
Kobe University Repository : Kernel

PDF issue: 2025-04-28

On approximation of 2D persistence modules by
interval-decomposables

(Citation)
Journal of Computational Algebra,6–7:100007

(Issue Date)
2023-09-04

(Resource Type)
journal article

(Version)
Version of Record

(Rights)
© 2023 The Author(s).
Creative Commons Attribution 4.0 International

(URL)
https://hdl.handle.net/20.500.14094/0100491594

Asashiba, Hideto
Escolar, G. Emerson
Nakashima, Ken
Yoshiwaki, Michio

Journal of Computational Algebra 6–7 (2023) 100007

Contents lists available at ScienceDirect

Journal of Computational Algebra

journal homepage: www.elsevier.com/locate/jaca

On approximation of 2D persistence modules by interval-decomposables ✩

Hideto Asashiba a,b,c, Emerson G. Escolar d,∗, Ken Nakashima e, Michio Yoshiwaki c

a Faculty of Science, Shizuoka University, Japan
b Institute for Advanced Study, Kyoto University, Japan
c Osaka Central Advanced Mathematical Institute, Osaka, Japan
d Graduate School of Human Development and Environment, Kobe University, Japan
e Faculty of Materials for Energy, Shimane University, Japan

A R T I C L E I N F O A B S T R A C T

MSC:

16G20
55N31

Keywords:

Representation theory
Multidimensional persistence
Intervals

In this work, we propose a new invariant for 2D persistence modules called the compressed multiplicity and show
that it generalizes the notions of the dimension vector and the rank invariant. In addition, for a 2D persistence
module 𝑀 , we propose an “interval-decomposable replacement” 𝛿∗(𝑀) (in the split Grothendieck group of the
category of persistence modules), which is expressed by a pair of interval-decomposable modules, that is, its
positive and negative parts. We show that 𝑀 is interval-decomposable if and only if 𝛿∗(𝑀) is equal to 𝑀 in
the split Grothendieck group. Furthermore, even for modules 𝑀 not necessarily interval-decomposable, 𝛿∗(𝑀)
preserves the dimension vector and the rank invariant of 𝑀 . In addition, we provide an algorithm to compute
𝛿∗(𝑀) (a high-level algorithm in the general case, and a detailed algorithm for the size 2 × 𝑛 case).
1. Introduction

Persistent homology [23,21] is one of the main tools in the rapidly
growing field of topological data analysis. Given a filtration – a one-
parameter increasing sequence of spaces – persistent homology captures
the persistence of topological features such as connected components,
holes, voids, etc. in the filtration. Here, the persistence of features
is quantified by birth and death parameter values. This can be sum-
marized compactly by the so-called persistence diagram, which is the
multiset of birth-death pairs drawn on the plane with multiplicity.

Algebraically, the persistence diagram can be explained as resulting
from a structure theorem (the Krull-Schmidt theorem (Theorem 2.2)
and Gabriel’s Theorem [26]) of persistence modules, which can also
be regarded as representations of certain quivers. We however note
that early definitions of persistence diagrams and related ideas used

✩ This work is partially supported by Japan Science and Technology Agency CREST Mathematics (15656429). H.A. is supported by JSPS Grant-in-Aid for Scientific
Research (C) 18K03207, and JSPS Grant-in-Aid for Transformative Research Areas (A) (22A201). E.G.E. is supported by JSPS Grant-in-Aid for Transformative
Research Areas (A) (22H05105). K.N. is supported by JSPS Grant-in-Aid for Transformative Research Areas (A) (20H05884). M.Y. is supported by JSPS Grant-in-Aid
for Scientific Research (C) (20K03760). H.A. and M.Y. are partially supported by Osaka Central Advanced Mathematical Institute (MEXT Joint Usage/Research
Center on Mathematics and Theoretical Physics JPMXP0619217849 and MEXT Promotion of Distinctive Joint Research Center Program JPMXP0723833165). A part
of this work was performed while E.G.E., K.N., and M.Y. were affiliated with Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan.

