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This study shows, by means of numerical analysis, that the characteristics of discrete dynamical 
systems in which chaos and catastrophe coexist are closely related to the geometric statistics in 
Finsler geometry. The two geometric statistics introduced are non-linear connections informa
tion, denoted as N 1 , and the mean deviation curvature, denoted as P. The quantity N 1 can be 
used to determine the occurrence of chaos in terms of non-equilibrium stability. The resulting 
chaos is characterized by P in terms of the trajectory's robustness, which is related to the lo
calization or globalization of chaos. The characteristics of catastrophe-induced chaos are clearly 
visualized through the contour topography of N 1 , in which an abrupt change is represented by 
cliff topography (i.e., a line of critical points); initial dependence is reflected in the reversibility 
of topographic patterns. On overlaying the contour topography with the singularity pattern, it is 
evident that chaos does not arise around the singular point . Furthermore, the extensive develop
ment of cusp and butterfly chaos demands information on the non-linear connections within the 
singularity pattern. The asymmetry in swallowtail chaos is less distinguishable in an equilibrated 
state, but becomes more evident when the system is in a state of non-equilibrium. In many anal
yses, chaos and catastrophe are examined separately. However, these results demonstrate that 
when both are present, the two have a complex relationship constrained by the singularity. 

Keywords: catastrophe; discrete chaos; non-equilibrium; singular point ; Finsler geometry; KCC 
theory 

18 1. Introduction 

1• Catastrophe, bifurcation, and chaos hold significant importance in both the field of general dynamical 
20 systems (e.g., [Thom, 1972; Brown, 1995; Elaydi, 2007] ) and concrete systems (e.g., [Rinaldi et al., 1993; 
21 Ramu et al., 1994; Nagy & Tasnadi, 2013]). It is widely recognized that the three concepts are mutually 
22 interdependent and that both catastrophe and chaos have a complex relationship with bifurcation [Gilmore, 
23 1981; Chen, & Leung, 2012; Kuznetsov et al., 2023]. Consequently, there is a belief that catastrophe and 
24 chaos are also intrinsically linked (e.g., [Gilmore, 1981; Gaito & King, 1989; Elaydi, 2003]), a lthough the 
25 amount of research in this area is relatively limited compared to bifurcation and chaos (e.g., [Kam, 1992; 
26 Qin et al., 2006; Jakimowicz, 2010; Nagy & Tasnadi, 2013; Gu & Chen, 2014]). 
21 Alternatively, Kosambi-Carten-Chern (KCC) theory in Finsler geometry or manifolds [Antonelli, & 
28 Bucataru, 2003; Antonelli et al., 2014] has recently been used to study catastrophes (e.g., [Yamasaki & 
,. Yajima, 2020, 2022b]), bifurcations (e.g., [Yamasaki & Yajima, 2017; Liu et al., 2021b]) and chaos [Gupta, & 
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30 Yadav, 2017; Chen et al. , 2020; Liu et al., 2021a; Wei et al., 2022; Munteanu, 2022a; Zhang, 2023]. Hence, 
31 it follows that these phenomena will be examined from a unified Finsler geometry perspective. This paper 
" aimed to elucidate the connection between catastrophe and chaos utilizing KCC theory, a geometric theory 
33 of bifurcation. Furthermore, this study is focused on a 1D discrete chaos system. Therefore, numerical 
" methods for Lyapunov exponents from the field of discrete mathematics are applied (e.g., [Geist et al., 
35 1990; Lynchi, 2007; Toth et al., 2017; Li et al., 2020]). 
" In KCC theory, the geometric quantities of Finsler geometry, specifically the non-linear connection 
31 and the deviation curvature, have a significant role in stability (e.g. , [Sabau, 2005a,b; Harko & Sabau, 
" 2008; Munteanu, 2022b]) and have been applied across various fields such as Newtonian astrophysics 
" [Boehmer & Harko, 2010], the inverse problem on updating parameters of the system[Sulimov et al., 2018], 
40 the resonant non-linear Schrodinger system[Lai et al., 2022], the traveling wave solutions of the modified 
41 equal width-Burgers wave equation [Liu et al., 2022a], the extended Malkus-Robbins dynamo [Chen et al., 
., 2021], the Navier-Stokes system [Kumar et al., 2019], and the three point vortex field [Hirakui, & Yajima, 
43 2021]. Because the non-linear connection and deviation curvature are already utilized in catastrophe studies 
44 [Yamasaki & Yajima, 2020], their diversion to the study of chaos tends to streamline the analysis. However, 
45 because deviation curvature, as opposed to the non-linear connection, has been widely adopted as the 
" geometric quantity in chaos analysis (e.g., [Harko et al., 2015; Chen, & Yin, 2019; Huang et al., 2019; 
47 Liu et al., 2020; Wang et al., 2021; Liu et al., 2022b]) , a discussion of the correlation between non-linear 
48 connections N and chaos is needed to begin the analysis. 
49 Therefore, in Section 2, we discuss the relationship between N and chaos, with a focus on one-
50 dimensional (1D) elementary systems, specifically cusp, swallowtail, and butterfly catastrophes, which 
51 correspond to 1D discrete chaos, referred to as "chaos" hereinafter. In continuous three-dimensional 
" (3D) systems, the maximal Lyapunov exponent is closely linked to the Jacobi stability through deviation 
53 curvature [Oiwa, & Yajima, 2017; Yajima & Nakase, 2021]. On the other hand, it is widely recognized 
54 that the Lyapunov exponent L can be used to determine chaos for 1D discrete systems (e.g., [Elaydi, 
55 2007; Ashish et al., 2021]). Thus, this study provides evidence that Lis linked to a statistical measure of 
" information concerning N. This study refers to non-linear connections information as N1, in which N is 
" related to the non-equilibrium stability of the dynamical system [Yamasaki & Yajima, 2013]. Our findings 
sa suggest that the magnitude of N1 is useful for chaos determination based on non-equilibrium stability and 
" is a differential geometric representation of the Lyapunov exponents based on the KCC theory. 
60 Section 3 examines the catastrophe cusp as an illustration of N1-based analysis. The bistability of the 
61 catastrophe gives rise to initial value dependence, or hysteresis, in the chaotic pattern. Additionally, there 
62 is an abrupt change between chaos and non-chaos. For instance, we will observe a direct shift from node to 
63 chaos without cycle stage. In the N1-valued contour topography, the abrupt change is observed as a cliff 
64 (as a line of critical points), whereas the initial dependence is detected as topographic invertibility. 
65 Section 4 of this paper focuses on the impact of deviation curvature P on chaos. In Finsler geometry, 
60 Pis a geometric quantity of a higher order than N [Antonelli et al., 1993]. Therefore, P statistic effects 
61 on chaos can be viewed as corresponding to higher-order "Lyapunovianity". This section discusses the 
68 catastrophe butterfly as an illustration to provide clarity regarding the two primary geometric quantities 
69 in chaos, namely N and P. Briefly, the statistical analysis of N is linked to chaos determination, and the 
10 statistical analysis of P is linked to the degree of chaos development. Both concepts are mathematically 
11 connected, therefore, they are interrelated. 
12 Section 5 of this paper explores the non-equilibrium properties of chaos. Previous research has demon-
73 strated the usefulness of N and P in analyzing stability in non-equilibrium regions [Yamasaki & Yajima, 
,. 2016, 2022a]. Because chaos is a phenomenon that is typically associated with non-equilibrium, taking this 
" perspective is beneficial for the analysis. To illustrate, this section explores the swallowtail catastrophe. 
" Not only does chaos in the dynamic equilibrium state highlight the chaotic nature of the system after a 
,, sufficient amount of time has passed, but chaos in the non-equilibrium state during the process leading up 
" to it also emphasizes its nature. 
" Section 6 of this paper considers the chaos that arises when two parameters are bivariate. Unlike 
,o logistic systems commonly used in chaos studies, the catastrophe systems discussed in this paper possess 
" two or more parameters. Consequently, fixing specific parameters is a common analytical method. However, 
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82 parameters in nature are typically not constant and may exhibit interdependence. Thus, this study explores 
83 the correlation between patterns of chaos and singularity under bivariate conditions. We demonstrate 
.. that the size of the chaos-generating region in parameter space is related to the presence or absence of 
85 information on non-linear connections within the singularity pattern. 
.. Section 7 of this paper summarizes the key findings in four tables. 

