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The provability logic of all provability predicates

Taishi Kurahashi∗†

Abstract

We prove that the provability logic of all provability predicates is ex-
actly Fitting, Marek, and Truszczyński’s pure logic of necessitation N.
Moreover, we introduce three extensions N4, NR, and NR4 of N and in-
vestigate the arithmetical semantics of these logics. In fact, we prove that
N4, NR, and NR4 are the provability logics of all provability predicates
satisfying the third condition D3 of the derivability conditions, all Rosser
provability predicates, and all Rosser provability predicates satisfying D3,
respectively.

1 Introduction

Let T be a consistent primitive recursively axiomatized LA-theory contain-
ing Peano Arithmetic PA, where LA is the language of first-order arithmetic.
Gödel’s second incompleteness theorem states that if a provability predicate
PrT (x) of T satisfies the following two conditions D2 and D3, then the con-
sistency statement ¬PrT (⌜0 = 1⌝) of T cannot be proved in T : for any LA-
sentences φ and ψ,

D2: T ⊢ PrT (⌜φ→ ψ⌝)→
(
PrT (⌜φ⌝)→ PrT (⌜ψ⌝)

)
.

D3: T ⊢ PrT (⌜φ⌝)→ PrT (⌜PrT (⌜φ⌝)⌝).

In particular, any conventional provability predicate ProvT (x) of T , which nat-
urally expresses that x is the Gödel number of a T -provable formula, satisfies
D2 and D3. Therefore, T ⊬ ¬ProvT (⌜0 = 1⌝) holds.

Every provability predicate PrT (x) is thought of as a kind of modality, and
modal logical study of provability predicates has been developed. For each prov-
ability predicate PrT (x) of T , the set of all T -verifiable modal formulas under
the interpretation where □ is interpreted by PrT is called the provability logic
of PrT (x). The most striking result of this study is Solovay’s arithmetical com-
pleteness theorem [20] stating that if T is Σ1-sound, then the provability logic
of ProvT (x) is exactly the Gödel–Löb modal logic GL. There has been a wide
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variety of studies on provability logics such as uniform arithmetical complete-
ness theorem, classification of provability logics, quantified provability logics,
bimodal and polymodal provability logics, interpretability logics, and so on.
See [2, 4, 7, 19] for details of these studies.

On the other hand, not all provability logics are exactly GL. In particular,
there exist Σ1 provability predicates for which the second incompleteness theo-
rem does not hold. A typical example of such a provability predicate is the one
that was essentially introduced by Rosser [15]. Let PrRT (x) be a Rosser prov-
ability predicate of T saying that there exists a T -proof y of x such that there
is no T -proof of the negation of x less than y. It is known that ¬PrRT (⌜0 = 1⌝)
is provable in PA. Hence, the provability logic of PrRT (x) is completely differ-
ent from GL because it contains the modal formula ¬□⊥ that is inconsistent
with GL. Also, by the proof of the second incompleteness theorem, PrRT (x) does
not satisfy at least one of the conditions D2 and D3. And, it has been shown
that whether or not PrRT (x) satisfies either D2 or D3 depends on the details of
construction of PrRT (x). In other words, whether the corresponding provability
logic contains either □(A → B) → (□A → □B) or □A → □□A depends on
the choice of PrRT (x). Indeed, Bernardi and Montagna [3] and Arai [1] proved
that there exists a Rosser provability predicate PrRT (x) of T satisfying D2, and
hence such a predicate does not satisfy D3. Arai also proved the existence of a
Rosser provability predicate satisfying D3. Observe that the provability logics
of Rosser provability predicates satisfying D2 contain the normal modal logic
KD. The author proved in [11] that there exists a Rosser provability predicate
whose provability logic is exactly KD.

Provability predicates that are not Σ1 whose provability logics are different
from GL have also been studied. For example, the author proved in [9] that
there exists a Σ2 provability predicate of T whose provability logic is exactly
the weakest normal modal logic K. Also, for several normal modal logics, the
existence of corresponding Σ2 provability predicates has been shown (cf. [10, 17,
21]).

In previous studies, all unimodal logics that have been considered as prov-
ability logics are normal, that is, containing the logic K. Provability predicates
corresponding to such logics always satisfy the condition D2. In general, how-
ever, not all provability predicates satisfy D2. For example, Rosser provability
predicates satisfying D3, whose existence was proved by Arai, do not satisfy
D2. The provability logics corresponding to such predicates are non-normal.

In the present paper, we discuss non-normal provability logics through the
following questions:

Q1 What is the intersection of all provability logics, that is, the provability
logic of all provability predicates?

Q2 What is the provability logic of all Rosser provability predicates?

The property common to all provability predicates is “T ⊢ φ ⇒ T ⊢
PrT (⌜φ⌝)” that corresponds to the closure under the Necessitation rule

A

□A ,
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and presumably no other. The non-normal modal logic N, obtained by adding

Necessitation
A

□A as an inference rule to classical propositional logic, was intro-

duced by Fitting, Marek, and Truszczyński [5]. In that paper, N is called the
pure logic of necessitation. This logic N is our candidate for the answer to Q1,
but a problem arises. The usual proof of Solovay’s theorem is to embed Kripke
models into arithmetic, and similar techniques have been used in the proofs of
the previously mentioned results for various normal modal logics. On the other
hand, since the logic N is not a normal modal logic, N does not have Kripke
semantics. However, Fitting, Marek, and Truszczyński introduced a Kripke-like
relational semantics corresponding to N, and the soundness, completeness, and
finite frame property of N with respect to that semantics were proved. Then, we
can attempt to apply Solovay’s method to that semantics. Indeed, in Section
4, we prove that N is exactly the provability logic of all provability predicates.
This is the answer to Q1. Moreover, we actually prove more: There exists a Σ1

provability predicate of T whose provability logic is exactly N.
Shavrukov [16] introduced the bimodal logic GR of the standard and Rosser

provability predicates and proved the arithmetical completeness theorem for
GR. Thus, the unimodal fragment LR of GR is the answer to Q2, but no specific
axiomatization of the logic LR has been made so far. In Section 3, we intro-

duce the logic NR that is obtained from N by adding the inference rule
¬A
¬□A .

We prove the finite frame property of NR with respect to Fitting, Marek, and
Truszczyński’s semantics. In Section 6, we prove that NR precisely coincides
with LR and that NR is exactly the provability logic of all Rosser provability
predicates. This is the answer to Q2.

Furthermore, in the present paper, we deal with provability predicates sat-
isfying the condition D3. In Section 3, we also introduce the logics N4 and NR4
that are obtained from N and NR by adding the axiom scheme □A→ □□A, re-
spectively. We prove the finite frame property of N4 and NR4. Also, in Sections
5 and 7, we prove that N4 and NR4 are exactly the provability logics of all prov-
ability predicates satisfying D3 and all Rosser provability predicates satisfying
D3, respectively.

In Appendix 1, as a related topic, we prove the existence of a Σ1 provability
predicate whose provability logic is exactly K. In Appendix 2, we prove the in-
terchangeability of □ and ♢ in NR. As a continuation of the present paper, in [8],

non-normal provability logics closed under the rule
A→ B

□A→ □B are investigated.

2 Preliminaries

Let LA be the language of first-order arithmetic. Also, let ω be the set of all
natural numbers. We fix a natural Gödel numbering such that if ψ is a proper
subformula of φ, then the Gödel number of ψ is smaller than that of φ. We
may also assume that 0 is not the Gödel number of anything. Let {ξt}t∈ω be
the repetition-free primitive recursive enumeration of all LA-formulas arranged
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in ascending order of Gödel numbers. That is, if ξs is a proper subformula of
ξu, then s < u. For each n ∈ ω, let n be the numeral for n. We assume that
for any natural number n and any formula φ(x) having x as a free variable, the
Gödel number of φ(n) is larger than n. For each LA-formula φ, let ⌜φ⌝ be the
numeral for the Gödel number of φ. For any two formulas φ and ψ, φ ≡ ψ
means that φ and ψ are syntactically identical.

Throughout the present paper, T always denotes a consistent primitive re-
cursively axiomatized LA-theory containing Peano Arithmetic PA. We say that
an LA-formula PrT (x) is a provability predicate of T if for any LA-formula φ, we
have that T ⊢ φ if and only if PA ⊢ PrT (⌜φ⌝). In his proof of the incompleteness
theorems, Gödel constructed a primitive recursive proof predicate ProofT (x, y)
of T naturally saying that y is the Gödel number of a T -proof of an LA-formula
whose Gödel number is x. The Σ1 formula ProvT (x) defined by ∃yProofT (x, y)
is a standard provability predicate of T . Then, it is known that ProvT (x) satis-
fies the conditions D2 and D3 given in the introduction. We naturally assume
that PA ⊢ ∀x∀y(ProofT (x, y)→ x ≤ y).

Here, we comment on our definition of provability predicates. We say that
a formula PrT (x) satisfies the Kreisel Condition for T if for any LA-formula φ,
T ⊢ φ if and only if T ⊢ PrT (⌜φ⌝) (cf. Visser [22]). In some cases, it is convenient
to define provability predicates of T as formulas satisfying the Kreisel Condition
for T . However, since the standard provability predicate ProvT (x) of T does not
generally satisfy the Kreisel Condition for T , we prefer to adopt our definition
of provability predicates. Moreover, a Σ1 formula PrT (x) being a provability
predicate of T is equivalent to a natural condition that for any LA-formula φ,
T ⊢ φ if and only if N |= PrT (⌜φ⌝), where N is the standard model of arithmetic.

We say that a Σ1 formula PrRT (x) is a Rosser provability predicate of T
if there exists a primitive recursive formula PrfT (x, y) satisfying the following
three conditions:

1. For any LA-formula φ and n ∈ ω, PA ⊢ ProofT (⌜φ⌝, n)↔ PrfT (⌜φ⌝, n).

2. PA ⊢ ∀x
(

FmlLA
(x) →

(
ProvT (x) ↔ ∃yPrfT (x, y)

))
, where FmlLA

(x)

is a primitive recursive formula naturally expressing that x is the Gödel
number of an LA-formula.

3. PrRT (x) is of the form ∃y
(
FmlLA

(x)∧PrfT (x, y)∧∀z < y ¬PrfT (¬̇(x), z)
)
,

where ¬̇(x) is a primitive recursive term corresponding to a primitive
recursive function calculating the Gödel number of ¬φ from that of φ.

It is known that each Rosser provability predicate of T is in fact a Σ1 prov-
ability predicate of T . The idea of witness comparison, which is technically
very important, is behind Rosser provability predicates (see [6, 12]). Based on
the witness comparison argument, it is shown that for any Rosser provability
predicate PrRT (x) of T and any LA-formula φ, if T ⊢ ¬φ, then PA ⊢ ¬PrRT (⌜φ⌝).

The language L(□) of modal propositional logic consists of propositional
variables, the logical constant ⊥, propositional connectives ¬,∧,∨,→, and the
modal operator □. Let MF be the set of all L(□)-formulas. The axioms of the
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modal logic K are all propositional tautologies in L(□) and the axiom scheme
□(A → B) → (□A → □B). The inference rules of K are Modus Ponens

(MP)
A A→ B

B
and Necessitation (Nec)

A

□A . The modal logics KD, K4,

and GL are obtained from K by adding the axiom schemata ¬□⊥, □A→ □□A,
and □(□A → A) → □A, respectively. When we interpret □ by a provability
predicate PrT (x), then the axiom schemata □(A→ B)→ (□A→ □B), □A→
□□A, and □(□A → A) → □A correspond to D2, D3, and formalized Löb’s
theorem, respectively.

