
Kobe University Repository : Kernel

PDF issue: 2025-04-29

Pressure drop and bubble velocity in Taylor
flow through square microchannel

(Citation)
Microfluidics and Nanofluidics,28(8):58

(Issue Date)
2024-07-30

(Resource Type)
journal article

(Version)
Version of Record

(Rights)
© The Author(s) 2024
This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) a…
the source, provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are included in
the article's Creative Commons licence, unless indicated otherwise in a credit line to
the material. If material is not included in the article's Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.

(URL)
https://hdl.handle.net/20.500.14094/0100490919

Kurimoto, Ryo
Hayashi, Kosuke
Tomiyama, Akio



Vol.:(0123456789)

Microfluidics and Nanofluidics           (2024) 28:58  
https://doi.org/10.1007/s10404-024-02750-y

RESEARCH

Pressure drop and bubble velocity in Taylor flow through square 
microchannel

Ryo Kurimoto1 · Kosuke Hayashi1 · Akio Tomiyama1

Received: 21 March 2024 / Accepted: 17 July 2024 
© The Author(s) 2024

Abstract
Interface tracking simulations of gas–liquid Taylor flow in horizontal square microchannels were carried out to understand 
the relation between the pressure drop in the bubble part and the curvatures at the nose and tail of a bubble. Numerical 
conditions ranged for 0.00159 ≤ CaT ≤ 0.0989, 0.0817 ≤ WeT ≤ 25.4, and 8.33 ≤ ReT ≤ 791, where CaT, WeT, and ReT are the 
capillary, Weber, and Reynolds numbers based on the total volumetric flux. The dimensionless pressure drop in the bubble 
part increased with increasing the capillary number and the Weber number. The curvature at the nose of a bubble increased 
and that at the tail of a bubble decreased as the capillary number increased. The variation of the curvature at the tail of a 
bubble was more remarkable than that at the nose of a bubble due to the increase in the Weber number, which was the main 
cause of large pressure drop in the bubble part at the same capillary number. The relation between the bubble velocity and 
the total volumetric flux was also discussed. The distribution parameter of the drift-flux model without inertial effects showed 
a simple relation with the capillary number. A correlation of the distribution parameter, which is expressed in terms of the 
capillary number and the Weber number, was developed and was confirmed to give good predictions of the bubble velocity.

Keywords  Taylor flow · Taylor bubble · Square microchannel · Pressure drop · Bubble velocity · Volume of fluid method

1  Introduction

Taylor flow consisting of elongated bubbles separated by liq-
uid slugs is one of the typical flow patterns in microchannels 
and is known to have good performances in heat and mass 
transfer. Understanding the flow characteristics of Taylor 
flow, e.g., the pressure drop and the bubble velocity, is indis-
pensable for the design and development of efficient micro-
devices such as microreactors and micro heat exchangers.

The pressure drop in Taylor flow has often been modeled 
as the sum of the pressure drops in the bubble part ΔPB and 
the liquid slug part ΔPL (Chung and Kawaji 2004; Warnier, 
et al. 2010; Minagawa et al. 2013; Eain et al. 2015; Kurimoto 
et al. 2017, 2019, 2020; Kawahara et al. 2020), i.e.,

where dP/dz is the pressure gradient of one unit cell con-
sisting of a Taylor bubble followed by a liquid slug, and L 
the length of the unit cell. Kurimoto et al. (2020) measured 
dP/dz in square microchannels. They calculated ΔPB as

where cs = 56.9 (Shah 1978), LL is the length of a liquid 
slug, ρL the liquid density, jT the total volumetric flux, Dh 
the hydraulic equivalent diameter of a channel, and ReT the 
Reynolds number defined by

where µL is the liquid viscosity. The dimensionless pressure 
drop, ΔPB

* (= ΔPBDh/σ), in the bubble part increased with 
increasing the capillary number Ca defined by

where uB is the bubble velocity, and σ the surface ten-
sion. The dimensionless pressure drop also increased with 
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increasing the bubble Weber number We or the bubble 
Reynolds number Re, i.e., inertial effects contribute to the 
increase in ΔPB

