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Abstract
Ransomware attacks pose a significant threat to information systems. Server hosts, including cloud infrastructure as a service,
are prime targets for ransomware developers. To address this, security mechanisms, such as antivirus software, have proven
effective. Moreover, research on ransomware detection advocates for behavior-based finding mechanisms while ransomware
is in operation. In response to evolving detections, ransomware developers are now adapting an optimized design tailored
for CPU architecture (CPU-optimized ransomware). This variant can rapidly encrypt files, potentially evading detection by
traditional antivirus methods that rely on fixed time intervals for file scans. In ransomware detection research, numerous
files can be encrypted by CPU-optimized ransomware until malicious activity is detected. This study proposes an early
mitigation mechanism named CryptoSniffer, which is designed specifically to counter CPU-optimized ransomware attacks
on server hosts. CryptoSniffer focuses on the misuse of CPU architecture-specific encryption instructions for swift file
encryption by CPU-optimized ransomware. This can be achieved by capturing the ciphertext in user processes and thwarting
file encryption by scrutinizing the content intended for writing. To demonstrate the efficacy of CryptoSniffer, the mechanism
was implemented in the latest Linux kernel, and its security and performance were systematically evaluated. The experimental
results demonstrate that CryptoSniffer successfully prevents real-world CPU-optimized ransomware, and the performance
overhead is well-suited for practical applications.

Keywords Cloud computing · Operating system · Ransomware prevention · Software security

1 Introduction

Ransomware, a form of malicious software (malware), oper-
ates against the user’s intention by either disabling user
operations or pilfering files on targeted computers. Subse-
quent to these attacks, ransomware demands payment from
users in exchange for restoring operations or refraining from
exposing stolen files. To incapacitate user operations, ran-
somware employs file encryption [1–3]. In recent years,
attackers planting ransomware have expanded their focus
beyond client PCs to include server hosts [4–6] prompt-
ing the development of Linux-based ransomware alongside
Windows-based variants [1–3, 7–9].
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To identify ransomware, antivirus software (antivirus)
provides useful detection. Antivirus programs identify mal-
ware by matching it with predefined pattern data known
as signatures. Furthermore, prior research on ransomware
detection [10–22] has introduced effective finding meth-
ods, for example, decoy file monitoring [10–12] and file
entropy monitoring [13–15]. These monitoring mechanisms,
designed to detect file encryption based on the general behav-
ior of ransomware, have proven effective in finding various
ransomware families.

In response to existing ransomware detection measures,
recent ransomware has undergone advancements in design
and implementation. As one of their advancements, ran-
somware developers now incorporate fast encryption tech-
niques utilizingCPUarchitecture-specific encryption instruc-
tions. For example, LockBit [23, 24] and RansomEXX [25,
26] employ the Advanced Encryption Standard New Instruc-
tions (AES-NI) instruction set [27] in Intel x86 for fast
encryption.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-024-00892-2&domain=pdf


S. Enomoto et al.

This study tries to answer the following question: Is it pos-
sible to mitigate the behavior of CPU-optimized ransomware
until anti-ransomware mechanisms detect it? Unlike regular
ransomware, CPU-optimized ones perform file encryption
so quickly that the systems can be significantly damaged;
often, numerous target files can be encrypted before the
antivirus scans and detects them. Although current research
on behavior-based detection mechanisms for ransomware
can identify CPU-optimized ransomware, these mechanisms
focus mainly on detecting the target ransomware and do not
mitigate damage until malicious activity is alerted.

This study introduces CryptoSniffer, an innovative early
mitigation mechanism designed to counteract file encryption
by CPU-optimized ransomware. Operating as a software-
based solution within the OS kernel, CryptoSniffer is engi-
neered to ensure minimal overhead for benign applications
while maintaining high transparency against CPU-optimized
ransomware. The primary objective of CryptoSniffer is to
enable early mitigation against CPU-optimized ransomware
until anti-ransomware mechanisms detect it. Its focus lies in
identifying misuses of CPU architecture-specific encryption
instructions by ransomware, and it achieves this by monitor-
ing encryption instructions within user processes. Based on
themonitoring, CryptoSniffer blocks the filewriting from the
user processes if suspicious behavior is detected. Notably,
CryptoSniffer does not require additional hardware; it can
be installed on various server hosts. In summary, the primary
contributions of this study are as follows:

1. The proposed mechanism, CryptoSniffer, represents an
advanced approach for early mitigation against the lat-
est CPU-optimized ransomware. By monitoring the
encryption instructions within user processes, Cryp-
toSniffer prevents the writing of encrypted content to
files. Notably, this approach achieves low overhead and
is deployable across various server hosts (Sect. 4).

2. The design and implementation details of CryptoSniffer
are outlined. Importantly, applying CryptoSniffer neces-
sitates minimal modification to the OS kernel, and it can
run simultaneously with existing ransomware detection
mechanisms (Sects. 5 and 6).

3. To demonstrate its effectiveness, CryptoSniffer was
implemented on Linux 5.7.15 and subjected to security
and performance experiments. The security evaluation
demonstrated CryptoSniffer’s success in preventing file
encryption with LockBit-based proof-of-concept (PoC)
and RansomEXX. In terms of performance, CryptoSnif-
fer incurred up to 46% overhead on micro-benchmarks
and less than 0.2% overhead on real-world server appli-
cations (Sect. 7).

2 Background

2.1 Ransomware attack

2.1.1 Target environments

Ransomware is a form of malware designed to extort money
by intimidating users on compromised computers. This typ-
ically involves encrypting files and demanding payment for
their decryption [28]. Frequently, ransomware targets client
PCs, as exemplified by instances such as CryptoLocker [1, 2]
and WannaCry [3], which focus on targeting Windows hosts
on client PCs.

2.1.2 Encryption algorithm

To encrypt files, many ransomware variants employ the
Advanced Encryption Standard (AES) [29] as a symmetric-
key encryption method. AES is a block cipher algorithm that
generates ciphertext from a fixed-length key and plaintext.
Additionally, several ransomware strains utilize the Rivest
Shamir Adleman (RSA) [30] as a public-key encryption
method because they need to encrypt the generated AES key.

Figure1 illustrates an overview of ransomware encryp-
tion. Initially, an adversary generates a public- and private-
key pair. The public key is embedded in the ransomware,
and the private key is located in the Command-and-Control
(C&C) server, constructed by an adversary. Subsequently,
the ransomware starts execution as the user processes and
generates a symmetric key on the infected host. Afterwards,
the algorithm encrypts files using the symmetric key and
encrypts the symmetric key using the embedded public key.

2.1.3 File operations

To locate files for encryption, ransomware scans the OS file
system, retrieving file paths. Upon finding files, the ran-
somware opens them, reads their contents, and then executes
the CPU-intensive process of encrypting the file contents.
The encrypted contents are subsequently written back to the
files.

2.2 Existing countermeasures

2.2.1 Antivirus

Existing antivirus solutions detect malware, including ran-
somware, through predefined signatures [31]. These signa-
tures may include hash values and the number of sections in
the execution file. Periodic scanning by an antivirus involves
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Table 1 Experimental results
for executing ransomware to
encrypt 5000 files totaling 300
GiB

Ransomware family Encryption method Execution time Encryption performance

Conti [38] Regular 160s 31.25 files per second

DarkSide [39] Regular 301s 16.61 files per second

HelloKitty [40] Regular 396s 12.62 files per second

REvil [41] Regular 539s 9.27 files per second

RansomEXX [25] AES-NI [27] 4 s 1250 files per second

This experimentwas evaluated onUbuntu 20.04.1LTSwithLinux kernel 5.7.15 running on a physicalmachine
equipped with an Intel(R) Core(TM) i7-12700 (4.90 GHz, x86_64) processor and 32 GiB of memory

Fig. 1 Ransomware encryption overview: To encrypt file contents, ran-
somware often employs symmetric-key encryption. The symmetric key
is encrypted by public-key encryption and is additionally written in
the encrypted files. These encryption algorithms are calculated by the
CPU in user space. File operations, such as read and write, are executed
through system calls.

searching for files and user memory spaces that match these
signatures and deleting them as malware.