To state these correspondences precisely, we introduce the notion of arith-
metical interpretations. For each provability predicate PrT (x) of T , a mapping
f from MF to a set of LA-sentences is called an arithmetical interpretation based
on PrT (x) if it satisfies the following conditions:

1. f(⊥) is 0 = 1,

2. f(¬A) is ¬f(A),

3. f(A ◦B) is f(A) ◦ f(B) for ◦ ∈ {∧,∨,→},

4. f(□A) is PrT (⌜f(A)⌝).

Let PL(PrT ) be the set of all L(□)-formulas A satisfying that for any arithmeti-
cal interpretation f based on PrT (x), T ⊢ f(A). The set PL(PrT ) is called the
provability logic of PrT (x).

It is obvious that for any provability predicate PrT (x) of T , PL(PrT ) is closed
under Nec. If PrT (x) satisfies D2, then PL(PrT ) contains the logic K, that is,
PL(PrT ) is a normal modal logic.

The study of provability logics can be approached from two directions cor-
responding to the following two problems, respectively.

Problem 2.1. For each provability predicate PrT (x) of T , how is PL(PrT )
axiomatized and what properties does it have?

Problem 2.2. For which modal logics L is there a provability predicate PrT (x)
such that L = PL(PrT )?

The most striking result concerning the first problem is Solovay’s arithmeti-
cal completeness theorem [20]. It states that if T is Σ1-sound, then PL(ProvT )
is exactly GL. Visser [21] proved that if T is not Σ1-sound, then PL(ProvT ) is
either GL or GL + □n⊥ for some n ≥ 1. As an interesting example regarding
the first problem, we present here Shavrukov’s result [17]. Let PrShPA(x) be the
Σ2 provability predicate ∃y

(
ProvIΣy (x)∧¬ProvIΣy (⌜0 = 1⌝)

)
of PA, which was

essentially introduced by Smoryński [18]. Shavrukov proved that PL(PrShPA) is
the logic KD + (□A→ □((□B → B) ∨□A)).

For the second problem, the following results have been obtained by previous
studies.

• (Kurahashi [11]) There exists a Rosser provability predicate PrRT (x) of T
such that PL(PrRT ) = KD.
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• (Kurahashi [9]) There exists a Σ2 provability predicate PrT (x) of T such
that PL(PrT ) = K.

• (Kurahashi [10]) For each n ≥ 2, there exists a Σ2 provability predicate
PrT (x) of T such that PL(PrT ) = K + (□(□nA→ A)→ □A).

• (Montague [14]) For any provability predicate PrT (x) of T , PL(PrT ) ⊉ KT
(= K + (□A→ A)).

• (Löb [13]) For any provability predicate PrT (x) of T , PL(PrT ) ̸= K4.

• (Kurahashi [10]) For any provability predicate PrT (x) of T , if T does
not prove PrT (⌜0 = 1⌝), then PL(PrT ) ⊉ KB (= K + (A → □♢A)) and
PL(PrT ) ⊉ K5 (= K + (♢A→ □♢A)).

All of the above results are for normal modal logics. On the other hand, there
is a result concerning a non-normal modal logic. Shavrukov [16] introduced the
bimodal logic GR of the standard and Rosser provability predicates. Let L(□,■)
be the language of modal propositional logic equipped with an additional modal
operator ■. The axiom schemata of GR− are as follows:

1. Those of GL for □,

2. ■A→ □A,

3. □A→ □■A,

4. □A→ (□⊥ ∨■A),

5. □¬A→ □¬■A.

The inference rules of GR− are MP and Nec for □. The logic GR is obtained

from GR− by adding the rule
□A
A

. The studies of GR− and GR presented in [16]

were based on those of the logics R− and R developed by Guaspari and Solovay
[6]. The logic GR can be embedded into GR− as follows.

Theorem 2.3 ([16, Corollary 1.10]). For any L(□,■)-formula A, GR ⊢ A if
and only if GR− ⊢ □A.

A bimodal arithmetical interpretation f based on (PrT ,PrRT ) is an arithmeti-
cal interpretation based on PrT (x) such that f(■A) is PrRT (⌜f(A)⌝). Shavrukov
proved the following arithmetical soundness and completeness theorems.

Theorem 2.4 (The arithmetical soundness theorem of GR [16, Lemma 2.5]).
For any Rosser provability predicate PrRT (x) of T , any bimodal arithmetical in-
terpretation f based on (ProvT ,PrRT ), and any L(□,■)-formula A, if GR ⊢ A,
then PA ⊢ f(A).
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Theorem 2.5 (The uniform arithmetical completeness theorem for GR [16,
Theorem 3.1]). Suppose that T is Σ1-sound. Then, there exist a Rosser prov-
ability predicate PrRT (x) of T and a bimodal arithmetical interpretation f based
on (ProvT ,PrRT ) such that for any L(□,■)-formula A, GR ⊢ A if and only if
T ⊢ f(A).

Let LR be the unimodal logic obtained by replacing all ■ in the □-free frag-
ment of GR by □. The following corollary follows from Shavrukov’s theorems.

Corollary 2.6. If T is Σ1-sound, then

LR =
⋂
{PL(PrRT ) | PrRT (x) is a Rosser provability predicate of T}.

Furthermore, there exists a Rosser provability predicate PrRT (x) of T such that
LR = PL(PrRT ).

Corollary 2.6 states that LR is the provability logic of all Rosser provability
predicates. The logic LR is a non-normal modal logic because there are Rosser
provability predicates that do not satisfy D2. However, since no specific ax-
iomatization for LR is obtained, Corollary 2.6 is not sufficient for us in view of
Problem 2.1. In this context, our purpose in the present paper is to axiomatize
the following four logics:

1.
⋂
{PL(PrT ) | PrT (x) is a provability predicate of T},

2.
⋂
{PL(PrT ) | PrT (x) is a provability predicate of T satisfying D3},

3.
⋂
{PL(PrRT ) | PrRT (x) is a Rosser provability predicate of T},

4.
⋂
{PL(PrRT ) | PrRT (x) is a Rosser provability predicate of T satisfying D3}.

In the next section, we introduce the logics N, N4, NR, and NR4 which are
candidates for axiomatizations of these logics. We study these logics from the
point of view of Problems 2.1 and 2.2.

3 The logic N and its extensions

For any provability predicate PrT (x), the provability logic PL(PrT ) is closed
under Nec. Thus, the provability logic⋂

{PL(PrT ) | PrT (x) is a provability predicate of T}

of all provability predicates is also closed under Nec. On the other hand, there
seems to be no other non-trivial modal logical principle that is common to all
provability predicates. Our candidate for the axiomatization of the provability
logic of all provability predicates is the pure logic of necessitation N that was
introduced by Fitting, Marek, and Truszczyński [5]. The axioms of N are propo-
sitional tautologies in the language L(□) and the inference rules of N are MP
and Nec.

Fitting, Marek, and Truszczyński introduced the following natural relational
semantics for N.
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Definition 3.1 (N-frames).

• We say that a tuple (W, {≺B}B∈MF) is an N-frame if W is a non-empty
set and for each B ∈ MF, ≺B is a binary relation on W .

• We say that a triple (W, {≺B}B∈MF,⊩) is an N-model if (W, {≺B}B∈MF)
is an N-frame and ⊩ is a satisfaction relation on W × MF fulfilling the
usual conditions for propositional connectives and

x ⊩ □B ⇐⇒ ∀y ∈W (x ≺B y ⇒ y ⊩ B).

• A formula A is valid in an N-model (W, {≺B}B∈MF,⊩) if for any x ∈ W ,
x ⊩ A.

• A formula A is valid in an N-frame (W, {≺B}B∈MF) if A is valid in any
N-model (W, {≺B}B∈MF,⊩) based on (W, {≺B}B∈MF).

• We say that an N-frame (W, {≺B}B∈MF) is finite if W is a finite set.

Fitting, Marek, and Truszczyński proved that N is sound and complete and
has the finite frame property with respect to this semantics.

Fact 3.2 (Fitting, Marek, and Truszczyński [5, Theorems 3.6 and 4.10]). For
any A ∈ MF, the following are equivalent:

1. N ⊢ A.

2. A is valid in all N-frames.

3. A is valid in all finite N-frames.

Each N-model has infinitely many binary relations {≺B}B∈MF, but the truth
of each L(□)-formula in each element of the model is determined by referring to
only a finite number of those relations. Let Sub(A) be the set of all subformulas
of A ∈ MF.

Fact 3.3 (Fitting, Marek, and Truszczyński [5, Theorem 4.11]). Let A ∈ MF.
Let (W, {≺B}B∈MF,⊩) and (W, {≺∗

B}B∈MF,⊩∗) be any N-models satisfying the
following two conditions:

1. For each x ∈W and each propositional variable p ∈ Sub(A), we have that
x ⊩ p ⇐⇒ x ⊩∗ p;

2. For each □B ∈ Sub(A), ≺B=≺∗
B.

Then, for every x ∈W , x ⊩ A ⇐⇒ x ⊩∗ A.

We introduce the three extensions NR, N4, and NR4 of N.

Definition 3.4.

• The logic NR is obtained from N by adding the inference rule
¬B
¬□B .
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• The logics N4 and NR4 are obtained from N and NR, respectively, by
adding the axiom scheme □B → □□B.

We call the rule
¬B
¬□B the Rosser rule (Ros). Before proving the complete-

ness theorems for these logics, we show that the validity of these logics is related
to some appropriate conditions on N-frames.

Definition 3.5. Let A ∈ MF and Γ ⊆ MF. Let F = (W, {≺B}B∈MF) be any
N-frame.

• F is called A-serial if for every x ∈ W , there exists a y ∈ W such that
x ≺A y.

• F is said to be Γ-serial if F is A-serial for every □A ∈ Γ.

• F is called serial if F is MF-serial.

Proposition 3.6. Let A ∈ MF and M = (W, {≺B}B∈MF,⊩) be any N-model.
Suppose that the N-frame F = (W, {≺B}B∈MF) is A-serial. If ¬A is valid in
M, then ¬□A is also valid in M.

Proof. Suppose that F is A-serial and ¬A is valid in M. Let x ∈ W be any
element. Since F is A-serial, there exists a y ∈ W such that x ≺A y. Since ¬A
is valid in M, we have y ⊩ ¬A. Thus, x ⊩ ¬□A. Therefore, ¬□A is valid in
M. q

Corollary 3.7. Let A ∈ MF. If NR ⊢ A, then A is valid in all serial N-frames.

Definition 3.8. Let A ∈ MF and Γ ⊆ MF. Let F = (W, {≺B}B∈MF) be any
N-frame.

• F is called A-transitive if for every x, y, z ∈ W , if x ≺□A y and y ≺A z,
then x ≺A z.

• F is said to be Γ-transitive if F is A-transitive for every □□A ∈ Γ.

• F is called transitive if F is MF-transitive.

Proposition 3.9. Let A ∈ MF and F = (W, {≺B}B∈MF) be any N-frame. If F
is A-transitive, then □A→ □□A is valid in F .

Proof. Suppose that F is A-transitive. Let (F ,⊩) be any N-model based on F .
Let x ∈ W be any element with x ⊩ □A. Let y, z ∈ W be such that x ≺□A y
and y ≺A z. Since F is A-transitive, we have x ≺A z. Then, z ⊩ A. Since z is
an arbitrary element with y ≺A z, we have y ⊩ □A. Also, we obtain x ⊩ □□A.
We conclude that □A→ □□A is valid in F . q

Corollary 3.10. Let A ∈ MF.

