample size calculation was performed to compare the
means of the 2 groups. We set α error at 0.05, power (1-β) at
0.8, the difference in means between the 2 groups at 5%, and
the SD common to the 2 groups at 5%, and the number of
cases required was 16 for each group. The term "attack" used
in this study refers to acute disease flares, as confirmed by both
clinical and radiologic evidence. During attacks, samples were
collected before initiating treatment, such as IV methylpred-
nisolone or plasma exchange therapy. Remission was de-
termined clinically and radiologically, basically under
treatment including immunosuppressants. The clinical in-
formation of patients with NMOSD who received satralizu-
mab is presented in eTable 2.

Standard Protocol, Approvals, Registrations,
and Patient Consents
This study was approved by the institutional ethics committee
(No. 1381). All the participants provided written informed
consent.

Flow Cytometry Analysis and Cell Sorting
PBMCs were isolated from whole blood by density centrifu-
gation using Ficoll-Paque Plus (GE Healthcare, Uppsala,
Sweden). Owing to the significant reduction in PB cell count
after freeze-thaw cycles,16 blood samples were isolated into
fresh PBMCs within 24 hours of collection for analysis
without cryopreservation. Total B cells were separated from
PBMCs using anti-CD19 magnetic-activated cell sorting
(MACS) according to the manufacturer’s instruction (Mil-
tenyi Biotec, Bergisch Gladbach, Germany). PBMCs were
stained with anti-human antibodies listed in eTable 3. Dead
cells were excluded using Fixable Viability Dye eFluor 506
(Thermo Fisher Scientific, Waltham, MA). Flow cytometry

Glossary
AQP4 = aquaporin-4; ARR = annualized relapse rate; AZA = azathioprine; Ab = antibody (or antibodies); BCDT = B cell
depletion therapy;Breg = regulatory B cells;CD = cluster of differentiation;DNs = double negative B cells; EAE = experimental
autoimmune encephalomyelitis; EDSS = Expanded Disability Status Scale; EDTA = ethylenediaminetetraacetic acid; FACS =
fluorescence activated cell sorting; FBS = fetal bovine serum; IL-6R = IL-6 receptor; IL- = interleukin-; Ig = immunoglobulin;
MACS = magnetic-activated cell sorting; MEMs = memory B cells; MMF = mycophenolate mofetil; MTX = methotrexate;
NAVs = näıve B cells; NMOSD = neuromyelitis optica spectrum disorder; PBMCs = peripheral blood mononuclear cells;
PBS = phosphate buffered saline; PBs = plasmablasts; PCs = plasma cells; PMA = phorbol-12-myristate-13-acetate; PSL =
prednisolone; RNA-seq = RNA sequencing; RPMI = Roswell Park Memorial Institute; SWMs = switched memory B cells;
TAC = tacrolimus; Treg = regulatory T cells; USMs = unswitched memory B cells; cDNA = complementary deoxyribonucleic
acid; qPCR = quantitative polymerase chain reaction.
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data were acquired using BD FACSVerse and LSRFortessa
X-20, and cells were sorted by FACSAriaⅢ and FACSMelody
(BD Biosciences, Franklin Lakes, NJ) and analyzed with
FlowJo v10.8.1 (BD Biosciences).

IL-10 expression in B cells was assessed using a cytokine
secretion assay in accordance with previous reports17; the IL-
10 Secretion Assay Detection Kit (Miltenyi Biotec) was used
according to the manufacturer’s instructions. In brief, the cells
were resuspended in the Roswell Park Memorial Institute
(RPMI) 1640 medium at 1 × 106 cells/mL, and activation
with phorbol-12-myristate-13-acetate (PMA; 20 ng/mL,
Sigma-Aldrich, St. Louis, MO) and ionomycin (500 ng/mL,
Sigma-Aldrich) was performed for 4 hours at 37°C. After
washing with MACS buffer (PBS + 0.5% bovine serum al-
bumin + 2 mM EDTA), the cells were resuspended in 90 μL
of RPMI-1640 medium and mixed with 10 μL of IL-10 catch
reagent for 5 minutes on ice. After rotation at 37°C for 45
minutes and washing with cold MACS buffer, the cells were
stained with IL-10 detection antibody (PE) and antibodies for
other cell surface molecules before analysis.

