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In this work, we propose a new invariant for 2D persistence modules called the compressed multiplicity and show 
that it generalizes the notions of the dimension vector and the rank invariant. In addition, for a 2D persistence 
module 𝑀 , we propose an “interval-decomposable replacement” 𝛿∗(𝑀) (in the split Grothendieck group of the 
category of persistence modules), which is expressed by a pair of interval-decomposable modules, that is, its 
positive and negative parts. We show that 𝑀 is interval-decomposable if and only if 𝛿∗(𝑀) is equal to 𝑀 in 
the split Grothendieck group. Furthermore, even for modules 𝑀 not necessarily interval-decomposable, 𝛿∗(𝑀)
preserves the dimension vector and the rank invariant of 𝑀 . In addition, we provide an algorithm to compute 
𝛿∗(𝑀) (a high-level algorithm in the general case, and a detailed algorithm for the size 2 × 𝑛 case).
1. Introduction

Persistent homology [23,21] is one of the main tools in the rapidly 
growing field of topological data analysis. Given a filtration – a one-
parameter increasing sequence of spaces – persistent homology captures 
the persistence of topological features such as connected components, 
holes, voids, etc. in the filtration. Here, the persistence of features 
is quantified by birth and death parameter values. This can be sum-
marized compactly by the so-called persistence diagram, which is the 
multiset of birth-death pairs drawn on the plane with multiplicity.

Algebraically, the persistence diagram can be explained as resulting 
from a structure theorem (the Krull-Schmidt theorem (Theorem 2.2) 
and Gabriel’s Theorem [26]) of persistence modules, which can also 
be regarded as representations of certain quivers. We however note 
that early definitions of persistence diagrams and related ideas used 
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we have adopted this algebraic explanation here.

an inclusion-exclusion formula instead of this algebraic point of view. 
See for example [31], [25], [37], [16], [14] and others1. See Section 2

for detailed definitions.

One way to deal with multiparametric data is to use multidi-

mensional persistence [17]. However, multidimensional persistence 
presents theoretical difficulties that hinder the construction of a per-

sistence diagram as in one-dimensional persistence. In this work, for 
simplicity, we restrict our attention to the two-parameter case, and 
consider 2D persistence modules. We thus study representations of the 
equioriented 𝑚 × 𝑛 commutative grid �⃗�𝑚,𝑛 (a finite portion of the 2D 
grid ℤ2). Even the 2D case is sufficiently difficult. In particular, there is 
no complete discrete invariant that captures all isomorphism classes of 
indecomposable persistence modules [17]. Another way of expressing 
this difficulty is that the grid �⃗�𝑚,𝑛 of sufficiently large size (𝑚, 𝑛 ≥ 2 and 
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𝑚𝑛 ≥ 12, see [9, Theorem 1.3], [30, Theorem 2.5], [33, Theorem 5]) is 
of wild representation type.

One way to avoid this problem is to consider only a restricted class 
of persistence modules. Inspired by 1D persistence, there has been 
much interest in the so-called interval-decomposable representations, 
which are direct sums of interval representations (Definition 2.7). The 
work [1] studied this family of representations and provided a criterion 
to determine whether or not a given persistence module is interval-
decomposable.

It is hoped that most persistence modules coming from “real-world 
data” contain very few or indeed no non-interval summands. Let us con-
sider the silica glass example computed in [22], which compares the 
atomic configuration of silica glass with its configuration after physical 
pressurization. The underlying bound quiver is the commutative ladder 
𝐶𝐿3(𝑓𝑏), with only two non-interval indecomposable representations 
given by dimension vectors 

(
1 1 1
1 2 1

)
and 

(
1 2 1
0 1 0

)
. Then, the numerical re-

sult in [22] has 
(
1 1 1
1 2 1

)
appearing with only multiplicity 1 and 

(
1 2 1
0 1 0

)
with multiplicity 0, in an example with more than ten thousand in-
decomposable summands. While in the slightly different setting of a 
non-equioriented commutative ladder, this provides an example where 
the non-interval part is minute compared to the interval-decomposable 
part.

On the other hand, the work [10] argues via a geometric example 
that the non-interval indecomposables may contain important infor-
mation that should not be ignored, and that even in relatively simple 
geometric point clouds embedded in ℝ3, indecomposable summands 
with arbitrarily large dimension (as a vector space) may be present. 
These large indecomposable summands are clearly not intervals.

In this work, we take neither position, but instead propose a method 
to replace an arbitrary persistence module 𝑀 ∈ rep �⃗�𝑚,𝑛 by an object 
𝛿∗(𝑀) in the split Grothendieck group that is interval-decomposable. 
The interval-decomposable replacement (or interval-decomposable approx-

imation)2 𝛿∗(𝑀) (Definition 5.9) is expressed by a pair of interval-
decomposable modules, that is, its positive part 𝛿∗(𝑀)+ and negative 
part 𝛿∗(𝑀)− (see (5.5)).

To construct 𝛿∗(𝑀), we first define what we call the compressed mul-

tiplicity (Definition 4.12) of 𝑀 by a compression operation that picks 
up information in 𝑀 restricted to certain essential vertices of intervals.

The intuition behind the compressed multiplicity can be explained 
as follows. As an initial goal, we want to compute the multiplicity of an 
interval 𝐼 as a direct summand of 𝑀 . Indeed, the work [1] presents an 
algorithm for this computation. However, as this may not be straight-
forward, in this work we adopt a different approach. We first compress 
both 𝑀 and 𝐼 by restricting the underlying domain to certain essen-
tial vertices of 𝐼 , and compute the multiplicity in the representation 
category with smaller underlying domain.

In the equioriented commutative ladder [22] case (�⃗�2,𝑛), the 
compression operation reduces the underlying bound quiver to a 
representation-finite bound quiver. This enables easy computation of 
the compressed multiplicity using preexisting algorithms.

We show that the compressed multiplicity in fact generalizes the 
notions of dimension vector (Proposition 4.18) and rank invariant 
(Proposition 4.16). Furthermore, we exhibit representations that can 
be distinguished by their compressed multiplicities but not by their 
rank invariants. We thus propose the compressed multiplicity as a new, 
finer invariant for 2D persistence modules. Moreover, we show that for 

2 In an earlier version of this work we called 𝛿∗(𝑀) an “interval-
decomposable approximation” of 𝑀 . However, more recent works such as [7,2]
have used the term “approximation” in a relative homological sense. Thus, here, 
we have opted to mainly use the term “replacement” to avoid confusion, and 
also because it more closely describes how we think of 𝛿∗(𝑀) relative to 𝑀 . In 
the end of subsection 1.1 we provide some references to the point of view from 
relative homological algebra.
2

interval-decomposable representations, the multiplicity can be recov-
ered from the compressed multiplicity (Theorem 4.23).

Then, the object 𝛿∗(𝑀) is defined using the Möbius inversion of 
the compressed multiplicity of 𝑀 . This is a generalization of the well-
known fact that the multiplicities of interval summands in 1D persis-
tence modules can be obtained via an application of inclusion-exclusion 
on the ranks of the linear maps. In fact, early works around ideas re-
lated to persistence diagrams used this as the definition. See for example 
[31], [25], [37], [16], [21], [12], and others.

That is, the persistence diagram is simply the Möbius inversion of 
the rank invariant. We note that several works have already exploited 
this observation to define “generalized persistence diagrams” in general 
settings. In Subsection 1.1, we review some of them and contrast them 
with our work.

In the case that 𝑀 is interval-decomposable, it follows that 𝛿∗(𝑀) is 
equal to 𝑀 viewed as an element [[𝑀]] of the split Grothendieck group 
(Theorem 5.10); that is, 𝛿∗(𝑀)+ ≅𝑀 and 𝛿∗(𝑀)− = 0. Furthermore, we 
show that even for modules 𝑀 not necessarily interval-decomposable, 
𝛿∗(𝑀) preserves the dimension vector and the rank invariant of 𝑀
(Corollary 5.14, Theorem 5.12). In this sense, we think of 𝛿∗(𝑀) as 
an interval-decomposable “replacement” for 𝑀 .

We organize this work as follows. In Section 2, we review the nec-
essary background from representation theory of bound quivers and 
poset theory,3 and then, in Section 3, we study the poset of interval 
representations. In Section 4, we introduce our concept of compressed 
multiplicities and study its properties. In Section 5, we give the con-
struction of 𝛿∗(𝑀) from 𝑀 via Möbius inversion of the compressed 
multiplicity and give some results about its properties. In Section 6, we 
discuss the computation of our proposed compressed multiplicity and 
the interval-decomposable replacement.

1.1. Related literature

The prior work of Patel [36] used the idea of Möbius inversion in 
order to define generalized persistence diagrams, but only in the setting 
of persistence modules over (ℝ, ≤) [36, Definition 2.1]. Then, the work 
[34] defines a concept of a persistence diagram for a filtered simplicial 
complex over any finite metric lattice 𝑃 , by using a Möbius inversion. 
Furthermore, they show a stability theorem with respect to the edit 
distance for filtrations of a fixed simplicial complex, and the bottle-
neck distance for persistence diagrams. In that work, the domain of the 
persistence diagrams is 𝑃 , which is the set of what we call the seg-
ments [𝑥, 𝑦] = {𝑧 ∈ 𝑃 ∣ 𝑥 ≤ 𝑧 ≤ 𝑦} of 𝑃 . Applied to the commutative grid 
𝑃 = �⃗�𝑚,𝑛 (viewed as a poset), we get a persistence diagram descriptor 
over the rectangles in �⃗�𝑚,𝑛, different from our descriptor over what we 
call intervals (Definition 2.4) of �⃗�𝑚,𝑛. We also note that the poset struc-
ture for 𝑃 considered in [34] is different from the poset structure we 
give the set of intervals of �⃗�𝑚,𝑛.

Our work can be compared with the following prior work of Kim 
and Memoli [28], which we were made aware of by a reviewer after an 
initial version of this work was sent for review. In Table 1, we provide a 
rough overview of the different settings and a correspondence of some 
of the results, which we explain in detail below.

While Kim and Memoli [28] consider a very general setting, we re-
strict our attention to 𝐾-representations of the commutative grid �⃗�𝑚,𝑛
(see rows (1) and (2) of Table 1). Since �⃗�𝑚,𝑛 can be viewed as a poset 

3 In the persistence literature, there are at least two ways to consider mul-
tidimensional persistence modules: as representations of certain posets, or as 
representations of certain bound quivers. These are equivalent for the cases we 
are interested in. See Subsection 2.3 for a more detailed discussion. For ex-
ample, [28] uses the point of view of poset representations. In this work, we 
consider persistence modules as representations of bound quivers, except when 
comparing with the literature that uses poset representations. We reserve our 
use of posets for the poset whose elements happen to be interval representa-
tions, and do not directly consider representations of posets.
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Table 1

Settings and Some Similar Results∗ .

This work Kim and Memoli [28]

(1) Underlying setting commutative grid �⃗�𝑚,𝑛 poset1 𝑃

(2) Target category vect𝐾 category2 

(3) Domain of invariant 𝕀𝑚,𝑛 3 𝐂𝐨𝐧(𝑃 )4

(4) Invariant proposed compressed multiplicities
𝑑∗
𝑀

∶ 𝕀𝑚,𝑛 →ℕ
generalized rank invariant5

rk(𝑀) ∶𝐂𝐨𝐧(𝑃 ) →  ()

(5) Inversion 𝛿∗
𝑀

∶ 𝕀𝑚,𝑛 →ℤ generalized persistence diagram
dgm𝑃 (𝑀) ∶𝐂𝐨𝐧(𝑃 ) →Gr()

(6) Object interval-decomposable
replacement
𝛿∗(𝑀) ∈Gr(rep �⃗�𝑚,𝑛)

—6

(7) from proposed invariant
to true multiplicities
(interval-decomposable)

Theorem 4.23 [28, Theorem 3.14]

(8) from true multiplicities
to proposed invariant
(interval-decomposable)

Lemma 4.21 [28, Proposition 3.17]

(9) Interpretation as
Möbius inversion

Theorem 5.3 [28, Proposition 3.19]

∗This table is not intended to be a comprehensive summary of all results.7
1 Essentially finite connected poset.
2 Essentially small, symmetric monoidal category satisfying [28, Convention 2.3].
3 interval (connected and convex) subquivers.
4 path-connected subposets.
5 See [28, Definition 3.5]. The codomain  () is the set of isomorphism classes of .
6 Not explicitly defined. See however, [28, Remark 3.22].
7 For example, [28] contains results concerning Reeb graphs, which can be viewed as functors from the “zigzag poset” to the 
category of finite sets.
𝑃 , which happens to be essentially finite and connected, their setting 
contains ours. First, the domains of the proposed invariants (see row 
(3) of Table 1) are different. We note that 𝐂𝐨𝐧(𝑃 ), the set of all path-
connected subposets is in general different from the set of all interval 
subposets, and this is indeed the case for 𝑃 = �⃗�𝑚,𝑛. The set 𝐂𝐨𝐧(𝑃 )
contains subposets that cannot be realized as the support of some persis-
tence module. For example, viewing �⃗�2,2 as a poset with Hasse diagram 
(both filled and unfilled circles):

◦ ∙

∙ ∙
, (1.1)

the subposet 𝐶 given by the filled-in circles is in 𝐂𝐨𝐧(𝑃 ). However, this 
is not an interval (Definition 2.4), and there is no thin4 indecomposable 
persistence module over �⃗�2,2 with support given by 𝐶 , as a commu-
tativity relation will be violated otherwise. We do note however that 
subsequent works on the generalized rank invariant [18,29] have re-
stricted the domain to the set of all intervals, instead of using 𝐂𝐨𝐧(𝑃 ).

Furthermore, the proposed invariants (row (4) of Table 1) are dif-
ferent. We first note that both papers use of the idea of restricting the 
input persistence module 𝑀 to define the respective invariants. In [28], 
𝑀 is restricted to 𝐼 ∈𝐂𝐨𝐧(𝑃 ) to obtain 𝑀|𝐼 . In the case that 𝐼 is in fact 
an interval, this corresponds to applying what we call the “total com-
pression” functor (Definition 4.11) in a more general setting.

Kim and Memoli [28] then defines the value of their generalized 
rank invariant at 𝐼 ∈𝐂𝐨𝐧(𝑃 ) to be “the isomorphism class of the image 
of the canonical limit-to-colimit map” for 𝑀𝐼 . Of course, in the case 
that the target category  is vect𝐾 , the category of finite-dimensional 
𝐾-vector spaces, this value can be fully characterized by the dimension 
of the image. In fact, one version of our invariant, which we call the 
“total compressed multiplicity”, coincides with the dimensions of their 
generalized rank invariant (see Remark 4.13).

4 A persistence module is said to be thin if all of its vector spaces have dimen-
sion at most 1. For example, interval persistence modules are thin.
3

Remark 1.1. However, we emphasize that this total compressed multi-
plicity is not the main emphasis of this work. Instead, we propose the 
use of the source-sink (ss-)compression yielding smaller representations 
(compared to 𝑀|𝐼 ), by further restriction to what we call the essential 
vertices of 𝐼 . We note that these do not coincide with the generalized 
rank invariant of [28] for fixed 𝐼 . See Example 4.14. However, if we 
allow to change the form of the “input” to generalized rank invariant 
and broaden its domain of definition, we indeed recover values of our 
source-sink multiplicity (see Remark 4.15).

Our interval-decomposable replacement 𝛿∗(𝑀) (and the generalized 
persistence diagram dgm𝑃 (𝑀) of [28]) are signed invariants, with posi-
tive and negative parts. Many recent works, such as [11,7,13,5,2,8] and 
others, are further studying signed invariants for persistence, especially 
from the point of view of relative homological algebra. While our use 
of the split Grothendieck group to formalize the interval-decomposable 
replacement 𝛿∗(𝑀) (Definition 5.9) is related to the (relative) homolog-
ical algebra point of view, a full treatment is beyond the scope of this 
manuscript. Thus, we only provide brief comments below and point the 
interested reader to the literature listed above. For example, [11] stud-
ied rank decompositions of the rank invariant and their connections to 
the generalized persistence diagrams and resolutions relative to a so-
called rank-exact structure. [7] develops a framework for “homological 
invariants” and studies several existing invariants in this framework. 
The work [13] (and [5]) provides a method for computing relative Betti 
numbers. In the case of resolutions relative to interval-decomposables, 
these are simply the multiplicities of each interval appearing in each 
term of a minimal resolution. One of the results of our subsequent work 
[2] is a connection between (a modified version of) compressed multi-
plicity and resolutions relative to the interval-decomposables (and thus 
homological invariants). [8] is mostly expository, but contains some 
novel results: explicit descriptions of irreducible morphisms between 
relative projectives, and a way to “lift” the theory to certain infinite 
posets.
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2. Background

2.1. Representation theory

We first recall some fundamental terminologies of representations of 
quivers (see [6] for instance5).

A quiver 𝑄 is a quadruple (𝑄0, 𝑄1, 𝑠, 𝑡) of sets 𝑄0, 𝑄1 of vertices and 
arrows, respectively and maps 𝑠, 𝑡 ∶ 𝑄1 → 𝑄0 that give the source and 
target vertices, respectively, of the arrows. We denote an arrow 𝛼 with 
source 𝑠(𝛼) = 𝑥 and target 𝑡(𝛼) = 𝑦 by 𝛼 ∶ 𝑥 → 𝑦. The opposite quiver 𝑄op

of 𝑄 is the quiver given by (𝑄0, 𝑄1, 𝑡, 𝑠), namely the quiver obtained 
from 𝑄 by reversing all arrows. In this paper, all quivers 𝑄 are assumed 
be finite, namely, 𝑄0 and 𝑄1 are finite.

Throughout this work, we fix a field 𝐾 . Let 𝑄 be a quiver. A repre-

sentation 𝑉 of 𝑄 (over 𝐾) is a family (𝑉 (𝑥), 𝑉 (𝛼)) of a vector space 𝑉 (𝑥)
for each vertex 𝑥 ∈ 𝑄0 and a linear map 𝑉 (𝛼) ∶ 𝑉 (𝑥) → 𝑉 (𝑦) for each 
arrow 𝛼 ∶ 𝑥 → 𝑦 in 𝑄1.

The dimension vector dim(𝑉 ) of a representation 𝑉 of 𝑄 is defined as 
the tuple

dim(𝑉 ) ∶= (dim𝑉 (𝑥))𝑥∈𝑄0
.

It is customary to display the dimension vector by writing each number 
dim𝑉 (𝑥) relative to where the vertex 𝑥 is located on an illustration of 
the quiver 𝑄. While the dimension vector does not uniquely specify the 
representation 𝑉 , if it is clear from context, we also use the dimension 
vector to stand for 𝑉 . The dimension of 𝑉 is dim𝑉 ∶=

∑
𝑥∈𝑄0

dim𝑉 (𝑥). A 

representation 𝑉 of 𝑄 is said to be finite-dimensional if dim𝑉 <∞. In this 
work, by representation we mean finite-dimensional representation.

Let 𝑉 and 𝑊 be representations of 𝑄. A morphism 𝑓 ∶ 𝑉 →𝑊 from 
𝑉 to 𝑊 is a family (𝑓𝑥)𝑥∈𝑄0

of linear maps 𝑓𝑥 ∶ 𝑉 (𝑥) →𝑊 (𝑥) such that 
the following diagram commutes for each arrow 𝛼 ∶ 𝑥 → 𝑦:

𝑉 (𝑥) 𝑊 (𝑥)

𝑉 (𝑦) 𝑊 (𝑦).

𝑓𝑥

𝑉 (𝛼) 𝑊 (𝛼)

𝑓𝑦

The composition of morphisms 𝑓 = (𝑓𝑥)𝑥∈𝑄0
∶ 𝑉 →𝑊 and 𝑔 = (𝑔𝑥)𝑥∈𝑄0

∶
𝑈 → 𝑉 is defined in the obvious way: 𝑓◦𝑔 ∶ 𝑈 → 𝑊 is given by 
(𝑓◦𝑔)𝑥 = 𝑓𝑥◦𝑔𝑥. We denote by rep𝑄 the category of finite-dimensional 
representations of 𝑄 together with these morphisms and this composi-
tion.

For each vertex 𝑖 ∈ 𝑄0, we have the path of length 0 at 𝑖, which 
is denoted by 𝑒𝑖. For a given positive integer 𝑛, a path 𝜇 of length 𝑛

is a sequence 𝛼𝑛⋯ 𝛼1 of arrows 𝛼𝑖 such that 𝑡(𝛼𝑖) = 𝑠(𝛼𝑖+1) for all 𝑖 =
1, ⋯ , 𝑛 − 1. The source vertex of 𝜇 is 𝑠(𝛼1), while its target vertex is 
𝑡(𝛼𝑛). An 𝑚-tuple 𝜇1, ⋯ , 𝜇𝑚 of paths is said to be parallel if they all have 
the same source vertex and the same target vertex. A relation 𝜌 in 𝑄 is 

a formal sum 𝜌 =
𝑚∑
𝑖=1
𝑡𝑖𝜇𝑖 of parallel paths 𝜇𝑖, where each path 𝜇𝑖 is of 

length at least 2 and each 𝑡𝑖 is in 𝐾 . A pair (𝑄, 𝑅) of a quiver 𝑄 and a 
set 𝑅 of relations is called a bound quiver.