* Corresponding author.
E-mail addresses: asashiba.hideto@shizuoka.ac.jp (H. Asashiba), e.g.escolar@people.kobe-u.ac.jp (E.G. Escolar), knakashima@mat.shimane-u.ac.jp

(K. Nakashima), yosiwaki@sci.osaka-cu.ac.jp, michio.yoshiwaki@omu.ac.jp (M. Yoshiwaki).
1 We do not provide a historical review here. Since we highlight in the next paragraph the algebraic difficulties of its generalization, multidimensional persistence,

we have adopted this algebraic explanation here.

an inclusion-exclusion formula instead of this algebraic point of view.
See for example [31], [25], [37], [16], [14] and others1. See Section 2

for detailed definitions.

One way to deal with multiparametric data is to use multidi-

mensional persistence [17]. However, multidimensional persistence
presents theoretical difficulties that hinder the construction of a per-

sistence diagram as in one-dimensional persistence. In this work, for
simplicity, we restrict our attention to the two-parameter case, and
consider 2D persistence modules. We thus study representations of the
equioriented 𝑚 × 𝑛 commutative grid 𝐺⃗𝑚,𝑛 (a finite portion of the 2D
grid ℤ2). Even the 2D case is sufficiently difficult. In particular, there is
no complete discrete invariant that captures all isomorphism classes of
indecomposable persistence modules [17]. Another way of expressing
this difficulty is that the grid 𝐺⃗𝑚,𝑛 of sufficiently large size (𝑚, 𝑛 ≥ 2 and
https://doi.org/10.1016/j.jaca.2023.100007
Received 22 June 2022; Received in revised form 16 August 2023; Accepted 16 Aug

2772-8277/© 2023 The Author(s). Published by Elsevier B.V. This is an open access
ust 2023

article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.jaca.2023.100007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jaca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jaca.2023.100007&domain=pdf
mailto:asashiba.hideto@shizuoka.ac.jp
mailto:e.g.escolar@people.kobe-u.ac.jp
mailto:knakashima@mat.shimane-u.ac.jp
mailto:yosiwaki@sci.osaka-cu.ac.jp
mailto:michio.yoshiwaki@omu.ac.jp
https://doi.org/10.1016/j.jaca.2023.100007
http://creativecommons.org/licenses/by/4.0/

H. Asashiba, E.G. Escolar, K. Nakashima et al. Journal of Computational Algebra 6–7 (2023) 100007
𝑚𝑛 ≥ 12, see [9, Theorem 1.3], [30, Theorem 2.5], [33, Theorem 5]) is
of wild representation type.

One way to avoid this problem is to consider only a restricted class
of persistence modules. Inspired by 1D persistence, there has been
much interest in the so-called interval-decomposable representations,
which are direct sums of interval representations (Definition 2.7). The
work [1] studied this family of representations and provided a criterion
to determine whether or not a given persistence module is interval-
decomposable.

It is hoped that most persistence modules coming from “real-world
data” contain very few or indeed no non-interval summands. Let us con-
sider the silica glass example computed in [22], which compares the
atomic configuration of silica glass with its configuration after physical
pressurization. The underlying bound quiver is the commutative ladder
𝐶𝐿3(𝑓𝑏), with only two non-interval indecomposable representations
given by dimension vectors

(
1 1 1
1 2 1

)
and

(
1 2 1
0 1 0

)
. Then, the numerical re-

sult in [22] has
(
1 1 1
1 2 1

)
appearing with only multiplicity 1 and

(
1 2 1
0 1 0

)
with multiplicity 0, in an example with more than ten thousand in-
decomposable summands. While in the slightly different setting of a
non-equioriented commutative ladder, this provides an example where
the non-interval part is minute compared to the interval-decomposable
part.