To quantify cytokine and immunoglobulin levels of culture
supernatants, we used LEGENDplex Human Inflammation
Panel 1 (13-plex) and LEGENDplex Human Immunoglob-
ulin Isotyping Panel (8-plex) with a V-bottom plate (BioL-
egend), respectively, according to the manufacturer’s
instructions. In brief, culture supernatants (25 μL/sample)
were incubated with capture beads for 2 hours at room tem-
perature on a plate shaker. Next, the detection antibody was
added, and the beads were incubated for 1 hour at room
temperature on a plate shaker. After incubation with fluo-
rescent antibodies, the beads were shaken for 30 minutes,
washed, and analyzed using an LSRFortessa X-20 flow
cytometer (BD Biosciences). Cytokine concentration was
calculated based on a standard curve using BioLegend’s
LEGENDplex data analysis software.

Culture Assays
PBMCs were cultured in the RPMI-1640 medium supple-
mented with 10% heat-inactivated fetal bovine serum (FBS),
100 U/mL penicillin, and 100 μg/mL streptomycin in 96-well
U-bottom plates at 37°C for 7 days. PBMCs were plated at a
density of 2 × 105 cells/200 μL/well and stimulated with a
cytokine cocktail comprising R848 (1 μg/mL, Enzo Life-
sciences, Farmingdale, NY), IL-2 (50 ng/mL, PeproTech,
Cranbury, NJ), CD40 ligand (50 ng/mL, R&D, Minneapolis,
MN, USA), TNFα (1 ng/mL, PeproTech), IL-1β (1 ng/mL,
PeproTech), and IL-21 (50 ng/mL, PeproTech). This cock-
tail was previously reported to induce in vitro production of
AQP4-IgG from PBMCs of patients with NMOSD.18 To
assess the effect of IL-6R blockade, PBMCs were pre-
incubated with either anti-IL-6 receptor antibody (1 μg/mL,
R&D) or isotype control (1 μg/mL, R&D) on ice for 20
minutes. Subsequently, PBMCs were stimulated with the
cytokine cocktail described above in addition to recombinant
human IL-6 (1 ng/mL, R&D).

Real-Time Quantitative PCR and
RNA Sequencing
Total RNA was isolated and purified from sorted cells using
RNeasy Plus Mini Kit (QIAGEN, Hilden, Germany). Com-
plementary DNA (cDNA) was synthesized from total RNA
using SuperScript IV VILO Master Mix (Thermo Fisher
Scientific). PCR primers designed in this study are listed in
eTable 4. Real-time quantitative PCR (qPCR) was performed
using CFX Connect (BioRad, Hercules, CA). The relative
expressions of each mRNA were normalized to those of actin
β (ACTB).

For RNA sequencing (RNA-seq) of differentiated PBs in
vitro, PBMCs were isolated from 4 healthy controls and
stimulated in vitro using the cytokine cocktail described
above. PBs (CD3−, CD19+, CD27hi, and CD38hi) were sorted
using FACSAriaⅢ (BD Biosciences). Total RNA was isolated
and purified from the sorted PBs using RNeasy Mini Kit
(Qiagen). RNA-seq libraries were generated using SMARTer
Ultra Low RNAKit (Takara Bio USA, Inc. San Jose, CA). The
cDNA libraries were sequenced at a 100-bp paired-end on an
Illumina Novaseq 6000 sequencer (Illumina, San Diego, CA).
Sequencing run and the base-call analysis were performed
according to the Novaseq 6000 System Guide with TruSeq
library construction. RNA-seq reads were mapped to the hg38
genome using STAR-2.7.3a. Data were normalized using
CPM (counts per million). Differentially expressed genes
(DEGs) and heatmap figures were generated using gene-
specific analysis (unadjusted p value < 0.05). Raw data
processing and subsequent analysis were performed using
software Partek Flow 7.0 (Partek Inc., Chesterfield, MO).
Details of the chemicals and reagents used in these experi-
ments are listed in eTable 5.