A relation 𝜌 is called a commutativity relation if 𝜌 = 𝜇1 − 𝜇2 for some 
two parallel paths 𝜇1, 𝜇2. If 𝑅 is the set of all possible commutativity 
relations in 𝑄, (𝑄, 𝑅) is called a quiver with full commutativity relations.

Let (𝑄, 𝑅) be a bound quiver and let 𝑉 be a representation of 𝑄. Put 
𝑉 (𝜇) ∶= 𝑉 (𝛼𝑛)◦ ⋯ ◦𝑉 (𝛼1) for any path 𝜇 = 𝛼𝑛⋯ 𝛼1 of length 𝑛 ≥ 1. Then, 

𝑉 ∈ rep𝑄 is said to be a representation of (𝑄, 𝑅) if 𝑉 (𝜌) ∶=
𝑚∑
𝑖=1
𝑡𝑖𝑉 (𝜇𝑖) = 0

5 Note that there is a difference between our convention and theirs in the 
order of arrows in paths. Namely, the path 𝛼𝑛⋯ 𝛼1 in this paper is written as 
𝛼1⋯ 𝛼𝑛 in their book.
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for any 𝜌 =
𝑚∑
𝑖=1
𝑡𝑖𝜇𝑖 ∈ 𝑅. We denote by rep(𝑄, 𝑅) the full subcategory of 

rep𝑄 consisting of the representations of (𝑄, 𝑅).
The path category 𝐾𝑄 of 𝑄 over 𝐾 is defined as follows. The objects 

of 𝐾𝑄 are the vertices of 𝑄0. For each pair (𝑖, 𝑗) of objects of 𝐾𝑄, the 
morphisms from 𝑖 to 𝑗 are the linear combinations of paths from 𝑖 to 𝑗. 
The composition of 𝐾𝑄 is defined as the bilinearization of the concate-
nation of paths. Then for each object 𝑖 of 𝐾𝑄, the identity morphism 
of 𝑖 is given as the path 𝑒𝑖 of length 0 at 𝑖. Note that the obtained cat-
egory 𝐾𝑄 naturally becomes a 𝐾-category, in the sense that 𝐾𝑄(𝑖, 𝑗)
are 𝐾-vector spaces for all 𝑖, 𝑗 ∈𝑄0, and the composition is 𝐾-bilinear. 
For a bound quiver (𝑄, 𝑅), we denote the factor category 𝐾𝑄∕⟨𝑅⟩ by 
𝐾(𝑄, 𝑅), where ⟨𝑅⟩ is the ideal of the 𝐾-category 𝐾𝑄 generated by 𝑅. 
For instance, this notation is used later for (𝑄, 𝑅) = �⃗�𝑚,𝑛 in Section 4
(see Definition 4.7). For each morphism 𝜇 in 𝐾𝑄, the morphism 𝜇+ ⟨𝑅⟩
in 𝐾𝑄∕⟨𝑅⟩ is usually denoted just by 𝜇, and for morphisms 𝜇 and 𝜈 in 
𝐾𝑄, we regard 𝜇 = 𝜈 in 𝐾𝑄∕⟨𝑅⟩ if and only if 𝜇 − 𝜈 ∈ ⟨𝑅⟩.

A 𝐾-linear functor from 𝐾(𝑄, 𝑅) to vect𝐾 , the category of finite-
dimensional 𝐾-vector spaces, is called a (left) 𝐾(𝑄, 𝑅)-module, which 
can be identified with a representation of (𝑄, 𝑅) in an obvious way. 
From this fact, representations of (𝑄, 𝑅) are sometimes called modules 
(over 𝐾(𝑄, 𝑅)). A representation 𝑀 of (𝑄, 𝑅) is said to be indecomposable

if 𝑀 ≅𝑀1 ⊕𝑀2 implies that 𝑀1 = 0 or 𝑀2 = 0.

Remark 2.1. In this work, we consider persistence modules as repre-
sentations of bound quivers, except when comparing with the literature 
that uses poset representations. For the comparison with the literature, 
we here summarize the relationship between representations of a poset 
and those of a bound quiver. Let 𝑃 be a locally finite poset (see Defini-
tion 2.8 for local finiteness).

(1) The Hasse quiver 𝐻(𝑃 ) of 𝑃 is a quiver defined as follows. The set 
𝐻(𝑃 )0 of vertices is given by 𝐻(𝑃 )0 ∶= 𝑃 , and for any vertices 𝑥, 𝑦, 
the set 𝐻(𝑃 )(𝑥, 𝑦) of arrows from 𝑥 to 𝑦 is given either as a singleton 
𝐻(𝑃 )(𝑥, 𝑦) ∶= {𝑝𝑦,𝑥} if 𝑥 < 𝑦 in 𝑃 and if there exist no 𝑧 ∈ 𝑃 with 
𝑥 < 𝑧 < 𝑦; or 𝐻(𝑃 )(𝑥, 𝑦) ∶= ∅ otherwise. We consider a bound quiver 
(𝐻(𝑃 ), 𝑅(𝑃 )), where 𝑅(𝑃 ) is the set of all commutativity relations 
in 𝐻(𝑃 ).

(2) When we regard 𝑃 as a category, we temporarily denote it by 𝐶(𝑃 ). 
Denote by 𝐾[𝐶(𝑃 )] the 𝐾-linearization of 𝐶(𝑃 ). Then 𝐾[𝐶(𝑃 )] is 
isomorphic to 𝐾(𝐻(𝑃 ), 𝑅(𝑃 )) as a 𝐾-linear category.

(3) A representation of 𝑃 (e.g., considered in [28]) is defined to be 
a functor from 𝐶(𝑃 ) to vect𝐾 , which is uniquely extended to a 
𝐾-linear functor from 𝐾[𝐶(𝑃 )] to vect𝐾 . Hence by (2) above, the 
category of representations of 𝑃 is isomorphic to the category of 
left 𝐾(𝐻(𝑃 ), 𝑅(𝑃 ))-modules, and hence to the category of represen-
tations of the bound quiver (𝐻(𝑃 ), 𝑅(𝑃 )). In this way, the represen-
tations of a poset are covered by those of a bound quiver (Keep this 
point of view in mind when reading Remarks 4.13 and 4.15).

A fundamental result in representation theory is the Krull-Schmidt 
theorem (see [3, Theorem 12.9] or [6, I.4.10 Unique decomposition 
theorem]).

Theorem 2.2 (Krull-Schmidt). Let  be a complete set of representatives 
of isomorphism classes of indecomposable representations of a bound quiver 
(𝑄, 𝑅). For each representation 𝑀 of (𝑄, 𝑅), there exists a unique function 
𝑑𝑀 ∶  →ℤ≥0 such that

𝑀 ≅
⨁
𝐿∈

𝐿𝑑𝑀 (𝐿).

The function 𝑑𝑀 is called the multiplicity function of 𝑀 , and the value 
𝑑𝑀 (𝐿) the multiplicity of the indecomposable 𝐿 in 𝑀 .

As an example, let us consider the equioriented 𝐴𝑛-type quiver:

𝐴𝑛 ∶ 1 2 ⋯ 𝑛 .
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It is known that in this case,  is the set {𝕀[𝑏, 𝑑]}1≤𝑏≤𝑑≤𝑛 of the so-called 
interval representations 𝕀[𝑏, 𝑑] of 𝐴𝑛 [26]. The interval representation 
𝕀[𝑏, 𝑑] is

𝕀[𝑏, 𝑑]∶ 0⟶⋯⟶ 0⟶
𝑏-th
𝐾 ⟶𝐾⟶⋯⟶

𝑑-th
𝐾 ⟶ 0⟶⋯⟶ 0,

which has the vector space 𝕀[𝑏, 𝑑](𝑖) =𝐾 at the vertices 𝑖 with 𝑏 ≤ 𝑖 ≤ 𝑑, 
and 0 elsewhere, and where the maps between the neighboring vec-
tor spaces 𝐾 are identity maps and zero elsewhere. In the context of 
persistent homology [23,21], a persistence module can be viewed as 
a representation of 𝐴𝑛, and the multiplicity function 𝑑𝑀 encodes the 
information of the persistence diagram.

The underlying bound quiver we study in this work is the equior-
iented commutative grid �⃗�𝑚,𝑛 defined below. Then, we consider 2D 
persistence modules as representations of �⃗�𝑚,𝑛.

Definition 2.3 (Equioriented commutative grid). Let 0 < 𝑚, 𝑛 ∈ ℤ. The 
bound quiver �⃗�𝑚,𝑛, is defined to be the 2D grid of size 𝑚 × 𝑛 with all 
horizontal arrows in the same direction and all vertical arrows in the 
same direction, together with full commutativity relations. It is also 
called the equioriented commutative grid of size 𝑚 × 𝑛.

For example, the equioriented 2 × 4 commutative grid �⃗�2,4 is the 
quiver

∙ ∙ ∙ ∙

∙ ∙ ∙ ∙
with full commutativity relations.

As mentioned in the introduction, for large enough size, �⃗�𝑚,𝑛 is 
of wild representation type. That is,  can be very complicated. In-
stead, we consider a restricted class of representations, the interval-
decomposable representations. Following the notation in [1], we first 
recall the definition of interval subquivers and interval representations 
for general bound quivers.

Definition 2.4 (Interval subquiver).

(1) Let 𝑄 be a quiver. A full subquiver 𝑄′ of 𝑄 is said to be convex in 
𝑄 if and only if for all vertices 𝑥, 𝑦 ∈𝑄′

0 and all vertices 𝑧 ∈𝑄0, the 
existence of paths 𝑥 to 𝑧 and 𝑧 to 𝑦 in 𝑄 imply that 𝑧 ∈𝑄′

0.
(2) A quiver Q is said to be connected if it is connected as an “undirected 

graph”,
(3) A full subquiver 𝑄′ of 𝑄 is said to be an interval subquiver of 𝑄 if 𝑄′

is convex (in 𝑄) and connected.

Since an interval subquiver 𝐼 of �⃗�𝑚,𝑛 is a full subquiver, (with �⃗�𝑚,𝑛
fixed) 𝐼 is completely determined by its set of vertices 𝐼0. Thus, we 
identify 𝐼 with its set of vertices 𝐼0 where convenient.

For any two full subquivers 𝑄′, 𝑄′′ of 𝑄, the intersection 𝑄′ ∩ 𝑄′′

(respectively, the union 𝑄′ ∪ 𝑄′′) of 𝑄′ and 𝑄′′ is defined as the full 
subquiver of 𝑄 having the vertex set 𝑄′

0 ∩𝑄
′′
0 (respectively, 𝑄′

0 ∪𝑄
′′
0 ).

Suppose that 𝑄′ and 𝑄′′ are interval subquivers of 𝑄 with 𝑄′
0 ∩𝑄

′′
0 ≠

∅. Note that 𝑄′ ∩𝑄′′ may not be connected, in general, and so may not 
be an interval. However, the following statement can be checked.

Lemma 2.5. Let 𝑄′ and 𝑄′′ be interval subquivers of 𝑄. Then, 𝑄′ ∩𝑄′′ is 
a disjoint union of interval subquivers of 𝑄.

Proof. To see this, we write 𝑄′ ∩𝑄′′ as a disjoint union of its connected 
components 𝐶𝑖 for 𝑖 = 1, ⋯ , 𝑛 and show that each connected component 
𝐶𝑖 is actually an interval subquiver of 𝑄. It suffices to check that 𝐶𝑖 is 
convex.

For that, let 𝑥, 𝑦 be vertices of 𝐶𝑖 and 𝑧 a vertex of 𝑄 such that there 
exist paths 𝑥 to 𝑧 and 𝑧 to 𝑦 in 𝑄. We show that 𝑧 is a vertex of 𝐶𝑖.

For each path 𝑧 = 𝑧0 → 𝑧1 →⋯ → 𝑧𝓁 = 𝑦 in 𝑄, since 𝑄′ and 𝑄′′ are 
convex and 𝑥, 𝑦 are both in 𝑄′ and 𝑄′′, each 𝑧𝑘 is a vertex of 𝑄′ and 𝑄′′. 
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Thus, all 𝑧𝑘 are vertices in 𝑄′ ∩𝑄′′ and the path 𝑧 = 𝑧0 → 𝑧1 →⋯ → 𝑧𝓁 =
𝑦 is in fact a path in 𝑄′ ∩𝑄′′. Since 𝑧𝓁 = 𝑦 ∈ 𝐶𝑖 and 𝐶𝑖 is a connected 
component, we must have 𝑧0 = 𝑧 ∈ 𝐶𝑖. Thus 𝐶𝑖 is convex. □

On the other hand, 𝑄′ ∪𝑄′′ is not an interval subquiver in general, 
even if 𝑄′ and 𝑄′′ are interval subquivers of 𝑄 with 𝑄′

0 ∩𝑄
′′
0 ≠ ∅. While 

connectedness is guaranteed since 𝑄′
0 ∩ 𝑄

′′
0 ≠ ∅, convexity may fail to 

hold.

Definition 2.6. For 0 < 𝑚, 𝑛 ∈ℤ, define 𝕀𝑚,𝑛 to be the set of all nonempty 
interval subquivers of �⃗�𝑚,𝑛.

It is known that the interval subquivers of �⃗�𝑚,𝑛 take on a distinctive 
“staircase” shape. See [1]. Below is an example of an interval subquiver 
of �⃗�4,6.

◦ ∙ ∙ ∙ ◦ ◦

◦ ◦ ∙ ∙ ◦ ◦

◦ ◦ ∙ ∙ ∙ ◦

◦ ◦ ◦ ◦ ∙ ∙

(2.1)

We also recall the example of a non-interval in (1.1).
Recall that for 𝑀 a representation of a bound quiver (𝑄, 𝑅), the 

support supp𝑀 of 𝑀 is the full subquiver of 𝑄 with vertices {𝑖 ∈ 𝑄 ∣
𝑀(𝑖) ≠ 0}. Finally, we are ready to recall the following generalization 
of interval representations of 𝐴𝑛.

Definition 2.7 (Interval representations). Let 𝐼 be an interval subquiver 
of a quiver 𝑄. Then we define a representation 𝑉𝐼 of 𝑄 as follows. For 
each 𝑥 ∈𝑄0 and each arrow 𝛼∶ 𝑥 → 𝑦 in 𝑄,

𝑉𝐼 (𝑥) ∶=

{
𝐾 if 𝑥 ∈ 𝐼0,
0 otherwise,

and 𝑉𝐼 (𝛼) ∶=

{
1𝐾 if 𝑥, 𝑦 ∈ 𝐼0,
0 otherwise.

A representation of a bound quiver (𝑄, 𝑅) is called an interval represen-

tation if it is isomorphic to 𝑉𝐼 for some interval subquiver 𝐼 of 𝑄.

Note that by construction, 𝑉𝐼 satisfies all the commutativity rela-
tions in 𝑄. It is obvious that supp𝑉𝐼 = 𝐼 . For example, if 𝐼 is the interval 
subquiver of �⃗�4,6 given by the quiver (2.1), then the dimension vector 
of 𝑉𝐼 is given by (3.2).

A representation 𝑀 ∈ rep(𝑄, 𝑅) is said to be interval-decomposable if 
it can be expressed as a direct sum of interval representations. Equiv-
alently, by Theorem 2.2, 𝑀 is interval-decomposable if and only if 
𝑑𝑀 (𝐿) = 0 for all non-interval indecomposables 𝐿.

2.2. Posets and lattices

In this subsection, we recall some basic definitions from poset and 
lattice theory. See [39] for more details.

Recall that a poset (partially ordered set) (𝑃 , ≤) is a set 𝑃 with partial 
order ≤. A poset 𝑃 is said to be finite if 𝑃 is finite as a set. The opposite

poset 𝑃 op of 𝑃 is defined to be a poset (𝑃 , ≤op), where for all 𝑥, 𝑦 ∈ 𝑃 , 
𝑥 ≤op 𝑦 if and only if 𝑦 ≤ 𝑥. Throughout this work, all posets are assumed 
to be finite.

Definition 2.8. Let 𝑃 be a poset and 𝑥, 𝑦 ∈ 𝑃 . The segment [𝑥, 𝑦] between 
𝑥 and 𝑦 is defined to be

[𝑥, 𝑦] ∶= {𝑧 ∈ 𝑃 ∣ 𝑥 ≤ 𝑧 ≤ 𝑦}

and define Seg(𝑃 ) to be the set of all segments of 𝑃 . The poset 𝑃 is said 
to be locally finite if all segments of 𝑃 are finite sets. The open segment

(𝑥, 𝑦) between 𝑥 and 𝑦 is defined to be

(𝑥, 𝑦) ∶= {𝑧 ∈ 𝑃 ∣ 𝑥 < 𝑧 < 𝑦}.
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It is clear that each segment of 𝑃 (respectively each open segment) of 
𝑃 forms a subposet of 𝑃 . We say that 𝑦 covers 𝑥 if 𝑥 < 𝑦 and (𝑥, 𝑦) = ∅. 
The set of the elements covering 𝑥 is denoted by Cov(𝑥).

We note that a segment [𝑥, 𝑦] is also called an interval in the litera-
ture, but we do not use this term to avoid confusion.

Definition 2.9. Let 𝑃 be a poset and 𝑆 a subset of 𝑃 .

(1) An element 𝑢 ∈ 𝑃 is said to be an upper bound of 𝑆 if 𝑠 ≤ 𝑢 for 
each 𝑠 ∈ 𝑆. The set of upper bounds of 𝑆 is denoted by 𝑈 (𝑆). For a 
singleton 𝑆 = {𝑠}, we abuse the notation and write 𝑈 (𝑠) for 𝑈 ({𝑠}).

(2) An element 𝑥 ∈ 𝑈 (𝑆) is said to be the join of 𝑆 if 𝑥 ≤ 𝑢 for each 
𝑢 ∈𝑈 (𝑆). Note that the join of 𝑆 is unique if it exists, and is denoted 
by ⋁𝑆. When 𝑆 = {𝑎, 𝑏}, then the join of 𝑆 is denoted by 𝑎 ∨ 𝑏.

Dually,

(3) An element 𝑙 ∈ 𝑃 is said to be an lower bound of 𝑆 if 𝑙 ≤ 𝑠 for each 𝑠 ∈
𝑆. The set of lower bounds of 𝑆 is denoted by 𝐿(𝑆). For a singleton 
𝑆 = {𝑠}, we abuse the notation and write 𝐿(𝑠) for 𝐿({𝑠}).

(4) An element 𝑥 ∈ 𝐿(𝑆) is said to be the meet of 𝑆 if 𝑙 ≤ 𝑥 for each 
𝑙 ∈𝐿(𝑆). Note that the meet of 𝑆 is unique if it exists, and is denoted 
by ⋀𝑆. When 𝑆 = {𝑎, 𝑏}, then the meet of 𝑆 is denoted by 𝑎 ∧ 𝑏.

Definition 2.10. Let 𝑃 be a poset.

(1) 𝑃 is called a join-semilattice (respectively, meet-semilattice) if each 
two-element subset {𝑎, 𝑏} ⊆ 𝑃 has a join (respectively, meet).

(2) 𝑃 is called a lattice if 𝑃 is a join-semilattice and a meet-semilattice.
(3) When 𝑃 is a lattice, 𝑃 is said to be distributive if for all 𝑥, 𝑦, 𝑧 ∈ 𝑃 ,

𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)

or equivalently, if for all 𝑥, 𝑦, 𝑧 ∈ 𝑃 ,

𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧).

For a join-semilattice 𝑃 and 𝑎, 𝑏, 𝑐 ∈ 𝑃 , note that (𝑎 ∨ 𝑏) ∨ 𝑐 =⋁
{𝑎, 𝑏, 𝑐} = 𝑎 ∨ (𝑏 ∨ 𝑐). Thus the binary operation ∨ satisfies associa-

tivity, and hence generalized associativity. Therefore in general, if 
𝑆 = {𝑥1, … , 𝑥𝑛} ⊂ 𝑃 , then

𝑥1 ∨ 𝑥2 ∨⋯ ∨ 𝑥𝑛

is well-defined and equal to ⋁𝑆. A similar remark holds for ⋀𝑆 in 
meet-semilattices.

The following fact is well-known and can be checked easily.

Proposition 2.11. If 𝑃 is a finite join-semilattice (meet-semilattice) with a 
lower bound (upper bound) of 𝑃 , then 𝑃 is a lattice.

We will see later that the poset of intervals does not form a lattice 
globally, so we provide the following “local” definitions.

Definition 2.12.

(1) A poset 𝑃 is called a local lattice if for any 𝑥, 𝑦 ∈ 𝑃 , the segment 
[𝑥, 𝑦] is a lattice.

(2) A local lattice 𝑃 is said to be locally distributive if for any 𝑥, 𝑦 ∈ 𝑃 , 
the segment [𝑥, 𝑦] is a distributive lattice.