*. The Weber and Reynolds numbers are 
defined by

Wong et  al. (1995b) derived an analytical solution 
describing the relation between ΔPB

* and the bubble shape 
in the limiting case of Ca → 0. The dependence of ΔPB

* 
on Ca and We at a finite Ca would be also related with the 
deformation of the bubble shape. Three-dimensional inter-
face tracking simulations have been carried out to obtain the 
shapes of Taylor bubbles, in particular the liquid film thick-
ness, in square microchannels (Zhang et al. 2016; Ferrari 
et al. 2018; Magnini and Matar 2020; Magnini et al. 2022). 
However, the relation between ΔPB

* and the bubble shape 
at a finite Ca has not been discussed yet.

Some numerical studies discussed the velocities of bub-
bles in square microchannels. Ferrari et al. (2018) showed 
that the bubble velocities increase with increasing Ca and 
are larger than those in a circular microchannel. Magnini 
and Matar (2020) pointed out that the bubble velocities with 
negligible inertial effects agree well with those of the propa-
gation velocities of air fingers in a square channel (De Lózar 
et al. 2008). They also investigated inertial effects on the 
bubble velocities in a square channel. The bubble velocity 
of small Ca increased with increasing Re at high Re, whereas 
it was constant at low Re. At a large Ca, the bubble velocity 
decreased and then increased with increasing Re. No correla-
tions of the bubble velocity have been developed in spite of 
its importance in modeling Taylor flow.

Numerical simulations of Taylor flows in square micro-
channels were therefore carried out to investigate the relation 
between the bubble shape and ΔPB

* and to discuss the bub-
ble velocity. An interface tracking method based on the vol-
ume of fluid method was used for the numerical simulations, 

(5)We =
�Lu

2

B
Dh

�
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�LuBDh

�L

which dealt with a single unit cell consisting of a bubble and 
a liquid slug (Langewisch and Buongiorno 2015; Kurimoto 
et al. 2018).

2 � Numerical method and conditions

2.1 � Interface tracking method

The continuity and momentum equations for two incom-
pressible Newtonian fluids based on the one-fluid formula-
tion are given by

where V is the velocity, t the time, ρ the density, P the pres-
sure, µ the viscosity, κ the mean curvature of the interface, n 
the unit normal to the interface, δ the delta function which is 
non-zero only at the interface, and the superscript T denotes 
the transpose. The density is given by

where C is the cell-averaged volume fraction of the liquid 
phase, and the subscripts G and L denote the gas and liquid 
phases, respectively. Computational cells are filled with the 
liquid phase when C = 1, and with the gas phase when C = 0. 
A cell with 0 < C < 1 contains an interface. The viscosity is 
given by the harmonic mean (Tryggvason et al. 2011):

The height function technique (Francois et al. 2006) is 
adopted to evaluate κ. The advection and diffusion terms are 
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Fig. 1   Computational domain and initial bubble shape

Table 1   Liquid properties

ρL
[kg/m3]

µL
[mPa·s]

νL/νW σ [mN/m]

Water 997 0.89 1.0 72.0
Glycerol-Water solution (12 

wt%)
1026 1.2 1.3 72.0

Glycerol-Water solution (21 
wt%)

1048 1.6 1.7 71.5

Glycerol-Water solution (30 
wt%)

1071 2.2 2.2 70.9

Glycerol-Water solution (41 
wt%)

1100 3.3 3.4 69.9

Glycerol-Water solution (52 
wt%)

1129 5.6 5.6 68.7
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discretized by using the CIP (cubic interpolated propagation) 
scheme (Takewaki and Yabe 1987) and the second-order 
centered-difference scheme, respectively. The surface ten-
sion force is accounted for in the discretized pressure gradi-
ent by adopting the ghost fluid method (Kang et al. 2000).