81 2. Method 1: Non-linear connections information, N1 

ss In this section, we examine the correlation between the Lyapunov exponent utilized in analyzing 1D discrete 
89 chaos and the non-linear connection of Finsler geometry. To illustrate this, the logistic system is taken as 
oo an example. 

91 2.1. Brief overview of Kosambi-Carten-Chern theory in catastrophes 

92 In the examination of 1D discrete chaos, the logistic system is frequently utilized: 

ii= bn(l - n), (1) 

93 using the quadratic recurrence equation, i.e., the quadratic map is [May, 1974, 1976; Buscarino & Fortuna, 
94 2023]: 

rit+1 = bnt(l - nt), (2) 

95 where bis a constant. Generally, a 1D dynamical system with n = n(t) is given by 

ii=F, (3) 

96 where F is a function of n. This paper considers the chaos of the recurrence equation corresponding to Eq. 
97 (3): 

(4) 

98 The Lyapunov exponent used in this paper (Section 2.2) requires differentiating F by the continuous 
99 variable n. In a catastrophe, Fon the right side of Eq. (3) has a gradient potential f: F = -8nf, where 

100 f is a function of n [Thom, 1972; Zeeman, 1977]. In KCC theory, consider the case where n on the left 
101 side has time potential x: n = x (e.g., [Antonelli, 1985; Antonelli et al., 1993; Yamasaki & Yajima, 2017; 
102 Antonalli et al., 2019; Yamasaki & Yajima, 2020; Antonalli et al., 2021; Yamasaki & Yajima, 2022b]). In 
103 this case, the basic form in KCC theory is x + g = ii+ g = 0, where g is a function of n. To avoid confusion 
104 regarding signs, we will summarize the relationships between F in Eq. (3), f in a catastrophe scenario, 
105 and g in KCC theory: 

F = - 8nf = - g. (5) 

106 The concrete form of f is given by n polynomials for each catastrophe (type of singularity) [Thom, 
10, 1972; Zeeman, 1977]. From Eq. (5), this also determines the concrete forms of F and g. g represents the 
1os geometric quantities of KCC theory (e.g., [Antonelli, & Bucataru, 2003]): 

P= - Gg+N2
, 

(6) 

(7) 

(8) 
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109 where N represents the non-linear connections, G is a Berwald connection, and Pis the deviation curvature. 
110 Since every geometric quantity can eventually be expressed in terms of n alone, the time potential ± can 
111 be regarded as a purely mathematical tool [Yamasaki & Yajima, 2017, 2020]. It can also sometimes have 
112 a biological or physical meaning (e.g., [Antonelli, 1985; Yajima et al., 2018; Yamasaki & Yajima, 2022b]). 
113 Non-linear connection N and deviation curvature P have a close relationship with non-equilibrium 
11, stability and play important roles in the following analysis of chaos. 

ns 2.2. Lyapunov exponent and N1 

11, Our approach uses the Lyapunov exponent computed through the derivative method. From Eqs. (1) and 
m (3), F is given by 

F = bn(I -n). (9) 

11, Differentiating F defines the Lyapunov exponent using the derivative method (e.g., [Elaydi, 2007; Lynchi, 
119 2007]): 

1 T 

L= T+I Llnl8nF(nt)I. 
t=O 

(10) 

120 When calculating the partial derivative of F with respect to n, the recurrence equation value of nt+l = 
121 bnt(l - nt) from Eq. (9) is utilized instead of the continuous variable n: 8nF(no), 8nF(n1), · • ·, 8nF(nr) 
122 (e.g., [Elaydi, 2007; Lynchi, 2007]). 
123 In summary, the calculation of L is based on the derivative of F , with 8nF being calculated using nt 
124 in the recurrence equation. The function F corresponds to (- g) in Eq. (5), and the non-linear connection 
m in Eq. (6) is obtained from the derivative of g. Hence, Eq. (10) can be rewritten as 

L = N1 + ln[2], (11) 

120 where N1 represents the non-linear connections information in this paper, defined as 

1 T 

N1 = T+ 1 Lln lN(nt)I. 
t=O 

(12) 

121 As in the case above, N is calculated using the values of nt from the recurrence equation: N(n0 ), N(n1), 
128 • • •, and N(nr). Equation (11) includes ln[2], because it is multiplied by a factor of 1/2 from Eq. (6). 
129 The statistical condition for chaos satisfies L > 0 (e.g., [Elaydi, 2007; Lynchi, 2007]), which gives us the 
130 corresponding condition for N1 based on Eq. (11): 

N1 > - ln[2] ~ -0.693147 • • •. (13) 

131 Let us evaluate this using the logistic system. Based on Eq. (9), the non-linear connection can be 
m determined from Eqs. (5) and (6), as given by 

b(l - 2n) 
NLogistic = -

2 
• (14) 

133 Substituting Eq. (14) into Eq. (12) yields the following expression: 

T 
N = _ 1_ ~ln I-b(l - 2nt) I 1 T+l~ 2 ' 

t=O 
(15) 
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Fig. l. (a) Logistic's N1 (T = 105, no = 0.01). Gray dotted line is the critical value: - ln[2] ::::J - 0.693 .. ·. (b) Corresponding 
bifurcation diagram. 

134 where nt is given by nt+1 = bnt(l - nt) from Eq. (9). The results of the calculation for Nr are presented 
135 in Fig. l(a); Fig. l(b) shows the corresponding bifurcation diagram. From a comparison of the two figures, 
136 bifurcation takes place at Nr = - ln[2] and the onset of chaos occurs when Nr > - ln[2]. The b value in 
m every case is also consistent with the previous analysis (e.g., [Elaydi, 2007; Lynchi, 2007]). 
138 The detailed method for calculating Nr in Fig. l(a) is presented below. For a more detailed mathemat-
139 ical discussion and background on the iteration and derivative methods used, please refer to the following 
140 references: [Geist et al., 1990; Lynchi, 2007; Toth et al., 2017; Li et al., 2020]. From the terms in Eq. (15): 
141 lnJ - b(l - 2nt)/2I and nt+1 = bnt(l - nt), fort= 1 we have 

ln I- b(l -
2 

2n1) I= 1n I- b(l - 2bn~(l - no)) I · (16) 

142 Thus, by fixing the value of bas bf, we can estimate the value at t = 1 in Eq. (15) from the initial value 
143 n0 : 

(17) 

1« where F(no) = b1no(l - no). Through iteration, it is possible to estimate the value from the initial value 
145 n0 , even when t = 2: 
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ln I-b1(l; 2n2) I= ln I-b1(l - ~F(n1)) I 
= ln I-b1(l - 2~(F(no))) I (18) 