1. If N4 ⊢ A, then A is valid in all transitive N-frames.

9



2. If NR4 ⊢ A, then A is valid in all transitive and serial N-frames.

Unlike the case of Kripke frames, the validity of □A→ □□A in an N-frame
is not equivalent to the A-transitivity in general.

Proposition 3.11. There exists an N-frame F satisfying the following condi-
tions:

1. □B → □□B is valid in F for all B ∈ MF.

2. For any B,C0, . . . , Ck−1 ∈ MF, if N ⊢ □C0 ∧ · · · ∧□Ck−1 → B, then F is
not B-transitive.

Proof. Let F = (W, {≺B}B∈MF) be the N-frame defined as follows:

• W := {a, b, c},

• – If N ⊢ □C0 ∧ · · · ∧ □Ck−1 → B for some k and C0, . . . , Ck−1 ∈ MF,
then ≺B := {(a, b), (b, c)}.

– Otherwise, ≺B := {(a, b), (a, c), (b, c)}.

The second clause of the proposition immediately follows from the definition
because a ≺□B b and b ≺B c for each B ∈ MF. It suffices to show that □B →
□□B is valid in F for all B ∈ MF. Assume that N ⊬ □C0 ∧ · · · ∧ □Ck−1 → B
for any k and C0, . . . , Ck−1 ∈ MF. Then, it is shown that F is B-transitive. By
Proposition 3.9, □B → □□B is valid in F .

So, we may assume that N ⊢ □C0∧· · ·∧□Ck−1 → B for some C0, . . . , Ck−1 ∈
MF. In this case, ≺B= {(a, b), (b, c)}. Let (F ,⊩) be any N-model based on F .
For each C ∈ MF, we have c ⊩ □C because there is no w ∈W such that c ≺C w.
So, we have c ⊩ □B and c ⊩ □□B. Moreover, we have c ⊩ B since c ⊩ □Ci for
i < k. Then, we obtain b ⊩ □B and b ⊩ □□B. Also, we obtain a ⊩ □□B. We
conclude that □B → □□B is valid in (F ,⊩). q

We prove the completeness and finite frame property of the logics NR, N4,
and NR4. I also simultaneously give an alternative proof of Fact 3.2.

Theorem 3.12 (The completeness and finite frame property of NR). For any
A ∈ MF, the following are equivalent:

1. NR ⊢ A.

2. A is valid in all serial N-frames.

3. A is valid in all finite serial N-frames.

4. A is valid in all finite Sub(A)-serial N-frames.

Theorem 3.13 (The completeness and finite frame property of N4). For any
A ∈ MF, the following are equivalent:

1. N4 ⊢ A.

10



2. A is valid in all transitive N-frames.

3. A is valid in all finite transitive N-frames.

4. A is valid in all finite Sub(A)-transitive N-frames.

Theorem 3.14 (The completeness and finite frame property of NR4). For any
A ∈ MF, the following are equivalent:

1. NR4 ⊢ A.

2. A is valid in all transitive and serial N-frames.

3. A is valid in all finite transitive and serial N-frames.

4. A is valid in all finite Sub(A)-transitive and Sub(A)-serial N-frames.

Proof. We prove Fact 3.2, Theorems 3.12, 3.13, and 3.14 simultaneously. Let
L be one of NR, N4, and NR4. Assume, however, that the statement (4) is the
same as (3) when L = N.

(1⇒ 2): This is already proved in Corollaries 3.7 and 3.10.
(2⇒ 3): Obvious.
(3 ⇒ 4): Suppose that A is valid in all finite N-frames satisfying the corre-

sponding conditions. Let M = (W, {≺B}B∈MF,⊩) be any finite N-model whose
frame F = (W, {≺B}B∈MF) satisfies the corresponding conditions restricted to
Sub(A). For example, if L = N4, then F is Sub(A)-transitive. For each B ∈ MF,
let ≺∗

B be the binary relation on W defined as follows:

≺∗
B :=

{
≺B if □B ∈ Sub(A),

{(x, x) | x ∈W} otherwise.

Let F∗ := (W, {≺∗
B}B∈MF).

Claim 3.15. If L ∈ {NR,NR4}, then F∗ is serial.

Proof. Let x ∈W and B ∈ MF.

• If □B ∈ Sub(A), then there exists a y ∈ W such that x ≺B y because F
is Sub(A)-serial. Thus, x ≺∗

B y.

• If □B /∈ Sub(A), then x ≺∗
B x.

We have proved that F∗ is B-serial. q

Claim 3.16. If L ∈ {N4,NR4}, then F∗ is transitive.

Proof. Let x, y, z ∈W and B ∈ MF be such that x ≺∗
□B y and y ≺∗

B z.

• If □□B ∈ Sub(A), then □B ∈ Sub(A), and hence x ≺□B y and y ≺B z.
Since F is Sub(A)-transitive, we have x ≺B z. Thus, x ≺∗

B z.

11



• If □□B /∈ Sub(A), then x = y by the definition of ≺∗
□B . Since y ≺∗

B z, we
obtain x ≺∗

B z.

We have proved that F∗ is B-transitive. q

Therefore, F∗ is a finite N-frame satisfying the corresponding conditions.
Let ⊩∗ be the satisfaction relation on F∗ defined by x ⊩∗ p : ⇐⇒ x ⊩ p. By
the supposition, A is valid in F∗. In particular, A is valid in (F∗,⊩∗). Since
≺∗
B=≺B for any B ∈ MF with □B ∈ Sub(A), by Fact 3.3, A is also valid in M.

(4⇒ 1): We prove the contrapositive. Suppose L ⊬ A, and we would like to
find a corresponding finite N-frame in which A is not valid.

For each formula B ∈ MF, let ∼B be C if B is of the form ¬C and ¬B
otherwise. Let Sub(A) := Sub(A) ∪ {∼B | B ∈ Sub(A)}. We say that X ⊆
Sub(A) is L-consistent if L ⊬ ¬

∧
X where

∧
X is a conjunction of all elements

of X. Also, X is called A-maximally L-consistent if X is maximal among L-
consistent subsets of Sub(A). It is easily shown that every L-consistent subset
X of Sub(A) is extended to an A-maximally L-consistent set.

We define the N-model M = (W, {≺B}B∈MF,⊩) as follows:

• W := {X ⊆ Sub(A) | X is A-maximally L-consistent};

• For X,Y ∈W , X ≺B Y :⇐⇒ □B /∈ X or B ∈ Y ;

• For each propositional variable p and X ∈W , X ⊩ p :⇐⇒ p ∈ X.

Let n be the number of elements of Sub(A). We have that the number of
elements of W is smaller than 2n. Since L ⊬ A, {∼A} is L-consistent. So, we
have XA ∈W such that ∼A ∈ XA.

Claim 3.17. For any X ∈W and B ∈ Sub(A),

X ⊩ B ⇐⇒ B ∈ X.

Proof. We prove the claim by induction on the construction of B. We only give
a proof of the case that B is of the form □C.

(⇒): We prove the contrapositive. Suppose □C /∈ X. Since X is maximal,
¬□C ∈ X. Assume, towards a contradiction, that {∼C} is L-inconsistent.
Then, L ⊢ C. By Nec, L ⊢ □C. This contradicts the L-consistency of X.

We proved that {∼C} is L-consistent. Let Y ∈W be such that {∼C} ⊆ Y .
Since □C /∈ X, we have X ≺C Y by the definition of ≺C . Since ∼C ∈ Y , we
have C /∈ Y . By the induction hypothesis, Y ⊮ C. We conclude that X ⊮ □C.

(⇐): Suppose □C ∈ X. Let Y ∈W be such that X ≺C Y . By the definition
of ≺C , we have C ∈ Y . By the induction hypothesis, Y ⊩ C. Hence, X ⊩ □C.

q

Since A /∈ XA, by Claim 3.17, we obtain XA ⊮ A. Therefore, A is not valid
in M. This completes the proof of Fact 3.2 for L = N.

Claim 3.18. If L ∈ {NR,NR4}, then (W, {≺B}B∈MF) is Sub(A)-serial.
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Proof. Let X ∈W and □B ∈ Sub(A). We distinguish the following two cases:

• Case 1: □B /∈ X.
By the definition of ≺B , we have X ≺B X.

• Case 2: □B ∈ X.
Suppose, towards a contradiction, that {B} is L-inconsistent. Then,
L ⊢ ¬B. By the rule Ros, we have L ⊢ ¬□B. This contradicts the
L-consistency of X. Hence, {B} is L-consistent and there exists a Y ∈W
such that B ∈ Y . By the definition of ≺B , X ≺B Y .

In either case, we have a Y ∈ W such that X ≺B Y . We conclude that
(W, {≺B}B∈MF) is Sub(A)-serial. q

Claim 3.19. If L ∈ {N4,NR4}, then (W, {≺B}B∈MF) is Sub(A)-transitive.

Proof. Let X,Y, Z ∈ W and □□B ∈ Sub(A) be such that X ≺□B Y and
Y ≺B Z. If □B /∈ X, then trivially X ≺B Z by the definition of ≺B . If
□B ∈ X, then □□B ∈ X because L ⊢ □B → □□B. Since X ≺□B Y , we have
□B ∈ Y . Also, since Y ≺B Z, we have B ∈ Z. By the definition of ≺B , we
obtain X ≺B Z. Therefore, (W, {≺B}B∈MF) is Sub(A)-transitive. q

Our proof is finished. q

Furthermore, from our proofs of Fact 3.2 and Theorems 3.12, 3.13, and 3.14,
we obtain that the sets of all theorems of N, NR, N4, and NR4 are primitive
recursive. For example, to show that A ∈ MF is N4-unprovable, it is sufficient
to find a finite fragment (W, {≺B}□B∈Sub(A),⊩) of a Sub(A)-transitive N-model
in which A is false such that the cardinality of W is smaller than 22n where n
is the number of subformulas of A. Thus, a primitive recursive algorithm that
searches for such finite structures determines whether each A ∈ MF is provable
in N4 or not.

4 Arithmetical completeness of N

It is easy to see that for any provability predicate PrT (x) of T , N ⊆ PL(PrT ).
Moreover, by our definition of provability predicates, we have the following
theorem:

Theorem 4.1 (The arithmetical soundness of N). For any A ∈ MF, any prov-
ability predicate PrT (x) of T , and any arithmetical interpretation f based on
PrT (x), if N ⊢ A, then PA ⊢ f(A).

In this section, we prove that N is exactly the provability logic of all prov-
ability predicates. Moreover, we prove that N is one of the logics considered in
Problem 2.2, namely, there exists a Σ1 provability predicate PrT (x) of T such
that N = PL(PrT ).
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Theorem 4.2 (The uniform arithmetical completeness of N). There exist a Σ1

provability predicate PrT (x) of T and an arithmetical interpretation f based on
PrT (x) such that for any A ∈ MF, N ⊢ A if and only if T ⊢ f(A).

Before proving the theorem, we prepare a primitive recursive function h
which plays an important role in our proofs of the theorems in this paper. The
function h was originally introduced in [11] to prove the existence of a Rosser
provability predicate whose provability logic is exactly the logic KD.

We say that an LA-formula is propositionally atomic if it is not a Boolean
combination of its proper subformulas. For each propositionally atomic formula
φ, we prepare a propositional variable pφ. We define the primitive recursive
mapping I from LA-formulas to propositional formulas as follows:

1. For each propositionally atomic formula φ, I(φ) is pφ;

2. I(¬φ) is ¬I(φ);

3. I(φ ◦ ψ) is I(φ) ◦ I(ψ) for ◦ ∈ {∧,∨,→}.

It is clear that I is an injection. Let φ be an LA-formula and X be a finite
set of LA-formulas. We say that φ is a tautological consequence (t.c.) of X if∧
ψ∈X I(ψ)→ I(φ) is a tautology. The method of constructing Rosser provabil-

ity predicates satisfying D2 using truth assignments of classical propositional
logic is due to Arai [1], and the idea of using t.c.’s is from [11].