2.2.2 Research on ransomware countermeasures

Research has presented detection mechanisms based on the
behaviors of running ransomware. For example, in the past,
methods such as decoy file monitoring, which involved con-
centrating on the file searching behavior of ransomware
[10–12], and file entropy monitoring, which involved the
assessment of the file I/O entropy [13–15], have been pro-
posed.

Defense mechanisms aimed at recovering file contents
post-encryption have also been introduced. For example,
extracting the encryption key through the interception of
encryption API calls [32] or the customized solid-state drive
(SSD) for rolling back overwritten data [33–36] allows later
recovery of victim files.

2.3 Recent ransomware attack

2.3.1 Target environments

In recent years, ransomware has expanded its focus to include
server hosts. Specifically, LockBit [23] targets the VMware
ESXi, while ransomware families such as IceFire [8] have
developed new versions designed to operate on Linux. Fur-
thermore, RansomEXX [25, 26], which is a ransomware
strain that emerged in 2020 and was developed by the cyber-
criminal threat group Gold Dupont [25], operates on the x86
Linux.

2.3.2 CPU-optimized ransomware

Modern ransomware exhibits the capability for accelerated
encryption. For example, LockBit, which was designed for
the x86 architecture, exploits the AES-NI instruction set [27]
to expedite file encryption. Consequently, LockBit has been
observed to achieve approximately 8.4 times faster execution
than other ransomware families [37]. This study refers to ran-
somware that exploits CPU-architecture-specific encryption
instructions for swift encryption as CPU-optimized ran-
somware.

AES-NI provides specific instructions for encrypting
plaintext. The aesenc instruction calculates SubBytes,
ShifRows,MixColumns, and AddRoundKey in each round of
the AES process. Additionally, the aesenclast instruction
computes SubBytes, ShifRows and AddRoundKey in the final
round of AES. The calculation results are stored in XMM
registers, which are 128-bit wide registers. CPU-optimized
ransomware copies the ciphertext from XMM registers to
memory and writes the ciphertext from memory to the file
using the write system call.

With faster encryption, the chances of detecting ran-
somware using existing methods (e.g., antivirus) decrease.
This can be attributed to the fact that these mechanisms
require sufficient time to detect ransomware. To illustrate
this point, an original experiment on the execution time of
the ransomware was conducted. Table 1 shows the exper-
imental results of execution time for various ransomware
families. The experiment measured the ransomware execu-
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tion time to encrypt 5000 files totaling 300 GiB. Conti [38],
DarkSide [39], HelloKitty [40], and REvil [41] encrypted
files using normal CPU instructions while RansomEXX uti-
lized the AES-NI instruction set. The experimental results
indicate that the execution time of RansomEXX is approxi-
mately 40 to 134 times faster than that of other ransomware
families. These results also indicate that RansomEXX can
encrypt more files than other ransomware in a fixed amount
of time because CPU-optimized ransomware performs better
than other ransomware.

2.3.3 Problems in existing ransomware countermeasures

Difficulty in early mitigation
Existing research, including decoy file monitoring [10–

12] and entropy monitoring [13–15], can still detect CPU-
optimized ransomware even when it employs faster encryp-
tion. However, achieving early mitigation from the launch
stage of CPU-optimized ransomware is challenging with
these mechanisms. For example, decoy file monitoring per-
mits file encryption by CPU-optimized ransomware until the
decoy file is accessed. Similarly, entropy monitoring allows
file encryption to continue until the entropy differential
surpasses the predefined threshold. Furthermore, machine
learning-based detection [18] requires about 2min to identify
ransomware, thus CPU-optimized ransomware can encrypt
numerous files before detection.
Difficulty in applying to server environments

Restoring files after the completion of a CPU-optimized
ransomware attack is relatively straightforward when imple-
menting a customized SSD [33–36] on client PCs. However,
applying such a mechanism becomes challenging in server
computing instances, such as cloud IaaS because cloud IaaS
makes it difficult for cloud users to change physical hardware
components.

3 Threat model

This section explains the threat model that this study
assumed.

3.1 Victim environments

To deploy ransomware, adversaries often compromise net-
work services on the targeted host by exploiting vulnerabili-
ties in these services [4–6]. Based on this, this study assumed
that ransomware is installed through attacks on network ser-
vices, initiated by exploited user privileges associated with
these services.

In victim environments, the adversary typically lacks
superuser privileges (e.g., the root user in Linux). Therefore,
operations such as installing kernel modules or replacing ker-

nels become challenging. Additionally, this study assumes
the safety of kernel, hypervisor, and hardware implemen-
tations, thereby excluding kernel exploits and side-channel
attacks from their scope.

3.2 Ransomware type

An existing survey [28] categorized ransomware into three
types: (1) screen lock ransomware, (2) file encryption ran-
somware, and (3) data exfiltration ransomware. Screen lock
ransomware demands money in exchange for unlocking the
screen lockwhile file encryption ransomware requires a trade
ofmoney for the recovery of encrypted files. Data exfiltration
ransomware threatens to expose stolen data if the money is
not paid.

Furthermore, the survey noted that file encryption attacks
constituted 90% of all ransomware incidents in 2019. Conse-
quently, the act of demanding ransom through file encryption
has recently emerged as a predominant attack method in ran-
somware. This study specifically considers the adversary’s
use offile encryption ransomware for ransomdemands.Thus,
screen locker ransomware and data exfiltration ransomware
are beyond the scope of this study. Furthermore, the victim
environments are presumed to have an acceleration feature
such as AES-NI implemented on the CPU, and the ran-
somware exploits this feature for file encryption.

4 Requirements

This study introduces CryptoSniffer, a novel preventive
mechanism designed for CPU-optimized ransomware. As
shown in Fig. 2, CryptoSniffer achieves early mitigation of
damage via CPU-optimized ransomware until it is detected
by anti-ransomware mechanisms. The outlined requirements
that CryptoSniffer fulfills are detailed below.

– Requirement 1: Prevent CPU-optimized ransomware
while minimizing the negative impact on benign appli-
cations such as server programs.

– Requirement 2: It can be installed and run on various
server environments, such as cloud IaaS.

To fulfill requirement 1, CryptoSniffer incorporates a
mitigating feature designed to minimize the impact on the
program semantics of benign applications.

To satisfy requirement 2, CryptoSniffer is designed as a
software component that does not require additional hard-
ware, such as a specific SSD.
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Fig. 2 Early mitigation by CryptoSniffer: Compared to regular ran-
somware, CPU-optimized ransomware causes serious damage to the
victim host until anti-ransomware mechanisms detect and stop it. Cryp-
toSniffer mitigates damage caused by CPU-optimized ransomware
before detection.

4.1 Approach

This section explains the core approach of CryptoSniffer.
An adversary gains unauthorized access to the target host

by exploiting network services. Subsequently, the adver-
sary installs and initiates CPU-optimized ransomware using
the user privilege of the compromised network service.
The CPU-optimized ransomware operates as a user process,
encrypting files that the user privilege of the network service
can access for reading and writing.