2.3. The incidence algebra

Let 𝐹 be a field, and 𝑃 a locally finite poset. Recall that Seg(𝑃 ) is 
the set of segments of 𝑃 . The incidence algebra of 𝑃 over 𝐹 is the set of 
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functions from Seg(𝑃 ) to 𝐹 , together with a “pointwise” + operation, 
and convolution ∗ as the multiplication operation. More precisely, for 
𝑓, 𝑔 ∶ Seg(𝑃 ) → 𝐹 , define 𝑓 ∗ 𝑔 ∶ Seg(𝑃 ) → 𝐹 by

(𝑓 ∗ 𝑔)([𝑥, 𝑦]) ∶=
∑
𝑥≤𝑧≤𝑦

𝑓 ([𝑥, 𝑧])𝑔([𝑧, 𝑦]).

Note that the sum above is finite because 𝑃 is locally finite, and hence 
𝑓 ∗ 𝑔 is well-defined. It can be shown that the incidence algebra of 𝑃
over 𝐹 is indeed an 𝐹 -algebra, which we denote by 𝐼(𝑃 ). Its identity 
element is the delta function 𝛿 ∶ Seg(𝑃 ) → 𝐹 with

𝛿([𝑥, 𝑦]) =
{

1𝐹 if 𝑥 = 𝑦,
0 otherwise.

Remark 2.13. For readers familiar with quiver representation theory, 
the following facts may be helpful to understand the incidence algebra.

(1) We can regard 𝐼(𝑃 ) as the 𝐹 -algebra 𝐴 whose underlying vector 
space consists of all infinite (if 𝑃 is an infinite poset) linear com-
binations of symbols [𝑥, 𝑦] ∈ Seg(𝑃 ) by identifying each element 
𝑓 ∈ 𝐼(𝑃 ) with∑
[𝑥,𝑦]∈Seg(𝑃 )

𝑓 ([𝑥, 𝑦])[𝑥, 𝑦],

having the multiplication defined first by setting

[𝑥, 𝑦][𝑢, 𝑣] ∶=

{
[𝑥, 𝑣] if 𝑦 = 𝑢
0 if 𝑦 ≠ 𝑢

for all [𝑥, 𝑦], [𝑢, 𝑣] ∈ Seg(𝑃 ) and then extending to all of 𝐼(𝑃 ) bi-
linearly. Note that the multiplication is well-defined by the local 
finiteness of 𝑃 . In particular, the identity element 𝛿 corresponds to 
the sum ∑𝑥∈𝑃 [𝑥, 𝑥].

(2) Therefore, in the case where 𝑃 is a finite poset, 𝐼(𝑃 ) = 𝐴 above is 
isomorphic to the matrix algebra6 of the category 𝐹 (𝐻(𝑃 op), 𝑅(𝑃 op))
(see Remark 2.1), where each [𝑥, 𝑦] ∈ Seg(𝑃 ) corresponds to the 
coset [𝑥 ← 𝑦] of a path from 𝑦 to 𝑥 in 𝐻(𝑃 op) (≅ 𝐻(𝑃 )op), and 
the composite [𝑥, 𝑦][𝑢, 𝑣] = 𝛿𝑦,𝑢[𝑥, 𝑣] corresponds to [𝑣 ← 𝑢][𝑦 ←
𝑥] = 𝛿𝑦,𝑢[𝑣 ← 𝑥] in 𝐹 (𝐻(𝑃 ), 𝑅(𝑃 )). Thus the category of (finite-
dimensional) left 𝐼(𝑃 )-modules is equivalent to the category of left 
𝐹 (𝐻(𝑃 op), 𝑅(𝑃 op))-modules, and hence to the category of represen-
tations of the bound quiver (𝐻(𝑃 op), 𝑅(𝑃 op)) over 𝐹 .

2.4. Möbius functions

In this subsection, we assume that the characteristic of the field 𝐹
is zero, and we review some basic facts about Möbius functions. We 
refer the reader again to [39] for more details. In Sect. 5, we apply the 
contents of this section in the setting that 𝐹 =ℝ and 𝑃 = 𝕀𝑚,𝑛.

Definition 2.14 (Zeta and Möbius functions). The zeta function 𝜁 ∶
Seg(𝑃 ) → 𝐹 is the function with constant value 1𝐹 . Then, it can be 
shown that 𝜁 is an invertible element of 𝐼(𝑃 ), with inverse called the 
Möbius function 𝜇.

Now, let 𝐹𝑃 be the set of all functions 𝑃 → 𝐹 . Note that 𝐹𝑃 has a 
natural 𝐹 -vector space structure by pointwise addition and scalar mul-
tiplication of functions. The incidence algebra 𝐼(𝑃 ) acts on 𝐹𝑃 from the 
left by the following. For each 𝑓 ∈ 𝐹𝑃 , 𝜙 ∈ 𝐼(𝑃 ), define 𝜙𝑓 ∈ 𝐹𝑃 by

6 For a 𝐹 -linear category 𝐶 with the set 𝐶0 of objects finite, the matrix algebra 
Mat(𝐶) of 𝐶 is defined to be the 𝐹 -vector space ⨁(𝑦,𝑥)∈𝐶0×𝐶0

𝐶(𝑥, 𝑦) of matrices 
with (𝑦, 𝑥)-entries in 𝐶(𝑥, 𝑦) together with the usual matrix multiplication. Then 
the category of (finite-dimensional) left Mat(𝐶)-modules is equivalent to the 
category of left 𝐶-modules.
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(𝜙𝑓 )(𝑥) ∶=
∑
𝑥≤𝑦

𝜙([𝑥, 𝑦])𝑓 (𝑦).

It can be checked that 𝐹𝑃 is a left 𝐼(𝑃 )-module with this left action. For 
example, the computation

(𝜓(𝜙𝑓 ))(𝑥) =
∑
𝑥≤𝑦

𝜓([𝑥, 𝑦])(𝜙𝑓 )(𝑦)

=
∑
𝑥≤𝑦

𝜓([𝑥, 𝑦])

(∑
𝑦≤𝑧

𝜙([𝑦, 𝑧])𝑓 (𝑧)

)
=
∑
𝑥≤𝑦≤𝑧

(𝜓([𝑥, 𝑦])𝜙([𝑦, 𝑧]))𝑓 (𝑧)

=
∑
𝑥≤𝑧

( ∑
𝑥≤𝑦≤𝑧

𝜓([𝑥, 𝑦])𝜙([𝑦, 𝑧])

)
𝑓 (𝑧)

=
∑
𝑥≤𝑧

(𝜓 ∗ 𝜙)([𝑥, 𝑧])𝑓 (𝑧)

= [(𝜓 ∗ 𝜙)𝑓 ](𝑥),

valid for all 𝑓 ∈ 𝐹𝑃 , 𝜙, 𝜓 ∈ 𝐼(𝑃 ), and 𝑥 ∈ 𝑃 , shows that this action is 
compatible with the multiplication (convolution) in 𝐼(𝑃 ).

Remark 2.15. Again for readers more familiar with quiver representa-
tion theory, we make the following comment. Consider the case that 
𝑃 is a finite poset and its Hasse quiver is connected. By the equiva-
lence of categories explained in Remark 2.13(2), the left 𝐼(𝑃 )-module 
𝐹𝑃 defined above corresponds to the interval representation 𝑉𝑃 op of the 
bound quiver (𝐻(𝑃 op), 𝑅(𝑃 op)). This point of view may be useful for 
understanding Equation (5.1) and the surrounding discussion.

3. Local lattice of intervals

In this section, we study the set of isomorphism classes of interval 
representations for a fixed equioriented commutative 2D grid �⃗�𝑚,𝑛. Note 
that an interval representation is uniquely defined (up to isomorphism) 
by its support, and thus it suffices to consider the set of interval sub-
quivers 𝕀𝑚,𝑛. We also recall that with �⃗�𝑚,𝑛 fixed, an interval subquiver 
𝐼 is completely determined by its set of vertices 𝐼0, and we identify 𝐼
with its set of vertices 𝐼0 where this does not cause any confusion.

First, we start with the following easy observation.

Proposition 3.1. With the order ≤ on 𝕀𝑚,𝑛 defined by 𝐼 ≤ 𝐼 ′ ⟺ 𝐼 ⊆ 𝐼 ′, 
(𝕀𝑚,𝑛, ≤) is a poset.

Proof. This is immediate from the definitions. □

By Proposition 4.1 in [1], each element 𝐼 of 𝕀𝑚,𝑛 has a “staircase” 
form, which was denoted by:

𝐼 =
𝑡⨆
𝑖=𝑠

[𝑏𝑖, 𝑑𝑖]𝑖

for some integers 1 ≤ 𝑠 ≤ 𝑡 ≤𝑚 and some integers 1 ≤ 𝑏𝑖 ≤ 𝑑𝑖 ≤ 𝑛 for each 
𝑠 ≤ 𝑖 ≤ 𝑡 such that

𝑏𝑖+1 ≤ 𝑏𝑖 ≤ 𝑑𝑖+1 ≤ 𝑑𝑖 for all 𝑖 ∈ {𝑠,… , 𝑡− 1}. (3.1)

In this notation, each [𝑏𝑖, 𝑑𝑖]𝑖 is the “slice” of the staircase at height 
𝑖. For example, the interval 𝐼 = [5, 6]1 ⊔ [3, 5]2 ⊔ [3, 4]3 ⊔ [2, 4]4 of �⃗�4,6
can be visualized by the dimension vector of its corresponding interval 
representation:

⎛⎜⎜⎝
0 1 1 1 0 0
0 0 1 1 0 0
0 0 1 1 1 0
0 0 0 0 1 1

⎞⎟⎟⎠ . (3.2)

In general, the interval 𝐼 =⨆𝑡
𝑖=𝑠[𝑏𝑖, 𝑑𝑖]𝑖 means that 𝐼 has vertices

𝐼0 = {(𝑖, 𝑥) ∣ 𝑠 ≤ 𝑖 ≤ 𝑡, 𝑏𝑖 ≤ 𝑥 ≤ 𝑑𝑖}.
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As above, we abuse the notation and use the corresponding dimension 
vector to denote the interval 𝐼 .

Proposition 3.2. Let 𝐼 ∈ 𝕀𝑚,𝑛 and 𝐽 ∈ Cov(𝐼). Then, the number of vertices 
of 𝐽 is one more than that of 𝐼 .

Sketch of Proof. Suppose that 𝐼 ⊊ 𝐽 . We show that there exists a point 
𝑝 ∈ 𝐽0 ⧵𝐼0 that can be added to 𝐼 to obtain an interval 𝐼 ′ with 𝐼 ⊊ 𝐼 ′ ⊆ 𝐽 . 
The result immediately follows from this, since if 𝐽 ∈ Cov(𝐼), then 𝐽 = 𝐼 ′
by definition. That is, 𝐽 has one more vertex compared to 𝐼 .

Let

𝐼 =
𝑡⨆
𝑖=𝑠

[𝑏𝑖, 𝑑𝑖]𝑖 and 𝐽 =
𝑣⨆
𝑗=𝑢

[𝑐𝑗 , 𝑒𝑗 ]𝑗 .

Since 𝐼 ⊊ 𝐽 , it follows that 𝑢 ≤ 𝑠 ≤ 𝑡 ≤ 𝑣 and 𝑐𝑘 ≤ 𝑏𝑘 ≤ 𝑑𝑘 ≤ 𝑒𝑘 for each 
𝑘 ∈ [𝑠, 𝑡], in addition to the requirements for 𝐼 and 𝐽 to be intervals. We 
give below the point 𝑝 ∈ 𝐽0 ⧵ 𝐼0 that can be added to 𝐼 to obtain the 
interval 𝐼 ′.

∙ In case that 1 ≤ 𝑢 < 𝑠,

∙ if 𝑐𝑠−1 ≤ 𝑑𝑠, then choose the point 𝑝 = (𝑠 − 1, 𝑑𝑠);
∙ otherwise, if 𝑐𝑠−1 > 𝑑𝑠, choose 𝑝 = (𝑠, 𝑑𝑠 + 1).

∙ The case 𝑡 < 𝑣 ≤𝑚 is dual to the previous case.

∙ If 𝑏𝑡 ≤ 𝑒𝑡+1 choose 𝑝 = (𝑡 + 1, 𝑏𝑡);
∙ otherwise, 𝑝 = (𝑡, 𝑏𝑡 − 1) works.

∙ Otherwise, we have 𝑢 = 𝑠 ≤ 𝑡 = 𝑣. In this case, we define

𝐿 = {𝑘∈ [𝑠, 𝑡] ∣ (𝑘, 𝑏𝑘 − 1) ∈ 𝐽0} and 𝑅 = {𝑘 ∈ [𝑠, 𝑡] ∣ (𝑘,𝑑𝑘 + 1) ∈ 𝐽0}.

These are the row indices where a point to the left (and right, re-
spectively) of 𝐼 is in 𝐽 . Since 𝐼 ≠ 𝐽 , it is clear that at least one of 𝐿
and 𝑅 is nonempty.

∙ If 𝐿 ≠ ∅, choose the point 𝑝 = (max𝐿, 𝑏max𝐿 − 1).
∙ If 𝑅 ≠ ∅, choose the point 𝑝 = (min𝑅, 𝑑min𝑅 + 1).

For each of the cases above (which exhausts all possibilities), a routine 
check using the definitions shows that the chosen point 𝑝 can be added 
to 𝐼 to obtain an interval 𝐼 ′. This completes the proof. □

The above result implies that 𝕀𝑚,𝑛 is a graded poset with rank func-
tion 𝜌 ∶ 𝕀𝑚,𝑛 →ℕ given by 𝜌(𝐼) = #𝐼0, the number of vertices of 𝐼 .

Example 3.3. For any 𝑛 ∈ ℕ and any interval 𝐼 = [𝑏1, 𝑑1]1 ⊔ [𝑏2, 𝑑2]2 ∈
𝕀2,𝑛, # Cov(𝐼) ≤ 4. Indeed, any cover of 𝐼 takes on one of the following 
forms:

[𝑏1 − 1, 𝑑1]1 ⊔ [𝑏2, 𝑑2]2,
[𝑏1, 𝑑1 + 1]1 ⊔ [𝑏2, 𝑑2]2,
[𝑏1, 𝑑1]1 ⊔ [𝑏2 − 1, 𝑑2]2, or
[𝑏1, 𝑑1]1 ⊔ [𝑏2, 𝑑2 + 1]2.

In general, we have the following, which follows immediately from 
Proposition 3.2 and the characterization of interval subquivers of �⃗�𝑚,𝑛
as staircases.

Proposition 3.4. Let 𝐼 ∈ 𝕀𝑚,𝑛. Then, Cov(𝐼) = ℭ ∩ 𝕀𝑚,𝑛 where ℭ is the set 
of subquivers of �⃗�𝑚,𝑛 obtained from 𝐼 by one of the following operations (if 
the result is a subquiver):

(1) extending one row of 𝐼 by one adjacent vertex left of the row,

(2) extending one row of 𝐼 by one adjacent vertex right of the row,
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(3) adding one vertex above the upper-left vertex of 𝐼 , or

(4) adding one vertex below the lower-right vertex of 𝐼 .

Let us express the above using the notation of

𝐼 =
𝑡⨆
𝑖=𝑠

[𝑏𝑖, 𝑑𝑖]𝑖

for some integers 1 ≤ 𝑠 ≤ 𝑡 ≤ 𝑚 and some integers 1 ≤ 𝑏𝑖 ≤ 𝑑𝑖 ≤ 𝑛 for 
each 𝑠 ≤ 𝑖 ≤ 𝑡 such that 𝑏𝑖+1 ≤ 𝑏𝑖 ≤ 𝑑𝑖+1 ≤ 𝑑𝑖 for any 𝑖 ∈ {𝑠, … , 𝑡 − 1}. 
Then Cov(𝐼) is the set of valid interval subquivers in the following set of 
candidates ℭ:

∙ for 𝑗 ∈ {𝑠, … , 𝑡},

𝑡⨆
𝑖=𝑠

[𝑏′𝑖 , 𝑑𝑖]𝑖, where 𝑏′𝑖 =

{
𝑏𝑖 − 1 if 𝑖 = 𝑗,
𝑏𝑖 otherwise,

∙ for 𝑗 ∈ {𝑠, … , 𝑡},

𝑡⨆
𝑖=𝑠

[𝑏𝑖, 𝑑′𝑖 ]𝑖, where 𝑑′𝑖 =

{
𝑑𝑖 + 1 if 𝑖 = 𝑗,
𝑑𝑖 otherwise,

∙
𝑡⨆
𝑖=𝑠

[𝑏𝑖, 𝑑𝑖]𝑖 ⊔ [𝑏𝑡, 𝑏𝑡]𝑡+1,

∙ [𝑑𝑠, 𝑑𝑠]𝑠−1 ⊔
𝑡⨆
𝑖=𝑠

[𝑏𝑖, 𝑑𝑖]𝑖.

Note that some candidates may exceed the bounds of the commutative 
grid. Those candidates are immediately disqualified.

Example 3.5. We provide an example using the interval 𝐼 (filled-in 
circles):

◦ ◦ ◦ ◦ ◦ ◦

◦ ∙ ∙ ∙ ◦ ◦

◦ ◦ ∙ ∙ ◦ ◦

◦ ◦ ∙ ∙ ∙ ◦

◦ ◦ ◦ ◦ ∙ ∙

in the commutative grid �⃗�5,6. We illustrate the vertices in Proposi-
tion 3.4.

∙ Vertices 𝑣 with 𝐼0 ∪ {𝑣} = 𝐶0 for some 𝐶 ∈ Cov𝐼 are denoted with 
green check marks. These give all the cover elements 𝐶 .

∙ The remaining vertices 𝑣 do not form cover elements. That is, there 
is no interval 𝐶 with 𝐶0 = 𝐼0 ∪ {𝑣}. These are denoted with red 
crosses. Note that two of them go out of bounds.

◦ ✓ ◦ ◦ ◦ ◦

✓ ∙ ∙ ∙ ✗ ◦

◦ ✓ ∙ ∙ ✓ ◦

◦ ✗ ∙ ∙ ∙ ✓

◦ ◦ ◦ ✓ ∙ ∙ ✗

✗

Repeating the point above, each 𝐶 ∈ Cov(𝐼) is the unique interval sub-
quiver 𝐶 with 𝐼0 ∪ {𝑣} = 𝐶0 for some vertex 𝑣 given by the green check 
marks.

Proposition 3.6. The poset 𝕀𝑚,𝑛 is a local lattice.
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Proof. Let 𝐼, 𝐽 be intervals of 𝕀𝑚,𝑛 with 𝐼 ≤ 𝐽 . We show that the seg-
ment [𝐼, 𝐽 ] is a lattice.

Let 𝐽1, 𝐽2 ∈ [𝐼, 𝐽 ]. Then, by Lemma 2.5, the intersection 𝐽1 ∩ 𝐽2 is 

given by the disjoint union of some intervals 𝐶𝑖: 
𝑙⨆
𝑖=1
𝐶𝑖. In this setting, 

there exists a unique 𝑗 such that 𝐶𝑗 contains 𝐼 . Then the meet 𝐽1 ∧ 𝐽2
of 𝐽1 and 𝐽2 in the segment [𝐼, 𝐽 ] is exactly the interval 𝐶𝑗 . Proposi-
tion 2.11 implies that the segment [𝐼, 𝐽 ] is a lattice. □

Note that in the above argument, the interval 𝐽 did not play any 
role in determining the meet in [𝐼, 𝐽 ]. We could have replaced 𝐽 by 
the maximum element 𝑀 in 𝕀𝑚,𝑛, which is the entire quiver of �⃗�𝑚,𝑛. 
That is, the meet of 𝐽1, 𝐽2 in [𝐼, 𝐽 ] is the same as the meet of 𝐽1, 𝐽2 in 
[𝐼, 𝑀] =𝑈 (𝐼). Thus, we also call the meet of 𝐽1, 𝐽2 in [𝐼, 𝐽 ] as the meet 
of 𝐽1, 𝐽2 over 𝐼 .

On the other hand, the join 𝐽1 ∨ 𝐽2 in [𝐼, 𝐽 ] is the minimum interval 
containing 𝐽1 ∪ 𝐽2 by definition. Clearly, 𝐽1 ∪ 𝐽2 ⊂ 𝐽 ⊂ 𝑀 , and so the 
join of 𝐽1, 𝐽2 in [𝐼, 𝐽 ] is the same as the join of 𝐽1, 𝐽2 in [𝐼, 𝑀] = 𝑈 (𝐼). 
Thus, we also call the join of 𝐽1, 𝐽2 in [𝐼, 𝐽 ] as the join of 𝐽1, 𝐽2 over 𝐼 .

Example 3.7. Let 𝐼 =
(
0 1 0
0 0 0

)
be an interval of 𝕀2,3. The intervals 𝐽 =(

0 1 1
0 0 0

)
, 𝐽 ′ =

(
0 1 0
0 1 0

)
in 𝑈 (𝐼) have join 𝐽 ∨ 𝐽 ′ =

(
0 1 1
0 1 1

)
over 𝐼 .

While we have seen in Proposition 3.6 that 𝕀𝑚,𝑛 is a local lattice, it 
is not a lattice as a whole (Example 3.8), nor is it locally distributive 
(Example 3.9).