= ln I-b1(l - ~F2(no)) I· 
14, For any given value of t, we obtain 

(19) 

141 Once the initial values are determined, we can compute values from t = 0 to t = T = 105. Therefore, by 
148 computing the sum of Eq. (15) and dividing it by T + 1, a single point in b = bf can be obtained, as shown 
149 in Figure l(a). Next, by shifting the value of b1 by 0.01 and repeating the same calculation, Nr can be 
150 estimated for various b1 as shown in Figure l(a). 
151 A sufficiently large value of T is considered to be statistically significant (e.g., [Lynchi, 2007]), and 
152 therefore T = 105 is used in this study. The fixed value of b has a shift interval of 0.01, which is deemed 
15, sufficient, because the main focus of this study is the analysis of the global pattern of the bifurcation 
154 diagram, rather than the local pattern, such as the window in chaos. 
155 As shown below, this study calculates Nr in the Cusp, Butterfly, and Swallowtail cases. In each singular 
156 case, the functional form of the Eq. (19) containing Ft(no) is replaced by the appropriate one. In this case, 
151 Eq. (19), which is linear with respect to nt, becomes non-linear with respect to nt; however, the calculation 
158 technique is the same. 
159 Additionally, statistics for deviation curvature are also calculated, and the functional form of Nr 
160 replaces that of deviation curvature. If the number of parameters increases to two, the calculation is first 
101 carried out with both values fixed. Then, each value is calculated by shifting them as described above. 
102 N1, similar to L, can be used to identify chaos. To calculate Nr, we utilized N, a non-linear connection 
163 that contains information about non-equilibrium stability and whose sign determines the type of N-stability 
164 [Yamasaki & Yajima, 2013, 2016]. Hence, the identification of chaos through Nr considers non-equilibrium 
165 stability, specifically the presence of chaos resulting from changes in the magnitude of N-stability. That is, 
166 since Eq. (12) calculates the absolute values of N, if the stability magnitude exceeds a critical value, the 
167 system becomes chaotic, regardless of whether the system is N -stable or N -unstable. 
168 Finsler geometry includes geometric quantities of a higher order in the form of deviation curvature 
169 P and, its corresponding concept, J -stability [Antonelli, & Bucataru, 2003; Sabau, 2005a,b], expanding 
110 on that of non-linear connections. This allows for the exploration of higher-order Lyapunovianity through 
m Finsler geometry, as described in Section 4. 
112 Non-linear connections and deviation curvature have both been derived specifically for catastrophes 
m [Yamasaki & Yajima, 2020, 2022b]. This allows for the direct conversion to chaos analysis for each type of 
m catastrophe: cusp, butterfly, and swallowtail. The next section will focus on the cusp specifically. 

m 3. Chaos in cusp 

m 3.1. Geometric quantities and singular pattern 

m This section considers chaos in cusp. In Eq. (3), F is [Thom, 1972; Zeeman, 1977] 

F cusp = - onfcusp = - (n3 + an + b), 

178 where a, bare constants. Thus, from Eq. (5), 

9cusp = n 3 + an + b. 

(20) 

(21) 
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(b) , ~ 

I • ~ 
(c) -------;;:, 

Fig. 2. (a) Cusp singularity. (b) Equilibrium solutions for a= - 2.1. (c) Equilibrium solution for b = - 0.5. In both (b) and 
(c), the solid line is stable, the dotted line is unstable, and the gray arrow is a catastrophe. 

119 We have demonstrated the derivation of the subsequent geometric parameters [Yamasaki & Yajima, 2020]: 

1 2 
NcUBp = 2(3n + a), (22) 

1 ( 4 2 2) Pcusp = 4 - 3n - 6an - 12bn + a . (23) 

1so From the equilibrium condition 9cUBp = 0 and the neutral N -stability Ncusp = 0, the singular pattern 
18 1 in the equilibrium state can be obtained [Yamasaki & Yajima, 2022b]. Figure 2(a) is well known and can be 
182 derived from Eqs. (21) and (22). The logistic system has only one parameter b (Eq. (9)); however, cusp has 
183 two parameters a, b (Eq. (20)). Therefore, we fix one of them to investigate chaos behavior. Figures 2(b) 
184 and (c) illustrate the equilibrium solutions from 9cusp = 0 with fixed parameters. The stable (unstable) 
1s5 equilibrium solutions are represented by a solid (dotted) line, resulting in a catastrophic outcome, as 
186 indicated by an arrow. 

181 3.2. Chaos with fixed a 

1ss The computation method for determining the non-linear connections information, N1, is identical to that 
189 of the logistic case. This involves substituting Eq. (22) into Eq. (12): 

N1 = T ~ 1 t,1n 1~(3n; + a) l- (24) 

100 To calculate nt, from Eq. (20), we use 

(25) 

191 The distinction from the logistic instance is that the cusp is concomitant with a catastrophe, as displayed 
192 by the arrows in Figs. 2(b) and (c). Because the N value may vary rapidly, the value of N1 can also 
193 change rapidly. As a consequence, chaos can occur discontinuously, rather than continuously as in logistics. 
194 This chaos exhibits an additional feature of catastrophes: initial dependence (hysteresis). As illustrated in 
195 Fig. 2(b), when the absolute value of the initial value is identical, but the sign varies, the catastrophe's 
196 occurrence location is reversed. This means that the system is a multi-stable type. The chaotic pattern 
191 further demonstrates this. 
1•8 As an example, let's consider the case where a = - 2.1. The initial values are no = ± 0.3, and we can see 
199 the resulting N1 and n calculated from Eqs. (24) and (25), as shown in Fig. 3. Similar to the logistic case 
200 (Fig. 1), bifurcation occurs at N1 = - ln[2] and chaos occurs when N1 > - ln[2]. However, this case differs 
201 from the logistic case, as N1 changes suddenly ( almost discontinuously). Thus, there is a point where the 
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Fig. 3. Cusp's Ni (a= -2.1, T = 105) and corresponding bifurcation diagram for (a)no = 0.3 and (b)no = -0.3. 

202 transition between non-chaotic and chaotic is abrupt. Unlike the catastrophe from one equilibrium solution 
203 to another, as depicted in Fig. 2(b), this sudden chaotic transition transpires within the non-equilibrium 
204 state. Although this explanation is qualitatively correct, this sudden transition seems to be closely related 
205 to catastrophes in dynamical systems. Therefore, additional quantitative studies from this perspective are 
200 required. Section 3.3 shows quantitatively that the location of critical values in a catastrophe constrains 
201 the location of abrupt transitions in chaos. Additionally, the position of the critical value for unstable 
208 equilibrium solutions is related to the multi-stability of chaos. Therefore, the abrupt transition of chaos 
209 reflects the nature of the catastrophe phenomenon, albeit in a non-equilibrium regime. 
210 Furthermore, opposite signs in Figs. 3(a) (no = 0.3) and 3(b) (no = -0.3) yield opposite patterns. 
211 Specifically, upper and lower patterns develop, as shown in Figs. 3(a) and (b), respectively. The initial 
212 criticality of the upper and lower patterns was determined by the positional relationship with respect to 
m the non-equilibrium stability. This feature will be analyzed further in the following section. 
214 The above examples represent a case where no = ±0.3 and a = -2.1. These results are applicable 
215 to other cases where no varies from ±0.01 to ±1.7. Additional results beyond a= -2.1 are addressed in 
216 Section 3.5. 
211 Catastrophe theory suggests that when the control parameter (cause) changes continuously, the cor-
218 responding outcome changes discontinuously. Chaos theory suggests that the type of trajectory changes 
m qualitatively from stationary or periodic to chaotic with a continuous change in the control parameter. As 
220 shown in Fig. 3 of the present study, both of these phenomena can occur simultaneously. 
221 As a physical example, it has been noted that continuous changes in the solar constant can cause 
222 catastrophic changes in climate (e.g., [Ghil, & Childress, 1987; Eisenman, & Wettlaufer, 2009; Bathiany et 
223 al., 2018]). Additionally, the climate may be changing chaotically (e.g., [Shukla, 1998; Lenton et al., 2008; 
224 Pisarchik, & Feudel, 2014]). Although the climate change phenomenon is more complex than the models 
225 analyzed in this study, the results suggest that catastrophe and chaos can occur simultaneously even in 
220 the simplest case. 
221 The following sections will demonstrate the complexity of the relationship between the two and how 
228 it is influenced by the singularity's nature. 
229 