CryptoSniffer’s focus lies in the misuse of CPU
architecture-dependent encryption instructions by CPU-
optimized ransomware during file encryption. Leveraging
this insight, CryptoSniffer intercepts the ciphertext generated
by user processes using encryption instructions, preventing
filewriting that involves this ciphertext. Initially, CryptoSnif-
fer monitors the issuance of encryption instructions by user
processes and captures the generated ciphertext. During file
writing from user processes, CryptoSniffer examines the
content intended for writing to the file using the captured
ciphertext. If the captured ciphertext is present in the con-
tent, CryptoSniffer halts the file writing process.

4.2 Design challenges

To fulfill the approach indicated in Sect. 4.1, the required
design challenges are presented below.

– Transparent monitoring for applications:
Encryption instructions are executed by the user process
in the user space. Existing mechanisms such as software
breakpoints and the ptrace system call [42] are valu-
able for monitoring these instructions. However, because
these methods are detectable by existing techniques [43],
CPU-optimized ransomware can evade them. For exam-

ple, Lockbit examines the existence of a debugger that
uses ptrace [24]. Thus, a highly transparent monitoring
mechanism is essential for user processes.

– Mitigating performance overhead for applications:
The environment where CryptoSniffer operates hosts
benign applications (e.g., web server). Therefore, Cryp-
toSniffer is designed to run with minimal overhead on
these benign applications.

5 Design

This section outlines the design of CryptoSniffer and pro-
vides detailed information on how it safeguards file contents
from CPU-optimized ransomware.

5.1 Design overview

Figure3 shows an overview of CryptoSniffer. CryptoSniffer
is a software component integrated into the kernel space that
monitors the file encryption activities of user processes from
the kernel space. Operating in the kernel space ensures that
CryptoSniffer is highly transparent to user processes.

The monitoring mechanism of CryptoSniffer encom-
passes the following phases.

1. Process Startup Phase: This stage involves finding
encryption instructions within the memory space of user
processes. The operation conducted during the Process
Startup Phase is referred to as an instruction search.

2. FileEncryptionPhase: In this phase, CryptoSniffer cap-
tures the ciphertext generated by user processes.

3. File Writing Phase: This phase involves identifying
ciphertext from memory contents intended for writing
to files using the captured ciphertext. The operation con-
ducted during the File Writing Phase is termed a content
search.

5.1.1 Process startup phase

This phase conducts a search for binary patterns that match
encryption instructions within memory pages. It then sets
hardware breakpoints into subsequent instructions follow-
ing the located encryption instructions. Employing hardware
breakpoints ensures that user processes remain unaware of
CryptoSniffer’s monitoring activity within the kernel. The
binary patterns utilized in the search are registered by a user
with administrator privileges through a dedicated interface.
For example, in Linux for x86, a root user registers patterns
corresponding to the aesenclast instruction of AES-NI. The
search focuses solely on executable pages to minimize over-
head, and the subsequent instructions following the found
patterns are registered into hardware breakpoints.
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Fig. 3 CryptoSniffer design overview:To prevent file encryption by
CPU-optimized ransomware, the mechanism of CryptoSniffer com-
prises three phases. First, Process Startup Phase registers the address
of encryption instructions to debug registers. Second, File Encryp-

tion Phase captures ciphertext. Third, File Writing Phase compares the
ciphertext with the file contents that will be written to the file and stops
the writing.

Fig. 4 Chaining hash table:
The captured ciphertext is stored
in the chaining hash table on
memory. By the chaining hash
table, CryptoSniffer can
discover the same ciphertext
faster in the File Writing Phase.

5.1.2 File encryption phase

This phase captures ciphertext when the user processes fin-
ish the encryption calculation in the user space. As the next
instruction after the encryption instruction is trapped by
hardware breakpoints, CryptoSniffer can capture the timing
immediately after the completion of the encryption instruc-
tion. Subsequently, CryptoSniffer retrieves the ciphertext by
reading CPU registers (e.g., xmm0 in x86) and stores the
ciphertext in memory within the kernel space. To manage
ciphertext in memory, CryptoSniffer utilizes the chaining
hash table depicted in Fig. 4. The choice of employing a
chaining hash table is to facilitate rapid content searches in
the File Writing Phase.

5.1.3 File writing phase

This phase scans memory contents intended for writing files
bymonitoring file-writing-related system calls issued by user
processes. The search involves extracting memory contents
of specified sizes and verifying their existence in the chaining
hash table. The extracted memory contents are used as the
index to involve the chaining hash table. As shown in Fig. 4,
each index in the chaining hash table links memory contents
that are stored in the File Encryption Phase. If the contents
are found in the chaining hash table, CryptoSniffer protects
the file contents by interrupting the execution of the system
call.
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5.2 Minimizing impact for benign applications

Benign applications, which are not CPU-optimized ran-
somware, also write encrypted contents to files. Conse-
quently, CryptoSniffer incorporates policies to alleviate the
impact of program semantics on these benign applications.

5.2.1 File encryption by trusted users

CryptoSniffer permits file encryption by user processes
initiated by trusted users. To enlist these trusted users, Cryp-
toSniffer offers an interface named the UID Policy. The
UID Policy is a user-id (UID) list designed to manage users
exempted from instruction search during the Process Startup
Phase. Before initiating the instruction search, CryptoSniffer
obtains the UID of the user processes and cross-references it
with the UID Policy. If the same UID is identified in the UID
Policy, CryptoSniffer aborts the instruction search.

5.2.2 File encryption to specific files

To enable file encryption for specific files, CryptoSniffer
offers an interface called Inode Policy. Inode Policy is an
inode list designed to bypass the content search. Files regis-
tered in the Inode Policy are excluded from the content search
during the File Writing Phase. Consequently, CryptoSniffer
writes encrypted contents to these files without interrupting
file writing-related system calls.

5.2.3 Network packet encryption

CryptoSniffer facilitates network packet encryption for net-
work devices through an interface called the Device Policy.
During the File Writing Phase, CryptoSniffer identifies the
device to which content is being written and cross-references
it with the Device Policy. If the same device is registered in
the Device Policy, CryptoSniffer aborts the content search.

6 Implementation

The CryptoSniffer prototype was implemented on the Linux
kernel in the x86 architecture. This section explains the
implementation details of CryptoSniffer.

6.1 Policy details

CryptoSniffer manages four user-defined policies, consid-
ering the UID Policy, Instruction Policy, Inode Policy, and
Device Policy. The primary role of each policy is explained
as follows:

– UID Policy: CryptoSniffer excludes the instruction
search of the user processes ownedby the registeredUIDs
(e.g., the root user).

– Instruction Policy: CryptoSniffer executes the instruc-
tion search with the registered instructions (e.g., the
aesenclast instruction).

– Inode Policy: CryptoSniffer excludes the content search
in files writes linked to the registered inodes (e.g.,
/home/alice/keepass/Database.kdbx).

– DevicePolicy:CryptoSniffer excludes the content search
in file writes to registered devices (e.g., network socket).

6.1.1 UID policy

To identify user processes indicated by trusted users, Cryp-
toSniffer utilizes the UID Policy in the Process Startup
Phase, as illustrated in Fig. 3. Prior to the instruction
search, CryptoSniffer compares the current UID of a run-
ning user process with UID patterns extracted from the
UID Policy. To manage trusted users, CryptoSniffer utilizes
procfs as an interface for registration. Writing the UID to
/proc/cryptosniffer/uid_policy notifies CryptoSniffer of the
UID.Thefile permissions under /proc/cryptosniffer are con-
figured to allow read and write access to the root user.