Statistical Analysis
Statistical analyses were conducted using GraphPad Prism
v10.0.2 (GraphPad Software, Boston, MA). Detailed data
analysis methods are described in the respective figure
legends.

Data Availability
Anonymized data not published within this article will be
made available by request from any qualified investigator.

Results
DNs and PBs Expand in the Acute Phase of
NMOSD and Decrease in the Remission Phase
First, we performed longitudinal B-cell phenotyping analysis
of patients with NMOSD. The proportion of double-negative
B cells (DNs; CD3−, CD19+, IgD−, CD27−) and plasmablasts
(PBs; CD3−, CD19+, CD27hi, CD38hi) within B cells in pa-
tients with NMOSD during acute attacks expanded compared
with healthy controls (HC) (Figure 1A-B). The proportion of
whole B cells to total lymphocytes had no difference
(eFigure 1A). In addition, the proportion of switched
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memory B cells (SWMs; CD3−, CD19+, IgD−, CD27+) was
higher while the proportion of näıve B cells (NAVs; CD3−,
CD19+, IgD+, CD27−) was lower in patients with NMOSD
compared with healthy controls (eFigure 1B). When clinical
remission was reached, both DNs and PBs decreased. Of note,
even during remission, proportions of both DNs and PBs
remained high and gradually decreased over time to approach
the levels observed in healthy controls (Figure 1, C and D).
Moreover, we found that the expansion of DNs reflects the
expansion of both double-negative 1 cells (DN1; CD3−,
CD19+, IgD−, CD27−, CXCR5+, CD11c−) and double-
negative 2 cells (DN2; CD3−, CD19+, IgD−, CD27−, CXCR5-

, CD11c+), which are reciprocal DN subsets (eFigure 2A-B).
While DN2 has been reported to expand in systemic lupus
erythematosus as a precursor of autoantibody-producing
cells,19 no apparent difference was found in the ratio of DN1
or DN2 within the DNs in patients with NMOSD (eFigure 2,
C–E). Furthermore, we investigated patients with NMOSD
treated with satralizumab, which is an IL-6R antibody (Ab)

drug, suggesting that the proportions of whole B cells, DNs,
and PBs did not significantly alter (eFigure 3). These findings
raised the possibility that IL-6R Ab may alter the B-cell phe-
notype as a treatment effect rather than the number of B cells
or their canonical subsets.

IL-6R Blockade Induces IL10 Expression in
Whole B Cells and PBs But Not in DNs
Along with the observation of altered B-cell subsets during
attacks, we stimulated PBMCs obtained from healthy controls
and patients with NMOSD in the remission phase as an in
vitro model of an attack. After 7 days of stimulation, DNs and
PBs exhibited marked expansion, resembling the B-cell phe-
notypes observed during attacks (Figure 2A). Then, we pu-
rified B cells after stimulation and performed qPCR for IL10
mRNA to determine whether IL-6R Ab treatment induces
regulatory functions in B cells. IL-6R Ab increased the ex-
pression of IL10 in B cells from PBMCs of both healthy
controls and patients with NMOSD (Figure 2B, left). Of note,

Figure 1 Increased Proportion of DNs and PBs in the Acute Phase of NMOSD Attacks and Their Changes Over Time