2, 0 3.3. Critical point in catastrophe's chaos 

231 To analyze the dependence of chaos patterns on initial values, we examine the development process of the 
232 bifurcation diagram. For this analysis, here we apply the critical point determined by the initial value, 
233 represented as nt+l = nt = • • • = no (e.g., [Elaydi, 2007; Lynchi, 2007]). In the (b, nt) space bifurcation 
234 diagram, the critical point's location restricts the location and pattern of sudden changes in the space. 
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Fig. 4. Bifurcation diagram for each t period under the same conditions as Fig. 3. The black dot is a critical point. 

235 As an example, Fig. 4 presents the bifurcation diagram for each time period t under the same conditions 
236 as Fig. 3(a): a= -2.1 and no = 0.3. The depiction fort= 1 ~ 3 superimposes the values of n1, n2, and 
231 n3 for each parameter b, resulting in three curves (Fig. 4(a)). As the interval fort is 3 during all periods, 
233 the perceived presence of numerous chaos points is, in fact, an illusion (Figs. 4(c)(d)). The point where all 
239 trajectories intersect, the so-called critical point, is observed. As t increases, an abrupt shift occurs in the 
240 b-coordinate of the critical point. 
241 Next, we will determine the coordinates of the critical point in the general case. Let (bo, no) denote the 
242 coordinates of a critical point in (b, n) space as depicted in Fig. 4. In the case of a cusp, nt+i = -(nt+ant+b) 
243 and nt+1 = nt = • • • = no result in 

bo = - no(n5 +a+ 1). (26) 

244 Given a fixed value of a, the coordinates (bo, no) of the critical point can be determined by providing an 
245 initial value of no. The stability of the non-equilibrium region holds significant importance in this case and, 
246 hence, we calculate the KCC stability using Eqs. (22) and (23). According to [Yamasaki & Yajima, 2017], 
241 the system is N-stable (-unstable) when N is positive (negative). Moreover, the system is J-unstable 
24a (-stable) when P is positive (negative). Further details on each stability are provided in [Yamasaki & 
249 Yajima, 2020] (see also [Munteanu et al., 2023a; Munteanu, 2023b] for higher dimensions). For the sake of 
2so convenience, the combinations of N-stability and J-stability are unified in grayscale: 

251 

252 

253 

254 

• J-stable P < 0 and N-stable N > 0: light gray 
• J-stable P < 0 and N-unstable N < 0: white 
• J-unstable P > 0 and N-stable N > 0: dark gray 
• J-unstable P > 0 and N-unstable N < 0: black 

255 It has been demonstrated that a system located in the black or white region transitions to a nearby 
256 light or dark gray region (e.g., [Yamasaki & Yajima, 2017]). To clarify this in more typical terms, referring 
251 to Fig. 2(b), if the initial value is above the unstable equilibrium solution (center dotted line), then the 
2sa transition occurs to the upper stable equilibrium solution (upper solid line). Likewise, if the initial value 
259 is below the dotted line, the transition is to the stable equilibrium solution situated underneath. Thus, if 
260 the value of no at the critical point (26) exceeds the unstable solution, the upper bifurcation diagram will 
261 develop, and if it is lower, so will the lower bifurcation diagram. The unstable solution in the cusp: n us, 

262 derived by Yamasaki & Yajima (2020), is reformulated in terms of bo in Eq. (26): 
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Fig. 5. Stability and bifurcation diagram superimposed under the same conditions as Fig. 3. (a)no = 0.3. (b)no = -0.3. The 
round gray point is a critical point calculated from Eq. (27). The white lines are equilibrium solutions (solid is stable and 
dotted is unstable). Non-equilibrium stability is gray scaled (see main text). 

22/ 3 q3 (-1 - i\/'3) ( ✓12a3 + A2 +A) 
213 

+ 2q2~ ( v'3 - 3i) a 
nus= 

12{/ J12a3 + A2 + A 

(27) 

263 where A = 9no ( a + n5 + 1). 
264 For instance, Fig. 5 examines identical conditions to those used in Fig. 3: a = - 2.1 and t he initial 
26s value of no = ±0.3. The critical point (bo, no) is computed from Eq. (26), result ing in the round gray 
266 point. If the critical point of the black region is proximate to the dark gray region above, then the upper 
261 bifurcation diagram will develop. Conversely, if it is below, the lower diagram will develop. Specifically, 
26a when a = -2.1 and no = ±0.3, Eq. (27) yields nus~ ±0.146 (the same sign order), i.e., no is above (below) 
269 nus, respectively. 
210 The same pattern can be replicated with alternative initial values. The following is a supplement. For 
m instance, when a = -2.1, as described above, the range for b in which the unstable equilibrium solution 
212 nus exists is -1.17 < b < 1.17 (refer to Fig. 2(b)). It should be noted that bo in Eq. (26) may exceed this 
m range, relying on the initial values selected. In this case, instead of using the coordinates (bo, n0 ) of the 
274 critical point for t ;:: 0 as mentioned above, we should utilize the coordinates (b1 , n 1) of the critical point 
m that exists for t ;:: 1. In this case, b1 represents the situation where 11t+1 = nt, but the initial value is one 
216 mapping of - (ng + an0 + b), and not n0 : 

b1 = 0.5 ( ±J-4a - 3n5 - 2ano - 2ng +no) . (28) 

m For instance, the initial value no= 1.5 is larger than no= - 1.5. However, according to Eq. (28) and within 
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Fig. 6. (a) Cusp's N1, (b) Corresponding bifurcation diagram. b = - 0.5, T = 105 , and no= 0.3. 

218 the range of - 1.17 < b < 1.17, where unstable solutions exist, n1lno= ± L5~ =f0.108, resulting in a reversal 
219 of the large/small relationship. As a result, a lower pattern develops when no = 1.5, while an upper pattern 
2ao occurs when no = - 1.5. 

281 3.4. Chaos with fixed b 

282 In this section, we examine chaos when the parameter b is held constant. We use the same analytical 
283 approach as in the previous section, but interchange the roles of parameters a and b. Initially, N1 is 
284 calculated utilizing Eqs. (24) and (25), with b fixed and an initial value of no given. Subsequently, a is 
285 varied. As an example, Fig. 6 shows the results of the analysis when b = -0.5, no = 0.3. As implied by 
286 Fig. 2(c) , an asymmetric pattern emerges. The case of other no and b values is presented in the following 
281 section, together with changes in a. 