Before initiating the instruction search, CryptoSniffer
retrieves the current UID of the running thread and searches
for the UID in the UID Policy. If the same UID is identified
in the UID Policy, CryptoSniffer bypasses the instruction
search.

6.1.2 Instruction policy

For the instruction search execution, CryptoSniffer employs
the Instruction Policy in the Process Startup Phase, as
depicted in Fig. 3. During the instruction search, CryptoSnif-
fer retrieves instruction patterns from the Instruction Policy
and scans executable pages using these patterns. Cryp-
toSniffer offers a designed system call as an interface for
registration to the Instruction Policy. In the existing Cryp-
toSniffer prototype, the ability to issue a specific system call
is restricted to the root user. Therefore, CPU-optimized ran-
somware cannot manipulate the policy.

6.1.3 Inode policy

To identify files excluded from the content search, Cryp-
toSniffer employs the Inode Policy in the FileWriting Phase,
as illustrated in Fig. 3. CryptoSniffer offers a specific system
call for registering these files. In this system call, CryptoSnif-
fer identifies an inode from the file path of the system call
argument and registers the inode to the Inode Policy.

Within the write system call handler, CryptoSniffer deter-
mines an inode from the file descriptor and searches for the
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inode in the Inode Policy. Subsequently, if the same inode
is identified in the Inode Policy, CryptoSniffer bypasses the
content search.

6.1.4 Device policy

To identify devices excluded from the content search, Cryp-
toSniffer utilizes the Device Policy in the FileWriting Phase,
as shown inFig. 3.Within thewrite systemcall handler,Cryp-
toSniffer verifies the file type and bypasses the content search
if the file is identified as a socket.

6.2 Process startup phase

The Process Startup Phase indicates the instruction search
in CryptoSniffer, as outlined in Sect. 5, and the flowchart is
illustrated in Fig. 5. Initially, CryptoSniffer verifies the UID
of the user process entering the kernel through system calls.
Subsequently, if the UID of the user process is not registered
in theUIDPolicy,CryptoSniffer begins the instruction search
for the user process using the Instruction Policy.

6.2.1 Check UID policy

CryptoSniffer retrieves UID from the currently running user
process using the current_uid function and cross-references
UID with the UID Policy. If the UID is identified in the
UID Policy, CryptoSniffer concludes that the user process
is executed by a trusted user and skips the instruction search.
Conversely, if the UID is not found in the UID Policy, Cryp-
toSniffer initiates the instruction search.

6.2.2 Trigger timing for starting instruction search

CryptoSniffer begins the instruction search when creating
new executable pages for the user process. The initiation
timing of the instruction search can be categorized into three
types.

1. ExecSystemCallTrigger:The instruction search is trig-
gered by the exec system call, which creates new physical
pages mapped to executable virtual address areas.

2. Mmap System Call Trigger: The instruction search
is indicated by the mmap system call, which employs
demand paging to create new physical pages mapped to
executable virtual address areas.

3. Mprotect SystemCallTrigger:The instruction search is
activated by themprotect system call, altering the permis-
sion of existing physical pagesmapped to non-executable
virtual address areas to executable pages.

Exec system call trigger

The exec system call trigger indicates the instruction
search when launching user processes. In the exec sys-
tem call handler, CryptoSniffer identifies executable virtual
address areas and provides these address areas to a compo-
nent responsible for the instruction search. To accomplish
this, CryptoSniffer retrieves the virtual address areas of the
running thread and searches for executable virtual address
areas. Subsequently, CryptoSniffer passes the address range
to the function for starting the instruction search.
Mmap system call trigger

The mmap system call trigger indicates the instruction
search after launching user processes. Since CPU-optimized
ransomware may map executable pages using the mmap sys-
temcall, CryptoSniffer performs an instruction search similar
to the case of an exec system call. In the Linux kernel, phys-
ical pages are not created in the mmap system call because
Linux utilizes demand paging, which generates physical
pages during a page fault. Consequently, CryptoSniffer exe-
cutes the instruction search after a page fault occurs.

Initially, when the mmap system call is invoked, Cryp-
toSniffer checks the flags argument of the mmap system
call within the system call handler. If an executable bit is
present in the flags, CryptoSniffer records the executable
virtual address and size. Subsequently, when the page fault
handler is invoked, CryptoSniffer verifieswhether the faulted
virtual address has already been recorded byCryptoSniffer. If
the virtual address is recorded, CryptoSniffer concludes that
the virtual address is mapped to executable physical pages.
CryptoSniffer then calls the function for starting the instruc-
tion search.

CPU-optimized ransomware might alter page permis-
sions from non-executable to executable after starting the
user process. To capture the encryption instructions on the
pages changed to executable, CryptoSniffer also performs an
instruction search in the mprotect system call, similar to the
mmap case.

6.2.3 Instruction search

Find instructions
After user processes enter the kernel using system calls

such as exec, mmap, and mprotect, CryptoSniffer invokes
the function for the instruction search. This function per-
forms two main tasks: (1) identifying virtual addresses of
encryption instructions from executable pages and (2) reg-
istering the identified virtual addresses to hardware debug
registers.

In theCryptoSniffer prototype for x86, the function specif-
ically searches for the aesenclast instruction, which calcu-
lates the final round of AES involving SubBytes, ShifRows,
and AddRoundKey. Because the aesenclast instruction is
a variable-length instruction, the function determines the
length of the instruction by parsing the found instruction.
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Subsequently, the function provides the hardware debug reg-
isters with the virtual addresses of instructions, considering
the length of the identified instructions. By controlling these
debug registers, CryptoSniffer successfully traps events after
the execution of the encryption instructions is completed.
Debug registers

To write virtual addresses to debug registers, CryptoSnif-
fer utilizes the API function provided by the Linux kernel
for debug register control. This registration triggers a hard-
ware debug interruption when a thread attempts to execute
instructions at the registered virtual address. During the hard-
ware debug interruption, CryptoSniffer identifieswhether the
interrupted thread is a target of CryptoSniffer monitoring by
checking the added entry for marking in the process control
block structure (e.g., task_struct in Linux).

Because of the limited number of hardware debug reg-
isters, the count of discovered encryption instructions may
surpass the available registers. However, even where the
number of found encryption instructions exceeds the number
of hardware debug registers, CryptoSniffer can still trap these
instructions. Initially, CryptoSniffer revokes execute permis-
sion on pages containing encryption instructions, leading to
a page fault caused by non-executable pages. In the page
fault handler, CryptoSniffer restores execution permission
on the page and registers the virtual address of the encryp-
tion instruction on the faulted page to the hardware debug
register. During this process, CryptoSniffer also revokes exe-
cutionpermissionon the pagepointed to by the evicted virtual
address from the hardware debug register. This swapping
mechanism enables CryptoSniffer to trap encryption instruc-
tions, even when the number of debug registers is exceeded.

6.3 File encryption phase

Figure6 illustrates the flowchart for the File Encryption
Phase. During this phase, CryptoSniffer traps hardware
debug interruptions triggered by debug registers and captures
the ciphertext generated by CPU-optimized ransomware.

6.3.1 Trap hardware debug interruption

When a hardware debug interruption occurs, the function for
the debug interruption handler in the Linux kernel is invoked.
Within the function, CryptoSniffer checks whether the mark-
ing flag in the process control block structure is activated.
If it is activated, CryptoSniffer concludes that the thread
has completed the execution of the encryption instruction.
Conversely, if the marking flag is not enabled, CryptoSniffer
deems that the interruption falls outside the scope of Cryp-
toSniffer monitoring and dispatches a SIGTRAP signal to the
thread.