The following advection equation of C is solved to cap-
ture the interface motion by means of a combination of the 
NSS (non-uniform subcell scheme) (Hayashi and Tomiyama 
2018) and the operator splitting method (Rider and Kothe 
1998):

The divergence correction term C∇·V is introduced to 
conserve the fluid volume.

2.2 � Computational domain and numerical 
condition

The computational domain is shown in Fig. 1, where x, y, 
and z are the Cartesian coordinates. The dimensions of the 
domain in the x, y, and z directions were 0.5Dh, 0.5Dh, and 
L, respectively. The boundaries at x = y = 0 were symmetric 
and those at x = y = 0.5Dh were no-slip walls. An instanta-
neous bubble velocity with the opposite sign (–uB(t)) was 
imposed on the walls and the instantaneous acceleration of 
the bubble with the opposite sign was added to Eq. (8) to fix 
the bubble position (Wang et al. 2008). The boundaries at 
z = 0 and L were periodic and a constant pressure gradient 
was imposed between z = 0 and L for driving a flow. The 
initial bubble shape consisted of a cylindrical section and 
two hemispheres at the front and rear of the cylindrical sec-
tion with the radius of 0.45Dh. The initial bubble length was 

(11)
�C

�t
+ ∇ ∙ CV = C∇ ∙ V

set based on L and the void fraction α of the unit cell. Thus, 
dp/dz, L, and α were input values for simulations. The com-
putational domain was initially divided into uniform cells 
with the size h, which were the coarsest cells, i.e., the base 
cells. Finer cells were embedded into the base cells in the 
vicinity of the interface by a quadtree manner. The size of 
the computational cells, hl, at the lth refinement level was 
h/2l, where l = 0 for the base cell. The finest refinement level 
lmax was three. l = lmax when the magnitude of the local level 
set function at a vertex of the coarsest cell was smaller than 
h. l = 2 for base cells neighboring to the cells of l = 3. The 
minimum and maximum cell sizes were h3 = 0.5Dh/128 and 
h0 = 0.5Dh/16, respectively.

The numerical simulation in two cases (Dh = 298 µm, νL/
νW = 1.0, α = 0.395, dp/dz = 0.360 MPa/m; Dh = 298 µm, νL/
νW = 5.6, α = 0.404, dp/dz = 0.753 MPa/m, where νL and νW 
are the kinematic viscosities of liquid and water, respec-
tively) were carried out with 1.5 times finer meshes to check 
the mesh size dependence. The changes in the bubble veloci-
ties due to the increase in the spatial resolution were less 
than 1.4%.

Water and glycerol-water solutions of five different con-
centrations (12, 21, 30, 41, and 52 wt%) were used as the 
liquid phase. Their liquid properties are shown in Table 1 
(Ishikawa 1968). The gas density and gas viscosity were 
1.19 kg/m3 and 1.8 × 10–2 mPa·s, respectively.

Fig. 2   Comparison of ΔPB
* 

between experimental and 
numerical data
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Fig. 3   Bubble shapes and 
normalized pressure profiles on 
z-axis

(a) Ca = 2.09 x 10-2, We = 0.318
(Dh= 298 m, L/ W = 5.6 and = 0.413)

z
x

PB
J

(b) Ca = 2.01 x 10-2, We = 10.9
Dh= 298 m, L/ W = 1.0 and = 0.415
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J

z
x

(c) Ca = 6.56 x 10-2, Re = 48.0
(Dh= 298 m, 5.6 W and = 0.404)

(c) Ca = 6.56 x 10-2, We = 3.15
(Dh= 298 m, L/ W = 5.6 and = 0.404)

PB
J

z
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3 � Results and discussion