Example 3.8. In general, the meet and join are ill-defined. For example, 
let 𝐽 =

(
1 0 0
0 0 0

)
and 𝐽 ′ =

(
0 0 0
0 0 1

)
be intervals in 𝕀2,3. We note that 𝐽 ∩

𝐽 ′ = ∅, so that there is no 𝐼 ∈ 𝕀𝑚,𝑛 with 𝐽 , 𝐽 ′ ∈ 𝑈 (𝐼). Then, 𝑋1 =
(
1 1 1
0 0 1

)
and 𝑋2 =

(
1 0 0
1 1 1

)
are both minimal among intervals containing both 𝐽

and 𝐽 ′. Thus, 𝐽 ∨ 𝐽 ′, which is supposed to be the minimum interval 
containing 𝐽 ∪ 𝐽 ′, is not well-defined. The poset 𝕀𝑚,𝑛 is not a lattice, in 
general.

Example 3.9. In general, the local lattice 𝕀𝑚,𝑛 is not locally distributive. 
Indeed, let 𝐼 =

(
0 1 0 0
0 0 0 0

)
and 𝐽 =

(
1 1 1 1
1 1 1 1

)
be intervals of 𝕀2,4. Moreover, 

let 𝐼1 =
(
1 1 0 0
1 1 1 0

)
, 𝐼2 =

(
0 1 0 0
0 1 1 1

)
, and 𝐼3 =

(
0 1 1 1
0 0 0 1

)
be intervals of the 

segment [𝐼, 𝐽 ]. Then we compute 𝐼1 ∨ (𝐼2 ∧ 𝐼3) = 𝐼1 and (𝐼1 ∨ 𝐼2) ∧ (𝐼1 ∨
𝐼3) =

(
1 1 0 0
1 1 1 1

)
≠ 𝐼1.

4. Compression and compressed multiplicities

In this section, we present the underlying mechanism for “replacing” 
(in Section 5) a persistence module by a related interval-decomposable 
object. Here, we define compression functors based on certain essential 
vertices. These compression functors then lead to what we call com-
pressed multiplicities. We show that the well-known dimension vector 
and rank invariant are in fact special cases of compressed multiplicities. 
Furthermore, we show that for interval-decomposable representations, 
the true multiplicity information can be recovered from the compressed 
multiplicities.

4.1. Essential vertices

First, we define two types of “essential vertices”.
Recall that a vertex 𝑥 is said to be a source if there are no arrows 𝛼

with target 𝑡(𝛼) = 𝑥, and is said to be a sink if there are no arrows 𝛼 with 
source 𝑠(𝛼) = 𝑥.
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Definition 4.1 (Source-sink-essential vertices). Let 𝐼 be an interval sub-
quiver of �⃗�𝑚,𝑛. A vertex 𝑥 ∈ 𝐼0 is said to be source-sink-essential (ss-
essential) if 𝑥 is a source or a sink in 𝐼 .

The set of ss-essential vertices of 𝐼 will be denoted by 𝐼 ss
0 .

Example 4.2. In the following interval subquiver 𝐼 in �⃗�6,4:

𝐼 =

⊛

∙ ∙ ⊛

⊛ ∙ ∙ ∙ ⊛

⊛ ∙ ∙ ∙ ⊛,

the vertices denoted by ⊛ are ss-essential vertices of 𝐼 .

Lemma 4.3. Let 𝐼, 𝐽 be intervals of 𝕀𝑚,𝑛. Assume that 𝐼 ss
0 ⊆ 𝐽0. Then we 

have 𝐼 ≤ 𝐽 .

Proof. Let 𝑥 ∈ 𝐼0. Then, there is a source 𝑦, a sink 𝑧, and a path 𝜇 in 𝐼
from 𝑦 to 𝑧 such that 𝜇 passes through 𝑥. Since 𝑦, 𝑧 ∈ 𝐼 ss

0 ⊆ 𝐽0 and 𝐽 is 
convex, we have 𝑥 ∈ 𝐽0, as desired. □

Definition 4.4 (Corner-complete-essential vertices). Let 𝐼 be an interval 
subquiver of �⃗�𝑚,𝑛. We set 𝐼cc0 ∶= (pr1 𝐼 ss

0 × pr2 𝐼 ss
0 ) ∩ 𝐼0, where pr𝑖 ∶ ℤ ×

ℤ →ℤ is the projection map to the 𝑖-th coordinate. Elements of 𝐼cc0 are 
said to be corner-complete-essential (cc-essential), and the full subquiver 
of �⃗�𝑚,𝑛 given by this set is denoted by 𝐼cc.

Example 4.5. For the interval subquiver 𝐼 used in Example 4.2:

𝐼 =

⊛

⊛ ⊛ ⊛

⊛ ⊛ ⊛ ∙ ⊛

⊛ ⊛ ∙ ⊛ ⊛

the vertices denoted by ⊛ are cc-essential vertices of 𝐼 .

Lemma 4.6. Let 𝐼, 𝐽 be intervals of 𝕀𝑚,𝑛. Assume that 𝐼cc
0 ⊆ 𝐽0. Then we 

have 𝐼 ≤ 𝐽 .

Proof. Since 𝐼 ss
0 ⊆ 𝐼

cc
0 ⊆ 𝐽0, we have 𝐼 ≤ 𝐽 by Lemma 4.3. □

4.2. Compression

In this subsection, we treat both types of essential vertices in parallel 
to define two types of compression of representations of the equiori-
ented 2D commutative grid �⃗�𝑚,𝑛 = (𝑄, 𝑅). In the previous subsection, 
we defined the sets of essential vertices 𝐼 ss

0 and 𝐼cc
0 . We consider the 

full subcategories of 𝐾�⃗�𝑚,𝑛 =𝐾(𝑄, 𝑅) =𝐾𝑄∕⟨𝑅⟩ they induce.

Definition 4.7 (ss-compressed category and cc-compressed category). Let 
𝐼 be an interval subquiver of �⃗�𝑚,𝑛 and 𝐸 be the set of all ss-essential 
vertices (or cc-essential vertices, respectively) of 𝐼 . The ss-compressed 
category 𝐼 ss (resp. cc-compressed category 𝐼cc) of 𝐼 is the full subcategory 
of 𝐾�⃗�𝑚,𝑛 with set of objects 𝐸.

For completeness, we also introduce the following concept, where 
we take all vertices of 𝐼 to be essential. We use the designation “tot” to 
stand for “total”, since all vertices are considered essential in 𝐼 tot.

Definition 4.8 (compressed category). The compressed category 𝐼 tot is the 
full subcategory of 𝐾�⃗�𝑚,𝑛 consisting of all vertices of 𝐼 .
9

Remark 4.9. For an interval 𝐼 , we distinguish the following similar but 
different notions related to 𝐼 : 𝐼 itself as a full subquiver of �⃗�𝑚,𝑛, 𝑉𝐼 the 
representation of 𝐾�⃗�𝑚,𝑛 with support 𝐼 , and 𝐼 tot as the full subcategory 
of 𝐾�⃗�𝑚,𝑛 with objects the vertices of 𝐼 .

We note that the bound quiver of 𝐼 tot is (𝐼, 𝑅𝐼 ) with the set of 
full commutativity relations 𝑅𝐼 . The ss-compressed category or cc-
compressed category can also be expressed as a bound quiver, and we 
identify rep(𝑄∗

𝐼
, 𝑅∗

𝐼
) ≅ rep𝐼∗, where (𝑄∗

𝐼
, 𝑅∗

𝐼
) is the bound quiver of the 

compressed category 𝐼∗ for ∗= ss, cc, tot.
Throughout the rest of this work, we shall use the symbol ‘∗’ to stand 

for either ‘ss’, ‘cc’ or ‘tot’ for statements that apply to all three cases as 
long as it does not cause any confusion.

Example 4.10. For the interval subquiver 𝐼 in Example 4.2, the com-
pressed categories (displayed as bound quivers) are the following:

𝐼 ss ∶

⊛

⊛

⊛ ⊛

⊛ ⊛

and

𝐼cc ∶

⊛

⊛ ⊛ ⊛

⊛ ⊛ ⊛ ⊛

⊛ ⊛ ⊛ ⊛

while

𝐼 tot ∶

⊛

⊛ ⊛ ⊛

⊛ ⊛ ⊛ ⊛ ⊛

⊛ ⊛ ⊛ ⊛ ⊛

.

Definition 4.11 (Compression functor). Let 𝐼 be an interval subquiver 
of �⃗�𝑚,𝑛 and let 𝜄ss

𝐼
∶ 𝐼 ss ↪ 𝐾�⃗�𝑚,𝑛 (or 𝜄cc

𝐼
∶ 𝐼cc ↪ 𝐾�⃗�𝑚,𝑛, or 𝜄tot

𝐼
∶ 𝐼 tot ↪

𝐾�⃗�𝑚,𝑛, respectively) be the inclusion functor into the equioriented 2D 
commutative grid.

The ss-compression functor Compss
𝐼 (−) ∶ rep𝐾�⃗�𝑚,𝑛 → rep𝐼 ss (the cc-

compression functor Compcc
𝐼 (−) or the tot-compression functor Comptot

𝐼 (−), 
respectively) is defined by Compss

𝐼 (𝑀) =𝑀◦𝜄ss
𝐼

(Compcc
𝐼 (𝑀) =𝑀◦𝜄cc

𝐼
or 

Comptot
𝐼 (𝑀) =𝑀◦𝜄tot

𝐼
, respectively). That is,

Comp∗𝐼 (𝑀) =𝑀◦𝜄∗𝐼

for ∗= ss, cc, tot.
Note that these functors are exactly the restriction functors.

It is clear that the ss-compression, cc-compression, and tot-compres-
sion functors are additive by definition. To simplify the notation, we let 
Comp∗𝐼 (−) stand for Compss

𝐼 (−), Compcc
𝐼 (−), or Comptot

𝐼 (−) for statements 
that hold for all three versions of compression.

Given 𝑀 ∈ rep �⃗�𝑚,𝑛, the compressed representation Comp∗𝐼 (𝑀) is a 
representation of 𝐼∗. Similary, the interval representation 𝑉𝐼 associ-
ated to the interval 𝐼 has a compressed representation Comp∗𝐼 (𝑉𝐼 ). For 
example, the interval 𝐼 in Example 4.2 is associated to the interval rep-
resentation
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𝑉𝐼 ∶

𝐾 0 0 0 0 0

𝐾 𝐾 𝐾 0 0 0

𝐾 𝐾 𝐾 𝐾 𝐾 0

0 𝐾 𝐾 𝐾 𝐾 𝐾

1
1

1

1
1

1
1

1
1

1

1
1

1
1 1

1
1

1

which has ss-compressed representation (a representation of 𝐼 ss):

Comp𝑠𝑠𝐼 (𝑉𝐼 ) ∶

𝐾

𝐾

𝐾 𝐾

𝐾 𝐾.

1

1
1

1
11

While the compressed representation Comp∗𝐼 (𝑀) may be interesting 
in its own right, in the next definition we only consider the multiplicity 
of Comp∗𝐼 (𝑉𝐼 ) in Comp∗𝐼 (𝑀).

Definition 4.12 (Compressed multiplicities). Let 𝑀 be a representation 
of �⃗�𝑚,𝑛 and 𝐼 ∈ 𝕀𝑚,𝑛. Define the source-sink (ss)-compressed multiplicity 
of 𝐼 in 𝑀 as

𝑑ss
𝑀
(𝐼) ∶= 𝑑Compss

𝐼
(𝑀)(Compss

𝐼 (𝑉𝐼 )).

While not the main focus of this paper, for completeness we also define 
the corner-complete (cc) and total (tot) compressed multiplicities of 𝐼
in 𝑀

𝑑cc
𝑀
(𝐼) ∶= 𝑑Compcc

𝐼
(𝑀)(Compcc

𝐼 (𝑉𝐼 )),

and

𝑑tot
𝑀
(𝐼) ∶= 𝑑Comptot

𝐼
(𝑀)(Comptot

𝐼 (𝑉𝐼 )).

In the above, 𝑑?(−) is the usual multiplicity function obtained from The-
orem 2.2.

One motivation for the above definitions is that we want to compute 
the multiplicity of an interval module 𝑉𝐼 as a direct summand of 𝑀 . 
However, as this may not be straightforward, we instead compute the 
multiplicity with respect to compressed versions of 𝑀 and 𝐼 . The rest of 
this section is devoted to exploring the consequences of this approach.

Remark 4.13. Let rk(𝑀) ∶ 𝐂𝐨𝐧(𝑃 ) →  () be the generalized rank in-
variant as defined in [28], applied to the setting we consider. That is, 𝑃
is the poset corresponding to the 𝑚 × 𝑛 commutative grid, and the tar-
get set is  () =  (vect𝐾 ), the set of isomorphism classes of 𝐾-vector 
spaces. By definition 𝐂𝐨𝐧(𝑃 ) is the set of path-connected subposets of 
𝑃 , which contains the set of intervals. See [28] for more detailed defi-
nitions. We note that for 𝐼 ∈ 𝕀𝑚,𝑛, the equality

𝑑tot
𝑀
(𝐼) = dim rk(𝑀)(𝐼)

holds. This follows immediately from Lemma 3.1 of [15] applied to 
Comptot

𝐼 (𝑀). That is, for intervals 𝐼 , the tot-compressed multiplicity co-
incides with the generalized rank invariant of [28].

As the next example shows, the values of 𝑑ss
𝑀
(𝐼) and 𝑑tot

𝑀
(𝐼) =

dim rk(𝑀)(𝐼) can be different in general.

Example 4.14. Let 𝑀 be the representation of �⃗�2,3 given by

𝐾 𝐾2 𝐾

0 𝐾 𝐾

[
1
1
]

[ 0 1 ]

1

[
0
1
]

1

For the interval
10
𝐼 ∶
∙ ∙ ∙

∙ ∙
it can be computed that 𝑑ss

𝑀
(𝐼) = 1 while 𝑑tot

𝑀
(𝐼) = 0.

Remark 4.15. If we allow to change the form of the “input” to the 
function dim rk(𝑀)(-) and broaden its domain of definition, the equal-
ity 𝑑ss

𝑀
(𝐼) = dim rk(𝑀)(Source(𝐼) ∪ Sink(𝐼)) holds by the same reasoning 

as the previous remark. Note that in general, Source(𝐼) ∪ Sink(𝐼) is not 
necessarily a path-connected subposet ([28, Definition 2.16]), and thus 
the original definition of the generalized rank invariant cannot be used. 
That is, the values of the source-sink compressed multiplicity can be 
expressed as some value of the generalized rank invariant suitably gen-
eralized.

4.3. Rank invariant and dimension vector as compression

In this subsection, we show that the compressed multiplicity gener-
alizes the rank invariant [17], a well-known invariant for 2D persistence 
modules.

Recall that the rank invariant is the function assigning to each pair 
𝑠, 𝑡 ∈ �⃗�𝑚,𝑛 with a path from 𝑠 to 𝑡, the value

rank(𝑀(𝑠→ 𝑡))

where 𝑀(𝑠 → 𝑡) ∶𝑀(𝑠) →𝑀(𝑡) is the linear map associated by 𝑀 to a 
path from 𝑠 to 𝑡. Note that this is well-defined due to the commutativity 
relations imposed on 𝑀 .

An interval 𝑅 =⨆𝑦
𝑖=𝑥[𝑏𝑖, 𝑑𝑖]𝑖 ∈ 𝕀𝑚,𝑛 is said to be a rectangle if there 

exist 𝑏, 𝑑 (1 ≤ 𝑏 ≤ 𝑑 ≤ 𝑛) such that 𝑏𝑖 = 𝑏 and 𝑑𝑖 = 𝑑 for any 𝑖 = 𝑥, ⋯ , 𝑦. 
That is, 𝑅 =⨆𝑦

𝑖=𝑥[𝑏, 𝑑]𝑖. The set of rectangles in 𝕀𝑚,𝑛 is denoted by 𝑅𝑚,𝑛. 
It is immediate that any rectangle 𝑅 has a unique source 𝑠 and a unique 
sink 𝑡. Below is an example of a rectangle together with its source and 
sink.

𝑅 ∶

∙ ∙ ∙ ∙ ∙ ⊛

∙ ∙ ∙ ∙ ∙ ∙

∙ ∙ ∙ ∙ ∙ ∙

⊛ ∙ ∙ ∙ ∙ ∙
s

t

We comment that if �⃗�𝑚,𝑛 is viewed as a subposet of ℤ × ℤ with 
coordinate-wise ≤, the rectangle 𝑅 is in fact the segment 𝑅 = [𝑠, 𝑡] in 
the poset ℤ ×ℤ. In this work, we do not directly use this point of view 
since we defined �⃗�𝑚,𝑛 as a bound quiver and not as a poset.

Conversely, given any pair 𝑠, 𝑡 ∈ �⃗�𝑚,𝑛 with a path from 𝑠 to 𝑡 (as 
in the definition of the rank invariant), there is a unique rectangle 𝑅
with source 𝑠 and sink 𝑡. Thus, the rank invariant can be equivalently 
defined as the function assigning to each rectangle 𝑅 in 𝕀𝑚,𝑛 the value 
rank(𝑀(𝑠 → 𝑡)), where 𝑠 is the unique source of 𝑅 and 𝑡 the unique sink.

Let 𝑅 be a rectangle with source 𝑠 and sink 𝑡. Let us compute the 
values of the compressed multiplicities at 𝑅.

∙ The ss-compressed category of 𝑅 is: 𝑅ss ∶ 𝑠 𝑡, so that Compss
𝑅 (𝑀)

is 𝑀(𝑠) 𝑀(𝑡)𝑀(𝑠→𝑡)
. Note that a linear map 𝑓 ∶ 𝑉 → 𝑊 between 

finite-dimensional vector spaces is equivalent to the direct sum 
(𝐾 → 0)dimker 𝑓 ⊕ (𝐾

1
←←←←←←→𝐾)rank 𝑓 ⊕ (0 →𝐾)dimcoker 𝑓 . Then we compute

𝑑ss
𝑀
(𝑅) = 𝑑(

Compss
𝑅
(𝑀)

)(Compss
𝑅 (𝑉𝑅))

= 𝑑(
𝑀(𝑠) 𝑀(𝑡)𝑀(𝑠→𝑡)

)(𝐾 𝐾
1 )

= rank(𝑀(𝑠→ 𝑡)).

∙ Next, let us show that 𝑑tot
𝑀
(𝑅) = rank(𝑀(𝑠 → 𝑡)). Note that via the 

equality with the generalized rank invariant (Remark 4.13), this is 
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already known (see for example, [28, Example 3.6(iii)]), but for 
completeness we provide a proof. For simplicity, put here 𝑀 ′ ∶=
Comptot

𝑅 (𝑀). Then 𝑀 ′ is the representation of 𝑅tot = 𝑅 obtained 
by restricting 𝑀 to the rectangle 𝑅. Furthermore, Comptot

𝑅 (𝑉𝑅) is 
isomorphic to both the injective indecomposable representation 𝐼(𝑡)
of 𝑅 and to the projective indecomposable representation 𝑃 (𝑠) of 
𝑅 corresponding to the vertex 𝑠. By applying [4, Theorem 3] to 
Comptot

𝑅 (𝑉𝑅) ≅ 𝐼(𝑡), we have

𝑑tot
𝑀
(𝑅) = 𝑑𝑀 ′ (𝐼(𝑡))

= dimHom𝑅(𝐼(𝑡),𝑀 ′) − dimHom𝑅(𝐼(𝑡)∕ soc𝐼(𝑡),𝑀 ′),
(4.1)

where soc𝐼(𝑡) is the socle of 𝐼(𝑡), which is the sum of all simple 
submodules of 𝐼(𝑡) by definition.
Here, the first term is given by

dimHom𝑅(𝐼(𝑡),𝑀 ′) = dimHom𝑅(𝑃 (𝑠),𝑀 ′) = dim𝑀 ′(𝑠) = dim𝑀(𝑠).

For the second term, consider the canonical short exact sequence

0→ soc𝐼(𝑡)
𝜇
←←←←←←←→ 𝐼(𝑡)

𝜀
←←←←←←→ 𝐼(𝑡)∕ soc𝐼(𝑡)→ 0

in the category of representations of 𝑅. By applying the (contravari-
ant left-exact) functor Hom𝑅(−, 𝑀 ′) to this sequence, we have the 
first isomorphism in the following calculation:

Hom𝑅(𝐼(𝑡)∕ soc𝐼(𝑡),𝑀 ′) ≅ ker Hom𝑅(𝜇,𝑀 ′)

= {𝑓 ∈Hom𝑅(𝐼(𝑡),𝑀 ′) ∣ 𝑓𝜇 = 0}

= {𝑓 ∈Hom𝑅(𝐼(𝑡),𝑀 ′) ∣ 𝑓 (soc𝐼(𝑡)) = 0}
(a)
= {𝑓 ∈Hom𝑅(𝑃 (𝑠),𝑀 ′) ∣ 𝑓 (𝑝𝑡,𝑠) = 0}
(b)
≅ {𝑚 ∈𝑀 ′(𝑠) ∣𝑀 ′(𝑝𝑡,𝑠)(𝑚) = 0}

= ker𝑀 ′(𝑝𝑡,𝑠),

where 𝑝𝑡,𝑠 is the morphism of 𝑅 given by the path 𝑠 → 𝑡, the equality 
(a) follows from soc𝐼(𝑡) = 𝐾𝑝𝑡,𝑠, and the isomorphism (b) follows 
from the canonical isomorphism Hom𝑅(𝑃 (𝑠), 𝑀 ′) ≅𝑀 ′(𝑠). Then,

dimker𝑀 ′(𝑝𝑡,𝑠) = dim𝑀 ′(𝑠) − dim Im𝑀 ′(𝑝𝑡,𝑠)

= dim𝑀 ′(𝑠) − rank𝑀 ′(𝑝𝑡,𝑠)

= dim𝑀(𝑠) − rank𝑀(𝑠→ 𝑡).