6.3.2 Capture ciphertext

CryptoSniffer captures the generated ciphertext if the trapped
thread has been marked by CryptoSniffer. The x86-based
CPU-optimized ransomware, utilizing the AES-NI instruc-
tion set, stores calculation results in 128-bit XMM registers.
Consequently, CryptoSniffer retrieves the ciphertext of the
trapped thread by reading XMM registers. The extracted
ciphertext is subsequently inserted into a chaining hash table
managed by CryptoSniffer and referenced during the content
search of the write system call.

6.4 File writing phase

Figure7 shows the flowchart for the File Writing Phase.
CryptoSniffer evaluates the policies associated with the
thread, considering Inode Policy and Device Policy. If the
thread falls outside the defined policies, CryptoSniffer scans
the contents that are about to be written to the file through
content search.

6.4.1 Check inode/device policy

In the write system call, CryptoSniffer examines the threads
marked by CryptoSniffer against Inode Policy and Device
Policy. Initially, CryptoSniffer determines the inode associ-
ated with the file using the file descriptor specified in the
system call argument. During this process, CryptoSniffer
verifies whether the inode is enlisted in the Inode Policy.
Subsequently, CryptoSniffer determines the device linked to
the inode, and examines whether this device corresponds to
the Device Policy.

6.4.2 Content search

Following the evaluation of the Inode Policy and Device
Policy, CryptoSniffer proceeds to scrutinize thememory con-
tents slated for writing to the file. During the content search,
CryptoSniffer segments the contents into 128-bit portions
and explores the chaining hash table by employing the hashed
128-bit contents as an index. If thematched contents are iden-
tified in the chaining hash table, CryptoSniffer obstructs the
file writing process by interrupting the system call.

7 Evaluation

To assess the effectiveness of CryptoSniffer, this section
describes the experiments conducted in both the security and
performance domains.

– Security Capability Experiment:
The security experiment validates the prevention of
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Fig. 5 Flowchart of the process startup phase: This phase checks UID
and instruction policies and starts the instruction search. This phase is
not only called at the beginning of the user processes in the exec system
call. For example, this phase is also called after creating executable
pages using the mmap and mprotect system call.

Fig. 6 Flowchart of file encryption phase: Received hardware debug
interruption, this phase extracts encrypted contents fromXMMregisters
and stores the contents in the chaining hash table.

Fig. 7 Flowchart of file writing phase: This phase checks inode and
device policies and starts the content search. If encrypted contents are
found in contents that will be written to the file, writing to the file is
stopped. After that, the write system call is returned to the user pro-
cesses.

encryption using the following programs. First, a PoC
program that encrypts file contentswithAES-NIwas exe-
cuted. Second, a real-world CPU-optimized ransomware
samples were also executed.

– Performance Measurements:
Performance measurements gauge the impact of Cryp-
toSniffer on applicationperformance throughbothmicro-
benchmark and real-world server applications.

– Extensive Experiment for Security Evaluation:
To evaluate the security capability of CryptoSniffer,
real-world CPU-optimized ransomware samples were
collected and executed. This experiment derived the num-
ber of CPU-optimized ransomware from wild Linux
ransomware families.

CryptoSniffer was evaluated using a Linux kernel 5.7.15
in an environment running on a physical machine equipped
with an Intel(R) Core(TM) i7-12700 (4.90 GHz, x86_64)
processor and 32 GiB of memory.

The Linux distribution used was Ubuntu 20.04.1 LTS on
the Linux kernel 5.7.15. CryptoSniffer was implemented by
extending 1,366 lines to the Linux kernel.

7.1 Security capability experiments

The experiments involved running ransomware samples in
environments with CryptoSniffer and a vanilla kernel (with-
out CryptoSniffer). Subsequently, the experiments verify the
success or failure of the encryption attack.

– A PoC Program for File Encryption: This experiment
executes the PoC program ported LockBit 2.0 fromWin-
dows to Linux.

– AReal-WorldCPU-OptimizedRansomware: This exper-
iment executed RansomEXX, RansomEXX2 [44], and
Erebus [45], which are real-world CPU-optimized ran-
somware packages on Linux.

These experiments involve comparing the SHA256 hash
values of victim files before and after executing the ran-
somware samples. Successful prevention of encryption is
indicated if the hash values remain identical. If a differ-
ent hash value is detected, the experiments further examine
the binary contents using tools such as binary viewers [46]
because the ransomware sample could have written metadata
(e.g., encrypted AES key) to the file. Successful prevention
is affirmed if the original binary contents remain unchanged.

To account for real-world malware often packing its orig-
inal code, each experiment includes two versions of the
executable files: the vanilla version (unpacked) and the
packed version (using the UPX packer [47]).
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7.1.1 PoC program

The PoC program conducts a file search for target extensions
(e.g., .pdf) within file systems and subsequently encrypts the
discovered files using the AES-NI instruction set. It employs
partial encryption, focusing on encrypting only the initial 4
KiB of the file offset, and utilizes multi-threading for search-
ing and encrypting. The encryption algorithm is AES-CBC,
with a static 128-bit key applied uniformly across all files.
Following encryption, the program overwrites the original
file contents and renames the file extensions to .enc.

The results, as presented in Table 2, demonstrate that for
both the vanilla and packed binaries, the kernelwith theCryp-
toSniffer installed maintains identical hash values before
and after encryption. This signifies successful prevention of
encrypted content writing.

7.1.2 RansomEXX

RansomEXX examines the instruction set supported by the
CPU architecture of the targeted machine using the cpuid
instruction. If the CPU architecture supports the AES-NI
instruction set, RansomEXX leverages AES-NI for encryp-
tion. The encryption algorithm employed is AES-ECB, and a
unique 256-bit key is generated for each file. The encrypted
file contents are overwritten to the victim and the files are
renamed extensions to .31gs1 after the writing is complete.

The results are presented in Table 2. While the hash
value of the file differed between the environments with
CryptoSniffer and the vanilla kernel lacking CryptoSniffer,
CryptoSniffer preserved the original binary contents of the
file, whereas the vanilla kernel permitted file encryption.
Consequently,CryptoSniffer effectively thwarted the encryp-
tion attempts by RansomEXX in both the vanilla and packed
executable files scenarios.

7.1.3 RansomEXX2

RansomEXX2 is a new version of RansomEXX and is
implemented in Rust, while the classical RansomEXX is
implemented in C++. The encryption algorithm is the same
as that of RansomEXX and the files are compromised by
overwriting the file contents and renaming the extensions to
.cs1c4t.

The results are shown in Table 2. In both the packed and
unpacked versions, the hash value of the victim file was the
same before and after the execution of RansomEXX2. There-
fore, CryptoSniffer successfully prevented file contents from
being compromised by RansomEXX2.

Table 2 Prevention results of CryptoSniffer for CPU optimized ran-
somware

Program CryptoSniffer

LockBit 2.0 Based PoC w/o UPX �
LockBit 2.0 Based PoC w/ UPX �
RansomEXX w/o UPX �
RansomEXX w/ UPX �
RansomEXX2 w/o UPX �
RansomEXX2 w/ UPX �
Erebus w/o UPX �
Erebus w/ UPX �

(� Success; − Failure)

Fig. 8 Performance overhead in file Write benchmark

7.1.4 Erebus

Erebus overwrites file contents with encrypted file contents
using the AES algorithm with AES-NI. In addition, Erebus
encrypts the encryption key using the RSA algorithm and
writes the key to each victim file. The victim file extensions
are renamed to .ecrypt once the writing is complete.