(A) Left: Representative flow cytometry analysis of DNs (CD3−, CD19+, IgD−, CD27−) from healthy controls (HC) and patients with NMOSD. The numbers in the
areas represent percentages of the population. Right: Proportion of DNs. The open and filled symbols represent PBMC data obtained from 23 HC and 19
patients with acute NMOSD attacks, respectively (****p < 0.0001; Mann-Whitney test, the bar charts represent mean ± SEM). (B) Left: Representative flow
cytometry analysis of PBs (CD3−, CD19+, CD27hi, and CD38hi) from HC and patients with NMOSD. Right: Proportion of PBs from 23 HC and 19 patients with
NMOSD (*p < 0.05; Mann-Whitney test). (C, D) Longitudinal analysis of DNs and PBs. Dashed lines indicate that the samples are from the same patient. The
mean interval between attack and remission #1 was 11.3 months (range 5–33). Sampling intervals for remissions #1, #2, and #3 were generally set at 6
months (**p < 0.01, *p < 0.05; fixed-effect p value,mixed-effectmodel; attack, n = 19; remission #1, n = 21; remission #2, n = 15; remission #3, n = 10). For cases
experiencing relapse during the observation period, data acquired before the relapse were excluded because these showed an increase in PBs during the
relapse compared with before, aligning the data with the attack as the first time point. DNs = double-negative B cells; HC = healthy controls; NMOSD =
neuromyelitis optica spectrum disorder; PBs = plasmablasts. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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baseline IL10 expressions of B cells were lower in patients
with NMOSD compared with healthy controls (Figure 2B,
left). In addition, IL-6R Ab elevated IL-10 protein levels in
culture supernatants from healthy controls, but this difference
was merely observed in patients with NMOSD (Figure 2B,
right). The cytokine secretion assay further confirmed an el-
evation in the proportion of IL-10+ cells within B cells
(eFigure 4A).

Next, to determine which B-cell subset elicited this regulatory
response, we separated DNs and PBs and performed qPCR
for IL10 mRNA. IL-6R Ab increased IL10 expression in PBs,
but not in DNs (Figure 2C), suggesting that IL-6R blockade
induces a regulatory function within the underlying mecha-
nism by which B cells differentiate into PBs. We found that IL-
6R Ab enabled PBs to acquire IL-10–producing function by
the cytokine secretion assay (Figure 2D). When using
PBMCs derived from patients with NMOSD under satrali-
zumab treatment, the in vitro response to additional IL-6R Ab
was not clearly evident. However, PBs produced higher levels

of IL-10 compared with non-PBs, similar to healthy controls
(eFigure 4B).

Transcriptional Profiles Revealed CD200 as a
Marker of Regulatory PBs
Next, we performed global gene expression analysis on PBs
expanded in vitro to search for additional markers that could
characterize regulatory PBs. Using sorted PBs differentiated
from 4 healthy controls, 593 DEGs were identified by com-
paring the IL-6R Ab treatment group with the isotype control
group (Figure 3A). In these DEGs, we focused on 133
upregulated genes in the IL-6R Ab treatment group, including
IL10. When systematically searching for potential cell surface
markers, CD200, TXK, SLC9A3, and TMEM11 emerged. We
selected CD200 for further investigation. Although CD200 is
known as an inhibitory molecule in the context of in-
flammation, its role in NMOSD is unknown. Among PBMCs
in a homeostatic state, B cells predominantly express CD200
compared with non-B cells (Figure 3B, left) and näıve B cells
predominantly express CD200 among B-cell subsets

Figure 2 In Vitro IL-6R Blockade Induces IL10 Expression in Whole B Cells and PBs But Not in DNs

(A) Representative flow cytometry analysis before and after in vitro stimulation with PBMCs from HC. Both DNs and PBs expand on stimulation. (B) Left:
Relative expression of IL10 in B cells from 13 HC and 13 patients with NMOSD, with IL-6R Ab or isotype controls quantified by real-time qPCR (IL-6R Ab vs
isotype; **p < 0.01, *p < 0.05; Wilcoxon matched-pairs signed-rank test; HC vs NMOSD; *p < 0.05, Mann-Whitney test). Right: Levels of IL-10 in the culture
supernatant measured by the cytometric bead array (**p < 0.01; Wilcoxon matched-pairs signed-rank test). (C) Relative expression of IL10 in DNs and PBs
from 11 HC with IL-6R Ab or isotype controls. (D) Proportion of IL-10+ cells in induced PBs from PBMCs of 6 HC with IL-6R Ab or isotype controls, which is
obtained using the cytokine secretion assay (*p < 0.05; Wilcoxonmatched-pairs signed-rank test). Data are from 3 ormore independent experiments. ACTB =
actinβ; DNs = double-negative B cells; HC = healthy controls; IL-10 = interleukin-10; IL-6R Ab = IL-6 receptor antibody; NMOSD =neuromyelitis optica spectrum
disorder; PBs = plasmablasts.
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Figure 3 Transcriptional Profiles Showing CD200 as a Candidate for Regulatory PBs