On the other hand, the work [10] argues via a geometric example
that the non-interval indecomposables may contain important infor-
mation that should not be ignored, and that even in relatively simple
geometric point clouds embedded in ℝ3, indecomposable summands
with arbitrarily large dimension (as a vector space) may be present.
These large indecomposable summands are clearly not intervals.

In this work, we take neither position, but instead propose a method
to replace an arbitrary persistence module 𝑀 ∈ rep 𝐺⃗𝑚,𝑛 by an object
𝛿∗(𝑀) in the split Grothendieck group that is interval-decomposable.
The interval-decomposable replacement (or interval-decomposable approx-

imation)2 𝛿∗(𝑀) (Definition 5.9) is expressed by a pair of interval-
decomposable modules, that is, its positive part 𝛿∗(𝑀)+ and negative
part 𝛿∗(𝑀)− (see (5.5)).

To construct 𝛿∗(𝑀), we first define what we call the compressed mul-

tiplicity (Definition 4.12) of 𝑀 by a compression operation that picks
up information in 𝑀 restricted to certain essential vertices of intervals.

The intuition behind the compressed multiplicity can be explained
as follows. As an initial goal, we want to compute the multiplicity of an
interval 𝐼 as a direct summand of 𝑀 . Indeed, the work [1] presents an
algorithm for this computation. However, as this may not be straight-
forward, in this work we adopt a different approach. We first compress
both 𝑀 and 𝐼 by restricting the underlying domain to certain essen-
tial vertices of 𝐼 , and compute the multiplicity in the representation
category with smaller underlying domain.

In the equioriented commutative ladder [22] case (𝐺⃗2,𝑛), the
compression operation reduces the underlying bound quiver to a
representation-finite bound quiver. This enables easy computation of
the compressed multiplicity using preexisting algorithms.

We show that the compressed multiplicity in fact generalizes the
notions of dimension vector (Proposition 4.18) and rank invariant
(Proposition 4.16). Furthermore, we exhibit representations that can
be distinguished by their compressed multiplicities but not by their
rank invariants. We thus propose the compressed multiplicity as a new,
finer invariant for 2D persistence modules. Moreover, we show that for

2 In an earlier version of this work we called 𝛿∗(𝑀) an “interval-
decomposable approximation” of 𝑀 . However, more recent works such as [7,2]
have used the term “approximation” in a relative homological sense. Thus, here,
we have opted to mainly use the term “replacement” to avoid confusion, and
also because it more closely describes how we think of 𝛿∗(𝑀) relative to 𝑀 . In
the end of subsection 1.1 we provide some references to the point of view from
relative homological algebra.
2

interval-decomposable representations, the multiplicity can be recov-
ered from the compressed multiplicity (Theorem 4.23).

Then, the object 𝛿∗(𝑀) is defined using the Möbius inversion of
the compressed multiplicity of 𝑀 . This is a generalization of the well-
known fact that the multiplicities of interval summands in 1D persis-
tence modules can be obtained via an application of inclusion-exclusion
on the ranks of the linear maps. In fact, early works around ideas re-
lated to persistence diagrams used this as the definition. See for example
[31], [25], [37], [16], [21], [12], and others.

That is, the persistence diagram is simply the Möbius inversion of
the rank invariant. We note that several works have already exploited
this observation to define “generalized persistence diagrams” in general
settings. In Subsection 1.1, we review some of them and contrast them
with our work.

In the case that 𝑀 is interval-decomposable, it follows that 𝛿∗(𝑀) is
equal to 𝑀 viewed as an element [[𝑀]] of the split Grothendieck group
(Theorem 5.10); that is, 𝛿∗(𝑀)+ ≅𝑀 and 𝛿∗(𝑀)− = 0. Furthermore, we
show that even for modules 𝑀 not necessarily interval-decomposable,
𝛿∗(𝑀) preserves the dimension vector and the rank invariant of 𝑀
(Corollary 5.14, Theorem 5.12). In this sense, we think of 𝛿∗(𝑀) as
an interval-decomposable “replacement” for 𝑀 .