The results are presented in Table 2. In both the packed
and unpacked versions, the hash value of the victim file dif-
fers before and after the execution of Erebus. This is because
Erebus writes the encryption key at the end of the file. The
original binary contents of the file were protected in Cryp-
toSniffer. In addition, the experiment confirmed that Erebus
initiated malicious activity after suspending its execution for
5min. However, CryptoSniffer successfully prevented the
file contents from being compromised by Erebus.

7.2 Micro-benchmarkmeasurements

This experiment evaluates the performance of each compo-
nent of CryptoSniffer using original benchmark programs.
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Table 3 Analysis results for the
number of downloadable and
runnable Linux-based
CPU-optimized ransomware

Ransomware families Downloadable samples Runnable samples AES-NI samples

37 22 12 3

Table 4 Analysis results for the
methods of encrypting and
compromising files in runnable
Linux-based ransomware

Sample name Encryption method File remove/overwrite

Conti [58] Regular Overwrite

DarkSide [59] Regular Overwrite

Erebus [60] AES-NI Overwrite

HelloKitty [61] Regular Overwrite

Hive [62] Regular Overwrite

Kuiper [63] Regular Overwrite

LockBit [64] Regular Overwrite

Monti [65] Regular Overwrite

RansomEXX [66] AES-NI Overwrite

RansomEXX2 [67] AES-NI Overwrite

RedAlert [68] Regular Overwrite

REvil [69] Regular Overwrite

Fig. 9 Performance overhead in TCP Echo benchmark

The benchmark programs include the following: (1) File
Write: Measures the performance of writing encrypted con-
tent using the AES-NI to a file. (2) TCP Echo: Measures the
performance of sending encrypted payloads using AES-NI
to the server through the TCP protocol.

The experimental patterns comprised the following steps.
(1) Vanilla: The scenario without the CryptoSniffer was
installed. (2) InstSearch: The component responsible for
the instruction search. (3) InstSearch+Trap: Components
of InstSearch and trapping by debug registers. (4) Inst-
Search+Trap+ContSearch:Components for InstSearch+Trap
and content search. InstSearch+Trap +ContSearch is the full
configuration of CryptoSniffer and includes all the compo-
nents.

7.2.1 File write

The programof FileWrite allocates the 1024 bytes buffer, the
process involves encrypting the contents of the buffer with
AES-NI, and then writing the encrypted contents to a file on
local storage.

The results, depicted in Fig. 8, reveal that compared to
those of Vanilla, InstSearch and InstSearch+Trap incurred
a performance overhead ranging from 5 to 9%. On the
other hand, InstSearch+Trap+ContSearch demonstrated a
4% improvement in performance. This is attributed to Con-
tSearch skipping the write to a file on storage.

7.2.2 TCP echo

The TCP Echo benchmark comprises a TCP client and
server programs. The TCP client allocates the 16-byte
buffer, encrypts its contents with AES-NI, and transmits the
encrypted data to the TCP server. This transmission process
is repeated 1024 times, resulting in the sending of 16,384
bytes of content to the server. Subsequently, the TCP client
calculates throughput based on the execution time.

The results, depicted in Fig. 9, indicated that compared
to Vanilla, InstSearch incurred a 7% performance overhead,
while InstSearch+Trap incurred a 46% performance over-
head. Notably, because writing to the network socket is
beyond the scope of the content search in this experiment,
InstSearch+Trap and InstSearch+Trap
+ContSearch recorded identical performances.

123



Early mitigation of CPU-optimized ransomware...

Fig. 10 Performance overhead in Nginx

Fig. 11 Performance overhead in Nginx + OpenSSL

Fig. 12 Performance overhead in Redis

Fig. 13 Performance overhead in Samba

Fig. 14 Performance overhead in MySQL

7.3 Real-world applications measurements

This experiment utilizes real-world server applications to
showcase the performance overhead in the full configura-
tion of CryptoSniffer. The following four server applications
were executed on a physical machine: (1) on the vanilla
kernel without the CryptoSniffer installed and (2) on the
CryptoSniffer.

– Web Server: This experimentmeasured the throughput of
Nginx 1.22.1 [48] via HTTP protocol with ApacheBench
2.3 [49]. In addition, this experiment also measured the
throughput via HTTP over TLS protocol using OpenSSL
1.1.1f [50].

– In-memory KVS: This experiment measured the
throughput of Redis 7.0.11 [51] with RedisBench 7.0.11
[52]. RedisBench issued SET and GET commands in the
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benchmark and each command was executed one million
times.

– File Server: This experiment measured the throughput of
Samba 4.15.13 [53] by uploading and downloading files.
The size of each file was 1 MiB, and the number of files
for the operations was 1000.

– Database Server: This experiment measured the
throughput of MySQL 8.0.33 [54] with sysbench
1.0.18 [55]. The workloads of sysbench were used for
read-only, write-only, and read-write.

The results are depicted in Figs. 10, 11, 12, 13, and
14. Across all the applications, the performance over-
head imposed by CryptoSniffer was negligible. The maxi-
mum overhead for each application was as follows: Nginx
(0.001%), Nginx + OpenSSL (0.001%), Redis (0.008%),
Samba (0.006%), and MySQL (0.017%).

7.4 Extensive experiment for security evaluation

This experiment analyzed the number of real-world CPU-
optimized ransomware in wild Linux-based ransomware
families. First, the names of existing Linux-based ran-
somware families were retrieved fromMalpedia [56], which
is an online database service for recording existing malware
families. Based on the names, samples were found fromMal-
wareBazaar [57] which is a repository for sharing real-world
malware binaries. Subsequently, the experiment conducted
static and dynamic analyses of the downloaded samples using
existing tools for reverse engineering and identified CPU-
optimized ransomware from the samples.

The results are presented in Tables 3 and 4. The exper-
iment identified 12 runnable ransomware samples from 37
real-world Linux ransomware families. Furthermore, three
samples of CPU-optimized ransomware were found in the 12
runnable ransomware samples. The identified samples were
RansomwareEXX, RansomwareEXX2, and Erebus.

8 Discussion

8.1 Evaluation consideration

8.1.1 Security capability experiment

As RansomEXX writes metadata to victim files, the hash
value of the victim file did not match in CryptoSniffer. This
metadata, written to the victim file, consists of an encrypted
256-bit AES key. RansomEXX encrypts the AES key using
a 4096-bit RSA public key embedded in its execution binary
and decrypts the AES key using an RSA private key received
from the attacker’s server. Unfortunately, the current Cryp-
toSniffer prototype cannot prevent the writing of metadata

from CPU-optimized ransomware. However, the experimen-
tal results indicate that CryptoSniffer can protect original
file contents from RansomEXX. Therefore, the experimen-
tal results demonstrate that CryptoSniffer has achieved good
security. The user can restore files that have the same hash
value as before the attack by extracting the original file con-
tents from the victim file.

8.1.2 Performance measurements

In both micro-benchmarks and real-world applications, the
user processes and the CryptoSniffer kernel remained stable.

With respect to the micro-benchmarks, the performance
overhead of InstSearch ranged from 3 to 7%. On the other
hand, the performance overhead of InstSearch+Trap ranged
from 9 to 46%. In the Trap scenario, the performance over-
head depends on the number of hardware debug interruptions
that occur. Therefore, File Write, which incurs 64 interrup-
tions, results in a 9%overhead,whileTCPEcho,which incurs
1024 interruptions, results in a 46% overhead.

In real-world applications, all the programs excluding
Nginx with OpenSSL that were used in the experiments
issue no AES-NI instructions, and benchmarks start after the
user processes open the network services. Although Nginx
with OpenSSL issues AES-NI instructions, CryptoSniffer
allows the writing of encrypted content to the network socket
because the content search is canceled by the Device Policy.