3.1 � Pressure drop in bubble part

Figure 2 shows a comparison of ΔPB
* between the experi-

mental data (Kurimoto et al. 2020) and the numerical pre-
dictions. The numerical data agree well with the experi-
mental data. The present numerical method can therefore 
reproduce well the characteristics of bubbles in Taylor flow 
through the square microchannels. At low Ca, the bubble 
interface forms very thin liquid films near the center planes 
of the channel, i.e., x–z plane at y = 0 mm or y–z plane at 
x = 0 mm, the thicknesses of which are less than the mini-
mum cell size for Ca ≤ 0.00289. However, large liquid films, 
in which cells are adequately assigned, are formed at the 
corner of the channel in all cases. This result would indicate 
that adequate spatial resolution for the films at the corner 
is important to reproduce the flow characteristics of Taylor 
bubbles in a square microchannel. At Ca ≈ 0.02, We = 10.9 
at νL/νW = 1.0 in Dh = 298 µm and We = 0.318 at νL/νW = 5.6 
in Dh = 298 µm. The increase in ΔPB

* is therefore due to the 
inertial effect. The numerical results are also tabulated in 

Table A1 in Appendix. It should be noted that the two data 
points for uB > 2 m/s at νL/νW = 1.0 in Dh = 298 µm are not 
used in Fig. 2 since the rear of the bubble was oscillating in 
time due to a large inertial effect, which made it difficult to 
clearly define the length of the bubble part. The solid and 
broken lines are drawn using the following correlation:

The coefficients, c1 and c2, are 7.106 and 2/3, respec-
tively, in the analytical solution for the limiting case of 
Ca → 0 (Wong et al. 1995b), and 3.17 × 104 and 1.15 in an 
empirical correlation for an N2-water system in a 490 µm 
channel (Choi et al. 2010). The experimental and numerical 
data of νL/νW = 1.0 are close to the correlation of Choi et al. 
The increase in νL/νW decreases ΔPB

*, and the data deviate 
from their correlation and lie within the range between the 
two correlations. The comparison suggests that the inertial 
effect should be introduced to improve Eq. (12).

Figure 3a shows the bubble shape and the profile of the 
pressure P* normalized by the maximum pressure on the 
z-axis at Ca = 2.09 × 10–2 and We = 0.318, where z* = z/L. 
The front shape of the bubble is slightly slender than the 
rear shape and the flat interface region parallel to the channel 
walls is formed in the middle of the bubble. The red solid 
line and the black dashed lines in the P*-z* graph repre-
sent the predicted pressure profile and the Darcy-Weisbach 
equation based on jT, respectively. The pressure in the liquid 
phase decreases with increasing z* and agrees well with the 
Darcy-Weisbach equation, while it in the bubble is almost 
constant. The pressure jump at the interface is caused by the 
surface tension and its magnitude corresponds to σκ.

(12)ΔP∗
B
= c

1
Cac2

Fig. 4   Curvatures at nose and tail of bubble

Fig. 5   Relation between uB and jT
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The bubble shape and P* at Ca = 2.01 × 10–2 and 
We = 10.9 are shown in Fig. 3b. Compared with the bub-
ble shape in Fig. 3a, the front shape of the bubble is more 
slender and the liquid film is thicker due to the increase 
in We. The pressure in the liquid phase deviates from the 
Darcy-Weisbach equation as reported in literature (He and 
Kasagi 2008). The pressure drop ΔPB

J between P* at the tail 
and the nose of the bubble is larger than that in Fig. 3a. The 
bubble shape and P* at Ca = 6.56 × 10–2 and We = 3.15 are 
shown in Fig. 3c. By comparing with the result in Fig. 3a, it 
can be understood that the increase in Ca makes the liquid 
film thicker and ΔPB

J larger.
It has thus been confirmed that bubble shape changes with 

the variation of Ca and We, which also affect ΔPB
J. The 

dependence of the curvatures at the nose and tail of a bubble 
on Ca and We is discussed below.