We organize this work as follows. In Section 2, we review the nec-
essary background from representation theory of bound quivers and
poset theory,3 and then, in Section 3, we study the poset of interval
representations. In Section 4, we introduce our concept of compressed
multiplicities and study its properties. In Section 5, we give the con-
struction of 𝛿∗(𝑀) from 𝑀 via Möbius inversion of the compressed
multiplicity and give some results about its properties. In Section 6, we
discuss the computation of our proposed compressed multiplicity and
the interval-decomposable replacement.

1.1. Related literature

The prior work of Patel [36] used the idea of Möbius inversion in
order to define generalized persistence diagrams, but only in the setting
of persistence modules over (ℝ, ≤) [36, Definition 2.1]. Then, the work
[34] defines a concept of a persistence diagram for a filtered simplicial
complex over any finite metric lattice 𝑃 , by using a Möbius inversion.
Furthermore, they show a stability theorem with respect to the edit
distance for filtrations of a fixed simplicial complex, and the bottle-
neck distance for persistence diagrams. In that work, the domain of the
persistence diagrams is 𝑃 , which is the set of what we call the seg-
ments [𝑥, 𝑦] = {𝑧 ∈ 𝑃 ∣ 𝑥 ≤ 𝑧 ≤ 𝑦} of 𝑃 . Applied to the commutative grid
𝑃 = 𝐺⃗𝑚,𝑛 (viewed as a poset), we get a persistence diagram descriptor
over the rectangles in 𝐺⃗𝑚,𝑛, different from our descriptor over what we
call intervals (Definition 2.4) of 𝐺⃗𝑚,𝑛. We also note that the poset struc-
ture for 𝑃 considered in [34] is different from the poset structure we
give the set of intervals of 𝐺⃗𝑚,𝑛.

Our work can be compared with the following prior work of Kim
and Memoli [28], which we were made aware of by a reviewer after an
initial version of this work was sent for review. In Table 1, we provide a
rough overview of the different settings and a correspondence of some
of the results, which we explain in detail below.

While Kim and Memoli [28] consider a very general setting, we re-
strict our attention to 𝐾-representations of the commutative grid 𝐺⃗𝑚,𝑛
(see rows (1) and (2) of Table 1). Since 𝐺⃗𝑚,𝑛 can be viewed as a poset

3 In the persistence literature, there are at least two ways to consider mul-
tidimensional persistence modules: as representations of certain posets, or as
representations of certain bound quivers. These are equivalent for the cases we
are interested in. See Subsection 2.3 for a more detailed discussion. For ex-
ample, [28] uses the point of view of poset representations. In this work, we
consider persistence modules as representations of bound quivers, except when
comparing with the literature that uses poset representations. We reserve our
use of posets for the poset whose elements happen to be interval representa-
tions, and do not directly consider representations of posets.

H. Asashiba, E.G. Escolar, K. Nakashima et al. Journal of Computational Algebra 6–7 (2023) 100007

Table 1

Settings and Some Similar Results∗ .

This work Kim and Memoli [28]

(1) Underlying setting commutative grid 𝐺⃗𝑚,𝑛 poset1 𝑃

(2) Target category vect𝐾 category2 

(3) Domain of invariant 𝕀𝑚,𝑛 3 𝐂𝐨𝐧(𝑃)4

(4) Invariant proposed compressed multiplicities
𝑑∗
𝑀

∶ 𝕀𝑚,𝑛 →ℕ
generalized rank invariant5

rk(𝑀) ∶𝐂𝐨𝐧(𝑃) →  ()

(5) Inversion 𝛿∗
𝑀

∶ 𝕀𝑚,𝑛 →ℤ generalized persistence diagram
dgm𝑃 (𝑀) ∶𝐂𝐨𝐧(𝑃) →Gr()