Thus, CryptoSniffer incurs only negligible overheads
ranging from 0.001 to 0.017%. These minor overheads are
attributed to the instruction search of the mmap andmprotect
which contain a PROT_EXEC flag in running benchmarks.

8.2 Portability consideration

8.2.1 Porting to Other CPU architectures

In modern CPU architectures, the acceleration feature for
fast encryption is implemented. For instance, ARMv8-A
has hardware AES acceleration, such as the AESE instruc-
tion [70]. In recent years, cloud IaaS services have started
to provide ARM-based computing instances [71, 72]. Con-
sequently, attackers may design and implement new CPU-
optimized ransomware for other CPU architectures.

The current prototypedCryptoSniffer for x86 traps encryp-
tion instructions using hardware debug registers. If hardware
debug registers are supported, CryptoSniffer can implement
the same mechanism in other CPU architectures. For exam-
ple, the ARM Cortex-A7 has six hardware debug registers
[73], and the Linux kernel for the ARM supports the control
of the debug registers [74].
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8.2.2 Porting to other operating systems

With other operating systems that support hardware debug
registers, the current prototyped CryptoSniffer for Linux can
be adapted. For instance, FreeBSD supports debug registers
for running threads within the structure of struct pcb [75].
Moreover, setting the debug registers can be accomplished
using functions such as load_dr0 to load_dr7 [76].

On the other hand,Windows can set and obtain debug reg-
isters by utilizing kernel mode driver API functions, such as
PsSetCreateProcessNotifyRoutine [77] and PsSetContext-
Thread [78].

8.3 Implementation limitation

8.3.1 Circumventing CryptoSniffer

This section discusses potential circumvention methods for
CryptoSniffer. Two possible approaches are considered for
the current CryptoSniffer prototype:

First, ransomware might inspect file contents after Cryp-
toSniffer stops writing encrypted data. By checking the file
contents, ransomware could detect that the encryption pro-
cess could fail, and the ransomware could attempt to bypass
CryptoSniffer. For example, ransomware might switch from
CPU-optimized encryption to regular encryption without
acceleration features. While the current CryptoSniffer pro-
totype might struggle to prevent such circumvention, the
delayed encryption process in the absence of CPU opti-
mization could increase the detection chances for existing
solutions such as antivirus and incident response.

Second, if an attacker compromises users registered in
UID Policy, they could bypass the instruction search in the
Startup Phase. This involves leaking the accounts of regis-
tered users because of weak security settings, gaining access
to the server host with leaked credentials, and executing ran-
somware as a trusted user for CryptoSniffer. However, the
intrusion channels defined in Sect. 3 for ransomware typi-
cally involve exploiting network services (e.g., vulnerable
web servers [79]). To run these network services, specific
users are created per application (e.g., www-data user in
Nginx), and as such. These users are generally distinct from
the registered users in UID Policy (e.g., the root user).

8.4 False-positive to benign applications

Certain cryptographic libraries have the potential to imple-
ment encryption algorithms using encryption instructions.
For example, theOpenSSL library implements EnvelopeAPI
[80], which provides fast encryption using AES-NI. As other
examples, GnuTLS [81] and Crypto++ [82] also implement
AES-NI in their libraries [83, 84].

If benign applications employ these libraries and the
administrator fails to register with CryptoSniffer’s policies,
CryptoSniffer aborts the file encryption of benign applica-
tions by raising a false-positive. In the future, the plan is to
suspend the applications that issue encryption instructions at
the FileWriting Phase and to require authentication from the
administrator.

8.5 File remove-based ransomware

The current CryptoSniffer prototype cannot protect file con-
tents from ransomware that removes original files and creates
encryptedfiles. Thus, the challenge against file remove-based
ransomware remains.

However, the analysis presented in Sect. 7.4 shows that
modern Linux-based ransomware tends to overwrite rather
than remove file contents. Furthermore, existing survey work
[22] explains that modern ransomware prefers file encryp-
tion implementation that overwrites part of the file. This is
because partial file encryption is effective for evading ran-
somware detection basedonmonitoringfile systemactivities.

8.6 Evading CryptoSniffer

The security capability experiment described in Sect. 7.1
indicates that Erebus attempts to behave in a similar manner
to benign applications by delaying the initiating encryption.
However, CryptoSniffer successfully protected file contents
from Erebus. CPU-optimized ransomware needs to map
executable pages including encryption instructions before
initiating encryption and issue the instructions before com-
promising victim files. As CryptoSniffer finds the instruc-
tions at themapping and traps the instructions at the issuing, it
overcomes evasion, such as initially refraining from encryp-
tion and later attempting to encrypt.

However, if the adversary injects code of ransomware into
the applications executed by the users that are registered in
the UID Policy, CryptoSniffer cannot protect file contents
from the attack. However, as the operation to inject code into
running user processes requires privileged user permission in
modern OSes [42], the adversary suffers from the achieve-
ment of successful code injection.

8.7 Resistance to obfuscation techniques

The security capability experiment in Sect. 7.1 showed
that CryptoSniffer can prevent file encryption from CPU-
optimized ransomware that obfuscates executable binaries
with UPX packer. Existing survey work [85] explains
that UPX packer accounts for the majority of obfuscation
techniques in wild Linux-based malware. Therefore, the
experiment was sufficiently realistic to evaluate the security
capability of CryptoSniffer.
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Furthermore, it is considered that CryptoSniffer is fully
capable of protecting file contents from Linux-based CPU-
optimized ransomware that employs other obfuscation tech-
niques.Malware is required to decode the obfuscated binaries
until the original code is placed in the executable pages. As
CryptoSniffer initiates the scanning of executable pages after
the original code is placed, it is resistant to obfuscation tech-
niques.

9 Related work

This section provides an overview of related works in the
field of ransomware countermeasures and highlights the dis-
tinctions from CryptoSniffer. The existing survey work [28]
categorizes existing ransomware countermeasures into three
groups. First, ransomware detection involves mechanisms
that detect ransomware based on its behavior during exe-
cution. Second, ransomware defense focuses on recovery
by restoring victim files after the ransomware completes
its attack. Third, ransomware prevention aims to block file
encryption before it occurs.

9.1 Ransomware detection

Ransomware detection focuses on the behaviors exhibited
by ransomware running on victim computers and identifies
ransomware based on these malicious behaviors. Examples
of mechanisms within this category include decoy file mon-
itoring, file entropy monitoring, and file system activity
monitoring.

9.1.1 Decoy file monitoring

Decoy file monitoring [10–12] operates on the key insight
that ransomware typically accesses various files on the file
system for encryption. Utilizing this insight, decoy filemoni-
toring creates specific files for monitoring and identifies user
processes accessing these files as potential ransomware.

9.1.2 File entropy monitoring

UNVEIL [13] is a ransomware detection mechanism that
monitors the entropy of file contents. It capitalizes on the
observation that file encryption introduces entropy bias com-
pared to the state before encryption. To identify this entropy
bias, UNVEIL observes file I/O requests and computes the
entropy of file contents. If an entropy bias is detected in a file,
UNVEIL halts the user processes responsible for writing to
that file.

9.1.3 File system activity monitoring

ShieldFS [16] is a ransomware detection mechanism that
monitors file system behaviors. From a file system per-
spective, many ransomware implementations exhibit certain
characteristics. First, they often search for files with spe-
cific extensions (e.g., .pdf, .jpeg, etc.) before initiating file
encryption. Additionally, many ransomware variants rename
fileswith specific extensions (e.g., .lockbit, .31gs1, etc.) after
completing the encryption process. Leveraging these behav-
iors, ShieldFS observes file system activities and identifies
user processes that exhibit similarities to known ransomware
patterns.