Therefore, we have

𝑑tot
𝑀
(𝑅) = 𝑑𝑀 ′ (𝐼(𝑡)) = dim𝑀(𝑠) − (dim𝑀(𝑠) − rank𝑀(𝑠→ 𝑡))

= rank𝑀(𝑠→ 𝑡)

as claimed.
∙ Finally, we show that 𝑑cc

𝑀
(𝑅) = rank(𝑀(𝑠 → 𝑡)). Since 𝑅 has source 𝑠

and sink 𝑡 together with its two other corners (say 𝑢 and 𝑤) as its 
cc-essential vertices, the cc-compressed category of 𝑅 is:

𝑅cc ∶
𝑢 𝑡

𝑠 𝑤

so that 𝑀 ′ ∶= Compcc
𝑅 (𝑀) is

𝑀(𝑢) 𝑀(𝑡)

𝑀(𝑠) 𝑀(𝑤)
.

Furthermore, Compcc
𝑅 (𝑉𝑅) is the injective indecomposable represen-

tation 𝐼(𝑡) associated to the vertex 𝑡:

𝐼(𝑡) =
𝐾 𝐾

1

1
1 1 .
𝐾 𝐾

11
The proof proceeds as in the total compressed multiplicity case, but 
this time computing over 𝑅cc instead of over 𝑅tot =𝑅. By [4, Theo-
rem 3 (see also Example 3)]

𝑑cc
𝑀
(𝑅) = 𝑑⎛⎜⎜⎜⎜⎝

𝑀(𝑢) 𝑀(𝑡)

𝑀(𝑠) 𝑀(𝑤)

⎞⎟⎟⎟⎟⎠
(
𝐾 𝐾

𝐾 𝐾

1

1
1 1 )

= dimHom𝑅cc (𝐼(𝑡),𝑀 ′) − dimHom𝑅cc (𝐼(𝑡)∕ soc𝐼(𝑡),𝑀 ′)
= dim𝑀(𝑠) − (dim𝑀(𝑠) − rank(𝑀(𝑠→ 𝑡)))
= rank(𝑀(𝑠→ 𝑡)).

The above considerations prove the following.

Proposition 4.16. Let 𝑀 be a representation of �⃗�𝑚,𝑛 and 𝑅 a rectangle. 
For ∗= ss, cc, tot, we have

𝑑∗
𝑀
(𝑅) = rank𝑀(𝑠→ 𝑡),

where 𝑠 is the unique source vertex of 𝑅 and 𝑡 is the unique sink vertex of 
𝑅.

In this sense, the compressed multiplicities 𝑑∗
𝑀
(−) are generaliza-

tions of the rank invariant. With our invariant we hope to capture finer 
information that cannot be detected by just the rank invariant.

Next, we give an example of representations with the same rank 
invariants but different compressed multiplicities for intervals that are 
not rectangles.

Example 4.17. Let 𝐼 =
∙ ∙

∙
be an interval of �⃗�2,2 =

∙ ∙

∙ ∙
. Note that 𝐼

is not a rectangle. We consider the following representations of �⃗�2,2:

𝑀 =
𝐾 𝐾2

0 𝐾

[
1
0
]

[
1
0
]
, 𝑁 =

𝐾 𝐾2

0 𝐾

[
1
0
]

[
0
1
]
.

Clearly, rank invariants of 𝑀 and 𝑁 coincide. However, we have 
𝑑ss
𝑀
(𝐼) = 1 ≠ 0 = 𝑑ss

𝑁
(𝐼).

We end this subsection with the following observation.

Proposition 4.18. Let 𝑀 be a representation of �⃗�𝑚,𝑛 and 𝑖 a vertex of 
�⃗�𝑚,𝑛. For ∗= ss, cc, tot, we have

𝑑∗
𝑀
({𝑖}) = dim𝑀(𝑖),

where {𝑖} is the interval subquiver consisting of only the vertex 𝑖.

Proof. A direct computation shows that

𝑑∗
𝑀
({𝑖}) = 𝑑Comp∗{𝑖}(𝑀)(Comp∗{𝑖}(𝑉{𝑖})) = 𝑑𝑀(𝑖)(𝐾) = dim𝑀(𝑖).

Alternatively, this follows immediately from Proposition 4.16 by con-
sidering the rectangle with 𝑠 = 𝑡 = 𝑖. □

Namely, the compressed multiplicities 𝑑∗
𝑀
(−) restricted to vertices 

coincide with the dimension vector of 𝑀 .

4.4. Compression and inversion

Next, we derive some basic properties of 𝑑∗
𝑀
(−), and end this section 

with Theorem 4.23, which states that for interval-decomposable repre-

sentations 𝑀 , we can recover the true multiplicity function 𝑑𝑀 using 
𝑑∗
𝑀
(−).
First, we start with some Lemmas that lead to a Key Lemma 4.21.
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Lemma 4.19. If a representation 𝑀 of �⃗�𝑚,𝑛 decomposes as 𝑀 =𝑀1⊕𝑀2, 
then

𝑑∗
𝑀
(𝐼) = 𝑑∗

𝑀1
(𝐼) + 𝑑∗

𝑀2
(𝐼)

for ∗= ss, cc, tot.

Proof. Since the compression functor Comp∗𝐼 (−) is additive, we have 
Comp∗𝐼 (𝑀) = Comp∗𝐼 (𝑀1) ⊕ Comp∗𝐼 (𝑀2). Then the statement follows by 
the Krull-Schmidt theorem. □

Lemma 4.20. Let 𝐼, 𝐽 be intervals of �⃗�𝑚,𝑛. Then

𝑑∗
𝑉𝐽
(𝐼) =

{
1 if 𝐽 ∈𝑈 (𝐼) (i.e. 𝐼 ≤ 𝐽 ),
0 otherwise.

for ∗= ss, cc, tot.

Proof. If 𝐼 ≤ 𝐽 , then Comp∗𝐼 (𝑉𝐽 ) = Comp∗𝐼 (𝑉𝐼 ), thus 𝑑∗
𝑉𝐽
(𝐼) = 1.

On the other hand, if 𝐼 ≰ 𝐽 , then there exists some 𝑖 ∈ 𝐼∗0 ⧵ 𝐽0 by 
Lemma 4.3 or Lemma 4.6 for ∗= ss, cc, respectively, and by the fact that 
𝐼 tot
0 = 𝐼0, for ∗= tot. Thus, 𝑖 ∈ supp(Comp∗𝐼 (𝑉𝐼 )) but 𝑖 ∉ supp(Comp∗𝐼 (𝑉𝐽 )). 

This means that Comp∗𝐼 (𝑉𝐽 ) does not have a direct summand isomorphic 
to Comp∗𝐼 (𝑉𝐼 ), showing that 𝑑∗

𝑉𝐽
(𝐼) = 0. □

Lemma 4.21 (Key Lemma). Let 𝑀 be an interval-decomposable represen-

tation of �⃗�𝑚,𝑛 and 𝐼 an interval in 𝕀𝑚,𝑛. Then

𝑑∗
𝑀
(𝐼) =

∑
𝐽∈𝑈 (𝐼)

𝑑𝑀 (𝑉𝐽 )

for ∗= ss, cc, tot.

Proof. Let 𝑀 ≅
⨁
𝐽∈𝕀𝑚,𝑛

𝑉
𝑑𝑀 (𝑉𝐽 )
𝐽

be an interval decomposition of a repre-

sentation 𝑀 of �⃗�𝑚,𝑛. Then

𝑑∗
𝑀
(𝐼) =

∑
𝐽∈𝕀𝑚,𝑛

𝑑𝑀 (𝑉𝐽 ) ⋅ 𝑑∗𝑉𝐽 (𝐼) =
∑

𝐽∈𝑈 (𝐼)
𝑑𝑀 (𝑉𝐽 )

by Lemmas 4.19 and 4.20. □

As a consequence, in the case that 𝑀 is interval-decomposable, 
𝑑∗
𝑀
(𝐼) does not depend on ∗.
Readers familiar with the Möbius theory for (locally-finite) posets 

[38] may recognize that Lemma 4.21 simply states that for interval-
decomposable representations, the function 𝑑∗

𝑀
(−) is equal to 𝑑𝑀 (−)

multiplied by the zeta function. Theorem 4.23 below can then be seen 
as an application of Möbius inversion. Here, we give a direct proof of 
Theorem 4.23 and delay these Möbius-theoretic considerations to a later 
section.

First, we note the following proposition which follows immediately 
from Lemma 4.21.

Proposition 4.22. Let 𝑀 be an interval-decomposable representation of 
�⃗�𝑚,𝑛 and 𝐼 an interval in 𝕀𝑚,𝑛. Then

𝑑𝑀 (𝑉𝐼 ) = 𝑑∗𝑀 (𝐼) −
∑

𝐽∈𝑈 (𝐼)∖{𝐼}
𝑑𝑀 (𝑉𝐽 ).

for ∗= ss, cc, tot.

Theorem 4.23 (For interval-decomposables, compressed multiplicity recov-

ers the multiplicity). Let 𝑀 be an interval decomposable representation of 
�⃗�𝑚,𝑛 and 𝐼 an interval in 𝕀𝑚,𝑛. Then:

𝑑𝑀 (𝑉𝐼 ) = 𝑑∗𝑀 (𝐼) +
∑

∅≠𝑆⊆Cov(𝐼)
(−1)#𝑆𝑑∗

𝑀
(
⋁
𝑆).

for ∗= ss, cc, tot.
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Proof. We define the function 𝑓 ∶ 2𝑈 (𝐼) → ℤ by 𝑓 (𝑆) ∶= ∑
𝐽∈𝑆

𝑑𝑀 (𝑉𝐽 )

for 𝑆 ∈ 2𝑈 (𝐼), where 2𝑈 (𝐼) is the power set of 𝑈 (𝐼). Rewriting Propo-
sition 4.22, we have

𝑑𝑀 (𝑉𝐼 ) = 𝑑∗𝑀 (𝐼) − 𝑓

( ⋃
𝐽∈Cov(𝐼)

𝑈 (𝐽 )

)
since 𝑈 (𝐼) ⧵ {𝐼} =⋃𝐽∈Cov(𝐼)𝑈 (𝐽 ). Here, the inclusion-exclusion princi-
ple7 shows that

𝑓

( ⋃
𝐽∈Cov(𝐼)

𝑈 (𝐽 )

)
=

∑
∅≠𝑆⊆Cov(𝐼)

(−1)(#𝑆−1)𝑓

(⋂
𝐽∈𝑆

𝑈 (𝐽 )

)
.

By Proposition 3.6, the join ⋁𝑆 in 𝑈 (𝐼) exists, and it can be checked 
that⋂
𝐽∈𝑆

𝑈 (𝐽 ) =𝑈 (
⋁
𝑆)

by definition. Therefore

𝑓

(⋂
𝐽∈𝑆

𝑈 (𝐽 )

)
= 𝑓 (𝑈 (

⋁
𝑆)) = 𝑑∗

𝑀
(
⋁
𝑆)

by Lemma 4.21, which completes our proof. □

Theorem 4.23 says that to calculate 𝑑𝑀 (𝑉𝐼 ), it is enough to calculate 
𝑑ss
𝑀
(𝐽 ) (which is equal to 𝑑cc

𝑀
(𝐽 ) and also to 𝑑tot

𝑀
(𝐽 ) since 𝑀 is interval-

decomposable) for certain intervals 𝐽 . We warn that the assumption 
that 𝑀 is interval-decomposable is necessary for Key Lemma 4.21, and 
so is also necessary here. It is easy to construct examples where the 
equality in Theorem 4.23 fails for non-interval-decomposable represen-
tations.

Example 4.24. Let us follow the proof of Theorem 4.23 by computing a 
particular example. Let 𝑀 be an interval-decomposable representation 
of �⃗�2,4 and let 𝐼 =

(
0 1 1 0
0 1 1 0

)
∈ 𝕀2,4, an interval. In this case,

Cov(𝐼) =
{
𝐼1 ∶=

(
1 1 1 0
0 1 1 0

)
, 𝐼2 ∶=

(
0 1 1 0
0 1 1 1

)}
and 𝐼1 ∨ 𝐼2 =

(
1 1 1 0
0 1 1 1

)
. By Lemma 4.21, we have

𝑑∗
𝑀
(𝐼) =

∑
𝐽∈𝑈 (𝐼)

𝑑𝑀 (𝑉𝐽 )

= 𝑑𝑀
((

0 1 1 0
0 1 1 0

))
+ 𝑑𝑀

((
1 1 1 0
0 1 1 0

))
+ 𝑑𝑀

((
0 1 1 0
0 1 1 1

))
+ 𝑑𝑀

((
1 1 1 0
1 1 1 0

))
+ 𝑑𝑀

((
1 1 1 0
0 1 1 1

))
+ 𝑑𝑀

((
0 1 1 1
0 1 1 1

))
+ 𝑑𝑀

((
1 1 1 0
1 1 1 1

))
+ 𝑑𝑀

((
0 1 1 1
0 1 1 1

))
+ 𝑑𝑀

((
1 1 1 0
1 1 1 1

))
= 𝑑𝑀 (𝑉𝐼 ) +

∑
𝐽∈(𝑈 (𝐼1)∪𝑈 (𝐼2))

𝑑𝑀 (𝑉𝐽 ))

= 𝑑𝑀 (𝑉𝐼 ) +
∑

𝐽∈𝑈 (𝐼1)
𝑑𝑀 (𝑉𝐽 ) +

∑
𝐽∈𝑈 (𝐼2)

𝑑𝑀 (𝑉𝐽 )

−
∑

𝐽∈(𝑈 (𝐼1)∩𝑈 (𝐼2))
𝑑𝑀 (𝑉𝐽 )

= 𝑑𝑀 (𝑉𝐼 ) +
∑

𝐽∈𝑈 (𝐼1)
𝑑𝑀 (𝑉𝐽 ) +

∑
𝐽∈𝑈 (𝐼2)

𝑑𝑀 (𝑉𝐽 ) −
∑

𝐽∈𝑈 (𝐼1∨𝐼2)
𝑑𝑀 (𝑉𝐽 ).

We thus have

𝑑𝑀 (𝑉𝐼 ) = 𝑑∗𝑀 (𝐼) − 𝑑∗
𝑀
(𝐼1) − 𝑑∗𝑀 (𝐼2) + 𝑑∗𝑀 (𝐼1 ∨ 𝐼2)

which is also given by Theorem 4.23.

7 More precisely, we use the inclusion-exclusion principle for finite measures, 
where we note that (𝑈 (𝐼), 2𝑈 (𝐼), 𝑓 ) is a finite measure space.
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As another example, let us consider the equioriented 𝐴𝑛-type quiver, 
which can be viewed as �⃗�1,𝑛. In this setting, Theorem 4.23 reduces 
to the following well-known formula related to inclusion-exclusion. In 
fact, this perspective of using the inclusion-exclusion formula figured 
heavily in the early development of persistence diagrams, before the 
definition using indecomposables. See for example [31], [25], [37], 
[16], [21], [12], [14] and others.

Corollary 4.25. Let 𝑀 ∈ rep �⃗�1,𝑛. For 𝕀[𝑖, 𝑗] an interval representation of 
�⃗�1,𝑛,

𝑑𝑀 (𝕀[𝑖, 𝑗]) = [rank𝑀((𝑖− 1)→ (𝑗 + 1)) − rank𝑀((𝑖− 1)→ 𝑗)]−
[rank𝑀(𝑖→ (𝑗 + 1)) − rank𝑀(𝑖→ 𝑗)] ,

where if 𝑖 − 1 and/or 𝑗 + 1 is not in �⃗�1,𝑛, the corresponding term above is 0.

Proof. In �⃗�1,𝑛, it follows immediately from the definition that

𝑑∗
𝑀
(𝕀[𝑖, 𝑗]) = rank𝑀(𝑖→ 𝑗)

for ∗= ss, cc, tot. Furthermore, Cov(𝕀[𝑖, 𝑗]) contains 𝕀[𝑖 −1, 𝑗] if 𝑖 −1 ∈ �⃗�1,𝑛
and contains 𝕀[𝑖, 𝑗 + 1] if 𝑗 + 1 ∈ �⃗�1,𝑛, and no other elements.

It is well-known that all representations of �⃗�1,𝑛 are interval-
decomposable, and thus Theorem 4.23 is applicable. Thus,

𝑑𝑀 (𝕀[𝑖, 𝑗]) = 𝑑∗
𝑀
(𝕀[𝑖, 𝑗])

− 𝑑∗
𝑀
(𝕀[𝑖− 1, 𝑗]) − 𝑑∗

𝑀
(𝕀[𝑖, 𝑗 + 1])

+ 𝑑∗
𝑀
(𝕀[𝑖− 1, 𝑗 + 1]),

where if 𝑖 − 1 and/or 𝑗 + 1 is not in �⃗�1,𝑛, the corresponding term above 
is 0. Expanding and rearranging terms gives us the required expres-
sion. □

We note that the same formula has been obtained by using 
Auslander-Reiten theory in the paper [4] (Equation (9) of [4]). Our 
Theorem 4.23 here uses only the local lattice structure of 𝕀𝑚,𝑛, and it 
may be interesting to explore Theorem 4.23 using Auslander-Reiten 
theory, and more generally, a representation-theoretic perspective.

4.5. Restriction to equioriented 2 × 𝑛 commutative grid

In this subsection, we study the special case of �⃗�2,𝑛, which is the 
equioriented commutative ladder. In this setting, the compressed cate-
gories take on very nice forms.

Proposition 4.26. Let 𝐼 ∈ 𝕀2,𝑛. The quiver of the ss-compressed category 
𝐼𝑠𝑠 has one of the following forms:

(1) ∙,
(2) ∙ ∙,
(3) ∙ ∙ ∙,
(4) ∙ ∙ ∙,
(5) ∙ ∙ ∙ ∙.

Proof. A direct computation shows this. □

Similarly, we have the following.

Proposition 4.27. Let 𝐼 ∈ 𝕀2,𝑛. The bound quiver of the cc-compressed cat-

egory 𝐼𝑐𝑐 has one of the following forms:
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(1) ∙,
(2) ∙ ∙,
(3) ∙ ∙ ∙,
(4) ∙ ∙ ∙,
(5) ∙ ∙ ∙ ∙.

(6)
∙ ∙

∙ ∙
,

(7)
∙ ∙ ∙

∙ ∙
,

(8)
∙ ∙

∙ ∙ ∙
,

(9)
∙ ∙ ∙

∙ ∙ ∙
.

Proof. It is immediate that there are at most 6 cc-essential vertices, 
arranged in the shape of (9), for an interval in 𝕀2,𝑛. The rest of the forms 
cover the cases where some of those vertices are not cc-essential in 
𝐼 . □

For 𝐼 ∈ 𝕀2,𝑛 with 𝑛 ≥ 5, 𝐼 tot is of infinite representation type (see [9, 
Theorem 1.3] or [22] for example). Therefore, it may be difficult to 
calculate the values 𝑑tot

𝑀
(𝐼).

On the other hand, Proposition 4.26 and Proposition 4.27 show that 
𝐼 ss and 𝐼cc are of finite type for any 𝐼 ∈ 𝕀2,𝑛. In addition, the Auslander-
Reiten quivers for the bound quivers in the lists of Proposition 4.26 and 
Proposition 4.27 can be calculated explicitly. Thus, it is not difficult to 
calculate the values 𝑑∗

𝑀
(𝐼) for ∗= ss, cc, in the setting of the equioriented 

2 × 𝑛 commutative grid.
We discuss more about computations in Section 6.

5. Interval-decomposable replacement

In this section, let us discuss how to use the above ideas for re-
placing a general 2D persistence modules in rep �⃗�𝑚,𝑛 by an interval-
decomposable one. First, let us rephrase Theorem 4.23 using the lan-
guage of Möbius inversion, as discussed in Subsection 2.4, with under-
lying field 𝐹 =ℝ.

We can view 𝑑𝑀 and 𝑑∗
𝑀

as functions 𝕀𝑚,𝑛 →ℝ (taking only nonneg-
ative integer values). For 𝑑𝑀 , this is an abuse of notation, since 𝑑𝑀 is 
a function from (isomorphism classes of) all indecomposables, but here 
we are using the symbol to denote it restricted to the interval represen-
tations of �⃗�𝑚,𝑛, identified with the set of intervals 𝕀𝑚,𝑛.