(6) Object interval-decomposable
replacement
𝛿∗(𝑀) ∈Gr(rep 𝐺⃗𝑚,𝑛)

—6

(7) from proposed invariant
to true multiplicities
(interval-decomposable)

Theorem 4.23 [28, Theorem 3.14]

(8) from true multiplicities
to proposed invariant
(interval-decomposable)

Lemma 4.21 [28, Proposition 3.17]

(9) Interpretation as
Möbius inversion

Theorem 5.3 [28, Proposition 3.19]

∗This table is not intended to be a comprehensive summary of all results.7
1 Essentially finite connected poset.
2 Essentially small, symmetric monoidal category satisfying [28, Convention 2.3].
3 interval (connected and convex) subquivers.
4 path-connected subposets.
5 See [28, Definition 3.5]. The codomain  () is the set of isomorphism classes of .
6 Not explicitly defined. See however, [28, Remark 3.22].
7 For example, [28] contains results concerning Reeb graphs, which can be viewed as functors from the “zigzag poset” to the
category of finite sets.
𝑃 , which happens to be essentially finite and connected, their setting
contains ours. First, the domains of the proposed invariants (see row
(3) of Table 1) are different. We note that 𝐂𝐨𝐧(𝑃), the set of all path-
connected subposets is in general different from the set of all interval
subposets, and this is indeed the case for 𝑃 = 𝐺⃗𝑚,𝑛. The set 𝐂𝐨𝐧(𝑃)
contains subposets that cannot be realized as the support of some persis-
tence module. For example, viewing 𝐺⃗2,2 as a poset with Hasse diagram
(both filled and unfilled circles):

◦ ∙

∙ ∙
, (1.1)

the subposet 𝐶 given by the filled-in circles is in 𝐂𝐨𝐧(𝑃). However, this
is not an interval (Definition 2.4), and there is no thin4 indecomposable
persistence module over 𝐺⃗2,2 with support given by 𝐶 , as a commu-
tativity relation will be violated otherwise. We do note however that
subsequent works on the generalized rank invariant [18,29] have re-
stricted the domain to the set of all intervals, instead of using 𝐂𝐨𝐧(𝑃).

Furthermore, the proposed invariants (row (4) of Table 1) are dif-
ferent. We first note that both papers use of the idea of restricting the
input persistence module 𝑀 to define the respective invariants. In [28],
𝑀 is restricted to 𝐼 ∈𝐂𝐨𝐧(𝑃) to obtain 𝑀|𝐼 . In the case that 𝐼 is in fact
an interval, this corresponds to applying what we call the “total com-
pression” functor (Definition 4.11) in a more general setting.

Kim and Memoli [28] then defines the value of their generalized
rank invariant at 𝐼 ∈𝐂𝐨𝐧(𝑃) to be “the isomorphism class of the image
of the canonical limit-to-colimit map” for 𝑀𝐼 . Of course, in the case
that the target category  is vect𝐾 , the category of finite-dimensional
𝐾-vector spaces, this value can be fully characterized by the dimension
of the image. In fact, one version of our invariant, which we call the
“total compressed multiplicity”, coincides with the dimensions of their
generalized rank invariant (see Remark 4.13).

4 A persistence module is said to be thin if all of its vector spaces have dimen-
sion at most 1. For example, interval persistence modules are thin.
3

Remark 1.1. However, we emphasize that this total compressed multi-
plicity is not the main emphasis of this work. Instead, we propose the
use of the source-sink (ss-)compression yielding smaller representations
(compared to 𝑀|𝐼), by further restriction to what we call the essential
vertices of 𝐼 . We note that these do not coincide with the generalized
rank invariant of [28] for fixed 𝐼 . See Example 4.14. However, if we
allow to change the form of the “input” to generalized rank invariant
and broaden its domain of definition, we indeed recover values of our
source-sink multiplicity (see Remark 4.15).