Figure 4 shows the relation between the curvatures of 
a bubble and Ca. Figures 4a–c show the curvatures, Kn 
and Kt, at the nose and tail of a bubble normalized by Dh 
and the difference between them, respectively. The black 
and red symbols represent the curvatures in the center and 
diagonal planes for the cross section of the channel, i.e., 
x–z plane at y = 0 mm and the plane tilted with the angle of 
45° with respect to the x-coordinate, respectively, as shown 
in Fig. 4b. The curvatures were evaluated by the height 
function method based on the volume fraction (Cummins 
et al. 2005). The difference in the curvatures between the 
planes is negligibly small. The broken line in the figure is 

the theoretical value for Ca → 0 (Wong et al. 1995a), in this 
limiting case a bubble has the fore-aft symmetry so that 
Kn = Kt. The nose curvature is close to the theoretical value 
for Ca < 2.9 × 10–3 and becomes larger with increasing Ca. 
The curvature at νL/νW = 1.0 becomes slightly larger than 
that at νL/νW = 5.6 for Ca > 1.4 × 10–2, i.e., the increase in We 
makes the nose curvature slightly larger. The tail curvature is 
also close to the theoretical value for Ca < 2.9 × 10–3, while 
it decreases with increasing Ca. The curvature at νL/νW = 1.0 
becomes lower than that at νL/νW = 5.6 for Ca > 8.3 × 10–3, 
i.e., the increase in We makes KtDh smaller. The difference in 
Kt between νL/νW = 1.0 and 5.6 is more remarkable than Kn, 
i.e., the deformation of the tail shape is strongly affected by 
the inertial effects. The tendencies of (Kn – Kt)Dh on Ca and 
We correspond to those of ΔPB

* shown in Fig. 2. Therefore, 
the deviation of ΔPB

* from that in the small Ca limit mainly 
relates with Kt.

3.2 � Bubble velocity

The relation between uB and jT is shown in Fig. 5. The bub-
ble velocity increases with increasing jT and is higher than 
those of the homogeneous model, i.e., uB = jT. The bubble 
velocity in a channel has often been correlated by the fol-
lowing drift-flux model (Zuber and Findlay 1965; Kawahara 
et al. 2009; Howard and Walsh 2013; Minagawa et al. 2013; 
Kurimoto et al. 2017):

Fig. 6   Relation between c0 and 
CaT
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where c0 is the distribution parameter, and vGj the drift 
velocity, which is known to be small in horizontal micro-
channels. The solid line in the figure means Eq. (13) with 
c0 = 1.37 and vGj = 0, where c0 was determined by the least-
squared method. Although the drift-flux model with con-
stant c0 represents the overall trend of the data, the data are 

(13)uB = c
0
jT + vGj

(a) ReT - CaT

(b) WeT - CaT

Fig. 7   Classification of c0 data

Fig. 8   Relation between F and WeT

WeT 50

Fig. 9   Comparison of c0 between predicted data and Eq. (20)

Fig. 10   Comparison of uB between predicted data and correlations
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scattered implying that c0 is not constant and depends on jT, 
Dh, and νL/νW.

The relation between c0 and CaT is shown in Fig. 6, where 
CaT is the capillary number based on jT:

Numerical predictions without and with inertial effects 
(Magnini and Matar 2020) are also plotted, where the ranges 
of ReT are ReT ≤ 10 and 1 ≤ ReT ≤ 2000, respectively. The distri-
bution parameter obtained in the present numerical simulation 
increases with increasing CaT. The distribution parameters at 
νL/νW = 3.4 and 5.6 agree well with the data without inertial 
effects by Magnini and Matar and they can be expressed by 
the following fitting equation:

The power of 2/3 has been found to appear in an analyti-
cal solution of the liquid film thickness and the pressure drop 
for the limiting case of Ca → 0 (Bretherton 1961; Wong et al. 
1995b). Even though the largest value of CaT is about 0.1, the 
power of 2/3 works well for correlating c0. The distribution 
parameter at νL/νW = 1.0 shows a steep increase for CaT > 0.012 
and deviates from Eq. (15) with increasing CaT. The data for 
1.3 ≤ νL/νW ≤ 2.2 lie between those at νL/νW = 1.0 and Eq. (15). 
Most of the numerical data with inertial effects by Magnini 
and Matar also show c0 larger than Eq. (15).