9.1.4 Combination mechanisms

Combination mechanisms [19–21] in ransomware detec-
tion integrate multiple detection methods. Each mechanism,
such as decoy file monitoring, file entropy monitoring, and
file system activity monitoring, contributes to an ad hoc
detection method. Therefore, combining multiple detection
approaches enhances the ability to detect a broader range of
ransomware variants.

9.2 Ransomware defense

Ransomware defense permits file encryption by means of
ransomware but focuses on restoring the contents of the
files after the ransomware attack is completed. Mechanisms
within this category may involve monitoring encryption API
calls and incorporating data-recoverable SSD.

9.2.1 Encryption API monitoring

PayBreak [32] facilitates the recovery of victimfiles by track-
ing encryption keys during file encryption. This is achieved
by hookingAPI calls in existing cryptographic libraries, such
as CryptoAPI in Windows. The encryption key is stored in
the key vault and utilized for recovery once a ransomware
attack is completed.

9.2.2 Ransomware-tolerant SSD

FlashGuard [33] is a hardware-based file recovery mecha-
nism leveraging SSD characteristics. When the OS requests
changes to data contents on the SSD, the new data contents
are written to different data blocks than the original ones.
Utilizing this characteristic, FlashGuard retains the old data
contents of the original data blocks, enabling the recovery of
victim files.
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9.3 Ransomware prevention

Ransomwareprevention enables the executionof ransomware
but hinders file encryption. This mechanism may involve
implementing file-level access control.

9.3.1 File-level access control

AntiBotics [86] is a mechanism that regulates user access to
specific directories. When users attempt to access controlled
directories, user-interactive validation involving biometrics
and CAPTCHA is triggered. Access is granted upon success-
ful validation by the logged-in OS user.

9.4 Comparison

This section outlines the distinctions between existing works
and CryptoSniffer. Figure15 illustrates the positions of both
existing works and CryptoSniffer in terms of the implemen-
tation layer and countermeasure types. Additionally, Table
5 provides a comparison in (1) Early Mitigation, (2) File
Recovery, (3) Ransomware Types, and (4) Computing Envi-
ronment Types.

Existing detection mechanisms [10–18], such as decoy
file monitoring and file entropy monitoring, can also detect
and halt CPU-optimized ransomware. However, existing
detection mechanisms focus on the behaviors of running
ransomware, requiring them to permit file encryption for
detection. Consequently, these mechanisms face challenges
in achieving early mitigation against CPU-optimized ran-
somware. In constant, CryptoSniffer can accomplish early
mitigation from the first instance of file encryption, as it mon-
itors the issuance of encryption instructions.

Among the existing defensemechanisms [32–36], encryp-
tion API monitoring relies on hooking API calls related to
file encryption. Consequently, CPU-optimized ransomware
can potentially evade API monitoring by utilizing encryp-
tion instructions without making API calls. Alternatively,
ransomware-tolerant SSDcancontribute to defending against
CPU-optimized ransomware. However, as it is a hardware-
based defense mechanism, implementing this mechanism in
server computing environments, such as cloud IaaS, can be
challenging. CryptoSniffer, which requires only hardware
debug registers as a hardware feature, is easily installable
in server computing environments.

File-level access control [86], an existing prevention
mechanism, necessitates real-time user-interactive valida-
tion. This makes it challenging to apply in server computing
environments, where there is typically no logged-in user,
unlike client PCs. CryptoSniffer does not require user-
interactive validation and completes prevention automati-
cally.

Fig. 15 Positioning of existing works in the countermeasure types
and implementations: CryptoSniffer is a new prevention mechanism
implemented in the kernel. Since CryptoSniffer requires only hooking
some kernel functions and debug registers, implementation conflicts
with other works are unlikely to occur. Thus, CryptoSniffer can also be
used simultaneously with other works.

While CryptoSniffer is not specifically designed for client
PCs, it can be installed and run on them. In client PCs,
where the logged-in user often has administrator privileges
and performs actions that may trigger ransomware (e.g., web
browsing), CryptoSniffer can allow ransomware execution if
the login user is registered to the UID Policy. Consequently,
on client PCs with CryptoSniffer installed, it is advisable
to separate login users and administrative users, registering
only the administrative user to the UID Policy.

9.4.1 Comparison with ransomware-tolerant SSD

This section compares the traditional SSD-level backup and
recovery systems [33–36] and CryptoSniffer in the following
situations:

– Cloud User Level: Each user of the cloud IaaS takes
measures against CPU-optimized ransomware to protect
their file contents on the VM.

– Cloud Provider Level: The cloud provider is motivated
to protect the file contents of all users on the VMs against
CPU-optimized ransomware.

– Local Level: Users and administrators on the local
machines (e.g., PCs and, on-premise servers) consider
measures against CPU-optimized ransomware to protect
their storage.

On the cloud user level, CryptoSniffer has an advantage
over SSD-level systems. This is because SSD-level methods
require a hardware modification, even if the cloud provider
does not permit users to change the hardware, while Cryp-
toSniffer requires no hardware modification.
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Table 5 Comparison of ransomware countermeasures features

Feature Decoy file File entropy FS activity API Ransomware- File- Crypto-
monitoring monitoring monitoring monitoring tolerant SSD level ACL sniffer
[10–12] [13–15] [16–18] [32] [33–36] [86]

Countermeasure category Detection Detection Detection Defense Defense Prevention Prevention

Early mitigation � �
File recovery � � �
CPU-Opt. ransomware � � � � � �
Regular ransomware � � � � � �
Client PCs � � � � � � �
Servers � � � �

(� is supported; � is partially supported)

On the cloud provider level, combining CryptoSniffer and
SSD-level methods is effective. Unlike cloud users, cloud
providers can easily introduce hardware such as ransomware-
tolerant storage into their data centers. However, replacing
existing storage with other storage in the data center may
require a huge amount of time because data migration on the
petabyte and/or exabyte scale is required [87]. Consequently,
employing CryptoSniffer until the cloud provider completes
the data migration is an effective solution.

On the local level, SSD-level methods are more suitable
than CryptoSniffer. This is because introducing storage and
migrating data on local machines, are easier than in the cloud
provider’s data centers. However, employing CryptoSniffer
until the data migration on local machines is completed, is
still effective.

10 Conclusion

To counter ransomware attacks, antivirus measures and ran-
somware detection research are practical. However, early
mitigation against running CPU-optimized ransomware on
servers proves challenging for these mechanisms. First,
antivirus programs may struggle to swiftly detect CPU-
optimized ransomware because of its rapid file encryption.
Second, existing detection mechanisms, such as decoy file
monitoring, are less effective at earlymitigation because they
permit ransomware to execute until malicious behaviors are
detected.

This study introduces CryptoSniffer, a novel early mit-
igation mechanism designed to prevent file encryption by
CPU-optimized ransomware. CryptoSniffer, an answer to the
research question described in Sect. 1, mitigates the behav-
ior of CPU-optimized ransomware until it is detected by
anti-ransomware mechanisms. To achieve high transparency
and low overhead in user processes, CryptoSniffer acts as
a software component within the OS kernel, monitoring
encryption instructions issued by user processes. It captures

the ciphertext generated by these processes and halts file
encryption by comparing the captured ciphertext with the
memory contents intended for writing to files. To validate
the security and performance of CryptoSniffer, experiments
were also conducted. The results demonstrated the efficacy
of CryptoSniffer in preventing file encryption via real-world
CPU-optimized ransomware, with reasonable performance
overheads observed in real-world applications.
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