Our interval-decomposable replacement 𝛿∗(𝑀) (and the generalized
persistence diagram dgm𝑃 (𝑀) of [28]) are signed invariants, with posi-
tive and negative parts. Many recent works, such as [11,7,13,5,2,8] and
others, are further studying signed invariants for persistence, especially
from the point of view of relative homological algebra. While our use
of the split Grothendieck group to formalize the interval-decomposable
replacement 𝛿∗(𝑀) (Definition 5.9) is related to the (relative) homolog-
ical algebra point of view, a full treatment is beyond the scope of this
manuscript. Thus, we only provide brief comments below and point the
interested reader to the literature listed above. For example, [11] stud-
ied rank decompositions of the rank invariant and their connections to
the generalized persistence diagrams and resolutions relative to a so-
called rank-exact structure. [7] develops a framework for “homological
invariants” and studies several existing invariants in this framework.
The work [13] (and [5]) provides a method for computing relative Betti
numbers. In the case of resolutions relative to interval-decomposables,
these are simply the multiplicities of each interval appearing in each
term of a minimal resolution. One of the results of our subsequent work
[2] is a connection between (a modified version of) compressed multi-
plicity and resolutions relative to the interval-decomposables (and thus
homological invariants). [8] is mostly expository, but contains some
novel results: explicit descriptions of irreducible morphisms between
relative projectives, and a way to “lift” the theory to certain infinite
posets.

H. Asashiba, E.G. Escolar, K. Nakashima et al. Journal of Computational Algebra 6–7 (2023) 100007
2. Background

2.1. Representation theory

We first recall some fundamental terminologies of representations of
quivers (see [6] for instance5).

A quiver 𝑄 is a quadruple (𝑄0, 𝑄1, 𝑠, 𝑡) of sets 𝑄0, 𝑄1 of vertices and
arrows, respectively and maps 𝑠, 𝑡 ∶ 𝑄1 → 𝑄0 that give the source and
target vertices, respectively, of the arrows. We denote an arrow 𝛼 with
source 𝑠(𝛼) = 𝑥 and target 𝑡(𝛼) = 𝑦 by 𝛼 ∶ 𝑥 → 𝑦. The opposite quiver 𝑄op

of 𝑄 is the quiver given by (𝑄0, 𝑄1, 𝑡, 𝑠), namely the quiver obtained
from 𝑄 by reversing all arrows. In this paper, all quivers 𝑄 are assumed
be finite, namely, 𝑄0 and 𝑄1 are finite.

Throughout this work, we fix a field 𝐾 . Let 𝑄 be a quiver. A repre-

sentation 𝑉 of 𝑄 (over 𝐾) is a family (𝑉 (𝑥), 𝑉 (𝛼)) of a vector space 𝑉 (𝑥)
for each vertex 𝑥 ∈ 𝑄0 and a linear map 𝑉 (𝛼) ∶ 𝑉 (𝑥) → 𝑉 (𝑦) for each
arrow 𝛼 ∶ 𝑥 → 𝑦 in 𝑄1.

The dimension vector dim(𝑉) of a representation 𝑉 of 𝑄 is defined as
the tuple

dim(𝑉) ∶= (dim𝑉 (𝑥))𝑥∈𝑄0
.

It is customary to display the dimension vector by writing each number
dim𝑉 (𝑥) relative to where the vertex 𝑥 is located on an illustration of
the quiver 𝑄. While the dimension vector does not uniquely specify the
representation 𝑉 , if it is clear from context, we also use the dimension
vector to stand for 𝑉 . The dimension of 𝑉 is dim𝑉 ∶=

∑
𝑥∈𝑄0

dim𝑉 (𝑥). A

representation 𝑉 of 𝑄 is said to be finite-dimensional if dim𝑉 <∞. In this
work, by representation we mean finite-dimensional representation.