The numerical data are plotted on the ReT-CaT and WeT-CaT 
planes in Figs. 7a, b, respectively, to make clear the region in 
which the inertial effect is present, where the open symbols 
are for c0 agreeing with Eq. (15) within 1.5% deviation and the 
closed symbols are for the other c0 data. The Weber number, 
WeT, is defined by

The Reynolds number ReT at the boundary of the classifi-
cation decreases with increasing CaT. On the other hand, the 
boundary of the classification is roughly WeT ≈ 10, although 
it tends to increase with increasing CaT.

Han and Shikazono (2009) proposed a correlation of liquid 
film thickness, the functional form of which was derived from 
a scaling analysis. Kurimoto et al. (2020) reported that the 
functional form can be used to calculate ΔPB

*. Let us utilize 
the functional form for correlating c0, that is,

where a, b, c, d, e, and f are positive constants. This equation 
can be regarded as an extension of Eq. (15) by implementing 

(14)CaT =
�LjT

�

(15)c
0
= 2.34Ca

2∕3

T
+ 1.05

(16)WeT =
�Lj

2

T
Dh

�

(17)c
0
=

aCa
2∕3

T

b + cCa
2∕3

T
− dWee

T

+ f

the inertial effect in the denominator of the first term on the 
right-hand side. Employing a = 2.34 and f = 1.05 as in Eq. 
(15) yields

where F = b + cCa
2∕3

T
− dWee

T
 and solving the above equa-

tion for F gives

The values of F calculated using the data of CaT and c0 
are plotted against WeT in Fig. 8, which shows that F tends to 
decrease with increasing WeT and decreasing CaT. Therefore, 
the form of F, Eq. (19), is reasonable. The constants were 
obtained as b = 0.85, c = 1.24, d = 0.0115, and e = 1.07. Thus,

Equation (20) is compared with the present data and the 
data with inertial effects by Magnini and Matar (2020) in 
Fig. 9. The correlation agrees well with 92% of the data with 
errors smaller than ± 5%, whereas it remarkably overestimates 
two data with inertial effects in the ranges of CaT ≥ 0.05 and 
WeT ≈ 50. It should however be noted that WeT = 50 corre-
sponds to a very large jT, e.g., jT ~ 6 m/s for air–water Taylor 
flow in a 100 µm microchannel, and this is much larger than a 
typical volumetric flux used in microdevices.

The bubble velocity uB calculated from Eqs. (13) and (20) 
is compared with the present data in Fig. 10.The correlations 
agree well with 98% of the data to within ± 3% errors in the 
ranges of 0.00159 ≤ CaT ≤ 0.0989 and 0.0817 ≤ WeT ≤ 25.4.

4 � Conclusion

Interface tracking simulations of single slug units in Tay-
lor flow through a square microchannel was carried out 
to understand the relation between the pressure drop in 
the bubble part and the nose and tail shapes of a bubble. 
A correlation of the bubble velocity was also developed. 
The following conclusions were obtained:

(1)	 The pressure drops in the bubble part of Taylor flows 
through square microchannels can be well predicted by 
using the interface tracking method.

(2)	 With increasing in the capillary number Ca, the nose 
curvature increases while the tail curvature decreases, 
so that the pressure drop in the bubble part increases.

(18)c
0
=

2.34Ca
2∕3

T

F
+ 1.05

(19)F =
2.34Ca

2∕3

T

c
0
− 1.05

(20)c
0
=

2.73Ca
2∕3

T

1 + 1.46Ca
2∕3

T
− 0.0135We1.07

T

+ 1.05
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(3)	 The decrease in the tail curvature due to the increase 
in the Weber number, in other words the inertial effect, 
is more remarkable than the increase in the nose cur-
vature for Ca > 8.3 × 10–3, which causes the deviation 
of the pressure drop in the bubble part from that in the 
small Ca limit.