In the notation of Subsection 2.4, we have 𝑑𝑀, 𝑑∗𝑀 ∈ℝ𝕀𝑚,𝑛 . Then, the 
Key Lemma 4.21 states that for 𝑀 interval-decomposable,

𝑑∗
𝑀

= 𝜁𝑑𝑀 (5.1)

where the multiplication of 𝜁 in Eq. (5.1) is precisely the left action 
of 𝐼(𝕀𝑚,𝑛) on ℝ𝕀𝑚,𝑛 . By Möbius inversion (multiplication of 𝜇 = 𝜁−1), we 
obtain

𝑑𝑀 = 𝜇𝑑∗
𝑀
. (5.2)

This expresses 𝑑𝑀 in terms of 𝑑∗
𝑀

, a conclusion similar to the one of 
Theorem 4.23. Next, we show that the coefficients appearing in Theo-
rem 4.23 give the values of the Möbius function 𝜇([𝐼, 𝐽 ]) of 𝕀𝑚,𝑛.

Definition 5.1. Define the function 𝜇′ ∶ Seg(𝕀𝑚,𝑛) →ℝ, an element of the 
incidence algebra 𝐼(𝕀𝑚,𝑛) by the following.

𝜇′([𝐼, 𝐽 ]) =
⎧⎪⎨⎪⎩
1 if 𝐼 = 𝐽 ,∑
𝐽=
⋁
𝑆

∅≠𝑆⊆Cov(𝐼)

(−1)#𝑆 otherwise. (5.3)

Note that in the case 𝐼 ≠ 𝐽 and where there is no ∅ ≠ 𝑆 ⊆ Cov(𝐼)
such that 𝐽 =

⋁
𝑆, the sum above is empty, and thus 𝜇′([𝐼, 𝐽 ]) = 0. The 

values of 𝜇′ are exactly the coefficients appearing in the formula of 
Theorem 4.23, from which we immediately get the following Corollary.

Corollary 5.2 (Restatement of Theorem 4.23). Let 𝑀 be an interval-

decomposable representation of �⃗�𝑚,𝑛 and 𝐼 an interval in 𝕀𝑚,𝑛. Then:
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𝑑𝑀 = 𝜇′𝑑∗
𝑀

for ∗= ss, cc, tot.

Theorem 5.3. Let 𝜇′ be as defined in Definition 5.1, and 𝜇 be the Möbius 
function of the poset 𝕀𝑚,𝑛. Then,

𝜇 = 𝜇′.

In particular, Equation (5.3) gives the values of 𝜇.

Proof. Let 𝐼 ≤ 𝐿 be intervals in 𝕀𝑚,𝑛. Below, we compare the values 
𝜇([𝐼, 𝐿]) and 𝜇′([𝐼, 𝐿]) by induction on 𝐿.

First, let us consider 𝐿 a cover of 𝐼 and fix 𝑀 = 𝑉𝐿. By Corollary 5.2
and Equation (5.2), we have

𝜇′𝑑∗
𝑀

= 𝜇𝑑∗
𝑀
.

We obtain the following sequence of equations by working on both sides 
the equation.

(𝜇′𝑑∗
𝑀
)(𝐼) = (𝜇𝑑∗

𝑀
)(𝐼)∑

𝐼≤𝐽

𝜇′([𝐼, 𝐽 ])𝑑∗
𝑀
(𝐽 ) =

∑
𝐼≤𝐽

𝜇([𝐼, 𝐽 ])𝑑∗
𝑀
(𝐽 )∑

𝐼≤𝐽≤𝐿

𝜇′([𝐼, 𝐽 ])𝑑∗
𝑀
(𝐽 ) =

∑
𝐼≤𝐽≤𝐿

𝜇([𝐼, 𝐽 ])𝑑∗
𝑀
(𝐽 )

𝜇′([𝐼, 𝐼]) + 𝜇′([𝐼,𝐿]) = 𝜇([𝐼, 𝐼]) + 𝜇([𝐼,𝐿])

1 + 𝜇′([𝐼,𝐿]) = 1 + 𝜇([𝐼,𝐿]),

where going from the second line to the third line follows by 
Lemma 4.20. We conclude 𝜇′([𝐼, 𝐿]) = 𝜇([𝐼, 𝐿]) for any 𝐿 ∈ Cov(𝐼).

Next, we assume that for any interval 𝐿′ with 𝐿′ < 𝐿, 𝜇′([𝐼, 𝐿′]) =
𝜇([𝐼, 𝐿′]). Then we have the following sequence of equations by taking 
𝑀 = 𝑉𝐿 and again using Lemma 4.20:

(𝜇′𝑑∗
𝑀
)(𝐼) = (𝜇𝑑∗

𝑀
)(𝐼)∑

𝐼≤𝐽≤𝐿

𝜇′([𝐼, 𝐽 ]) =
∑

𝐼≤𝐽≤𝐿

𝜇([𝐼, 𝐽 ])∑
𝐼≤𝐽<𝐿

𝜇′([𝐼, 𝐽 ]) + 𝜇′([𝐼,𝐿]) =
∑

𝐼≤𝐽<𝐿

𝜇([𝐼, 𝐽 ]) + 𝜇([𝐼,𝐿]).

Since we have ∑
𝐼≤𝐽<𝐿

𝜇′([𝐼, 𝐽 ]) = ∑
𝐼≤𝐽<𝐿

𝜇([𝐼, 𝐽 ]) by the inductive assump-

tion, we obtain 𝜇′([𝐼, 𝐿]) = 𝜇([𝐼, 𝐿]). By the induction, we get the con-
clusion. □

As we have seen, 𝑑𝑀 = 𝜇𝑑∗
𝑀

for 𝑀 interval-decomposable. Even in 
the case where 𝑀 is not interval-decomposable, we nevertheless can do 
the transformation. Thus we define 𝛿∗

𝑀
∶= 𝜇𝑑∗

𝑀
in general.

Definition 5.4. Put ∗= ss, cc, tot. Define 𝛿∗
𝑀

∶= 𝜇𝑑∗
𝑀

. In particular, for 
each 𝐼 ∈ 𝕀𝑚,𝑛 an interval subquiver of �⃗�𝑚,𝑛,

𝛿∗𝑀 (𝐼) ∶= 𝑑∗
𝑀
(𝐼) +

∑
∅≠𝑆⊆Cov(𝐼)

(−1)#𝑆𝑑∗
𝑀
(
⋁
𝑆).

First, we note the following obvious property of 𝛿∗
𝑀
(−).

Lemma 5.5. If 𝑀 ≅𝑀1 ⊕𝑀2, then we have

𝛿∗𝑀 (−) = 𝛿∗𝑀1
(−) + 𝛿∗𝑀2

(−).

Proof. Since 𝑑∗
𝑀
(−) = 𝑑∗

𝑀1
(−) + 𝑑∗

𝑀2
(−) by Lemma 4.19, we have the 

desired equation by definition. □

Since in general

𝑀 ≅
⨁

𝑋𝑑𝑀 (𝑋)
𝑋∈

14
by Theorem 2.2 (where 𝑑𝑀 is the actual multiplicity function, not re-
stricted to intervals), one way of constructing an interval-decomposable 
object is to naively define

𝛿∗(𝑀) =
⨁
𝐼∈𝕀𝑚,𝑛

(
𝑉𝐼
)𝛿∗
𝑀
(𝐼)

(5.4)

by taking the function 𝛿∗
𝑀

on 𝕀𝑚,𝑛 as a substitute for the function 𝑑𝑀 on 
. Defined this way, 𝑀 ≅ 𝛿∗(𝑀) for interval-decomposable 𝑀 . How-
ever, the value 𝛿∗

𝑀
(𝐼) can be negative in general, and thus the direct 

sum in Eq. (5.4) does not make sense.
For example, we have the following.

Example 5.6. Let 𝑀 be the representation of �⃗�2,3 given by

𝐾 𝐾2 𝐾

0 𝐾 𝐾

[
1
1
]

[ 0 1 ]

1

[
0
1
]

1

The value of 𝛿ss
𝑀
(𝐼) is 0 except in the cases of 𝐼 being one of the intervals 

𝐼1, 𝐼2, 𝐼3, 𝐼4 given below.

(1) For 𝐼1 ∶
∙ ∙

∙ ∙
, 𝛿ss
𝑀
(𝐼1) = −1,

(2) For 𝐼2 ∶
∙ ∙ ∙

∙ ∙
, 𝛿ss
𝑀
(𝐼2) = 1,

(3) For 𝐼3 ∶
∙

∙ ∙
, 𝛿ss
𝑀
(𝐼3) = 1,

(4) For 𝐼4 ∶
∙ ∙

, 𝛿ss
𝑀
(𝐼4) = 1.

Proof. We directly use Definition 5.4 to compute 𝛿ss
𝑀
(𝐼1). We let 

Cov(𝐼1) = {𝐼2, 𝐼5}, and let 𝐼6 = 𝐼2 ∨ 𝐼5, where the intervals are given be-
low. We first compute the value of the compressed multiplicity 𝑑ss

𝑀
(−)

of these intervals. We have:

𝐼1 ∶
∙ ∙

∙ ∙
, 𝑑ss

𝑀
(𝐼1) = 0,

𝐼2 ∶
∙ ∙ ∙

∙ ∙
, 𝑑ss

𝑀
(𝐼2) = 1,

𝐼5 ∶
∙ ∙

∙ ∙ ∙
, 𝑑ss

𝑀
(𝐼5) = 0,

𝐼6 ∶
∙ ∙ ∙

∙ ∙ ∙
, 𝑑ss

𝑀
(𝐼6) = 0.

Thus, by definition,

𝛿ss
𝑀
(𝐼1) = 0 − 1 − 0 + 0 = −1.

The other computations follow similarly. □

For 𝑀 interval-decomposable, it is clear from the above that all 
values of 𝛿∗

𝑀
are nonnegative, as it is equal to 𝑑𝑀 itself. In the next 

example we see that the converse does not hold, and so we cannot use 
the nonnegativity of 𝛿∗

𝑀
to check for interval-decomposability.

Example 5.7 (Continuation of Example 5.6). There exists a persistence 
module 𝑁 over �⃗�𝑚,𝑛 (for some 𝑚, 𝑛) such that 𝛿∗

𝑁
is nonnegative, but 𝑁

is not interval-decomposable.
In particular, let 𝑀 and 𝐼𝑖 (𝑖 = 1, 2, 3, 4) be as given in Example 5.6. 

Then 𝑁 ∶=𝑀 ⊕𝐼1 is such an example.

Proof. Since 𝑁 =𝑀 ⊕𝐼1, 𝛿ss
𝑁
= 𝛿ss

𝑀
+ 𝛿ss

𝐼1
by Lemma 5.5. Then we have

𝛿ss (𝐼1) = −1 + 1 = 0

𝑁
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and 𝛿ss
𝑁
(𝐼) = 𝛿ss

𝑀
(𝐼) + 0 ≥ 0 for all intervals 𝐼 ≠ 𝐼1. Thus, 𝛿ss

𝑁
is nonnega-

tive, but 𝑁 is not interval-decomposable since 𝑀 is an indecomposable 
summand of 𝑁 that is not isomorphic to an interval representation. □

To deal with the possibility of negative terms in 𝛿∗
𝑀

in general, we 
use the formalism of the split Grothendieck group to express the addi-
tion of a negative number of copies of an interval in a direct sum. For 
more details, see for example the notes [32, Chapter 2].

Definition 5.8. The split Grothendieck group Gr() of an additive cate-
gory  is the free abelian group generated by isomorphism classes [𝐶]
of objects in  modulo the relations [𝐶1 ⊕ 𝐶2] = [𝐶1] + [𝐶2] for all ob-
jects 𝐶1, 𝐶2 of . For an object 𝐶 of , we denote by [[𝐶]] the element 
of Gr() represented by [𝐶].

In the following we consider the split Grothendieck group
Gr(rep �⃗�𝑚,𝑛) of rep �⃗�𝑚,𝑛. Then by the Krull-Schmidt theorem we eas-
ily see that it has a basis {[[𝐿]] ∣ 𝐿 ∈ }, where  is a complete set of 
representatives of the isomorphism classes of indecomposable represen-
tations of �⃗�𝑚,𝑛 (see [32, Theorem 2.3.6]). Thus each 𝑋 ∈Gr(rep �⃗�𝑚,𝑛) is 
uniquely expressed in the form

𝑋 =
∑
𝐿∈

𝑎𝐿 [[𝐿]]

with 𝑎𝐿 ∈ℤ for all 𝐿 ∈ . Here we define the representations

𝑋+ ∶=
⨁
𝐿∈
𝑎𝐿≥0

𝐿𝑎𝐿 and 𝑋− ∶=
⨁
𝐿∈
𝑎𝐿<0

𝐿(−𝑎𝐿), (5.5)

which are called the positive part and the negative part of 𝑋, respec-
tively. Note that they are representations of �⃗�𝑚,𝑛 with the property 
that 𝑋 = [ [𝑋+] ] − [ [𝑋−] ] because [ [𝑋+] ] =

∑
𝐿∈
𝑎𝐿≥0

𝑎𝐿 [[𝐿]] and [ [𝑋−] ] =∑
𝐿∈
𝑎𝐿<0

(−𝑎𝐿) [[𝐿]]. Therefore, 𝑋 can be uniquely presented by the pair 

(𝑋+, 𝑋−) of representations of �⃗�𝑚,𝑛.

Definition 5.9 (interval-decomposable replacement). Let 𝑀 ∈ rep �⃗�𝑚,𝑛. 
Define the interval-decomposable replacement (or interval-decomposable 
approximation)8 𝛿∗(𝑀) of 𝑀 by

𝛿∗(𝑀) ∶=
∑
𝐼∈𝕀𝑚,𝑛

𝛿∗𝑀 (𝐼)[[𝑉𝐼 ]] ∈ Gr(rep �⃗�𝑚,𝑛) (5.6)

for ∗= ss, cc, or, tot.

By the above observation, 𝛿∗(𝑀) can be expressed by the pair (
𝛿∗(𝑀)+, 𝛿∗(𝑀)−

)
of interval-decomposable representations, where

𝛿∗(𝑀)+ =
⨁
𝐼∈𝕀𝑚,𝑛
𝛿∗
𝑀
(𝐼)>0

𝑉𝐼
𝛿∗
𝑀
(𝐼) and 𝛿∗(𝑀)− =

⨁
𝐼∈𝕀𝑚,𝑛
𝛿∗
𝑀
(𝐼)<0

𝑉𝐼
(−𝛿∗

𝑀
(𝐼)).

Theorem 5.10. Let 𝑀 ∈ rep �⃗�𝑚,𝑛 be interval-decomposable. Then,

𝛿∗(𝑀) = [[𝑀]], or equivalently, 𝛿∗(𝑀)+ ≅𝑀 and 𝛿∗(𝑀)− = 0.

Proof. Because 𝑀 is interval-decomposable, 𝛿∗
𝑀

= 𝑑𝑀 . The conclusion 
follows immediately from this. □

Note that the converse trivially holds. If 𝛿∗(𝑀) = [[𝑀]] then 𝑀 is 
interval-decomposable.

Let us discuss the relationship between 𝑀 and 𝛿∗(𝑀). In particular, 
we focus on dimension vectors and rank invariants.

8 See footnote 2.
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Example 5.11 (Continuation of Example 5.6). With the same notation as 
in Example 5.6, we have the equality∑
𝐼∈𝕀2,3

𝛿ss
𝑀
(𝐼) ⋅ dim(𝑉𝐼 ) =

(
1 1 1
0 1 1

)
+
(
0 1 0
0 1 1

)
+
(
1 1 0
0 0 0

)
−
(
1 1 0
0 1 1

)
=
(
1 2 1
0 1 1

)
= dim(𝑀).

For 𝛿cc
𝑀

, we have a similar equality of the dimension vectors for 
the example above. This is not a coincidence, and in fact the equality 
always holds (see Corollary 5.14). First we prove the following stronger 
statement.

Theorem 5.12. Let 𝑀 be a representation of �⃗�𝑚,𝑛 = (𝑄, 𝑅), and let 𝑖 and 𝑗
be vertices of 𝑄 such that there exists a path from 𝑖 to 𝑗 in 𝑄. Then we have∑
𝐼∈𝕀𝑚,𝑛

𝛿∗𝑀 (𝐼) ⋅ rank 𝑉𝐼 (𝑖→ 𝑗) = rank𝑀(𝑖→ 𝑗). (5.7)

for ∗= ss, cc, tot.

To prove the theorem above we need the following lemma, which is 
the essence of Theorem 5.12.

Lemma 5.13. Let 𝑀 ∈ rep �⃗�𝑚,𝑛 and 𝐼 ∈ 𝕀𝑚,𝑛. Then

𝑑∗
𝑀
(𝐼) =

∑
𝐼≤𝐽∈𝕀𝑚,𝑛

𝛿∗𝑀 (𝐽 )

Proof. This follows from Möbius inversion. That is, by definition 𝛿∗
𝑀

∶=
𝜇𝑑∗

𝑀
and thus

𝑑∗
𝑀

= 𝜁𝛿∗𝑀
since 𝜇−1 = 𝜁 . The right-hand side expanded out gives the result. □

Then we prove Theorem 5.12.

Proof of Theorem 5.12. Since there is a path from 𝑖 to 𝑗, the rectangle 
with source 𝑖 and sink 𝑗 exists. We denote this rectangle with source 𝑖
and sink 𝑗 by 𝑅𝑖,𝑗 .

We note that for an interval 𝐼 ∈ 𝕀𝑚,𝑛, rank 𝑉𝐼 (𝑖 → 𝑗) is 1 if and only 
if 𝐼 contains the rectangle 𝑅𝑖,𝑗 and is 0 otherwise. This gives the first 
equality in the following computation. We have∑
𝐼∈𝕀𝑚,𝑛

𝛿∗𝑀 (𝐼) ⋅ rank 𝑉𝐼 (𝑖→ 𝑗) =
∑

𝑅𝑖,𝑗≤𝐼∈𝕀𝑚,𝑛

𝛿∗𝑀 (𝐼)

= 𝑑∗
𝑀
(𝑅𝑖,𝑗 )

= rank𝑀(𝑖→ 𝑗),

where the second equality follows from Lemma 5.13, and the last equal-
ity follows by applying Proposition 4.16. □

As a corollary of Theorem 5.12, we have the following desired equa-
tion for dimension vectors.

Corollary 5.14. Let 𝑀 be a representation of �⃗�𝑚,𝑛. Then we have∑
𝐼∈𝕀𝑚,𝑛

𝛿∗𝑀 (𝐼) ⋅ dim(𝑉𝐼 ) = dim(𝑀). (5.8)

Proof. It is enough to show that for any 𝑖 ∈𝐺0,∑
𝐼∈𝕀𝑚,𝑛

𝛿∗𝑀 (𝐼) ⋅ (dim(𝑉𝐼 ))𝑖 = (dim(𝑀))𝑖.

Note that (dim(𝑉𝐼 ))𝑖 = rank 𝑉𝐼 (𝑖 → 𝑖) and (dim(𝑀))𝑖 = rank𝑀(𝑖 → 𝑖), 
where the path 𝑖 → 𝑖 means the path 𝑒𝑖 of length 0 at 𝑖. Thus, by Theo-
rem 5.12, we obtain the above equation. □
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Let us give another consequence of this result, which warns us 
against thinking of 𝛿∗

𝑀
as a kind of approximation in terms of func-

tions. In more detail, each 𝑀 ∈ rep �⃗�𝑚,𝑛 can be written as 𝑀 ≅𝑀𝐼 ⊕𝑋, 
where 𝑀𝐼 is interval-decomposable, and 0 ≠ 𝑋 has no interval repre-
sentation as a summand. By Lemma 5.5,

𝛿∗𝑀 = 𝛿∗𝑀𝐼
+ 𝛿∗𝑋 = 𝑑𝑀𝐼

+ 𝛿∗𝑋 ∶ 𝕀𝑚,𝑛 →ℝ (5.9)

where we also use the fact that 𝛿∗
𝑀𝐼

= 𝑑𝑀𝐼
because 𝑀𝐼 is interval-

decomposable. Restricted to 𝕀𝑚,𝑛, 𝑑𝑀 has the same values as 𝑑𝑀𝐼
. Pre-

cisely speaking, by our abuse of notation 𝑑𝑀 ∶ 𝕀𝑚,𝑛 →ℝ above is the full 
multiplicity function 𝑑𝑀 restricted to the set of interval representations, 
which can be identified with 𝕀𝑚,𝑛. Thus, we may be tempted to think of 
using 𝛿∗

𝑀
to approximate 𝑑𝑀𝐼

= 𝑑𝑀 as functions on 𝕀𝑚,𝑛. To measure the 
error involved, we use the 𝓁1-norm of functions 𝑓 ∶ 𝕀𝑚,𝑛 →ℝ defined by ‖𝑓‖1 =∑𝐼∈𝕀𝑚,𝑛 |𝑓 (𝐼)|. Let us consider the value of

‖‖‖𝛿∗𝑋‖‖‖1 = ‖‖‖𝛿∗𝑀 − 𝑑𝑀
‖‖‖1 .

We remind the reader that we are considering 𝑑𝑀 as a function on 𝕀𝑚,𝑛
by restriction.