(A) Differential expression analysis with RNA-seq data from PBs induced by in vitro stimulation with IL-6R Ab or isotype control. The heatmap shows
expression levels of sorted PBs derived from stimulated PBMCs of healthy controls (HC) (n = 4). The color intensity represents the column Z score, with red
indicating high expression and blue indicating low expression. The regions outlined in green squares are transcripts upregulated by IL-6R Ab, and their
contents are listed on the right. (B) Left: Representative flow cytometry analysis of CD200 expression in circulating B cells and non-B cells of HC. Most B cells
express CD200 (75.2%), whereas most non-B cells do not (4.15%). Right: CD200 expression on canonical B-cell subsets. The gray lines indicate negative
expression based on samples of fluorescence minus one. (C) Representative flow cytometry analysis and proportions of IL-10–producing cells within CD200+

PBs compared with CD200- PBs based on the cytokine secretion assay (samples fromHC, n = 6, *p < 0.05; Wilcoxonmatched-pairs signed-rank test). (D) IL-10
and immunoglobulin quantification of culture supernatants from CD200+ NAVs and CD200+ MEMs from 3 HC. Samples below the detection sensitivity
described on the y-axis aremarked as 0. DNs = double-negative B cells; HC = healthy controls; IL-10 = interleukin-10; IL-6R Ab = IL-6 receptor antibody;MEMs =
memory B cells; NAVs = näıve B cells; PBs = plasmablasts; SWMs = switched memory B cells; USMs = unswitched memory B cells.
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(Figure 3B, right). To elucidate IL-10 production capacity of
CD200+ PBs, we performed the cytokine secretion assay and
revealed that induced CD200+ PBs tended to produce more
IL-10 than CD200- PBs (Figure 3C), suggesting that CD200
might be a cell surface marker of regulatory PBs.

CD200+ PB Are Predominantly Inducible From
the Memory Phenotype
In addition, we purified 2 subfractions of B cells: CD200+

näıve (CD3−, CD19+, IgD+, CD27−) and CD200+ memory
B cells (MEMs; CD3−, CD19+, CD27+). Each group was
stimulated separately to determine the B-cell subset from
which CD200+ PBs were induced. Both CD200+ NAVs and
CD200+ MEMs differentiated into PBs in response to stim-
ulation. CD200+ MEMs produced more IL-10 and immu-
noglobulin isotypes than CD200+ NAVs did (Figure 3D).

Circulating CD200+ PBs in Patients With
NMOSD and Their Relevance to
Clinical Parameters
We performed cytokine secretion assays using PBMCs from
patients with NMOSD, revealing higher IL-10 production

capacity in CD200+ PBs compared with CD200- PBs
(Figure 4A). To assess the potential of circulating CD200+ PBs
in PBMCs as a cell subset representing Bregs induced by IL-6R
Ab, we investigated its correlation with disease phases and
relapse prevention therapies in patients with NMOSD. In
PBMCs from patients with NMOSD, the proportion of
CD200+ PBs was significantly higher in the remission phase
under satralizumab treatment than during attacks (Figure 4, B
and C). In addition, all patients remained relapse-free after
satralizumab administration. Of note, no significant difference
was observed in CD200 expression in whole B cells or other
subsets between the 2 groups (eFigure 5). Additional detailed
analysis of the samples in the remission phase showed that
CD200+ PBs may be more likely to be induced in patients who
experienced attacks within the past 12 months (Figure 4B,
orange dots). This finding suggests a higher likelihood of
CD200+ PB induction during this specific period.