(4)	 The distribution parameter c0 is increased by the iner-
tial effects, and the criterion for whether the inertial 
effect is negligible or not can be roughly expressed by 
the Weber number.

(5)	 The developed c0 correlation gives good predictions of 
the bubble velocity in the following applicable ranges: 
0.00159 ≤ CaT ≤ 0.0989 and 0.0817 ≤ WeT ≤ 25.4.

Table A1   Numerical data Dh
[µm]

νL/νW α dP/dz
[MPa/m]

L
[mm]

uB
[m/s]

jT
[m/s]

Ca We Re CaT WeT ReT

505 1.0 0.384 0.0155 3.82 0.138 0.128 0.00171 0.133 77.8 0.00159 0.115 72.3
0.279 0.0304 3.13 0.234 0.215 0.00289 0.383 133 0.00265 0.322 122
0.287 0.0623 2.27 0.490 0.439 0.00606 1.68 277 0.00542 1.35 249
0.204 0.0857 2.26 0.670 0.587 0.00829 3.14 379 0.00726 2.41 332
0.246 0.126 1.62 0.881 0.759 0.0109 5.43 498 0.00938 4.03 430
0.286 0.183 1.43 1.16 0.974 0.0143 9.40 657 0.0120 6.64 553

1.3 0.40 0.10 3.03 0.774 0.663 0.0132 4.31 327 0.0113 3.17 281
0.30 0.20 3.03 1.48 1.17 0.0254 15.8 622 0.0201 9.93 494
0.30 0.25 3.03 2.05 1.53 0.0351 30.4 866 0.0261 16.8 644
0.30 0.30 3.03 2.69 1.88 0.0460 52.0 1130 0.0321 25.4 791

5.6 0.285 0.0647 3.25 0.114 0.099 0.00931 0.108 11.6 0.00811 0.0817 10.1
0.287 0.124 2.76 0.247 0.204 0.0202 0.508 25.1 0.0167 0.347 20.8
0.222 0.146 2.85 0.425 0.334 0.0348 1.50 43.1 0.0274 0.929 33.9
0.354 0.204 2.11 0.478 0.369 0.0391 1.90 48.6 0.0302 1.13 37.4
0.403 0.178 2.20 0.586 0.443 0.0479 2.85 59.5 0.0362 1.63 45.0
0.370 0.352 1.80 0.910 0.660 0.0744 6.87 92.3 0.0540 3.61 66.9

298 1.0 0.518 0.0574 1.77 0.196 0.180 0.00242 0.157 64.9 0.00222 0.133 59.9
0.325 0.195 1.25 0.581 0.516 0.00719 1.39 193 0.00638 1.10 172
0.395 0.360 1.00 0.978 0.840 0.0121 3.94 326 0.0104 2.91 280
0.415 0.521 1.21 1.62 1.32 0.0201 10.9 542 0.0164 7.23 441
0.384 0.548 1.46 1.83 1.47 0.0226 13.8 611 0.0182 8.90 489
0.380 0.635 1.27 2.03 1.59 0.0251 16.9 673 0.0196 10.4 531
0.432 0.622 1.44 2.55 1.86 0.0315 26.7 848 0.0230 14.3 622

1.3 0.40 0.50 1.78 1.64 1.30 0.0280 11.3 404 0.0223 7.21 323
0.40 0.60 1.78 1.99 1.54 0.0340 16.8 494 0.0263 10.0 380
0.30 0.80 1.78 2.53 1.86 0.0432 27.0 625 0.0318 14.7 462
0.30 0.90 1.78 2.98 2.12 0.0510 37.7 739 0.0363 19.1 526