2aa 3.5. N1 in parameter space 

289 In the previous analysis, one parameter of the two, namely a or b, was kept fixed, while N1 was computed. 
290 For the purpose of visual clarity, this section presents the distribution of N1 + ln[2] over (a, b) space, rather 
291 than just N1 itself. Accordingly, positive regions correspond to chaotic behavior, while negative regions 
292 indicate non-chaotic behavior. The calculation for N1 remains based on Eqs. (24) and (25), as earlier. 
293 However, the parameters a and b are now not fixed, resulting in a two-dimensional (2D) contour plot of 
294 N 1 + ln[2]. Since both parameters, a and b, are varied, the following 2D plot displays a more comprehensive 
295 view of the two significant features: (1) a sudden, catastrophic shift in mode and (2) initial dependence 
296 (hysteresis). 
291 As an example, we consider the case with the initial condition of no = 0.3, as shown in Fig. 7(a). 
299 The cross-section of a = - 2.1 corresponds to Fig. 3(a). The cross-section of b = - 0.5 corresponds to 
299 Fig. 6. In Fig. 7(b), where no = - 0.3 (the sign changes), the pattern is inverted. This figure displays the 
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Fig. 7. Contour topography of (N1 + log2)-values in parameter space for (a) no= 0.3 and (b) no= - 0.3. (c) Enlarged view 
of the white rectangle area in (a). Positive area is chaos. 

300 impact of initial dependence, as previously discussed. One of these cross-sections is depicted in Fig. 3(b). 
301 An enlarged image of the white rectangle area in Fig. 7(a) is depicted in Fig. 7(c). The abrupt alteration 
302 in the boundary solidifies the distinction between the negative region (non-chaotic) and the positive region 
303 (chaotic). Due to the presence of this cliff-like, discontinuous boundary, the transition from non-chaotic 
304 to chaotic is characterized as being similar to a catastrophe. The cross-sectional examples of this are the 
305 catastrophes depicted in Figs. 5(a) and 5(b). The existence of the linear set of critical points is responsible 
306 for the cliff formation. 
307 In lD discrete systems, calculations may diverge to infinity if the parameter values are sufficiently large 
30a ([Hirsch et al., 2012]). Furthermore, the results diverge technically in a range well beyond the minimum 
309 indicated by the contour lines (e.g., -5 in Figure 7(c)). In this paper, these parameter ranges are represented 
310 as pure white in the contour topography. This also applies to other contour topographies. 
m When both parameters are varied, the contour pattern depends only on the initial value. As shown 
m above, changing the sign of the initial value reverses the pattern. Next, let us consider the effect of the 
m magnitude of the initial value. To simplify, assume n0 = n in the formula nn+ 1 = -( nf +ant+ b) and focus 
314 solely on the constant terms ( terms unrelated to n) after mapping three times: 

C = b ((3 - 3a)b6 

- 3(1- a)2b4 + (a((3 - a)a - 4) + l)b2 + (1 - a)a - b8 

- 1). (29) 

315 From Eq. (22), plotting lnlNcl with Ne= (1/2)(3C2 +a) results in a pattern resembling a heart shape, owing 
316 to its polynomial characteristics. As the mapping is repeated more frequently, the heart shape becomes 
m more pronounced. The pattern depicted in Fig. 7 is the average obtained from each mapping, according to 
318 the sum in Eq. (24). The constant term produces the heart-shaped pattern, while the non-constant term 
m that relies on the initial value modifies it. 
320 For instance, when the initial value is small (e.g., no= 0.01), a closed heart shape emerges, as depicted 
m in Fig. 8( a). If the initial value increases (e.g., no = 0.1), the bias of the critical point results in a dislocation 
322 in the heart-shaped structure (Fig. 8(b)). This dislocation progresses with the magnitude of the initial value, 
323 leading to the formation of a cliff at the tip, which displays catastrophic abrupt changes between chaotic 
324 and non-chaotic regions (Fig. 7). 

325 4. Method 2: Mean deviation curvature P 

326 Up to this point, we have examined primarily the impact of non-linear connections Non chaos. However, the 
m KCC theory suggests that deviation curvature P- an essential geometric quantity - is linked to trajectory 
328 robustness (e.g., [Danila et al., 2016; Harko et al., 2016; Lake & Harko, 2016]). Thus, our analysis of chaos 
329 considers the robustness of trajectories based on the deviation curvature. 
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Fig. 8. Contour topography of (N1 + log2)-values in parameter space for (a)no = 0.01, (b)no = 0.1. 

330 4.1. N1 in butterfly 

331 Our examination focuses on the butterfly (hereinafter, BT), which is a higher-order catastrophe than the 
332 cusp. In Eq. (3), F is [Thom, 1972; Zeeman, 1977] 

FBT = - 8nfBT = - (n5 + an3 + bn2 +en+ d), 

333 where a, b, e, dare constants. Thus, from Eq. (5), 

gBT = n5 + an3 + bn2 +en+ d. 

334 We have already presented the following geometric quantities [Yamasaki & Yajima, 2020]: 

(30) 

(31) 

1 
NBT = 2(5n4 + 3an2 + 2bn + e), (32) 

PBT = i (5n4 + 3an2 + 2bn + e) 2 
- (10n3 + 3an + b) (n5 + an3 + bn2 +en+ d). (33) 

33s The conditions where gBT = NBT = 0 results in a singular pattern of BT in the equilibrium state [Ya-
336 masaki & Yajima, 2022b]. Figure 9 illustrates the outcome of the calculation with the parameter a = - 1.5. 
331 To simplify, we set the bias parameter b [Brocker, & Lander, 1975] to be zero in this paper. Based on the 
338 shape of the singularity pattern, we considered six distinct cases in which parameters e and d cross the 
339 pattern. The equilibrium solutions for each case and the results of the KCC analysis for non-equilibrium 
340 stability based on Eqs. (32) and (33) are also presented in Fig. 9. 
341 First, as in the cusp case, the analysis was conducted using non-linear connections information, leading 
342 to the subsequent analysis based on deviation curvature. The analytical approach is identical to that used 
343 for a cusp. Initially, to compute the non-linear connections information N1 for BT, we substitute Eq. (32) 
3« into Eq. (12): 

Nr = T: 1 t, ln I ~(5nf + 3an; + 2bnt + e)l- (34) 

345 To calculate nt, from Eq. (30), we use 

nt+1 = -(nf +ant+ bn; + ent + d). (35) 

346 The distribution of Nr within the parameter space plays a pivotal role in determining chaotic behavior, as 
347 demonstrated for the cusp. The polynomial Eq. (34) with b = 0 indicates that a small initial value results in 
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Fig. 9. Butterfly (BT) singularity (a = - 1.5, b = 0). Equilibrium solution (solid is stable and dotted is unstable) and 
non-equilibrium stability (gray scale, see main text in Section 3.3) for each parameter are also listed. 

34a a heart-shaped distribution, as shown in Fig. 8. If the initial value's magnitude is significant, then left-right 
349 asymmetry becomes dominant. If the sign of the initial value changes, the distribution pattern will invert. 
350 Figure 10 shows the distribution of N1 + In [2], which was obtained by applying Eqs. (34) and (35) with 
351 a = - 1.5 and an initial value of n 0 = 0.1. Also presented in the figure is a bifurcation diagram for each 
352 parameter, as shown in Fig. 9. Various combinations of the initial value and a are presented in Fig. 11. 
353 Similar to the cusp, Fig. ll(a) illustrates that the heart shape becomes distorted and eventually develops 
354 a discontinuity as a increases. Also similar to the cusp, Fig. ll(b) shows that, when the initial value's 
355 sign changes, the pattern reverses, and left-right asymmetry prevails with an increase in the initial value's 
356 magnitude. 