Corollary 5.15. Let �⃗�𝑚,𝑛 be an equioriented commutative grid of size at 
least 2 × 5 or 5 × 2. For any 𝓁 ∈ ℕ, there exists an indecomposable non-

interval representation 𝑋 ∈ rep �⃗�𝑚,𝑛, such that

‖‖‖𝛿∗𝑋‖‖‖1 ≥ 𝓁.

Proof. The construction in [10] provides such an indecomposable non-
interval 𝑋 ∈ rep �⃗�2,5 (for �⃗�𝑚,𝑛 larger than 2 ×5, we simply pad with zero 
spaces and zero maps):

𝐾𝓁 𝐾2𝓁 𝐾2𝓁 𝐾𝓁 0

0 𝐾𝓁 𝐾2𝓁 𝐾2𝓁 𝐾𝓁

[
𝐸
0
]

[𝐸 0 ]

[
𝐸
0
][

𝐸
𝐸

] [
𝐸 𝐸
𝐸 𝐽

]
[𝐸 0 ]

[𝐸 𝐸 ]

where each 𝐸 is an 𝓁 × 𝓁 identity matrix, and 𝐽 is the 𝓁 × 𝓁 Jordan 
block with eigenvalue 𝜆 = 1.

Let 𝑖 be one of the vertices such that 𝑋(𝑖) has dimension at least 𝓁. 
We compute:

𝓁 ≤ dim𝑋(𝑖) =
∑
𝐼∈𝕀𝑚,𝑛

𝛿∗𝑋 (𝐼) ⋅ (dim(𝑉𝐼 ))𝑖

=
∑
𝐼∶𝑖∈𝐼

𝛿∗𝑋 (𝐼)

≤
∑
𝐼∶𝑖∈𝐼

|𝛿∗𝑋 (𝐼)|
≤
∑
𝐼∈𝕀𝑚,𝑛

|𝛿∗𝑋 (𝐼)|
= ‖‖‖𝛿∗𝑋‖‖‖1 ,

where the first line follows from Corollary 5.14. □

Remark 5.16. A simpler proof can be provided, if we allow 𝑋 to not 
be indecomposable in the preceding corollary, as follows. Let 𝑁 be an 
indecomposable non-interval representation, which is known to exist. 
For example, the above indecomposable can be reused. Then, defining 
𝑋 as the direct sum of 𝓁 copies of 𝑁 , we have that 𝑋 and
16
‖‖‖𝛿∗𝑋‖‖‖1 = ‖‖‖‖‖‖
𝓁∑
𝑖=1
𝛿∗𝑁

‖‖‖‖‖‖1 = 𝓁 ‖‖‖𝛿∗𝑁‖‖‖1 ≥ 𝓁

since ‖‖‖𝛿∗𝑁‖‖‖1 ≥ 1 (otherwise 𝛿∗
𝑁
= 0 and thus 𝑁 = 0, a contradiction).

In other words, the “error term” ‖‖‖𝛿∗𝑋‖‖‖1 can be made arbitrarily large 
by varying 𝑀 . However, in the above analysis, we considered the “error 
term” ‖‖‖𝛿∗𝑋‖‖‖1 = ‖‖‖𝛿∗𝑀 − 𝑑𝑀

‖‖‖1 where 𝑑𝑀 is considered as a function on 𝕀𝑚,𝑛
by restriction. That is, its values on non-intervals are ignored. A more 
comprehensive analysis could potentially take into account those terms 
as well.

Finally, let us give an interpretation of Theorem 5.12 and Corol-
lary 5.14. The left-hand side

∑
𝐼∈𝕀𝑚,𝑛

𝛿∗𝑀 (𝐼) ⋅ rank 𝑉𝐼 (𝑖→ 𝑗)

of Equation (5.7) in Theorem 5.12 and the left-hand side

∑
𝐼∈𝕀𝑚,𝑛

𝛿∗𝑀 (𝐼) ⋅ dim(𝑉𝐼 )

of Equation (5.8) in Corollary 5.14 can be viewed as the rank invariant 
and the dimension vector of the interval-decomposable replacement

𝛿∗(𝑀) =
∑
𝐼∈𝕀𝑚,𝑛

𝛿∗𝑀 (𝐼)[[𝑉𝐼 ]],

respectively. That is, the rank invariant (dimension vector, respectively) 
of 𝛿∗(𝑀) can be defined by adding the rank invariants (dimension 
vectors, respectively) of its summands. With this, Theorem 5.12 and 
Corollary 5.14 simply states that the interval-decomposable replace-
ment 𝛿∗(𝑀) preserves the rank invariant and dimension vector of 𝑀 . It 
is in this sense that we think of replacing (or loosely speaking, approxi-
mating) 𝑀 by 𝛿∗(𝑀).

6. Algorithms for equioriented commutative ladders

Let 𝑀 be a persistence module over an equioriented 𝑚 ×𝑛 commuta-
tive grid. For completeness, we first present a high-level overview of an 
algorithm for the computation of our proposed interval-decomposable 
replacement 𝛿∗(𝑀). Afterwards, we consider the case of persistence 
modules over equioriented commutative ladders (2 × 𝑛 commutative 
grids).

The computation of interval-decomposable replacement 𝛿∗(𝑀) =∑
𝐼∈𝕀𝑚,𝑛

𝛿∗
𝑀
(𝐼)[ [𝑉𝐼 ] ] of 𝑀 involves two major steps:

(1) (Algorithm 1) computation of the compressed multiplicity function 
𝑑∗
𝑀

∶ 𝕀𝑚,𝑛 →ℕ, defined by

𝑑∗
𝑀
(𝐼) ∶= 𝑑Comp∗

𝐼
(𝑀)(Comp∗𝐼 (𝑉𝐼 ))

for 𝐼 ∈ 𝕀𝑚,𝑛, and
(2) (Algorithm 2) computation of the Möbius inversion 𝛿∗

𝑀
= 𝜇𝑑∗

𝑀

given by

𝛿∗𝑀 (𝐼) ∶= 𝑑∗
𝑀
(𝐼) +

∑
∅≠𝑆⊆Cov(𝐼)

(−1)#𝑆𝑑∗
𝑀
(
⋁
𝑆).

for 𝐼 ∈ 𝕀𝑚,𝑛.

Algorithm 1 below for the computation of the compressed multiplic-
ity simply expands upon the definition.
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Algorithm 1 Compressed multiplicity 𝑑∗
𝑀

of 𝑀 .

1: function COMPRESSEDMULTIPLICITY(𝑀)
2: Initialize the function 𝑑∗

𝑀
on 𝕀𝑚,𝑛 to zero

3: for 𝐼 ∈ 𝕀𝑚,𝑛 do

4: Compute the compressed representation 𝑀 ′ = Comp∗
𝐼
(𝑀).

5: Compute the compressed representation 𝐼 ′ = Comp∗
𝐼
(𝑉𝐼 ).

(which is simply the interval representation with the whole of 𝐼∗ as
support)

6: Compute the multiplicity 𝑑𝑀 ′ (𝐼 ′) of 𝐼 ′ in 𝑀 ′ .
7: 𝑑∗

𝑀
(𝐼) ← 𝑑𝑀 ′ (𝐼 ′)

8: end for

9: return 𝑑∗
𝑀

10: end function

Line 4 of Algorithm 1 for the compressed representation 𝑀 ′ =
Comp∗𝐼 (𝑀) simply means forgetting about the vector spaces (internal 
linear maps, resp.) of 𝑀 corresponding to objects (morphisms, resp.) 
not in the compressed category 𝐼∗. Note that depending on how 𝑀 is 
stored, extra computations are needed (if some of the internal maps 
of 𝑀 are not explicitly stored, they may need to be computed explic-
itly and stored if they rely on internal maps about to be forgotten). We 
provide an example of this with the 2 × 𝑛 case later.

In general, the computation of the multiplicity 𝑑𝑀 ′ (𝐼 ′) of 𝐼 ′ in 𝑀 ′

(Line 6 of Algorithm 1) can be accomplished by computing the dimen-
sions of certain homomorphism spaces to entries in the almost split 
sequence9 starting at 𝐼 ′ (see [4, Theorem 3], [19, Corollary. 2.3] and 
also [1, Algorithms 3, 4]). Indeed, for Algorithm 1 and its specialization 
to the 2 × 𝑛 commutative grids in Algorithm 3, we rely heavily on [4].

Algorithm 2 is also a straightforward expansion of the definition.

Algorithm 2 Möbius inversion 𝛿∗
𝑀

of 𝑑∗
𝑀

.

1: function MÖBIUSINVERSION(𝑑∗
𝑀

)
2: Initialize the function 𝛿∗

𝑀
on 𝕀𝑚,𝑛 to zero

3: for 𝐼 ∈ 𝕀𝑚,𝑛 do

4: 𝑎 ← 𝑑∗
𝑀
(𝐼)

5: Compute Cov(𝐼)
6: for ∅ ≠ 𝑆 ⊆ Cov(𝐼) do

7: Compute ⋁𝑆
8: 𝑎 ← 𝑎 + (−1)#𝑆𝑑∗

𝑀
(
⋁
𝑆)

9: end for

10: 𝛿∗
𝑀
(𝐼) ← 𝑎

11: end for

12: return 𝛿∗
𝑀

13: end function

Algorithm 2 requires the computation of joins of cover elements of 𝐼 . 
We comment on this below. Let 𝐼 =⨆𝑡

𝑖=𝑠[𝑏𝑖, 𝑑𝑖]𝑖. By Proposition 3.4, the 
elements of Cov(𝐼) are given by a specific form. We recall that Propo-
sition 3.4 only provides a list of candidates, from which picking up all 
valid intervals forms Cov(𝐼). We single out the following four potential

cover elements specified by Proposition 3.4 that need special consider-
ation:

(1) extension of the top row of 𝐼 by one adjacent vertex left of the row 
(top-left)

𝐶𝑡𝑙 =
𝑡⨆
𝑖=𝑠

[𝑏′𝑖 , 𝑑𝑖]𝑖, where 𝑏′𝑖 =

{
𝑏𝑖 − 1 if 𝑖 = 𝑡,
𝑏𝑖 otherwise,

(2) extension of the bottom row of 𝐼 by one adjacent vertex right of the 
row (bottom-right)

𝐶𝑏𝑟 =
𝑡⨆
𝑖=𝑠

[𝑏𝑖, 𝑑′𝑖 ]𝑖, where 𝑑′𝑖 =

{
𝑑𝑖 + 1 if 𝑖 = 𝑠,
𝑑𝑖 otherwise,

9 A non-split short exact sequence (𝐸) ∶ 0 → 𝑋
𝑓
←←←←←←→ 𝑌

𝑔
←←←←←→ 𝑍 → 0 is called an 

almost split sequence starting at 𝑋 if both 𝑋 and 𝑍 are indecomposable, and 
if for any homomorphism ℎ∶ 𝑋 → 𝑉 , either ℎ is a split monomorphism or the 
pushout of (𝐸) along ℎ splits.
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(3) addition of one vertex above the upper-left vertex of 𝐼 (top)

𝐶𝑡 =
𝑡⨆
𝑖=𝑠

[𝑏𝑖, 𝑑𝑖]𝑖 ⊔ [𝑏𝑡, 𝑏𝑡]𝑡+1,

(4) addition of one vertex below the lower-right vertex of 𝐼 (bottom)

𝐶𝑏 = [𝑑𝑠, 𝑑𝑠]𝑠−1 ⊔
𝑡⨆
𝑖=𝑠

[𝑏𝑖, 𝑑𝑖]𝑖.

Remark 6.1. It is clear that if 𝑆 ⊂ Cov(𝐼)

∙ does not contain both 𝐶𝑡𝑙 and 𝐶𝑡, and
∙ does not contain both 𝐶𝑏𝑟 and 𝐶𝑏,

then ⋁𝑆 =
⋃
𝐶∈𝑆 𝐶 . That is, simply taking the union is enough since 

the union is an interval.
Otherwise, we need to add at most two vertices to ⋃𝐶∈𝑆 𝐶 in order 

to obtain ⋁𝑆. If 𝑆 ⊂ Cov(𝐼) contains both 𝐶𝑡𝑙 and 𝐶𝑡, then an additional 
vertex in the top left needs to be added to form an interval. Similarly, 
if 𝑆 ⊂ Cov(𝐼) contains both 𝐶𝑏𝑟 and 𝐶𝑏, then an additional vertex in the 
bottom right needs to be added to form an interval.

Example 6.2. We provide an example using the interval 𝐼 in the com-
mutative grid �⃗�5,6 with candidate vertices marked as in Example 3.5.

◦ ◦ ◦ ◦

◦ ∙ ∙ ◦

◦ ◦ ∙ ◦

◦ ◦ ◦ ◦

◦ ✓ ◦ ◦

✓ ∙ ∙ ✗

◦ ✓ ∙ ✓

◦ ◦ ✓ ◦

In dimension vector notation,

𝐼 =
⎛⎜⎜⎝
0 0 0 0
0 1 1 0
0 0 1 0
0 0 0 0

⎞⎟⎟⎠
and all the cover elements are given by

𝐶𝑡𝑙 =
⎛⎜⎜⎝
0 0 0 0
1 1 1 0
0 0 1 0
0 0 0 0

⎞⎟⎟⎠ , 𝐶𝑡 =
⎛⎜⎜⎝
0 1 0 0
0 1 1 0
0 0 1 0
0 0 0 0

⎞⎟⎟⎠ ,
𝐶𝑏𝑟 =

⎛⎜⎜⎝
0 0 0 0
0 1 1 0
0 0 1 1
0 0 0 0

⎞⎟⎟⎠ , 𝐶𝑏 =
⎛⎜⎜⎝
0 0 0 0
0 1 1 0
0 0 1 0
0 0 1 0

⎞⎟⎟⎠ ,
𝐶 =

⎛⎜⎜⎝
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎞⎟⎟⎠ .
Thus, for example,

𝐶𝑏𝑟 ∨𝐶𝑡 ∨𝐶 =
⎛⎜⎜⎝
0 1 0 0
0 1 1 0
0 1 1 1
0 0 0 0

⎞⎟⎟⎠ = 𝐶𝑏𝑟 ∪𝐶𝑡 ∪𝐶
while

𝐶𝑡𝑙 ∨𝐶𝑡 ∨𝐶𝑏𝑟 =
⎛⎜⎜⎝
1 1 0 0
1 1 1 0
0 0 1 1
0 0 0 0

⎞⎟⎟⎠ = {𝑣} ∪𝐶𝑡𝑙 ∪𝐶𝑡 ∪𝐶𝑏𝑟

where 𝑣 is the vertex at the upper-left corner.

Theorem 6.3. Algorithm 2, which computes 𝛿∗
𝑀

given 𝑑∗
𝑀

, can be per-

formed with time complexity 𝑂(#𝕀𝑚,𝑛2𝐷𝐷𝑚), where 𝐷 =max𝐼∈𝕀𝑚,𝑛 # Cov(𝐼).

Proof. For each 𝐼 ∈ 𝕀𝑚,𝑛, there are at most 2𝐷 − 1 nonempty subsets 𝑆
of Cov(𝐼). By the formula
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𝛿∗𝑀 (𝐼) ∶= 𝑑∗
𝑀
(𝐼) +

∑
∅≠𝑆⊆Cov(𝐼)

(−1)#𝑆𝑑∗
𝑀
(
⋁
𝑆)

for each 𝑆, we need to compute ⋁𝑆, which is the join of at most 𝐷
intervals.

We first compute ⋃𝐶∈𝑆 𝐶 by the following. Assuming that inter-
vals are represented in the form of 𝐼 =⨆𝑡

𝑖=𝑠[𝑏𝑖, 𝑑𝑖]𝑖 (row-wise), with the 
number of rows equal to 𝑚, the union of two cover elements can be 
computed by iterating through the 𝑚 rows and taking the union of the 
corresponding intervals [𝑏𝑖, 𝑑𝑖]𝑖 ∪ [𝑏′𝑖 , 𝑑

′
𝑖 ]𝑖. We iterate over the elements 

of 𝑆 (at most 𝐷) to obtain ⋃𝐶∈𝑆 𝐶 .
Finally, the above discussion around Remark 6.1 concerning the four 

cover elements 𝐶𝑡𝑙, 𝐶𝑡, 𝐶𝑏𝑟, 𝐶𝑏 that need special consideration provides 
the computation of ⋁𝑆 by modifying the union ⋃𝐶∈𝑆 𝐶 . We simply 
need to check for the presence of both 𝐶𝑡𝑙 and 𝐶𝑡 in 𝑆, and both 𝐶𝑏𝑟
and 𝐶𝑏 in 𝑆, and add the additional vertices to ⋃𝐶∈𝑆 𝐶 to obtain ⋁𝑆, 
as noted in Remark 6.1.

By the above, we have as an upper bound #𝕀𝑚,𝑛 ⋅ (2𝐷 −1) ⋅𝐷 ⋅𝑚 oper-
ations, giving the claimed time complexity. □

Next, we consider the case of equioriented commutative ladders 
with ∗= ss, where it has been noted in Subsection 4.5 that the ss-
compressed category is of Dynkin 𝐴𝑛-type with 𝑛 ≤ 4 (Proposition 4.26). 
So, let 𝑀 be a persistence module over the 2 × 𝑛 commutative grid, and 
let

𝑑 = max
𝑣∈
(
�⃗�2,𝑛

)
0

dim𝑀(𝑣).

In particular 𝑀 ∈ rep �⃗�2,𝑛 is given as the following collection of vector 
spaces and linear maps

𝑀(2,1) 𝑀(2,2) ⋯ 𝑀(2, 𝑛)

𝑀(1,1) 𝑀(1,2) ⋯ 𝑀(1, 𝑛)

𝑀((2,1)→(2,2)) 𝑀((2,1)→(2,3)) 𝑀((2,𝑛−1)→(2,𝑛))

𝑀((1,1)→(1,2))
𝑀((1,1)→(2,1))

𝑀((1,2)→(1,3))
𝑀((1,2)→(2,2))

𝑀((1,𝑛−1)→(1,𝑛))
𝑀((1,𝑛)→(2,𝑛))

such that

𝑀(2, 𝑗) 𝑀(2, 𝑗 + 1)

𝑀(1, 𝑗) 𝑀(1, 𝑗 + 1)

𝑀((2,𝑗)→(2,𝑗+1))

𝑀((1,𝑗)→(1,𝑗+1))
𝑀((1,𝑗)→(2,𝑗)) 𝑀((1,𝑗+1)→(2,𝑗+1))

commutes for all 𝑗 ∈ {1, 2, … , 𝑛 − 1}. For (𝑥, 𝑦), (𝑖, 𝑗) distinct vertices of 
�⃗�2,𝑛 such that 𝑥 ≤ 𝑖 and 𝑦 ≤ 𝑗 (that is, there exists a path from (𝑥, 𝑦) to 
(𝑖, 𝑗) in �⃗�2,𝑛), 𝑀((𝑥, 𝑦) → (𝑖, 𝑗)) is the composition 𝑀(𝑝) =𝑀(𝛼𝓁) ⋯ 𝑀(𝛼1)
where 𝑝 = (𝛼𝑙, … , 𝛼𝓁) is a path from (𝑥, 𝑦) to (𝑖, 𝑗) in �⃗�2,𝑛. Note that by 
the commutativity relations, the composition does not depend on the 
path chosen.

In Algorithm 3, we specialize Algorithm 1 to this setting and 
add more details. In particular, we precompute all the compositions 
𝑀((𝑥, 𝑦) → (𝑖, 𝑗)) (as each will be used at some point in the algorithm, 
anyway), and explicitly write down formulae for 𝑑𝑀 ′ (𝐼 ′) using ranks of 
certain matrices.

Algorithm 3 ss-compressed multiplicity (2 × 𝑛 case).
1: function SSCOMPRESSEDMULTIPLICITYTWOBYN(𝑀)
2: Initialize the function 𝑑ss

𝑀
on 𝕀2,𝑛 to zero

3: Compute 𝑀((𝑥, 𝑦) → (𝑖, 𝑗)) for all (𝑥, 𝑦) ≠ (𝑖, 𝑗) with a path from (𝑥, 𝑦) to (𝑖, 𝑗)
4: for 𝐼 ∈ 𝕀2,𝑛 do

5: Compute 𝑑𝑀 ′ (𝐼 ′) using the formula in Proposition 6.4,
where 𝑀 ′ = Compss

𝐼
(𝑀) and 𝐼 ′ = Compss

𝐼
(𝑉𝐼 ).

6: 𝑑ss
𝑀
(𝐼) ← 𝑑𝑀 ′ (𝐼 ′)

7: end for

8: return 𝑑ss
𝑀

9: end function

Proposition 6.4. Let 𝑀 ∈ rep𝐾�⃗�2,𝑛, 𝐼 ∈ 𝕀2,𝑛 and let 𝑀 ′ = Compss
𝐼 (𝑀)

and 𝐼 ′ = Compss
𝐼 (𝑉𝐼 ) be their respective compressed representations of 𝐼 ss. 
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Below, we use the convention that the symbols 𝑠1 and 𝑡1 stand for vertices 
on row 1 (i.e. have coordinates (1, ?)), and that 𝑠2 and 𝑡2 stand for vertices 
on row 2 (i.e. have coordinates (2, ?)).