1.7 0.30 0.80 1.78 2.08 1.57 0.0464 18.9 407 0.0350 10.7 306
0.30 0.90 1.78 2.40 1.75 0.0534 25.0 468 0.0390 13.4 344
0.30 1.0 1.78 2.82 1.98 0.0628 34.6 551 0.0441 17.1 388
0.30 1.1 1.78 3.33 2.24 0.0743 48.4 651 0.0500 21.9 438

2.2 0.40 0.80 1.78 1.97 1.45 0.0600 17.4 290 0.0441 9.43 214
0.40 0.90 1.78 2.37 1.64 0.0721 25.2 350 0.0501 12.2 244

3.4 0.40 1.0 1.78 1.90 1.35 0.0903 16.9 187 0.0640 8.50 133
0.40 1.2 1.78 2.52 1.68 0.120 29.8 248 0.0799 13.3 167

5.6 0.419 0.205 2.09 0.163 0.139 0.0134 0.130 9.70 0.0114 0.0950 8.33
0.413 0.308 1.63 0.255 0.210 0.0209 0.318 15.2 0.0172 0.216 12.6
0.444 0.702 1.26 0.509 0.391 0.0416 1.27 30.5 0.0320 0.746 23.3
0.404 0.753 1.29 0.802 0.583 0.0656 3.15 48.0 0.0477 1.66 34.8
0.339 1.42 0.898 1.33 0.909 0.109 8.66 79.4 0.0744 4.04 54.3
0.366 1.73 0.948 1.89 1.21 0.154 17.4 113 0.0989 7.15 72.3
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Appendix A Numerical data

Table A1 shows the numerical data obtained in this study. 
The void fraction, the pressure gradient and the unit length 
at νL/νW = 1.0 and 5.6 are the same as in the experiment by 
Kurimoto et al. (2020)

Appendix B. Comparison between measured 
ΔPB

* and predicted ΔPB
J

Figure B1 shows a comparison between measured ΔPB
* and 

predicted ΔPB
J. The predicted ΔPB

J becomes higher than 
the measured ΔPB

* as Ca increases. The ΔPB
* is calculated 

from Eq. (2) assuming that the Darcy-Weisbach equation is 

valid everywhere in the liquid slug. The difference between 
P* in the liquid phase and the Darcy-Weisbach equation, 
however, becomes larger with increasing Ca as shown in 
Fig. 3. Therefore, the assumption becomes inappropriate 
with increasing Ca and it should be noted that ΔPB obtained 
with Eq. (2) include some pressure drop in the liquid part

Fig. B1   Comparison between 
measured ΔPB

* and predicted 
ΔPB

J

Fig. C1   Relation between c0 and KnDh

Fig. D1   Rc and Rd at LB/2
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Appendix C. Relation between c0 and KnDh

The relation between c0 and KnDh is shown in Fig. C1. The 
c0 increases with increasing KnDh and lies onto a single 
curve though a slight variation due to the liquid properties 
and the hydraulic diameter is present.

Appendix D. Bubble radii Rc and Rd 
at midpoint of bubble length

The liquid film thickness of a Taylor bubble is generally 
defined at a constant film thickness region. Some of Taylor 
bubbles in the present study do not have such a region since 
they do not have enough lengths, e.g., the bubble shown in 
Fig. 2(b). In this Appendix, the liquid film thickness at the 
midpoint LB/2 of the bubble length LB is considered. Fig-
ure D1 shows the dimensionless bubble radii, Rc and Rd, in 
the center and diagonal planes, respectively. The Rc and Rd 
are defined by

where δc and δd are the liquid film thicknesses at LB/2 in 
the center and diagonal planes, respectively. The Rc data 
for Ca ≤ 0.00289 are not included in the figure due to very 
thin film thicknesses. The Rc and Rd at low We are close to 
the numerical data without inertial effects by Magnini and 
Matar (2020) and the inertial effects make Rc and Rd small 
drastically, i.e., the liquid film becomes thicker.
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