357 4.2. P in butterfly 

358 We shall now examine the correlation between deviation curvature P and chaos. Obviously, N and P are 
359 not independent, but are associated through Eq. (8), as follows: 

N 2 = P+Gg. (36) 

360 From this equation and Eq. (12), it is evident that the calculation of N1 corresponds to calculations of 
361 P and Gg, but it does not account for the net effect of P alone. The relevance of N1 in determining 
362 chaos implies that it is challenging to make a chaos determination based solely on the calculation of P. 
363 As a consequence, previous chaos analyses that depended primarily on P proved to be valuable, but were 
364 complicated by the existence of G and g. If N is large enough to be prone to chaos, the sign of P can be 
365 determined from P = N 2 - Gg ~ N 2 > 0. However, it remains unclear as to how the magnitude of P 
366 affects chaos. 
367 Therefore, here we take a closer look at the net effect of P's magnitude on chaos. Defining a corre-
36a sponding P statistic, such as N1 for N, is desirable. The time average of P is the simplest statistic to 
369 consider: 
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1 T 

p = T+ 1 LP(n1J 
t = O 

(37) 

310 In this paper, this statistic is referred to as the mean deviation curvature. 
311 Previous research has demonstrated a correlation between P and the robustness of the trajectory, and 
m has concentrated primarily on the sign of P (e.g., [Danila et al., 2016; Harko et al., 2016; Lake & Harko, 



16 K. Yamasaki 

313 2016]). Further research has revealed that the magnitude of Pis linked to the level of robustness described 
374 by the Douglas tensor (e.g., [Antonelli, & Bucataru, 2003; Yamasaki & Yajima, 2020, 2022b; Munteanu, 
375 2023b]). For instance, as the value of P increases (decreases) , the robustness of the trajectory will decrease 
376 (increase) , resulting in a more localized (globalized) trajectory. However, the role of the statistic P in 
m chaotic systems remains unclear. Thus, we initiate our analysis by calculating P for the chaos case and 
378 observing its correlation with the chaos trajectory. 
379 As a simple example, consider a situation in which only chaos develops. Chaotic regions on both 
380 sides of the parameter space (Fig. 11) merge at the tip as c decreases. For consistency with Fig. 11, we 
381 calculate N1 + ln [2] under identical conditions: a= -l, b = 0 and no = 0.01, utilizing Eqs. (34) and (35). 
382 Figure 12(a) expands the merging area. The bifurcation diagram is presented in Fig. 12(b), computed for 
383 c = -1.33, illustrating the merger of the chaos on both sides. Because the chaos on both sides ( d < -0.04 
"' and d > 0.04) and in the merging region (-0.04 < d < 0.04) have differing oscillation widths, we refer to 
385 the former as (relatively) local chaos and the latter as (relatively) global chaos in this paper. 
386 Figure 12(c) displays the computed value of Nr that corresponds to Fig. 12(b) using Eqs. (34) and (35). 
387 As it is chaotic throughout almost all regions, most of the values surpass the critical value: ( - ln[2]) (repre-
388 sented by the dotted line). The variation is insignificant, only marginally differentiating at the boundaries 
389 of the merging region, while presenting gently mountainous patterns for both local chaos ( d < -0.04 and 
390 d > 0.04) and global chaos (-0.04 < d < 0.04). 
391 Finally, we compute P corresponding to Fig. 12(b) by substituting Eq. (33) into Eq. (37): 

T 

P = T ~ 1 ~ (~ (5nt + 3an; + 2bnt + c)
2 

- (lOnf + 3ant + b) (n~ + anf + bn; + cnt + d)). (38) 

392 To calculate nt, use Eq. (35): nt+1 = - (nt + anr + bn; + cnt + d). The results of the computation are 
393 presented in Fig. 12(d), indicating that P is positive across all regions. The degree of robustness differs 
394 between global and local chaotic regions, with distinct variations in P magnitude and its rate of change. 
395 Specifically, the merging region -0.04 < d < 0.04 (classified as a global chaotic region) has considerably 
396 lower and stable P values, indicating a stronger robustness of the trajectory in the region. On the other 
391 hand, in regions where d < -0.04 or d > 0.04 (classified as a local chaotic region) , the value of P increases, 
398 indicating a relatively weak robustness and a more localized trajectory. 
399 These findings suggest that, while non-linear connections provide valuable information for determining 
'°° chaos, they cannot alone define the characteristics of a chaotic trajectory, which requires the use of deviation 
401 curvature statistics. Note that these results are based on a specific case where only chaos exists. In the 
402 next section, we will apply the same analysis to the standard examples of BT depicted in Fig. 10, as well 
403 as to the cusp shown in Fig. 3(a). 

'°' 4.3. Other examples 

405 In this section, we validate the outcome of the previous subsection: when P increases (decreases), the 
406 chaotic trajectory becomes localized (globalized). For this, we use two examples of BT chaos in Fig. 10: 
401 c = - 0.4 and d = - 0.5. Furthermore, we will examine why the density of points at the edges of the left 
408 and right regions of chaos are lower in the bifurcation diagram of the cusp displayed in Fig. 3(a). 
'°' First, consider Fig. 13(a). The left and right sides are symmetrical as c is fixed and d varies, as depicted 
410 in Fig. 10. Calculation for N1 is based on Eq. (34) with (35); Pis based on Eq. (38) with (35), with the same 
m calculation conditions as in Fig. 10. Chaotic regions, where N1-values exceed the critical value (- ln[2]), 
.., are d < - 0.3 and d > 0.3, and in these areas, little variation is observed. P-values decrease as d increases 
413 ford > 0 and decrease with d ford < 0. As a result, chaos is anticipated to shift from local to global, with 
414 the width of the chaotic region expanding on both sides. This aligns with the bifurcation diagram's trend. 
415 Next, we examine Fig. 13(b), using the same calculation method as in Fig. 12. Because d is held 
416 constant and c is adjusted, the left and right sides become asymmetrical (Fig. 10). In the chaotic region 
411 (c < - 0.19), N 1 values surpass the critical value (- ln[2]) and little variation is observed, while P values 
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Fig. 13. BT's bifurcation diagram, Nr, and P. (a) c = - 0.4. (b) d = -0.5. Other conditions are the same as in Fig. 10. 

decrease with c. Therefore, the bifurcation diagram shows that the width of the chaotic region increases 
as c decreases. 