Finally, to determine the clinical characteristics of CD200+

PBs in patients with NMOSD receiving satralizumab, we
conducted a correlation analysis between age, disease dura-
tion, Expanded Disability Status Scale (EDSS) score, and

Figure 4 CD200+ PBs as Treatment Markers With Satralizumab for NMOSD

(A) Proportion of IL-10+ cells in induced PBs from PBMCs of 6 patients with NMOSD with IL-6R Ab or isotype controls, which is obtained using the cytokine
secretion assay (*p < 0.05; Wilcoxon matched-pairs signed-rank test). (B) Representative flow cytometry analysis of circulating CD200+ cells in PBs. (C)
Cumulative data show that PBs frompatientswith NMOSD receiving satralizumab in the remission phase have a higher percentage of CD200+ cells compared
with patients during an attack. PBMCs were obtained ≥4 months after initiating satralizumab treatment. Orange dots indicate samples taken <12 months
after the most recent attack (HC; n = 28, attack; n = 7, remission on PSL; n = 9, remission on satralizumab; n = 10, **p < 0.01; Kruskal-Wallis test with Dunn
multiple comparisons test). (D) Correlation between frequencies of CD200+ PBs and age (NMOSDon satralizumab; n = 10, r = −0.7455, *p = 0.0174, HC; n = 28, r
= −0.0312, p = 0.8747) (*p < 0.05; Spearman correlation, where r represents the correlation coefficient). HC = healthy controls; NMOSD = neuromyelitis optica
spectrum disorder; PBs = plasmablasts; PSL = prednisolone.
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annualized relapse rate (ARR) over the past 5 years. In pa-
tients receiving satralizumab, the proportion of CD200+ PBs
was negatively correlated with age. By contrast, this correla-
tion was not evident in healthy controls (Figure 4D). These
results suggest that patients receiving satralizumab might have
a high propensity to develop CD200+ PBs, especially among
younger patients. Correlations between CD200+ PBs and
other clinical parameters are presented in eFigure 6.

Discussion
Our results demonstrate that IL-6R blockade induces a reg-
ulatory phenotype in B cells and that CD200+ PBs may play a
protective role in the pathophysiology of NMOSD. To date,
several biologics have been developed based on the patho-
physiology of NMOSD, generally aiming to deplete its
pathogenic factors. For example, B-cell depletion therapy
(BCDT), which targets the B-cell lineage marker CD19 or
CD20, is an important treatment option for NMOSD.20,21

However, some patients are resistant to BCDT for unknown
reasons.22,23 In animal models such as experimental autoim-
mune encephalomyelitis (EAE), contradictory data have been
known to describe the complexity of BCDT; the depletion of
B cells can result in clinical improvement or, conversely, ex-
acerbation, which is dependent on the immunizing antigen
and the timing of treatment.24,25 Recently, it has also been
implicated that BCDT not only depletes pathogenic B cells
but also restores some subsets of Bregs.26 These findings
demonstrate the multifaceted nature of B cells, highlighting
the importance of maintaining a balance between pathogenic
and protective roles in NMOSD.

We found that IL10 expression in stimulated B cells was lower
in PBMCs from patients with NMOSD compared with those
from healthy controls (Figure 2B, left), suggesting a disrup-
tion of the Breg induction system in NMOSD. Similar find-
ings have been reported in some subsets of circulating Bregs
in patients with NMOSD.27-29 With IL-6R blockade, B cells
acquired increased IL10 expression in an in vitro model.
Consistent with this finding, some reports showed that toci-
lizumab restores dysregulated cytokine production from
B cells in patients with rheumatoid arthritis.13,30 A similar
mechanism may be involved in patients with NMOSD re-
ceiving satralizumab treatment.

Meanwhile, a previous study reported that serum AQP4-IgG
titers did not change significantly with IL-6R blockade ther-
apy.31 These results suggest that B cells may shift from a
pathogenic to a regulatory phenotype with satralizumab treat-
ment, despite maintaining antigen specificity. This theory
might be supported by the observation that relapses were
milder in patients receiving long-term satralizumab treat-
ment.32 As an upstreammechanism of B-cell differentiation, IL-
6 has been reported to inhibit regulatory T-cell (Treg) function
and prevent Th17 cells from converting to Tregs.33,34 Our
findings of Breg induction by IL-6R blockade in PBMC culture
might occur through these mechanisms.