For each natural number n, let PT,n be the set of all LA-formulas having a
T -proof with the Gödel number less than or equal to n. It is proved that the
set {(n, φ) | φ is a t.c. of PT,n} is primitive recursive. The above notions and
sets are formalized in PA. In particular, we suppose that PT,n is formalized by
using the proof predicate ProofT (x, y).

The function h is defined as follows by using the formalized recursion theo-
rem:

• h(0) = 0.

• h(m+ 1) =


i if h(m) = 0

& i = min{j ∈ ω \ {0} | ¬S(j) is a t.c. of PT,m},
h(m) otherwise.

Here, S(x) is the Σ1 formula ∃y(h(y) = x). Unlike the Solovay function by the
same name used in the proof of Solovay’s arithmetical completeness theorem,
our function h does not track the structure of models, but is simply used to refer
to the numbers m and i such that h(m) = 0 and h(m+ 1) = i ̸= 0. For such m
and i, it is shown that i ≤ m. It follows that h is a primitive recursive function
(See [11, p. 603] for details). It is also shown that the following proposition
holds.

Proposition 4.3 (Cf. [11, Lemma 3.2.]).

1. PA ⊢ ∀x∀y(0 < x < y ∧ S(x)→ ¬S(y)).
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2. PA ⊢ ¬ConT ↔ ∃x(S(x) ∧ x ̸= 0), where ConT is the Π1 consistency
statement ¬ProvT (⌜0 = 1⌝).

3. For each i ∈ ω \ {0}, T ⊬ ¬S(i).

4. For each n ∈ ω, PA ⊢ ∀x∀y(h(x) = 0 ∧ h(x+ 1) = y ∧ y ̸= 0→ x > n).

We are ready to prove Theorem 4.2.

Proof of Theorem 4.2. Let ⟨An⟩n∈ω be a primitive recursive enumeration of all
N-unprovable L(□)-formulas. For each n ∈ ω, let (Wn, {≺n,B}B∈MF,⊩n) be
a primitive recursively constructed finite N-model falsifying An (See Fact 3.3
and the comments in the last paragraph of Section 3). We may assume that
{Wn}n∈ω is a pairwise disjoint family of subsets of ω and

⋃
n∈ωWn = ω \ {0}.

We may also assume that for each i > 0, we can primitive recursively find the
unique n such that i ∈Wn. LetM = (W, {≺B}B∈MF,⊩) be an N-model defined
as follows:

• W :=
⋃
n∈ωWn = ω \ {0}.

• x ≺B y :⇐⇒ x, y ∈Wn and x ≺n,B y for some n ∈ ω.

• x ⊩ p :⇐⇒ x ∈Wn and x ⊩n p for some n ∈ ω.

We may assume that M is primitive recursively represented in PA. Moreover,
we assume that PA proves basic properties of M.

For each primitive recursive function g enumerating all theorems of T , let
Prg(x) be the Σ1 formula ∃y(g(y) = x∧FmlLA

(x)). Then, Prg(x) is a provability
predicate of T . We define the arithmetical interpretation fg based on Prg(x)
by fg(p) :≡ ∃x(S(x) ∧ x ̸= 0 ∧ x ⊩ p). From an index of such a function g and
A ∈ MF, the LA-sentence fg(A) is primitive recursively computed. Furthermore,
it is shown that each fg is an injective mapping, and so from an index of g and
fg(A), the L(□)-formula A is recovered primitive recursively.

Next, we define the primitive recursive function g0 enumerating all theorems
of T . The definition of g0 consists of two procedures. The definition starts
with Procedure 1. The values of g0 are defined step by step in the procedure
by referring to T -proofs according to the proof predicate ProofT (x, y). At the
first time the value of the function h is non-zero, the definition of g0 switches
to Procedure 2. By using the formalized recursion theorem, the arithmetical
interpretation fg0 based on the provability predicate Prg0(x) is used in the
definition of g0. In the construction, we identify each LA-formula with its Gödel
number.

Procedure 1
Stage m.

• If h(m+ 1) = 0, then

g0(m) =

{
φ if m is a T -proof of φ,

0 otherwise.

15



Go to Stage m+ 1.

• If h(m+ 1) ̸= 0, then go to Procedure 2.

Procedure 2
Let m, i ̸= 0 and n be such that h(m) = 0, h(m + 1) = i, and i ∈ Wn.
Recall from Section 2 that {ξt}t∈ω is the primitive recursive enumeration of all
LA-formulas arranged in ascending order of Gödel numbers. Define

g0(m+ t) =

{
ξt if ξt ≡ fg0(B) & i ⊩n □B for some □B ∈ Sub(An),

0 otherwise.

The definition of g0 is finished.

Claim 4.4. PA + ConT ⊢ ∀x∀y
(

FmlLA
(x)→

(
ProofT (x, y)↔ x = g0(y)

))
.

Proof. We argue in PA+ ConT : By Proposition 4.3.2, h(x) = 0 for all x. Thus,
the construction of g0 never switches to Procedure 2. Then, for any LA-formula
φ and number a, we have that a is a T -proof of φ if and only if φ = g0(a). q

Then, it is shown that for any LA-formula φ and n ∈ ω, PA ⊢ ProofT (⌜φ⌝, n)
if and only if PA ⊢ ⌜φ⌝ = g0(n). It follows that Prg0(x) is a Σ1 provability
predicate of T .

Claim 4.5. Let i ∈Wn and B ∈ Sub(An).

1. If i ⊩n B, then PA ⊢ S(i)→ fg0(B).

2. If i ⊮n B, then PA ⊢ S(i)→ ¬fg0(B).

Proof. Clauses 1 and 2 are proved simultaneously by induction on the construc-
tion of B ∈ Sub(An). Firstly, we prove the base step of the induction. The case
that B is ⊥ is trivial. We prove the case that B is a propositional variable p.

1. Suppose i ⊩n p. We have PA ⊢ S(i) → ∃x(S(x) ∧ x ̸= 0 ∧ x ⊩ p), and
hence PA ⊢ S(i)→ fg0(p).

2. Suppose i ⊮n p. Since PA ⊢ S(i) → ∀x(S(x) ∧ x ̸= 0 → x = i) by
Proposition 4.3.1, we have that PA ⊢ S(i) → ∀x(S(x) ∧ x ̸= 0 → x ⊮ p).
Equivalently, PA ⊢ S(i)→ ¬fg0(p).

Secondly, we prove the induction step. The cases of ¬, ∨, ∧, and→ are easy.
So, we give only a proof of the case that B is of the form □C, where the claim
holds for C.

1. Suppose i ⊩n □C. We reason in PA+S(i): Let m be such that h(m) = 0
and h(m + 1) = i. Let t be the number such that ξt ≡ fg0(C). Since i ⊩n □C
and □C ∈ Sub(An), we have g0(m + t) = fg0(C). Thus, Prg0(⌜fg0(C)⌝) holds.
This means that fg0(□C) holds.

2. Suppose i ⊮n □C. Then, there exists a j ∈ Wn such that i ≺n,C j and
j ⊮n C. By the induction hypothesis, PA ⊢ S(j)→ ¬fg0(C). Let p be a T -proof
of S(j)→ ¬fg0(C).

We argue in PA + S(i): Let m be such that h(m) = 0 and h(m+ 1) = i.

16



If fg0(C) is output in Procedure 1, then there exists a T -proof q < m of
fg0(C). It follows that fg0(C) ∈ PT,m−1. Since m > p by Proposition 4.3.4, we
have that S(j)→ ¬fg0(C) is in PT,m−1. Hence, ¬S(j) is a t.c. of PT,m−1. This
contradicts h(m) = 0.

If fg0(C) is output in Procedure 2, then fg0(C) ≡ fg0(D) and i ⊩n □D for
some □D ∈ Sub(An). Since fg0 is injective, we have C ≡ D. So i ⊩n □C, this
is a contradiction.

We have proved that fg0(C) is not output by g0. Thus, ¬Prg0(⌜fg0(C)⌝)
holds, and hence ¬fg0(□C) holds. q

We finish our proof of Theorem 4.2. The implication ⇒ is obvious. We
prove the implication ⇐. Suppose that N ⊬ A. We have that A ≡ An for some
n ∈ ω and i ⊮n A for some i ∈Wn. By Claim 4.5, PA ⊢ S(i)→ ¬fg0(A). Since
T ⊬ ¬S(i) by Proposition 4.3.3, we obtain T ⊬ fg0(A). q

Corollary 4.6.

N =
⋂
{PL(PrT ) | PrT (x) is a provability predicate of T},

=
⋂
{PL(PrT ) | PrT (x) is a Σ1 provability predicate of T}.

Moreover, there exists a Σ1 provability predicate PrT (x) of T such that N =
PL(PrT ).

5 Arithmetical completeness of N4

In this section, we investigate provability predicates satisfying the condition
D3. It is easy to show that for any provability predicate PrT (x) satisfying
D3, N4 ⊆ PL(PrT ). We prove that N4 is exactly the provability logic of all
provability predicates satisfying D3. Moreover, we prove the following uniform
version of arithmetical completeness.

Theorem 5.1 (The uniform arithmetical completeness of N4). There exists a
Σ1 provability predicate PrT (x) of T such that

1. for any A ∈ MF and any arithmetical interpretation f based on PrT (x), if
N4 ⊢ A, then PA ⊢ f(A); and

2. there exists an arithmetical interpretation f based on PrT (x) such that for
any A ∈ MF, N4 ⊢ A if and only if T ⊢ f(A).

Proof. Let ⟨An⟩n∈ω be a primitive recursive enumeration of all N4-unprovable
L(□)-formulas. For each n ∈ ω, let (Wn, {≺n,B}B∈MF,⊩n) be a primitive recur-
sively constructed finite Sub(An)-transitive N-model falsifying An. Let M be
the primitive recursively representable N-model defined as the disjoint union of
these finite N-models as in the proof of Theorem 4.2.

We define the primitive recursive function g1 corresponding to this theorem.
By the formalized recursion theorem, we use Prg1 and fg1 in the definition
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of g1 where Prg1(x) is the formula ∃y(g1(y) = x ∧ FmlLA
(x)) and fg1 is the

arithmetical interpretation based on Prg1(x) defined by fg1(p) ≡ ∃x(S(x)∧ x ̸=
0∧x ⊩ p). As in the definition of the function g0, the definition of g1 consists of
Procedures 1 and 2. Moreover, the definition of Procedure 1 is completely same
as that of g0, so here we only give the definition of Procedure 2. Unlike the
function g0, to ensure that Prg1(x) satisfies D3, in Procedure 2, the function g1
outputs the sentences of the form Prg1(⌜φ⌝) for already output formulas φ.

Procedure 2
Let m, i ̸= 0, and n be such that h(m) = 0, h(m+ 1) = i, and i ∈Wn. Define

g1(m+t) =


ξt if ξt ≡ fg1(B) & i ⊩n □B for some □B ∈ Sub(An)

or ξt ≡ Prg1(⌜φ⌝) & g1(l) = φ for some φ and l < m+ t,

0 otherwise.

Since Procedure 1 in the definition of g1 is same as that of g0, the following
claim is proved as in the proof of Theorem 4.2.