Let 𝑉 and 𝑊 be representations of 𝑄. A morphism 𝑓 ∶ 𝑉 →𝑊 from
𝑉 to 𝑊 is a family (𝑓𝑥)𝑥∈𝑄0

of linear maps 𝑓𝑥 ∶ 𝑉 (𝑥) →𝑊 (𝑥) such that
the following diagram commutes for each arrow 𝛼 ∶ 𝑥 → 𝑦:

𝑉 (𝑥) 𝑊 (𝑥)

𝑉 (𝑦) 𝑊 (𝑦).

𝑓𝑥

𝑉 (𝛼) 𝑊 (𝛼)

𝑓𝑦

The composition of morphisms 𝑓 = (𝑓𝑥)𝑥∈𝑄0
∶ 𝑉 →𝑊 and 𝑔 = (𝑔𝑥)𝑥∈𝑄0

∶
𝑈 → 𝑉 is defined in the obvious way: 𝑓◦𝑔 ∶ 𝑈 → 𝑊 is given by
(𝑓◦𝑔)𝑥 = 𝑓𝑥◦𝑔𝑥. We denote by rep𝑄 the category of finite-dimensional
representations of 𝑄 together with these morphisms and this composi-
tion.

For each vertex 𝑖 ∈ 𝑄0, we have the path of length 0 at 𝑖, which
is denoted by 𝑒𝑖. For a given positive integer 𝑛, a path 𝜇 of length 𝑛

is a sequence 𝛼𝑛⋯ 𝛼1 of arrows 𝛼𝑖 such that 𝑡(𝛼𝑖) = 𝑠(𝛼𝑖+1) for all 𝑖 =
1, ⋯ , 𝑛 − 1. The source vertex of 𝜇 is 𝑠(𝛼1), while its target vertex is
𝑡(𝛼𝑛). An 𝑚-tuple 𝜇1, ⋯ , 𝜇𝑚 of paths is said to be parallel if they all have
the same source vertex and the same target vertex. A relation 𝜌 in 𝑄 is

a formal sum 𝜌 =
𝑚∑
𝑖=1
𝑡𝑖𝜇𝑖 of parallel paths 𝜇𝑖, where each path 𝜇𝑖 is of

length at least 2 and each 𝑡𝑖 is in 𝐾 . A pair (𝑄, 𝑅) of a quiver 𝑄 and a
set 𝑅 of relations is called a bound quiver.

A relation 𝜌 is called a commutativity relation if 𝜌 = 𝜇1 − 𝜇2 for some
two parallel paths 𝜇1, 𝜇2. If 𝑅 is the set of all possible commutativity
relations in 𝑄, (𝑄, 𝑅) is called a quiver with full commutativity relations.

Let (𝑄, 𝑅) be a bound quiver and let 𝑉 be a representation of 𝑄. Put
𝑉 (𝜇) ∶= 𝑉 (𝛼𝑛)◦ ⋯ ◦𝑉 (𝛼1) for any path 𝜇 = 𝛼𝑛⋯ 𝛼1 of length 𝑛 ≥ 1. Then,

𝑉 ∈ rep𝑄 is said to be a representation of (𝑄, 𝑅) if 𝑉 (𝜌) ∶=
𝑚∑
𝑖=1
𝑡𝑖𝑉 (𝜇𝑖) = 0

5 Note that there is a difference between our convention and theirs in the
order of arrows in paths. Namely, the path 𝛼𝑛⋯ 𝛼1 in this paper is written as
𝛼1⋯ 𝛼𝑛 in their book.
4

for any 𝜌 =
𝑚∑
𝑖=1
𝑡𝑖𝜇𝑖 ∈ 𝑅. We denote by rep(𝑄, 𝑅) the full subcategory of

rep𝑄 consisting of the representations of (𝑄, 𝑅).
The path category 𝐾𝑄 of 𝑄 over 𝐾 is defined as follows. The objects