Although it has been suggested that IL-10–producing B cells
can be induced from multiple B-cell subsets on different
stimuli,35 PBs or plasma cells (PCs) have also been reported
to have the ability to produce IL-10.36-38 PCs are generally
believed to divide infrequently, and a subset of PCs have the
capacity to be extremely long-lived in tissue.39 While circu-
lating PBs constitute a minor fraction of PBMCs, they could
represent PB/PCs in vivo, as B cells differentiate and function
in secondary lymphoid tissues.40 Sampling from these tissues
might provide more detailed information.41 The co-expression
of CD200 in LAG3-positive natural regulatory PCs was de-
scribed.37 This finding potentially corresponds to the regula-
tory PBs observed in our study, although the PBs in our study
were induced by in vitro stimulation.

In the context of autoimmunity, several reports suggest that
CD200 acts in a disease-suppressive manner in animal models,
including EAE.42,43 Within the CNS, CD200 is expressed in
neurons, astrocytes, and oligodendrocytes in a homeostatic state
and is believed to negatively regulate CD200 receptor-positive
microglia.44 Furthermore, in the postmortem brain pathology of
NMOSD, acute lesions demonstrate B-cell infiltration into the
CNS,45 and further studies are needed to elucidate howB cells or
PBs with this phenotype behave inside the CNS.

The expansion of DNs and PBs observed during NMOSD
attacks is consistent with a recent report using single-cell RNA-
seq techniques.46 By longitudinal analysis, we found that DNs
and PBs exhibited a subsequent decrease after the attacks
(Figure 1C-D), suggesting the importance of considering the
clinical phase when analyzing the lymphocyte phenotype. Re-
cent research on the clinical course of NMOSD has indicated
that relapses are more likely to occur during an early period
within 12 months of the last clinical attack.47 Based on this
report, we evaluated the CD200+ PB proportion separately
within or outside this period (Figure 4C). Of note, CD200+ PBs
expanded in this early period in patients with NMOSD re-
ceiving satralizumab, indicating that B-cell differentiation under
disease activity is skewed toward the immune regulatory side
that potentially becomes pathogenic in cases without treatment.
While there is no established indicator to determine whether
patients achieved a sufficiently low risk of relapse, efforts to
explore this from an immunologic viewpoint are warranted.

This study has several limitations. When interpreting longitu-
dinal data of clinical samples from patients with NMOSD, it is
crucial to note the potential influence of various medications
during acute and remission phases. We analyzed clinical sam-
ples from patients already diagnosed with NMOSD, and this
analysis was not conducted considering the demographic
background and previous medication status. Patients treated
with biologics may have relatively high disease activity, and it
should be noted that they may not reflect the entire NMOSD
population. Given that patients receiving satralizumabmay also
represent relatively severe cases, this could be a reason for the
observation that the proportions of DNs and PBs did not
significantly decrease after the initiation of satralizumab
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(eFigure 3). Furthermore, we have only demonstrated one
aspect of IL-6 signaling blockade, focusing on IL-10 as a Breg
marker. We could not elucidate the details of B-cell intrinsic
mechanisms of IL-10 or CD200 induction by IL-6R Ab using
functional assays. The PBs we observed may also only partially
reflect the tissue responses occurring in vivo. Finally, the lim-
ited number of patients receiving satralizumab warrants at-
tention to confounding factors in interpreting the correlation
between CD200+ PBs and clinical parameters, and the longi-
tudinal assessment of each patient remains incomplete. Al-
though further research is needed to fully explore these aspects,
our current findings on regulatory PBs could contribute to the
emerging field of Bregs in the pathophysiology of NMOSD.

Because NMOSD may require lifelong treatments to pre-
vent relapses, curative therapy, including the restoration of
self-tolerance, should be developed.48-50 In the evolution of
treatments for NMOSD from conventional immunosup-
pressive therapy to a curative therapy, precise and maxi-
mized restoration of disrupted regulatory systems is
indispensable. The regulatory PBs found in our study might
be one target for future therapies. Our findings suggest that
the induction of regulatory PBs represents a novel mech-
anism of action for NMOSD treatment through the IL-6
signaling blockade. The role of Bregs in NMOSD remains
poorly understood and requires further study, especially
regarding their focal behavior (e.g., in the lymph nodes,
spleen, bone marrow, and CNS) and interactions with
other cells.
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