Claim 5.2. PA + ConT ⊢ ∀x∀y
(

FmlLA
(x)→

(
ProofT (x, y)↔ x = g1(y)

))
.

Hence, Prg1(x) is a Σ1 provability predicate of T . We prove that Prg1(x)
satisfies the condition D3.

Claim 5.3. For any LA-formula φ, PA ⊢ Prg1(⌜φ⌝)→ Prg1(⌜Prg1(⌜φ⌝)⌝).

Proof. Since Prg1(⌜φ⌝) is a Σ1 sentence, PA ⊢ Prg1(⌜φ⌝)→ ProvT (⌜Prg1(⌜φ⌝)⌝).

By Claim 5.2, PA + ConT ⊢ ∀x
(

FmlLA
(x) →

(
ProvT (x) ↔ Prg1(x)

))
. Thus,

we have PA + ConT ⊢ Prg1(⌜φ⌝)→ Prg1(⌜Prg1(⌜φ⌝)⌝).
We reason in PA+¬ConT +Prg1(⌜φ⌝): By Proposition 4.3.2, there exists an

i ̸= 0 such that S(i) holds. Let m and n be such that h(m) = 0, h(m+ 1) = i,
and i ∈ Wn. Since Prg1(⌜φ⌝) holds, φ is output by g1. Let s be such that
ξs ≡ φ.

If φ is output in Procedure 1, then φ = g1(k) for some k < m. If φ is
output in Procedure 2, then φ = g1(m + s). In either case, we have that
φ ∈ {g1(0), . . . , g1(m+s)}. Let u be such that ξu ≡ Prg1(⌜φ⌝). Since the Gödel
number of Prg1(⌜φ⌝) is larger than that of φ, we have s < u by the choice of
the enumeration ⟨ξt⟩t∈ω. Since there is an l < m + u such that g1(l) = φ, we
have that g1(m+ u) = Prg1(⌜φ⌝). Thus, Prg1(⌜Prg1(⌜φ⌝)⌝) holds.

We have proved PA+¬ConT ⊢ Prg1(⌜φ⌝)→ Prg1(⌜Prg1(⌜φ⌝)⌝). By the law
of excluded middle, we conclude PA ⊢ Prg1(⌜φ⌝)→ Prg1(⌜Prg1(⌜φ⌝)⌝). q

Claim 5.4. Let i ∈Wn and B ∈ Sub(An).

1. If i ⊩n B, then PA ⊢ S(i)→ fg1(B).

2. If i ⊮n B, then PA ⊢ S(i)→ ¬fg1(B).
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Proof. This is proved by induction on the construction of B ∈ Sub(An). We
only prove the case that B is of the form □C. Clause 1 is proved in the similar
way as in the proof of Claim 4.5.

2. Suppose i ⊮n □C. We prove in PA + S(i) that fg1(C) is not output by
g1. We distinguish the following two cases:

• Case 1: C is not of the form □D.
There exists a j ∈ Wn such that i ≺n,C j and j ⊮n C. By the induction
hypothesis, PA ⊢ S(j)→ ¬fg1(C). Let p be a T -proof of S(j)→ ¬fg1(C).

We proceed in PA+S(i): Let m be such that h(m) = 0 and h(m+ 1) = i.
By Proposition 4.3.4, we have m > p, and hence S(j) → ¬fg1(C) is in
PT,m−1.

If fg1(C) is output in Procedure 1, then fg1(C) ∈ PT,m−1, and hence
¬S(j) is a t.c. of PT,m−1. This contradicts h(m) = 0.

If fg1(C) is output in Procedure 2, then ξt ≡ fg1(C) and g1(m + t) =
fg1(C) for some t. Since C is not of the form □D, there is no φ such
that fg1(C) ≡ Prg1(⌜φ⌝). By the definition of g1, fg1(C) ≡ fg1(D) and
i ⊩n □D for some □D ∈ Sub(An). It follows that C ≡ D and this
contradicts i ⊮n □C.

• Case 2: C is of the form □D.
Then, □□D ∈ Sub(An). Since (Wn, {≺n,B}B∈MF,⊩n) is Sub(An)-transitive,
□D → □□D is valid in the model. Since i ⊮n □□D, we have i ⊮n □D.
By the induction hypothesis,

PA ⊢ S(i)→ ¬fg1(□D). (1)

We reason in PA + S(i): If fg1(□D) is output in Procedure 1, then
fg1(□D) ∈ PT,m−1. By (1) and Proposition 4.3.4, S(i) → ¬fg1(□D)
is also in PT,m−1. Hence, ¬S(i) is a t.c. of PT,m−1, a contradiction.

If fg1(□D) is output in Procedure 2, then ξt ≡ fg1(□D) and g1(m +
t) = fg1(□D) for some t. If fg1(□D) ≡ fg1(E) and i ⊩n □E for some
□E ∈ Sub(An), then □D ≡ E and i ⊩n □□D, a contradiction. Thus, we
have that fg1(□D) ≡ Prg1(⌜φ⌝) and g1(l) = φ for some φ and l < m+ t.
Since g1(l) = φ, we have that Prg1(⌜φ⌝) holds, and hence fg1(□D) holds.
This contradicts (1).

In either case, we have shown in PA + S(i) that fg1(C) is not output by g1.
Therefore, ¬fg1(□C) holds in PA + S(i). q

The first clause of the theorem follows from Claims 5.2 and 5.3. The second
clause follows from Proposition 4.3.3 and Claim 5.4. q

Corollary 5.5.

N4 =
⋂
{PL(PrT ) | PrT (x) is a provability predicate of T satisfying D3},

=
⋂
{PL(PrT ) | PrT (x) is a Σ1 provability predicate of T satisfying D3}.
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Moreover, there exists a Σ1 provability predicate PrT (x) of T such that N4 =
PL(PrT ).

6 Arithmetical completeness of NR

It is known that for any Rosser provability predicate PrRT (x) of T and any LA-
formula φ, if T ⊢ ¬φ, then PA ⊢ ¬PrRT (⌜φ⌝). This fact corresponds to the

closure under the rule Ros
¬A
¬□A , and hence it is shown that NR ⊆ PL(PrRT ).

Moreover, we obtain the following theorem:

Theorem 6.1 (The arithmetical soundness of NR). For any A ∈ MF, any
Rosser provability predicate PrRT (x) of T , and any arithmetical interpretation f
based on PrRT (x), if NR ⊢ A, then PA ⊢ f(A).

Our logic NR is a candidate for the axiomatization of the logic LR introduced
in Section 2. In this section, we prove that this is the case. Namely, we prove
that NR is exactly the provability logic of all Rosser provability predicates.

Firstly, we prove the coincidence of NR and LR without going through arith-
metic. For each L(□)-formula A, let A■ be the L(■)-formula obtained from A
by replacing every □ in A with ■.

Theorem 6.2. For any L(□)-formula A, the following are equivalent:

1. NR ⊢ A.

2. GR ⊢ A■.

Proof. Since the rules
A

■A and
¬A
¬■A are admissible in GR, the implication

(1⇒ 2) is straightforward.
(2⇒ 1): We prove the contrapositive. Suppose NR ⊬ A. By Theorem 3.12,

there exists a serial N-model (W, {≺B}B∈MF,⊩) and an element w ∈ W such
that w ⊮ A. Let r be any object not in W and define W ∗ := W ∪ {r}. We
define binary relations ≺∗

B on W ∗ for every L(□,■)-formula B as follows:

≺∗
B :=

{
≺C B is of the form C■ for some L(□)-formula C,

W 2 otherwise.

We define the satisfaction relation ⊩∗ between the elements of W ∗ and L(□,■)-
formulas as follows: Let x ∈ W , p be any propositional variable, and B be any
L(□,■)-formula,

• x ⊩∗ p ⇐⇒ x ⊩ p;

• r ⊩∗ p;

• x ⊩∗ □B;

• r ⊩∗ □B ⇐⇒ y ⊩∗ B for all y ∈W ;
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• x ⊩∗ ■B ⇐⇒ y ⊩∗ B for all y ∈W such that x ≺∗
B y;

• r ⊩∗ ■B ⇐⇒ y ⊩∗ B for all y ∈W ;

• ⊩∗ fulfills the usual conditions for ⊥,¬,∧, and ∨.

By the definition of ⊩∗, it is easy to see that all axioms of GR− are true in all
x ∈ W . Also, it can be shown that all axioms of GR− are true in r. We give
only a proof of the fact that □¬B → □¬■B is true in r.

Suppose r ⊩∗ □¬B. Let x be any element of W . If B is of the form C■ for
some C ∈ MF, then ≺∗

B=≺C . Since ≺C is serial, we find a y ∈ W such that
x ≺C y. Thus, x ≺∗

B y. Otherwise, we have ≺∗
B= W 2, and hence x ≺∗

B x. In
either case, we obtain a y ∈ W such that x ≺∗

B y. By the supposition, we have
y ⊩∗ ¬B, and hence x ⊩∗ ¬■B. We conclude r ⊩∗ □¬■B.

It is easy to show that the rules MP and Nec for □ preserve validity in the
model (W ∗, {≺∗

B},⊩∗). So, we obtain that all theorems of GR− are valid in the
model.

By induction on the construction of L(□)-formula B, we can prove that for
any x ∈ W , x ⊩ B if and only if x ⊩∗ B■. Since w ⊮ A, we get w ⊮∗ A■.
Thus, r ⊮∗ □(A■). Since every theorem of GR− is true in all elements of W ∗,
we obtain GR− ⊬ □(A■). By Theorem 2.3, we conclude that GR ⊬ A■. q

Therefore, NR is exactly the □-free fragment LR of GR. By Corollary 2.6
and Theorem 6.2, we obtain that the provability logic of all Rosser provability
predicates of T coincides with NR.

Corollary 6.3. If T is Σ1-sound, then

NR =
⋂
{PL(PrRT ) | PrRT (x) is a Rosser provability predicate of T}.

Moreover, there exists a Rosser provability predicate PrRT (x) of T such that NR =
PL(PrRT ).

Secondly, we directly prove the arithmetical completeness theorem for NR
without using the arithmetical completeness theorem for GR, to show that Corol-
lary 6.3 holds without assuming the Σ1-soundness of T .

Theorem 6.4 (The uniform arithmetical completeness of NR). There exist a
Rosser provability predicate PrRT (x) of T and an arithmetical interpretation f
based on PrRT (x) such that for any A ∈ MF, NR ⊢ A if and only if T ⊢ f(A).

Proof. Let ⟨An⟩n∈ω be a primitive recursive enumeration of all NR-unprovable
L(□)-formulas. For each n ∈ ω, let (Wn, {≺n,B}B∈MF,⊩n) be a primitive re-
cursively constructed finite Sub(A)-serial N-model in which An is not valid. Let
M = (W, {≺B}B∈MF,⊩) be the N-model defined as in the previous sections.
We define the corresponding primitive recursive function g2 enumerating all
theorems of T . Let PrRg2(x) be the formula

∃y
(
FmlLA

(x) ∧ x = g2(y) ∧ ∀z < y ¬̇(x) ̸= g2(z)
)
.
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In the definition of g2, we use the arithmetical interpretation fg2 based on

PrRg2(x) defined as fg2(p) ≡ ∃x(S(x) ∧ x ̸= 0 ∧ x ⊩ p). Procedure 1 in the
construction of g2 is same as that of g0, and so we only give the definition of
Procedure 2. Roughly speaking, g2 is defined so that if S(i) holds for i ∈ Wn,
then in Procedure 2, for □B ∈ Sub(An) which is false in i, g2 outputs ¬fg2(B)
before any output of fg2(B).