Finally, the cusp shown in Fig. 14 warrants consideration. This is an example where the width of chaos 
does not simply decrease geometrically as P increases. To calculate N 1 , we use Eqs. (24) and (25); P is 
calculated by substituting Eq. (23) into Eq. (37): 
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P = T: 1 I: (~(-3nt-6an;-12bnt +a
2
)). 

t=O 

(39) 

423 To calculate nt, use Eq. (25): nt+l = -(nt +ant+ b). The calculation conditions remain unchanged from 
424 Fig. 3(a). As shown in Fig. 14(a), chaos is present in the area where b < -0.16 and b > 0.31, and the 
425 width of this chaotic region increases toward both ends. Within the region, N1-values exceed the critical 
426 level and little variation is observed; however, around b ~ ±0.5, they begin to increase (Fig. 14(b)). This 
421 contrasts with Figs. 12 and 13, where NJ displays little variation across all chaotic areas. The variation in 
428 P can be seen in Fig. 14(c). In the chaotic area (b < -0.16 and b > 0.31), the P-values decrease initially 
429 in both directions; however, around b ~ ±0.5, they begin to increase. 
430 Focusing on the chaotic pattern within the region, lbl> 0.5, it is apparent that point density decreases 
431 in the lower end of the b < 0 region and in the upper end of the b > 0 region (Fig. 14(a)) . As a result, the 
432 effective width of the chaos within the lbl> 0.5 region is diminishing. To confirm this, the median value of 
433 nt at each b is plotted in Fig. 14(d). If the density of plot points for each bis constant, the median value 
434 will continue to decrease in the b < 0 region and increase in the b > 0 region. However, the analysis results 
435 of Fig. 14(d) show that the median value increases in the b < 0 region and decreases in the b > 0 region 
436 after b ~ ±0.5. This means that the chaotic region effectively shrinks after b ~ ±0.5, which corresponds to 
431 an increase in NJ (i.e., the chaos trend increases) and P-values (i.e., becomes localized). 

438 5. Chaos and the non-equilibrium state 

439 Previous research has indicated that the geometric quantities N and Pare connected to the non-equilibrium 
440 properties of the system [Yamasaki & Yajima, 2016, 2022a]. Accordingly, this section will analyze chaos as 
441 a non-equilibrium phenomenon from this standpoint. Swallowtail is taken as an example. 

442 5.1. N1 and P in swallowtail 

443 This section considers chaos in swallowtail (hereinafter, SW). In Eq. (3), F is [Thom, 1972; Zeeman, 1977] 

Fsw = - onfsw = -(n4 + an2 + bn + c), 

444 where a, b, c are constants. Thus, from Eq. (5) , 

9sw = n4 + an2 + bn + c. 

(40) 

(41) 
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445 We have already shown the following geometric quantities [Yamasaki & Yajima, 2020]: 

b 
Nsw = 2n3 +an+ 2, 

Psw = -2n 6 

- 3an4 
- 4bn3 

- 6cn2 + ~ (b2 

- 4ac). 

( 42) 

(43) 

446 Conditions where gsw = Nsw = 0 result in a singular pattern of SW in the equilibrium state [Yamasaki & 
447 Yajima, 2022b]. From Eqs. (41) and (42), we obtain 

(44) 

448 A parametric plot for the case a = - l is shown in Fig. 15. For reference, the equilibrium solution for each 
449 case and non-equilibrium stability are also shown side by side in Fig. 15. 
450 In SW, the singularity pattern obtained from the equilibrium condition (gsw = 0) is axisymmetric (Fig. 
451 15). However, non-equilibrium stability is not necessarily axisymmetric, particularly outside the singularity 
452 pattern, unlike cusp and BT [Yamasaki & Yajima, 2020, 2022b]. For example, comparing b = - 0.7 and 
453 b = 0.7 in Fig. 15, the stability of the non-equilibrium regions (grayscale) is different. 
454 To confirm this characteristic of SW, the equation corresponding to (44) is given in the cusp and BT. 
455 For cusp, from Eqs. (21) and (22), we have 

( 45) 

456 Figure 2(a) shows the corresponding parametric plot. For BT, from Eqs. (31), (32) and b = 0, we have 

(c, d) = (-3an2 
- 5n4, 2(an3 + 2n5)) . (46) 

451 Figure 9 shows the parametric plot at a= - 1.5. As shown by even/odd with respect ton in Eqs. (45) 
458 and (46), the singularity pattern is symmetrical around the a-axis ((b = 0)-axis) for cusp (Fig. 2a) and 
459 around the c-axis ((d = 0)-axis) for BT (Fig. 9). This means that in cusp, the singularity pattern gives 
460 the same result for JbJ in BT as it gives for JdJ. Because terms band dare constant parts in the g equation 
461 (Eqs. (21) and (31)), they are not in the non-linear connection when g is differentiated by n (Eq. (6)). 
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Fig. 16. Contour topography of (NJ + log 2)-values and P in parameter space of SW for a = -0.5 and a = -1.8. no = 0.01 
in both cases. 

462 When the initial value is small, the distribution of Nr that is related to chaos is symmetrical to the a-axis 
463 ( ( b = 0 )-axis)) for cusp (Fig. 8) and to the c-axis ( ( d = 0 )-axis)) for BT (Fig. 10). 
™ From Eq. (44), in the case of SW, the even function with respect ton is c, and the odd function is b. 

465 Therefore, the singularity pattern is axisymmetric with regard to the c axis, and the singularity pattern 
466 (equilibrium pattern) returns the same value for absolute b. However, in contrast to cusp and BT, because 
461 bis a non-constant term of g (Eq. (41)), it is explicitly included in the non-linear connection. Thus, both 
468 N1 and P distributions appear asymmetric (Fig. 16). Naturally, this asymmetry impacts the distribution 
469 of chaos occurrence and its development in SW. Here, under the conditions a= -1 and no = 0.01, Eqs. 
410 (12) and (42) are used to calculate N1 , Eqs. (37) and (43) are used to calculate P, and nt is calculated 
m using nt+l = -(nf +ant+ bnt + c). 
472 In contrast to the singularity pattern obtained under the equilibrium condition, the distribution pat-
473 terns of N 1 and P contain significant non-equilibrium information. In other words, the emphasis on 
474 non-equilibrium characteristics renders the SW more unique. In the following section, we examine non-
475 equilibrium state asymmetries, with a focus on the growth process of the bifurcation diagrams. 

476 5.2. Chaos before a dynamic equilibrium state 

.,, During the growth process of the bifurcation diagram, as examined in previous sections, if the initial 
478 magnitudes are equal but the signs are opposite, the pattern is reversed (e.g., Figs. 5). The phenomenon 
479 of pattern inversion is also a reflection of symmetry. However, in contrast to pattern inversion, reflecting 
480 the asymmetry in the non-equilibrium state seen above, SW exhibits a different growth pattern. 
481 For example, in Fig. 17, we present the case of the initial value of no = ± 0.5 under the condition of 
482 a = - 1, b = 1. 2. The numbers on the figure describe the t intervals. After a sufficient amount of time elapses 
483 (t = 5001 ~ 5100), the system achieves a dynamic equilibrium state in which the chaotic patterns formed 
"' in the c > 0 region converge to approximately the same pattern, regardless of the initial value no = ±0.5. 
485 Meanwhile, during the process of forming these patterns (the non-equilibrium state, t = 1 ~ 100), the 
486 distinction between the two no = ±0.5 is prominent. Chaos that exists briefly in non-equilibrium states 
487 but disappears in dynamic equilibrium states is also observed. While most research has focused on chaos 
488 in dynamical equilibrium systems, the chaos in non-equilibrium systems during the process of reaching 
489 dynamical equilibrium is also noteworthy, especially in SW. These instances are significant, as the natural 
490 world does not always attain equilibrium (e.g., [Pickett, 1980; Sprugel, 1991; Mori, 2011]). 
491 Furthermore, in the natural world, parameters do not remain constant and multiple parameters are 



Catastrophe's Chaos based on geometrical statistics 21 

(a) 2· 

-1 

-3 
-10 -05 00 

C 

-1 

0 5 10 

j 
-10 

-1 

-2 

-3 
-1.0 

1=5001 ~ 5100 

J 
-05 00 0 5 10 

C 

I= 5001 ~ 5100 

-0.5 00 0.5 10 

Fig. 17. Bifurcation diagram (a= - 1, b = 1.2) for each t period. (a) no= 0.5. (b) no= - 0.5. 