Then 𝐼 is in one of the following four cases, and the value of the com-

pressed multiplicity 𝑑ss
𝑀
(𝐼) = 𝑑𝑀 ′ (𝐼 ′) is given by the respective formula.

∙ If 𝐼 is a rectangle with source 𝑠 and sink 𝑡 then

𝑑𝑀 ′ (𝐼 ′) = rank𝑀(𝑠→ 𝑡)

∙ If 𝐼 has sources 𝑠1, 𝑠2 and sink 𝑡2 then

𝑑𝑀 ′ (𝐼 ′) = rank𝑀(𝑠2 → 𝑡2) + rank𝑀(𝑠1 → 𝑡2)

− rank
[
𝑀(𝑠2 → 𝑡2) 𝑀(𝑠1 → 𝑡2)

]
∙ If 𝐼 has source 𝑠1 and sinks 𝑡1, 𝑡2 then

𝑑𝑀 ′ (𝐼 ′) = rank𝑀(𝑠1 → 𝑡2) + rank𝑀(𝑠1 → 𝑡1) − rank
[
𝑀(𝑠1 → 𝑡2)
𝑀(𝑠1 → 𝑡1)

]
∙ If 𝐼 has sources 𝑠1, 𝑠2 and sinks 𝑡1, 𝑡2 then

𝑑𝑀 ′ (𝐼 ′) = rank
[
𝑀(𝑠2 → 𝑡2) 𝑀(𝑠1 → 𝑡2)

0 𝑀(𝑠1 → 𝑡1)

]
+ rank𝑀(𝑠1 → 𝑡2)

− rank
[
𝑀(𝑠1 → 𝑡2)
𝑀(𝑠1 → 𝑡1)

]
− rank

[
𝑀(𝑠2 → 𝑡2) 𝑀(𝑠1 → 𝑡2)

]
Proof. Each element 𝐼 of 𝕀2,𝑛 has a staircase form, which is denoted by:

𝐼 =
𝑘⨆
𝑖=𝑗

[𝑏𝑖, 𝑑𝑖]𝑖

for some integers 1 ≤ 𝑗 ≤ 𝑘 ≤ 2 and some integers 1 ≤ 𝑏𝑖 ≤ 𝑑𝑖 ≤ 𝑛 for each 
𝑗 ≤ 𝑖 ≤ 𝑘 such that 𝑏𝑖+1 ≤ 𝑏𝑖 ≤ 𝑑𝑖+1 ≤ 𝑑𝑖 for any 𝑖 ∈ {𝑗, … , 𝑘 − 1}.

The two cases given by

∙ 𝑗 = 𝑘, or
∙ 𝑏1 = 𝑏2 and 𝑑1 = 𝑑2

correspond to 𝐼 being a rectangle (with source 𝑠 = (𝑗, 𝑏𝑗 ) and sink 
𝑡 = (𝑗, 𝑑𝑗 ), or source 𝑠 = (1, 𝑏1) and sink 𝑡 = (2, 𝑑2), respectively). Here, 
Proposition 4.16 gives the formula for the compressed multiplicity.

Thus, we are left with the cases that 1 = 𝑗 < 𝑘 = 2, and that 𝑏1 ≠ 𝑏2
or 𝑑1 ≠ 𝑑2. By the general restriction that 𝑏2 ≤ 𝑏1 ≤ 𝑑2 ≤ 𝑑1, we have the 
following three cases

∙ 𝑏2 < 𝑏1 ≤ 𝑑2 = 𝑑1. This corresponds to the case that 𝐼 has sources 
𝑠1 = (1, 𝑏1), 𝑠2 = (2, 𝑏2) and sink 𝑡2 = (2, 𝑑2), as illustrated below:

with 𝐼 ss ∶ 𝑠1 𝑡2 𝑠2 emphasized. Then, the compressed repre-
sentations are given by

𝐼 ′ ∶ 𝐾 𝐾 𝐾
1 1

and

𝑀 ′ ∶ 𝑀(𝑠1) 𝑀(𝑡2) 𝑀(𝑠2)
𝑀(𝑠1→𝑡2) 𝑀(𝑠2→𝑡2).

We note that 𝐼 ′ is injective with socle given by

soc𝐼 ′ ∶ 0 𝐾 0.0 0

Using [4, Theorem 3], we have

𝑑𝑀 ′ (𝐼 ′) = dimHom(𝐼 ′,𝑀 ′) − dimHom(𝐼 ′∕ soc𝐼 ′,𝑀 ′).
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A homomorphism 𝐼 ′ →𝑀 ′ is given by triples (𝑥, 𝑦, 𝑧) such that

𝐾 𝐾 𝐾

𝑀(𝑠1) 𝑀(𝑡2) 𝑀(𝑠2)

1

𝑥 𝑦

1

𝑧

𝑀(𝑠1→𝑡2) 𝑀(𝑠2→𝑡2)

commutes. That is, 𝑦 =𝑀(𝑠2 → 𝑡2)𝑧 =𝑀(𝑠1 → 𝑡2)𝑥. In other words, 
the homomorphism space Hom(𝐼 ′, 𝑀 ′) is given by solutions to[
𝑀(𝑠2 → 𝑡2) 𝑀(𝑠1 → 𝑡2)

] [ 𝑧
−𝑥

]
= 0

(with 𝑦 fully determined by 𝑥), which has dimension equal to

dim𝑀(𝑠2) + dim𝑀(𝑠1) − rank
[
𝑀(𝑠2 → 𝑡2) 𝑀(𝑠1 → 𝑡2)

]
.

On the other hand, a homomorphism 𝐼 ′∕ soc𝐼 ′ →𝑀 ′ is given by 
triples (𝑥, 0, 𝑧) such that

𝐾 0 𝐾

𝑀(𝑠1) 𝑀(𝑡2) 𝑀(𝑠2)

0

𝑥 0

0

𝑧

𝑀(𝑠1→𝑡2) 𝑀(𝑠2→𝑡2)

commutes. Thus

dimHom(𝐼 ′∕ soc𝐼 ′,𝑀 ′) =
(
dim𝑀(𝑠1) − rank𝑀(𝑠1 → 𝑡2)

)
+
(
dim𝑀(𝑠2) − rank𝑀(𝑠2 → 𝑡2)

)
.

Combining the above formulas yields the claimed formula for 
𝑑𝑀 ′ (𝐼 ′).

∙ 𝑏2 = 𝑏1 ≤ 𝑑2 < 𝑑1. This corresponds to the case that 𝐼 has source 
𝑠1 = (1, 𝑏1) and sinks 𝑡1 = (1, 𝑑1), 𝑡2 = (2, 𝑑2) as illustrated below:

The proof for the formula of 𝑑𝑀 ′ (𝐼 ′) in this case is dual to the pre-
vious case.

∙ 𝑏2 < 𝑏1 ≤ 𝑑2 < 𝑑1. This corresponds to the case that 𝐼 has sources 
𝑠1 = (1, 𝑏1), 𝑠2 = (2, 𝑏2) and sinks 𝑡1 = (1, 𝑑1), 𝑡2 = (2, 𝑑2) as illustrated 
below:

Then, the compressed representations are given by

𝐼 ′ ∶ 𝐾 𝐾 𝐾 𝐾
1 1 1

and

𝑀 ′ ∶ 𝑀(𝑠2) 𝑀(𝑡2) 𝑀(𝑠1) 𝑀(𝑡1).
𝑀(𝑠2→𝑡2) 𝑀(𝑠1→𝑡2) 𝑀(𝑠1→𝑡1)

The almost split sequence starting from 𝐼 ′ is given by

0 𝐼 ′ 𝐵 𝐶 0

where

𝐵 ∶ 𝐾 𝐾 𝐾2 𝐾
1

[
1 0

] [
0 1

]

and

𝐶 ∶ 0 0 𝐾 00 0 0
.

Using [4, Theorem 3], we have

𝑑𝑀 ′ (𝐼 ′) = dimHom(𝐼 ′,𝑀 ′)−dimHom(𝐵,𝑀 ′)+dimHom(𝐶,𝑀 ′). (6.1)
19
For (𝑥, 𝑦, 𝑧, 𝑤) ∈Hom(𝐼 ′, 𝑀 ′), the commutativity of

𝐾 𝐾 𝐾 𝐾

𝑀(𝑠2) 𝑀(𝑡2) 𝑀(𝑠1) 𝑀(𝑡1)

1

𝑥 𝑦 𝑧

1 1

𝑤

𝑀(𝑠2→𝑡2) 𝑀(𝑠1→𝑡2) 𝑀(𝑠1→𝑡1)

is equivalent to

𝑀(𝑠2 → 𝑡2)𝑥 = 𝑦 =𝑀(𝑠1 → 𝑡2)𝑧 and 𝑤 =𝑀(𝑠1 → 𝑡1)𝑧.

Then, each homomorphism is uniquely determined by a solution of

[
𝑀(𝑠2 → 𝑡2) 𝑀(𝑠1 → 𝑡2)

] [ 𝑥
−𝑧

]
= 0.

Thus,

dimHom(𝐼 ′,𝑀 ′) = dim𝑀(𝑠2) + dim𝑀(𝑠1)

− rank
[
𝑀(𝑠2 → 𝑡2) 𝑀(𝑠1 → 𝑡2)

]
.

(6.2)

Next, for (𝑥, 𝑦, 𝑧, 𝑤) ∈Hom(𝐵, 𝑀 ′), the commutativity of

𝐾 𝐾 𝐾2 𝐾

𝑀(𝑠2) 𝑀(𝑡2) 𝑀(𝑠1) 𝑀(𝑡1)

1

𝑥 𝑦

[
1 0

] [
0 1

]
[
𝑧1 𝑧2

]
𝑤

𝑀(𝑠2→𝑡2) 𝑀(𝑠1→𝑡2) 𝑀(𝑠1→𝑡1)

is equivalent to

𝑀(𝑠2 → 𝑡2)𝑥 = 𝑦

𝑀(𝑠1 → 𝑡2)𝑧1 = 𝑦

𝑀(𝑠1 → 𝑡2)𝑧2 = 0

𝑀(𝑠1 → 𝑡1)𝑧1 = 0

𝑀(𝑠1 → 𝑡1)𝑧2 =𝑤.

Rewriting the above, we get that each homomorphism is uniquely 
determined by a solution to[
𝑀(𝑠2 → 𝑡2) 𝑀(𝑠1 → 𝑡2)

0 𝑀(𝑠1 → 𝑡1)

][
𝑥

−𝑧1

]
= 0 and 𝑀(𝑠1 → 𝑡2)𝑧2 = 0

with 𝑦 and 𝑤 determined from 𝑥 and 𝑧2, respectively. Thus,

dimHom(𝐵,𝑀 ′) = dim𝑀(𝑠2) + dim𝑀(𝑠1)

− rank
[
𝑀(𝑠2 → 𝑡2) 𝑀(𝑠1 → 𝑡2)

0 𝑀(𝑠1 → 𝑡1)

]
+ dim𝑀(𝑠1) − rank𝑀(𝑠1 → 𝑡2)

(6.3)

Finally, it is clear that

dimHom(𝐶,𝑀 ′) = dim
(
ker𝑀(𝑠1 → 𝑡1) ∩ ker𝑀(𝑠1 → 𝑡2)

)
= dimker

[
𝑀(𝑠1 → 𝑡1)
𝑀(𝑠1 → 𝑡2)

]
= dim𝑀(𝑠1) − rank

[
𝑀(𝑠1 → 𝑡1)
𝑀(𝑠1 → 𝑡2)

]
.

(6.4)

Substituting Equations (6.2), (6.3), (6.4) into Equation (6.1)
gives the claimed formula. □

Let 𝜔 < 2.373 be the matrix multiplication exponent [20,42].

Theorem 6.5 (Compressed multiplicity (2 × 𝑛 case)). For 𝑀 a persistence 
module over �⃗�2,𝑛, Algorithm 3 computes 𝑑ss

𝑀
with time complexity

𝑂
( 2𝜔 + 5

24
𝑛4𝑑𝜔

)
.

where 𝑑 =max
𝑣∈
(
�⃗�2,𝑛

) dim𝑀(𝑣).

0
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Proof. First, let us analyze Line 3 of Algorithm 3, which computes 
𝑀((𝑥, 𝑦) → (𝑖, 𝑗)) =𝑀(𝑝) for (𝑥, 𝑦) ≠ (𝑖, 𝑗) with a path 𝑝 from (𝑥, 𝑦) to (𝑖, 𝑗). 
The value of 𝑀(𝑝) for paths 𝑝 with length equal to 1 (arrows) are al-
ready known. Assume that the values of 𝑀(𝑝) for all paths of length 𝓁
are already computed. Then, the value of 𝑀(𝑝) for each path 𝑝 of length 
𝓁 + 1 can be computed by one matrix multiplication each. We note fur-
ther that 𝑀((𝑥, 𝑦) → (𝑖, 𝑗)) =𝑀(𝑝) does not depend on which particular 
path 𝑝 is taken from (𝑥, 𝑦) to (𝑖, 𝑗). Thus, we can inductively compute 
the value of 𝑀((𝑥, 𝑦) → (𝑖, 𝑗)) using one matrix multiplication for each 
pair of vertices (𝑥, 𝑦), (𝑖, 𝑗) such that (𝑥, 𝑦) ≠ (𝑖, 𝑗) and there is a path of 
length greater than 1 from (𝑥, 𝑦) to (𝑖, 𝑗). Since there are

3
2
(𝑛+ 1)𝑛− 2𝑛− (3𝑛− 2) =𝑂

(3
2
𝑛2
)

such pairs of vertices (𝑥, 𝑦) ≠ (𝑖, 𝑗) in the 2 × 𝑛 commutative grid by a 
simple combinatorial argument, Line 3 of Algorithm 3 can be performed 
in 𝑂( 32𝑛

2𝑑𝜔).
Next, we analyze Lines 4 to 7 of Algorithm 3. By [1, Corollary 4.12], 

there are

#𝕀2,𝑛 =
1
24
𝑛(𝑛+ 1)(𝑛2 + 5𝑛+ 30) =𝑂

( 1
24
𝑛4
)

intervals 𝐼 to process. For each interval 𝐼 , the computation of 𝑑𝑀 ′ (𝐼 ′)
using Proposition 6.4 involves computing the rank of a 2𝑑×2𝑑, a 2𝑑×𝑑, 
a 𝑑 × 2𝑑, and a 𝑑 × 𝑑 matrix in the worst case. Note that the rank of an 
𝑒 × 𝑓 matrix (𝑒 ≤ 𝑓 ) can be computed with 𝑂(𝑓𝑒𝜔−1) field operations by 
Gaussian elimination [27]. Thus, we get a cost of 𝑂((2𝜔𝑑𝜔 + 5𝑑𝜔) 1

24 𝑛
4)

for the computation of 𝑑𝑀 ′ (𝐼 ′).
Overall, we get a cost of 𝑂( 32𝑛

2𝑑𝜔 + 2𝜔+5
24 𝑛4𝑑𝜔) dominated by the 

latter term, giving the result. □

For 𝐼 ∈ 𝕀2,𝑛, as shown in Example 3.3, # Cov(𝐼) ≤ 4. Thus, we get the 
following.

Corollary 6.6 (Möbius inversion 𝛿∗
𝑀

(2 × 𝑛 case)). With 𝑚 = 2, Algorithm 2

(Möbius inversion 𝛿∗
𝑀

of 𝑑∗
𝑀

) can be performed with time complexity

𝑂
( 16
3
𝑛4
)
.

Proof. Substituting 𝑚 = 2, 𝐶 = 4, and #𝕀2,𝑛 =𝑂
(

1
24 𝑛

4
)

into

𝑂(#𝕀𝑚,𝑛2𝐶𝐶min{𝑚,𝑛})

from Theorem 6.3, we get the result. □

Combining Theorem 6.5 and Corollary 6.6 with ∗= ss, we get an 
overall cost of

𝑂
( 2𝜔 + 5

24
𝑛4𝑑𝜔 + 16

3
𝑛4
)

for computing the interval-decomposable replacement 𝛿ss(𝑀) of 𝑀 in 
the 2 × 𝑛 case.

Implementation As part of the software “pmgap” [24], we provide an 
implementation of Algorithms 3 and 2 in the 2 × 𝑛 case. The software 
“pmgap” builds upon the GAP [41] package QPA [40], which provides 
data structures and algorithms for computations on (quotients of) path 
algebras and their representations. The software “pmgap” uses those 
data structures to represent equioriented commutative grids and persis-
tence modules over them, and implements the algorithms of this paper 
not in QPA.

Randomly generated persistence modules For the computational experi-
ments below, given values for 𝑛 and 𝑑 we randomly generate persistence 
modules 𝑉 (with 𝔽2 coefficients) over the commutative grid �⃗�2,𝑛, such 
that all the vector spaces of 𝑉 have dimension 𝑑.
20
Table 2

Runtimes (in ms) for the interval-decomposable replacement using pmgap.

𝑛

𝑑
100 200 400 800

4 11.88 34.40 112.40 471.80
8 131.20 328.20 1,152.80 5,115.60
16 1,881.40 4,415.80 14,918.80 67,171.60

* Runtimes are measured as an average of at least five runs.
* Runtimes do not include time needed for generating the underlying path al-
gebra, list of interval representations, and the persistence modules.

Below, whenever we say to randomly generate a 𝑗 × 𝑘 𝔽2-matrix 𝑀 , 
we simply generate a matrix with entries independently and uniformly 
sampled from 𝔽2. If required, it is also possible to randomly choose a 
valid rank and then generate a random matrix with that rank. However, 
this comes at the cost of more computation time to generate the random 
matrices.

We use the following procedure to randomly generate the persis-
tence module 𝑉 . First, we randomly generate 𝑑 ×𝑑 𝔽2-matrices for each 
of the solid arrows below:

∙ ∙ ⋯ ∙ ∙

◦ ◦ ⋯ ◦ ∙.
Then, for each square from right to left, we iteratively compute pull-
backs (to guarantee commutativity) and multiply with another random 
matrix (to reach the correct dimension 𝑑 and to add more randomness). 
That is, given 𝑑 × 𝑑 matrices representing the linear maps 𝑓 and 𝑔 as 
below:

𝔽 𝑑2 𝔽 𝑑2

𝔽 𝑘2 𝔽 𝑑2

𝔽 𝑑2

𝑓

𝜙1

𝜙2

𝑔

𝜙3

𝜙1𝜙3

𝜙2𝜙3

,

we compute (matrices with respect to some basis of) the pullback maps 
(𝜙1, 𝜙2). Then, we randomly generate a 𝑘 × 𝑑 matrix representing 𝜙3, 
and obtain the commutative diagram

𝔽 𝑑2 𝔽 𝑑2

𝔽 𝑑2 𝔽 𝑑2 .

𝑓

𝜙1𝜙3

𝜙2𝜙3

𝑔

It is clear that a persistence module 𝑉 over �⃗�2,𝑛 is obtained by the 
above.

Computational experiments We measure the time needed to compute 
the interval-decomposable replacement using pmgap for some small 
values of 𝑛 and 𝑑. Computations were performed on Ubuntu 20.04.2 LTS 
running in WSL1 inside a Windows 10 Pro machine with an AMD Ryzen 
5 5600X 6-Core10 Processor. In Table 2, we display the resulting run-
times in milliseconds. Each timing (each entry in the table) is measured 
as the average of at least five runs. Each run consists of the computation 
of the compressed multiplicity and interval-decomposable replacement 
of a given persistence module. Additional runs are performed as needed 
so that the total time taken exceeds 100 ms, to ensure reliable measure-
ment of runtimes; this is only needed for the smaller values of 𝑛 and 𝑑. 
Note that we exclude the time taken for generating the underlying path 
algebra, list of interval representations, and the persistence modules 𝑉 .

10 Note that the current implementation does not take advantage of multiple 
cores or threads.
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Table 3

Runtimes (in ms) in pmgap.
operation 𝒏

algebra
and

its intervals

4 31.0
8 562.0
16 16,578.0

𝒅 100.0 200.0 400.0 800.0
operation 𝒏

random
persistence

module

4 46.0 171.0 640.0 2594.0
8 94.0 375.0 1,422.0 5,516.0
16 219.0 781.0 3,047.0 12,609.0

interval-
decomposable
replacement

4 15.0 31.0 109.0 484.0
8 125.0 328.0 1,156.0 5,141.0
16 1,828.0 4,422.0 14,953.0 67,218.0

For completeness, we also time the following operations: genera-
tion of the underlying path algebra and its list of interval representa-
tions, generation of a random persistence module, computation of the 
interval-decomposable replacement. The results (of just one run each) 
are displayed in Table 3. Note that the underlying path algebra and its 
list of interval representations do not depend on the dimension 𝑑. Thus, 
we time that operation only once for each 𝑛.

Demonstrations The pmgap repository [24] contains demonstrations 
for these computations.

We also provide a browser-based implementation [35] demonstrat-
ing the computation of interval-decomposable replacement of randomly 
generated persistence modules. Note that the browser-based demo [35]
was developed separately of pmgap, and does not rely on the installa-
tion of pmgap.
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