Procedure 2
Let m, i ̸= 0, and n be such that h(m) = 0, h(m + 1) = i, and i ∈ Wn. We
define the finite set X of LA-sentences as follows:

X := {¬fg2(B) | i ⊮n □B & □B ∈ Sub(An)}.

Let χ0, . . . , χk−1 be the listing of all elements of X arranged in descending order
of Gödel numbers. For l < k, define

g2(m+ l) = χl.

And define

g2(m+ k + t) = ξt.

The definition of g2 is finished.

Claim 6.5.

1. PA + ConT ⊢ ∀x∀y
(

FmlLA
(x)→

(
ProofT (x, y)↔ x = g2(y)

))
.

2. PA ⊢ ∀x
(

FmlLA
(x)→

(
ProvT (x)↔ Prg2(x)

))
.

Proof. Clause 1 is proved similarly as in the proof of Theorem 4.2.

2. By Clause 1, PA + ConT ⊢ ∀x
(

FmlLA
(x) →

(
ProvT (x) ↔ Prg2(x)

))
.

Also, PA+¬ConT ⊢ ∀x
(
FmlLA

(x)→ ProvT (x)
)
. Proposition 4.3.2 says that PA

verifies that if T is inconsistent, then the construction of g2 eventually switches
to Procedure 2. Since g2 outputs all LA-formulas in Procedure 2, we have PA+

¬ConT ⊢ ∀x
(
FmlLA

(x) → Prg2(x)
)
. Hence, PA + ¬ConT ⊢ ∀x

(
FmlLA

(x) →(
ProvT (x) ↔ Prg2(x)

))
. By the law of excluded middle, we conclude PA ⊢

∀x
(

FmlLA
(x)→

(
ProvT (x)↔ Prg2(x)

))
. q

It follows from this claim, PrRg2(x) is a Rosser provability predicate of T .

Claim 6.6. Let i ∈Wn and B ∈ Sub(An).

1. If i ⊩n B, then PA ⊢ S(i)→ fg2(B).

2. If i ⊮n B, then PA ⊢ S(i)→ ¬fg2(B).
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Proof. This claim is proved by induction on the construction of B ∈ Sub(An).
We only give a proof of the case B ≡ □C.

1. Suppose that i ⊩n □C. Since □C ∈ Sub(An) and (Wn, {≺n,B}B∈MF,⊩n)
is Sub(An)-serial, there is a j ∈ Wn such that i ≺n,C j. Then, j ⊩n C. By the
induction hypothesis, PA ⊢ S(j)→ fg2(C). Let p be a T -proof of S(j)→ fg2(C).

We argue in PA + S(i): Let m be such that h(m) = 0 and h(m + 1) = i.
Also, let X be the finite set of LA-formulas as in Procedure 2 and let k be the
cardinality of X. By Proposition 4.3.4, m > p, and hence S(j) → fg2(C) is in
PT,m−1.

If ¬fg2(C) ∈ PT,m−1, then ¬S(j) is a t.c. of PT,m−1, a contradiction. Hence,
¬fg2(C) /∈ PT,m−1, and so ¬fg2(C) /∈ {g2(0), . . . , g2(m − 1)}. If ¬fg2(C) ∈ X,
then there exists a □D ∈ Sub(An) such that ¬fg2(C) ≡ ¬fg2(D) and i ⊮n
□D. Then, we have C ≡ D, and this contradicts i ⊩n □C. Thus, we have
¬fg2(C) /∈ X, that is, ¬fg2(C) /∈ {g2(m), . . . , g2(m + k − 1)}. Therefore, we
obtain ¬fg2(C) /∈ {g2(0), . . . , g2(m+ k − 1)}.

Let s and u be such that ξs ≡ fg2(C) and ξu ≡ ¬fg2(C). Then, s < u,
g2(m+k+s) = fg2(C), and g2(m+k+u) = ¬fg2(C). In particular, g2(m+k+u)

is the first output of ¬fg2(C) by g2. Therefore, PrRg2(⌜fg2(C)⌝) holds. That is,
fg2(□C) holds.

2. Suppose i ⊮n □C. Then, there exists a j ∈ Wn such that i ≺n,C j and
j ⊮n C. By the induction hypothesis, PA ⊢ S(j)→ ¬fg2(C).

We reason in PA+S(i): Let m be such that h(m) = 0 and h(m+1) = i. Also,
let X and k be as in the definition of g2. As above, S(j)→ ¬fg2(C) is in PT,m−1.
If fg2(C) ∈ PT,m−1, then ¬S(j) is a t.c. of PT,m−1, and this is a contradiction.
Thus, fg2(C) /∈ PT,m−1, and hence fg2(C) /∈ {g2(0), . . . , g2(m− 1)}.

On the other hand, since □C ∈ Sub(An) and i ⊮n □C, we obtain ¬fg2(C) ∈
X. That is, ¬fg2(C) ∈ {g2(m), . . . , g2(m + k − 1)}. Since the Gödel number
of ¬fg2(C) is larger than that of fg2(C), even if fg2(C) ∈ X, ¬fg2(C) is listed
earlier than fg2(C) in the listing χ0, . . . , χk−1 of X. Thus, ¬fg2(C) is output by

g2 earlier than any output of fg2(C). Therefore, ¬PrRg2(⌜fg2(C)⌝) holds. This
means that ¬fg2(□C) holds. q

The theorem follows from Proposition 4.3.3 and Claims 6.5 and 6.6. q

Finally, we obtain that Corollary 6.3 holds regardless of whether T is Σ1-
sound or not.

Corollary 6.7.

NR =
⋂
{PL(PrRT ) | PrRT (x) is a Rosser provability predicate of T}.

Moreover, there exists a Rosser provability predicate PrRT (x) of T such that NR =
PL(PrRT ).
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7 Arithmetical completeness of NR4

Arai [1] proved the existence of Rosser provability predicates satisfying the con-
dition D3. For such Rosser provability predicates PrRT (x), one has NR4 ⊆
PL(PrRT ). In this section, we investigate the provability logic of Arai’s predi-
cates, and prove that NR4 is exactly the provability logic of all Rosser provability
predicates satisfying D3.

Theorem 7.1 (The uniform arithmetical completeness of NR4). There exists
a Rosser provability predicate PrRT (x) of T such that

1. for any A ∈ MF and any arithmetical interpretation f based on PrRT (x), if
NR4 ⊢ A, then PA ⊢ f(A); and

2. there exists an arithmetical interpretation f based on PrRT (x) such that for
any A ∈ MF, NR4 ⊢ A if and only if T ⊢ f(A).

Proof. Let ⟨An⟩n∈ω be a primitive recursive enumeration of all NR4-unprovable
L(□)-formulas. For each n ∈ ω, let (Wn, {≺n,B}B∈MF,⊩n) be a primitive recur-
sively constructed finite Sub(An)-transitive and Sub(An)-serial N-model falsify-
ing An. Let M = (W, {≺B}B∈MF,⊩) be the primitive recursively representable
infinite model constructed as the disjoint union of {(Wn, {≺n,B}B∈MF,⊩n)}n∈ω
as in the proof of Theorem 4.2. In particular, W = ω \ {0}.

Unlike the proofs in the previous sections, our proof of this theorem uses a
different function h′ instead of the function h. By using the double recursion
theorem, we simultaneously define the primitive recursive functions h′ and g3.
Firstly, we define the function h′.

• h′(0) = 0.

• h′(m+ 1) =



i if h′(m) = 0

& i = min
{
j ∈ ω \ {0} | ¬S′(j) is a t.c. of PT,m

or ∃φ < m
[
¬φ /∈ PT,m ∪Xj,m

& S′(j)→ ¬PrRg3(⌜φ⌝) is a t.c. of PT,m
]}

h′(m) otherwise.

Here, S′(x) is the Σ1 formula ∃y(h′(y) = x). Also, φ < m means that the Gödel
number of φ is smaller than m. Also, for each j ∈ Wn and number m, Xj,m is
the finite set{

¬fg3(D)

∣∣∣∣ □D ∈ Sub(An)

& ∃l ∈Wn

[
j ≺n,D l & S′(l)→ ¬fg3(D) is a t.c. of PT,m

] }
,

where fg3 is the arithmetical interpretation based on PrRg3(x) defined as fg3(p) :≡
∃x(S′(x) ∧ x ̸= 0 ∧ x ⊩ p).

We find some r ∈ ω such that Ar ≡ ⊥ since NR4 ⊬ ⊥, and we fix any j0 ∈Wr.
Here, we prove that if h′(m) = 0 and h′(m+ 1) = i ̸= 0, then i ≤ max{j0,m}.
It follows that h′ is actually a primitive recursive function. Suppose h′(m) = 0

24



and h′(m + 1) = i ̸= 0. If PT,m is propositionally unsatisfiable, then ¬S′(1) is
a t.c. of PT,m, and then i = 1 ≤ max{j0,m}. So, we may assume that PT,m is
propositionally satisfiable.

• Suppose that ¬S′(i) is a t.c. of PT,m, then S′(i) is a subformula of a for-
mula contained in PT,m because S′(i) is propositionally atomic. Then, the
Gödel number of S′(i) is smaller than m, and hence i ≤ m ≤ max{j0,m}.

• Suppose that there exists a sentence φ such that ¬φ /∈ PT,m ∪Xi,m and

S′(i)→ ¬PrRg3(⌜φ⌝) is a t.c. of PT,m.

– If ¬PrRg3(⌜φ⌝) is a t.c. of PT,m, then so is S′(j0)→ ¬PrRg3(⌜φ⌝). Since
Ar has no subformulas of the form □D, we have that Xj0,m = ∅. So,
¬φ /∈ PT,m ∪Xj0,m. We obtain i ≤ j0 ≤ max{j0,m}.

– If ¬PrRg3(⌜φ⌝) is not a t.c. of PT,m, then ¬S′(i) is a t.c. of the proposi-

tionally satisfiable set PT,m∪{PrRg3(⌜φ⌝)}. Since S′(i) is distinct from

propositionally atomic PrRg3(⌜φ⌝), we have that S′(i) is a subformula
of a formula in PT,m as above. We have i ≤ m ≤ max{j0,m}.

We have shown i ≤ max{j0,m}. Moreover, the above argument can be carried
out in PA.

Secondly, we define the function g3. We only give the definition of Procedure
2 of the construction of g3.

Procedure 2
Let m, i ̸= 0, and n be such that h′(m) = 0, h′(m + 1) = i, and i ∈ Wn.
Let χ0, . . . , χk−1 be the listing of all elements of the set Xi,m−1 arranged in
descending order of Gödel numbers. For l < k, define

g3(m+ l) = χl.

And define

g3(m+ k + t) = ξt.

The definition of g3 is finished. The construction of g3 is exactly the same as
that of g2 in the proof of Theorem 6.4, except that it is based on the family of
N-models corresponding to the logic NR4 and uses Xi,m−1 and h′ instead of X
and h, respectively.

Similarly to Proposition 4.3, the following claim holds.

Claim 7.2.

1. PA ⊢ ∀x∀y(0 < x < y ∧ S′(x)→ ¬S′(y)).

2. PA ⊢ ¬ConT ↔ ∃x(S′(x) ∧ x ̸= 0).

3. For each i ∈ ω \ {0}, T ⊬ ¬S′(i).

4. For each n ∈ ω, PA ⊢ ∀x∀y(h′(x) = 0 ∧ h′(x+ 1) = y ∧ y ̸= 0→ x > n).
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Proof. 1. This is straightforward from the definition of h′.
2. The implication → is easy, and so we prove the implication ←. Argue

in PA: Suppose that S′(i) holds for some i ̸= 0. Let m and n be such that
h′(m) = 0, h′(m + 1) = i, and i ∈ Wn. Also, let k be the cardinality of the
set Xi,m−1. We would like to show that T is inconsistent. We distinguish the
following two cases:

• Case 1: ¬S′(i) is a t.c. of PT,m.
Then, ¬S′(i) is T -provable. Since S′(i) is a true Σ1 sentence, it is provable
in T . Therefore, T is inconsistent.