492 not necessarily independent of one another. In the upcoming section, we will explore the chaotic impact of 
493 such discrepancies. 

494 6. Singularity patterns and chaos 

495 6.1. Bivariate parameters: the simple example 

496 In contrast to the case of constant parameter variation in the cusp parameter space (see Fig. 2), we consider 
497 here the case where the parameters are related to each other. This situation demonstrates diverse patterns 
498 (e.g., [Thom, 1972; Golubitsky, & Schaeffer, 1979; Gilmore, 1981]). Our investigation focused on systems 
499 where the variables a and b are oscillatory and correlated: 

(47) 

,oo where c1, c2 and c3 are parameters. Considering the position of the singularity pattern in relation to the 
so, interior and exterior, three typical types, denoted as (a), (b), and (c), can be identified, as shown in Fig. 
,02 18. Regarding the catastrophe involved, Figs. 18(b) and (c) are comparable to Fig. 2(b), apart from the 
so3 observation that the equilibrium solution displays a discrete pattern resembling an egg shape in Fig. 18(b) 
'°' [Gilmore, 1981]. 
sos Figures 18(a),(b), and (c) also depict the outcomes of N1 computations for the three above mentioned 
s06 patterns from Eqs. (24) and (25). The same calculation method used in Section 3 was employed. In the case 
,01 of Fig. 18(a), all N 1 values fall below the critical value (- ln[2]), thereby indicating the absence of chaos. 
sos This means that the information of non-linear connections within the singularity pattern is necessary for 
s09 chaos to occur under these conditions. 
510 In fact, the internal information in Figs. 18(b) and (c) shows that N 1 surpasses the critical value 
su (- ln[2]), resulting in chaos. It is evident that the chaos within the pattern (Fig. 18(c)) is more extensive 
m than that both inside and outside the pattern (Fig. 18(b)). This is caused by low N 1 values near the singular 
s13 point in Fig. 18(b). These findings suggest the frequent occurrence of chaos in bistable states, except near 
'" the singular point. 

, 1, 6.2. Singularity patterns and the chaos-generating region 

s16 The previous section's simple example implies a close relationship between regions of chaos and singularity 
m patterns. To enhance visual clarity, we superimpose the cusp singularity pattern (Eq. ( 45)) and the dis
s1s tribution of non-linear connections information (Eqs. (24) with (25)) in parameter space (Figs. 19(a)(b)). 
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Fig. 18. Cusp's singular pattern, equilibrium solutions (black line is stable solution; gray is unstable solution) , and N1 (dotted 
line represents the critical value) when parameters oscillate (ci = l,c2 = 100,no = 0.1). (a) Outside (c3 = 1). (b) Outside 
and inside (c3 = - 1). (c) Inside (c3 = - 3). 

519 Figure 19(a) illustrates that parameters that vary exclusively outside the singular pattern correspond to 
520 ahnost non-chaotic regions. Conversely, parameters that vary both inside and outside the singular pattern 
521 can traverse the chaotic region, except in the region close to the singular point. At the singular point, both 
522 the equilibrium condition (g = 0) and all geometric quantities N, P approach zero [Yamasaki & Yajima, 
523 2022b]. Thus, it is anticipated that the absolute value of the Nr is statistically low around the singularity, 
524 and chaos is not expected to occur. Moreover, Fig. 19(b) shows that the cliff (the boundary where the 
525 discontinuous transition from chaotic to non-chaotic occurs) and the line of the singularity pattern (the 
526 boundary where the discontinuous transition from equilibrium point to equilibrium point occurs) may not 
521 coincide. 
52a The same examination was conducted for BT and SW, with the results shown in Figs. 19(c) and (d). 
529 A comparison of Fig. 19(c) with Fig. 12(a) highlights that the region where t he chaos at both ends merge 
530 exists only within the singularity pattern, as described in Section 4. In essence, similar to the cusp, regions 
531 where only chaos spreads arise from the utilization of the information of non-linear connections within 
532 the singularity. In contrast, the singularity pattern in the case of SW (Fig. 19(d)) appears to have little 
533 influence on the generation of chaotic regions, indicating the asymmetry described in Sec. 5. These findings, 
534 based on the combination of the distribution of Nr and singular patterns, are summarized in the following. 

535 7. Summary 

536 We examined the correlat ion between catastrophe and chaos in geometric quantities, using KCC theory in 
537 Finsler geometry and numerical analysis in discrete mathematics. The key findings are concisely outlined 
538 in the tables presented below. 

539 • Finsler geometric quantities used to analyze catastrophes are applied to chaos analysis, introducing 
540 two statistics: non-linear connections information, Nr, and the mean deviation curvature, P (Tables 
541 1 and 2). These tables suggest that the geometric statistics of Finsler geometry are also valuable 
542 for numerically analyzing discrete chaos systems and can provide a comprehensive description of the 
543 relationship between chaos and catastrophe. 
544 • The topographical contours of N1-values in the parameter space facilitate a clear visualization of 
545 the chaotic features in catastrophes, highlighting sudden changes and a dependence on the initial 
546 conditions (Table 3). Generally, analyzing systems with multiple parameters, even in one dimension, 
541 is more complex. The graphical representation used in this study simplifies the dependence of chaos-
548 generating regions and their pattern changes on the two parameters. 



Catastrophe's Chaos based on geometrical statistics 23 

(a)oo (b) oor--=====;---~ 

Fig. 19. Superposition of singularity patterns and non-linear connections informat ion. Since ( N 1 + log 2) values are plotted, the 
positive regions correspond to chaotic regions. (a) Cusp (no= 0.01). (b) Cusp (no= 0.3). (c) BT (a = - 1.5, b = 0, no= 0.01). 
(d)SW (a= - 1.8, no = 0.01). 

549 • By superimposing the contour map of Ni-values with the singularity pattern, the pattern of singular-
550 ities known to constrain the distribution of non-equilibrium stability in catastrophes also constrains 
551 the distribution of chaos, typically a non-equilibrium phenomenon (Table 4). This is a geometric 
552 summary of the features of systems in which chaos and catastrophe coexist and shows that the two 
553 have a complex relationship, constrained by the singularity. 
554 • The asymmetry in SW chaos is less distinguishable in an equilibrated state, but becomes more 
555 evident when the system is in a state of non-equilibrium (Figs. 17 and 19(d)). This means that, 
556 compared to various other catastrophes, chaos caused by SW can exhibit more complex patterns in 
551 the non-equilibrated state. 

Table 1: Qualitative characteristics. 
Role in chaos analysis 

N1 Determination based on non-equilibrium stability 
P Degree of development based on robustness 

Table 2: Quantitative characteristics. 
Increase Decrease Examples 

N1 > - ln [2]: Chaos 
Relative localization 

N1 < - ln [2]: Non-chaos 
Relative globalization 

Figs. 1, 3, 6 
Figs. 12~ 14 
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Table 3: Catastrophe properties and contour topography. 
Topographic Features Examples 

Abrupt change Cliff, Dislocation Figs. 7, 8, 11 
Initial dependence Reversal of topography Ibid. 

Table 4: Singular(S), topography and chaos. 
Topography Chaos Examples 

Around S-point Low elevation No Figs. 18, 19 
Inside S-pattern High elevation Extensive Figs. 12, 19 
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