• Case 2: There exists a φ such that ¬φ /∈ PT,m ∪ Xi,m and S′(i) →
¬PrRg3(⌜φ⌝) is a t.c. of PT,m.
Then, ¬φ /∈ PT,m−1 ∪ Xi,m−1. Hence, ¬φ /∈ {g3(0), . . . , g3(m + k − 1)}.
Let s and u be such that ξs ≡ φ and ξu ≡ ¬φ. We have that s < u,
g3(m+k+s) = φ, and g3(m+k+u) = ¬φ. In particular, g3(m+k+u) is the
first output of ¬φ by g3. Hence, PrRg3(⌜φ⌝) holds. Then, S′(i)∧PrRg3(⌜φ⌝)

is a true Σ1 sentence, and so it is provable in T . Since S′(i)→ ¬PrRg3(⌜φ⌝)
is also provable in T , we have that T is inconsistent.

3. Suppose T ⊢ ¬S′(i) for i ̸= 0. Let p be a T -proof of ¬S′(i). Then,
¬S′(i) ∈ PT,p, and thus h′(p + 1) ̸= 0. This means that ∃x(S′(x) ∧ x ̸= 0) is
true. By clause 2, T is inconsistent, a contradiction.

4. Since T is consistent, we have that h′(m+ 1) = 0 for all m ∈ ω by clause
2. So, clause 4 is immediately obtained. q

The following claim is proved as in the proof of Theorem 6.4.

Claim 7.3.

1. PA + ConT ⊢ ∀x∀y
(

FmlLA
(x)→

(
ProofT (x, y)↔ x = g3(y)

))
.

2. PA ⊢ ∀x
(

FmlLA
(x)→

(
ProvT (x)↔ Prg3(x)

))
.

Hence, PrRg3(x) is a Rosser provability predicate of T .

Claim 7.4. Let i ∈Wn and B ∈ Sub(An).

1. If i ⊩n B, then PA ⊢ S′(i)→ fg3(B).

2. If i ⊮n B, then PA ⊢ S′(i)→ ¬fg3(B).

Proof. We prove the claim by induction on the construction of B ∈ Sub(An).
We only give a proof of the case B ≡ □C.

1. Suppose that i ⊩n □C. For each l ∈ Wn with l ⊩n C, by the induction
hypothesis, we have PA ⊢ S′(l) → fg3(C). Since Wn is finite and the model
(Wn, {≺n,B}B∈MF,⊩n) is primitive recursively represented, we find a p ∈ ω
such that

PA ⊢ ∀x ∈Wn

(
x ⊩n C → ∃y < pProofT (⌜S′(ẋ)→ fg3(C)⌝, y)

)
. (2)
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Since □C ∈ Sub(An) and (Wn, {≺n,B}B∈MF,⊩n) is Sub(An)-serial, there exists
a j ∈ Wn such that i ≺n,C j. Then, j ⊩n C and there exists a T -proof of
S′(j)→ fg3(C) smaller than p.

We argue in PA + S′(i): Let m be such that h′(m) = 0 and h′(m+ 1) = i.
If ¬fg3(C) ∈ PT,m−1, then ¬S′(j) is a t.c. of PT,m−1 because m > p by

Claim 7.2.4. We have h′(m) ̸= 0 by the definition of h′, and this is a con-
tradiction. Hence, ¬fg3(C) /∈ PT,m−1. If ¬fg3(C) ∈ Xi,m−1, then there exist
□D ∈ Sub(An) and l ∈ Wn such that ¬fg3(C) ≡ ¬fg3(D), i ≺n,D l, and
S′(l) → ¬fg3(D) is a t.c. of PT,m−1. We have C ≡ D. Since i ⊩n □C and
i ≺n,C l, we have l ⊩n C. By (2), we obtain that S′(l)→ fg3(C) has a T -proof
smaller than p. Since m > p by Claim 7.2.4, S′(l) → fg3(C) is in PT,m−1.
Since both S′(l) → fg3(C) and S′(l) → ¬fg3(C) are t.c.’s of PT,m−1, we have
that ¬S′(l) is a t.c. of PT,m−1, a contradiction with h′(m) = 0. Thus, we have
¬fg3(C) /∈ Xi,m−1, that is, ¬fg3(C) /∈ {g3(m), . . . , g3(m + k − 1)}. Therefore,
we obtain ¬fg3(C) /∈ {g3(0), . . . , g3(m+ k − 1)}.

Let s and u be such that ξs ≡ fg3(C) and ξu ≡ ¬fg3(C). Then, s < u,
g3(m+k+ s) = fg3(C), g3(m+k+u) = ¬fg3(C), and this is the first g3-output

of ¬fg3(C). Therefore, PrRg3(⌜fg3(C)⌝) holds. That is, fg3(□C) holds.
2. Suppose i ⊮n □C. There exists a j ∈Wn such that i ≺n,C j and j ⊮n C.

By the induction hypothesis, PA ⊢ S′(j) → ¬fg3(C). Let p be a T -proof of
S′(j)→ ¬fg3(C).

We reason in PA + S′(i): Let m be such that h′(m) = 0 and h′(m + 1) =
i. Since m > p by Claim 7.2.4, S′(j) → ¬fg3(C) is a t.c. of PT,m−1, and
hence we have ¬fg3(C) ∈ Xi,m−1. If fg3(C) ∈ PT,m−1, then ¬S′(j) is a t.c. of
PT,m−1, a contradiction. Hence, fg3(C) /∈ {g3(0), . . . , g3(m − 1)}. Then, even
if fg3(C) ∈ Xi,m−1, we get that g3 outputs ¬fg3(C) earlier than any output of

fg3(C). Hence, ¬PrRg3(⌜fg3(C)⌝) holds. That is, ¬fg3(□C) holds. q

We prove that PrRg3(x) satisfies D3.

Claim 7.5. For any LA-formula φ, PA ⊢ PrRg3(⌜φ⌝)→ PrRg3(⌜PrRg3(⌜φ⌝)⌝).

Proof. Since PrRg3(⌜φ⌝) is a Σ1 sentence, PA ⊢ PrRg3(⌜φ⌝)→ ProvT (⌜PrRg3(⌜φ⌝)⌝).
By Claim 7.3.1, we have

PA + ConT ⊢ ∀x
(

FmlLA
(x)→

(
ProvR

T (x)↔ PrRg3(x)
))
.

Since PA + ConT ⊢ ∀x
(

FmlLA
(x) →

(
ProvT (x) ↔ ProvR

T (x)
))

, we obtain

PA + ConT ⊢ ∀x
(

FmlLA
(x)→

(
ProvT (x)↔ PrRg3(x)

))
. Thus,

PA + ConT ⊢ PrRg3(⌜φ⌝)→ PrRg3(⌜PrRg3(⌜φ⌝)⌝).

We reason in PA + ¬ConT + ¬PrRg3(⌜PrRg3(⌜φ⌝)⌝): By Claim 7.2.2, there
exists an i ̸= 0 such that S′(i) holds. Let m and n be such that h′(m) = 0,
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h′(m+ 1) = i, and i ∈Wn. If ¬φ ∈ PT,m−1, then φ /∈ PT,m−1 because ¬S(j) is

not a t.c. of PT,m−1 for all j ̸= 0. In this case, ¬PrRg3(⌜φ⌝) holds.
Therefore, in the following, we assume that ¬φ /∈ PT,m−1. Let k be the

cardinality of the set Xi,m−1. Since ¬PrRg3(⌜PrRg3(⌜φ⌝)⌝) holds, ¬PrRg3(⌜φ⌝) is

output by g3 earlier than any output of PrRg3(⌜φ⌝). Let s and u be such that

ξs ≡ PrRg3(⌜φ⌝) and ξu ≡ ¬PrRg3(⌜φ⌝). Then, g3(m+k+u) = ¬PrRg3(⌜φ⌝). Since

s < u and g3(m + k + s) = PrRg3(⌜φ⌝), g3(m + k + u) is not the first output of

¬PrRg3(⌜φ⌝). It follows that ¬PrRg3(⌜φ⌝) ∈ PT,m−1 ∪Xi,m−1. We would like to

show that ¬PrRg3(⌜φ⌝) holds. We distinguish the following two cases:

• Case 1: ¬PrRg3(⌜φ⌝) ∈ PT,m−1.
If ¬φ /∈ PT,m−1 ∪Xi,m−1, then 0 ̸= h′(m) ≤ i because the Gödel number

of φ is smaller than m−1 by Claim 7.2 and S′(i)→ ¬PrRg3(⌜φ⌝) is a t.c. of
PT,m−1. This is a contradiction. Hence, ¬φ ∈ PT,m−1 ∪ Xi,m−1. Since
¬φ /∈ PT,m−1 by the assumption, we have ¬φ ∈ Xi,m−1. Then, there
exist □D ∈ Sub(An) and l ∈ Wn such that ¬φ ≡ ¬fg3(D), i ≺n,D l, and
S′(l)→ ¬fg3(D) is a t.c. of PT,m−1. Since S′(l)→ ¬φ is a t.c. of PT,m−1

but ¬S′(l) is not, we have φ /∈ PT,m−1. Thus, φ /∈ {g3(0), . . . , g3(m− 1)}.
Then, even if φ ∈ Xi,m−1, ¬φ is output by g3 earlier than any output of

φ. Therefore, ¬PrRg3(⌜φ⌝) holds.

• Case 2: ¬PrRg3(⌜φ⌝) ∈ Xi,m−1.

Then, there exist □D ∈ Sub(An) and j ∈ Wn such that ¬PrRg3(⌜φ⌝) ≡
¬fg3(D), i ≺n,D j, and S′(j) → ¬fg3(D) is a t.c. of PT,m−1. It follows

that PrRg3(⌜φ⌝) ≡ fg3(D). By the definition of fg3 , there exists a □E ∈
Sub(An) such that D ≡ □E and PrRg3(⌜φ⌝) ≡ PrRg3(⌜fg3(E)⌝). We have
that φ ≡ fg3(E), □□E ∈ Sub(An), and i ≺n,□E j.

If ¬fg3(E) /∈ Xj,m−1, then ¬fg3(E) /∈ PT,m−1 ∪ Xj,m−1 by the assump-
tion. Since the Gödel number of fg3(E) is smaller than m−1 and S′(j)→
¬PrRg3(⌜fg3(E)⌝) is a t.c. of PT,m−1, we have h′(m) ̸= 0. This is a con-
tradiction. Hence, ¬fg3(E) ∈ Xj,m−1. Then, there exists an l ∈ Wn such
that j ≺n,E l and S′(l)→ ¬fg3(E) is a t.c. of PT,m−1. Since i ≺n,□E j and
j ≺n,E l, we obtain i ≺n,E l because (Wn, {≺n,B}B∈MF,⊩n) is Sub(An)-
transitive. Therefore, ¬fg3(E) ∈ Xi,m−1, and hence ¬φ ∈ Xi,m−1.

Since S′(l) → ¬φ is a t.c. of PT,m−1, we have φ /∈ PT,m−1. Hence,
φ /∈ {g3(0), . . . , g3(m − 1)}. Then, even if φ ∈ Xi,m−1, g3 outputs ¬φ
earlier than any output of φ. Therefore, ¬PrRg3(⌜φ⌝) holds.

We have proved PA+¬ConT ⊢ PrRg3(⌜φ⌝)→ PrRg3(⌜PrRg3(⌜φ⌝)⌝). By the law

of excluded middle, PA ⊢ PrRg3(⌜φ⌝)→ PrRg3(⌜PrRg3(⌜φ⌝)⌝). q

The first clause of the theorem follows from Claims 7.3 and 7.5. The second
clause follows from Claims 7.2.3 and 7.4. q
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Corollary 7.6.

NR4 =
⋂
{PL(PrRT ) | PrRT (x) is a Rosser provability predicate of T satisfying D3}.

Moreover, there exists a Rosser provability predicate PrRT (x) of T such that
NR4 = PL(PrRT ).
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A Appendix: Σ1 provability predicates corre-
sponding to K

In [9], it is proved that there exists a Σ2 provability predicate PrT (x) of T such
that K = PL(PrT ). It follows

K =
⋂
{PL(PrT ) | PrT (x) is a provability predicate of T satisfying D2}.

As in Theorems 4.2 and 5.1, we prove that the provability logic of all Σ1 prov-
ability predicates satisfying D2 is also K.
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Theorem A.1 (The uniform arithmetical completeness of K). There exists a
Σ1 provability predicate PrT (x) of T such that

1. for any A ∈ MF and any arithmetical interpretation f based on PrT (x), if
K ⊢ A, then PA ⊢ f(A); and

2. there exists an arithmetical interpretation f based on PrT (x) such that for
any A ∈ MF, K ⊢ A if and only if T ⊢ f(A).

Proof. Let (W,≺,⊩) be a primitive recursively representable Kripke model sat-
isfying the following conditions:

• W = ω \ {0},

• (W,≺,⊩) is the disjoint union of finite Kripke models and for every i ∈W ,
we can primitive recursively find the finite set {j ∈ W | i ≺ j} that may
be empty,

• for any K-unprovable L(□)-formula A, there exists an i ∈ W such that
i ⊮ A.

We define the primitive recursive function g4 corresponding to this theorem.
We only describe Procedure 2.

Procedure 2
Let m and i ̸= 0 be such that h(m) = 0 and h(m+ 1) = i. Define

g4(m+ t) =

{
ξt if ξt is a t.c. of PT,m−1 ∪

{∨
i≺j S(j)

}
,

0 otherwise.

Notice that the empty disjunction represents 0 = 1. Our definition of g4 is
finished. Let fg4 be the arithmetical interpretation based on Prg4(x) defined by
fg4(p) ≡ ∃x(S(x) ∧ x ̸= 0 ∧ x ⊩ p).

The following claim is proved similarly as in the proof of Theorem 4.2.

Claim A.2. PA + ConT ⊢ ∀x∀y
(

FmlLA
(x)→

(
ProofT (x, y)↔ x = g4(y)

))
.

Thus, Prg4(x) is a Σ1 provability predicate of T .

Claim A.3. PA proves the following statement: “Let m and i ̸= 0 be such that
h(m) = 0 and h(m+ 1) = i. Then, for any LA-formula φ,

Prg4(⌜φ⌝) holds ⇐⇒ φ is a t.c. of PT,m−1 ∪
{∨
i≺j

S(j)
}
”.

Proof. (⇒): This is because if ξt ∈ PT,m−1, then ξt is a t.c. of PT,m−1 ∪{∨
i≺j S(j)

}
.

(⇐): Immediate from the definition of g4. q

Claim A.4. PA ⊢ ∀x∀y
(
Prg4(x→̇y) ∧ Prg4(x)→ Prg4(y)

)
.
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Proof. Since PA ⊢ ∀x∀y
(
ProvT (x→̇y) ∧ ProvT (x) → ProvT (y)

)
, we have PA +

ConT ⊢ ∀x∀y
(
Prg4(x→̇y) ∧ Prg4(x)→ Prg4(y)

)
by Claim A.2.

We argue in PA + ¬ConT : By Proposition 4.3.2, there exists an i ̸= 0 such
that S(i) holds. Let m be such that h(m) = 0 and h(m + 1) = i. Suppose
Prg4(⌜φ→ ψ⌝) and Prg4(⌜φ⌝) hold. By Claim A.3, both φ→ ψ and φ are t.c.’s
of PT,m−1∪

{∨
i≺j S(j)

}
. We have that ψ is also a t.c. of PT,m−1∪

{∨
i≺j S(j)

}
.

By Claim A.3 again, we obtain that Prg4(⌜ψ⌝) holds.
We have proved PA + ¬ConT ⊢ ∀x∀y

(
Prg4(x→̇y) ∧ Prg4(x)→ Prg4(y)

)
. By

the law of excluded middle, we conclude PA ⊢ ∀x∀y
(
Prg4(x→̇y) ∧ Prg4(x) →

Prg4(y)
)
. q

Claim A.5. Let i, l ∈W .

1. PA ⊢ S(i)→ Prg4

(
⌜
∨
i≺j S(j)⌝

)
.

2. If i ≺ l, then PA ⊢ S(i)→ ¬Prg4(⌜¬S(l)⌝).

Proof. We proceed in PA+S(i): Let m be such that h(m) = 0 and h(m+1) = i.

1. Since
∨
i≺j S(j) is a t.c. of PT,m−1∪

{∨
i≺j S(j)

}
, it follows that Prg4

(
⌜
∨
i≺j S(j)⌝

)
holds by Claim A.3.

2. Suppose, towards a contradiction, that ¬S(l) is a t.c. of PT,m−1 ∪{∨
i≺j S(j)

}
. Then,

∨
i≺j S(j) → ¬S(l) is a t.c. of PT,m−1. Since S(l) is a

disjunct of
∨
i≺j S(j), S(l) → ¬S(l) is also a t.c. of PT,m−1. We have that

¬S(l) is a t.c. of PT,m−1. This is a contradiction. Hence, ¬S(l) is not a t.c. of
PT,m−1 ∪

{∨
i≺j S(j)

}
. By Claim A.3, ¬Prg4(⌜¬S(l)⌝) holds. q

The following claim is proved in the same fashion as in the usual proof of
Solovay’s arithmetical completeness theorem by using Claim A.5.

Claim A.6. Let i ∈W and B ∈ MF.

1. If i ⊩ B, then PA ⊢ S(i)→ fg4(B).

2. If i ⊮ B, then PA ⊢ S(i)→ ¬fg4(B).

The first clause of Theorem A.1 follows from Claims A.2 and A.4. The
second clause follows from Proposition 4.3.3 and Claim A.6. q

Corollary A.7.

K =
⋂
{PL(PrT ) | PrT (x) is a Σ1 provability predicate of T satisfying D2}.

Moreover, there exists a Σ1 provability predicate PrT (x) of T such that K =
PL(PrT ).
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B Appendix: Interchangeability of □ and ♢ in
NR

The language of propositional modal logic does not have the symbol ♢ as a
modal operator. We introduce the expression ♢A as the abbreviation of ¬□¬A.
However, in the logic N, □ and ♢ are not dual operators, that is, we show that
¬♢¬p↔ □p is not provable in NR4.

Proposition B.1. NR4 ⊬ ¬♢¬p→ □p.

Proof. Let F = ({a, b}, {≺B}B∈MF) be the N-frame defined as follows: for each
B ∈ MF and x, y ∈ {a, b},

x ≺B y :⇐⇒

{
y = b if B ≡ p,
x = y otherwise.

Obvioulsy, F is serial. We prove that F is transitive. Suppose x ≺□B y ≺B z
for B ∈ MF and x, y, z ∈ {a, b}. Since □B ̸≡ p, we have x = y. Thus, we obtain
x ≺B z because y ≺B z.

Let ⊩ be a satisfaction relation on F such that a ⊩ p and b ⊮ p. Since
¬¬p ̸≡ p, we have that a ≺¬¬p x if and only of x = a. So, we obtain a ⊩ □¬¬p
because a ⊩ ¬¬p. Since a ⊩ ¬¬□¬¬p, we get a ⊩ ¬♢¬p. On the other hand,
we have a ⊮ □p because a ≺p b and b ⊮ p. Therefore, ¬♢¬p→ □p is not valid
in F . By Corollary 3.10, we conclude that NR4 ⊬ ¬♢¬p→ □p. q

From another point of view, in NR, the operators □ and ♢ have an interesting
relationship. That is, in a sense, □ and ♢ are interchangeable in NR. To state
this fact precisely, we introduce the following translation χ.

Definition B.2. We define a translation χ of L(□)-formulas recursively as
follows:

1. χ(A) is A if A is a propositional variable or ⊥,

2. χ(¬A) is ¬χ(A),

3. χ(A ◦B) is χ(A) ◦ χ(B) for ◦ ∈ {∧,∨,→},

4. χ(□A) is ♢χ(A).

That is, χ(A) is obtained from A by replacing every □ with ♢.

Proposition B.3. For any A ∈ MF, NR ⊢ A if and only if NR ⊢ χ(A).

Proof. (⇒): We prove this implication by induction on the length of proofs

in NR. It suffices to prove that NR is closed under the rules
A

♢A and
¬A
¬♢A .

Suppose NR ⊢ A. Then, NR ⊢ ¬¬A. By the rule Ros, NR ⊢ ¬□¬A, that is,
NR ⊢ ♢A.
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Suppose NR ⊢ ¬A. By Nec, NR ⊢ □¬A, and then NR ⊢ ¬¬□¬A. This
means NR ⊢ ¬♢A.

(⇐): We prove the contrapositive. Suppose NR ⊬ A. Then, by Theorem
3.12, there exists a serial N-model M = (W, {≺B}B∈MF,⊩) and w ∈ W such
that w ⊮ A. For each B ∈ MF, let ≺∗

B be the binary relation on W defined as
follows:

≺∗
B :=

{
≺D if B is of the form ¬¬χ(χ(D)),

≺B otherwise.

Let M∗ be the N-model (W, {≺∗
B}B∈MF,⊩∗) defined by x ⊩∗ p :⇐⇒ x ⊩ p. It

is easy to see that the frame of M∗ is also serial.

Claim B.4. For any L(□)-formula C and x ∈W , x ⊩∗ χ(χ(C)) if and only if
x ⊩ C.

Proof. This claim is proved by induction on the construction of C. If C is a
propositional variable, the claim is trivial because χ(χ(p)) is exactly p. The
cases of ⊥ and propositional connectives are easy.

We prove the case that C is of the form □D. Notice ≺∗
¬¬χ(χ(D))=≺D. By

the induction hypothesis, for any y ∈W , y ⊩∗ χ(χ(D)) if and only if y ⊩ D.

x ⊩∗ χ(χ(□D)) ⇐⇒ x ⊩∗ □¬¬χ(χ(D)),

⇐⇒ ∀y ∈W
(
x ≺∗

¬¬χ(χ(D)) y ⇒ y ⊩∗ ¬¬χ(χ(D))
)
,

⇐⇒ ∀y ∈W
(
x ≺D y ⇒ y ⊩∗ χ(χ(D))

)
,

⇐⇒ ∀y ∈W
(
x ≺D y ⇒ y ⊩ D

)
,

⇐⇒ x ⊩ □D. q

Since w ⊮ A, we obtain w ⊮∗ χ(χ(A)) by Claim B.4. By Theorem 3.12
again, we obtain NR ⊬ χ(χ(A)). Since we have already proved the implication
(⇒) of the proposition, we conclude NR ⊬ χ(A). q
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