of 𝐾𝑄 are the vertices of 𝑄0. For each pair (𝑖, 𝑗) of objects of 𝐾𝑄, the
morphisms from 𝑖 to 𝑗 are the linear combinations of paths from 𝑖 to 𝑗.
The composition of 𝐾𝑄 is defined as the bilinearization of the concate-
nation of paths. Then for each object 𝑖 of 𝐾𝑄, the identity morphism
of 𝑖 is given as the path 𝑒𝑖 of length 0 at 𝑖. Note that the obtained cat-
egory 𝐾𝑄 naturally becomes a 𝐾-category, in the sense that 𝐾𝑄(𝑖, 𝑗)
are 𝐾-vector spaces for all 𝑖, 𝑗 ∈𝑄0, and the composition is 𝐾-bilinear.
For a bound quiver (𝑄, 𝑅), we denote the factor category 𝐾𝑄∕⟨𝑅⟩ by
𝐾(𝑄, 𝑅), where ⟨𝑅⟩ is the ideal of the 𝐾-category 𝐾𝑄 generated by 𝑅.
For instance, this notation is used later for (𝑄, 𝑅) = 𝐺⃗𝑚,𝑛 in Section 4
(see Definition 4.7). For each morphism 𝜇 in 𝐾𝑄, the morphism 𝜇+ ⟨𝑅⟩
in 𝐾𝑄∕⟨𝑅⟩ is usually denoted just by 𝜇, and for morphisms 𝜇 and 𝜈 in
𝐾𝑄, we regard 𝜇 = 𝜈 in 𝐾𝑄∕⟨𝑅⟩ if and only if 𝜇 − 𝜈 ∈ ⟨𝑅⟩.

A 𝐾-linear functor from 𝐾(𝑄, 𝑅) to vect𝐾 , the category of finite-
dimensional 𝐾-vector spaces, is called a (left) 𝐾(𝑄, 𝑅)-module, which
can be identified with a representation of (𝑄, 𝑅) in an obvious way.
From this fact, representations of (𝑄, 𝑅) are sometimes called modules
(over 𝐾(𝑄, 𝑅)). A representation 𝑀 of (𝑄, 𝑅) is said to be indecomposable

if 𝑀 ≅𝑀1 ⊕𝑀2 implies that 𝑀1 = 0 or 𝑀2 = 0.

Remark 2.1. In this work, we consider persistence modules as repre-
sentations of bound quivers, except when comparing with the literature
that uses poset representations. For the comparison with the literature,
we here summarize the relationship between representations of a poset
and those of a bound quiver. Let 𝑃 be a locally finite poset (see Defini-
tion 2.8 for local finiteness).

(1) The Hasse quiver 𝐻(𝑃) of 𝑃 is a quiver defined as follows. The set
𝐻(𝑃)0 of vertices is given by 𝐻(𝑃)0 ∶= 𝑃 , and for any vertices 𝑥, 𝑦,
the set 𝐻(𝑃)(𝑥, 𝑦) of arrows from 𝑥 to 𝑦 is given either as a singleton
𝐻(𝑃)(𝑥, 𝑦) ∶= {𝑝𝑦,𝑥} if 𝑥 < 𝑦 in 𝑃 and if there exist no 𝑧 ∈ 𝑃 with
𝑥 < 𝑧 < 𝑦; or 𝐻(𝑃)(𝑥, 𝑦) ∶= ∅ otherwise. We consider a bound quiver
(𝐻(𝑃), 𝑅(𝑃)), where 𝑅(𝑃) is the set of all commutativity relations
in 𝐻(𝑃).

(2) When we regard 𝑃 as a category, we temporarily denote it by 𝐶(𝑃).
Denote by 𝐾[𝐶(𝑃)] the 𝐾-linearization of 𝐶(𝑃). Then 𝐾[𝐶(𝑃)] is
isomorphic to 𝐾(𝐻(𝑃), 𝑅(𝑃)) as a 𝐾-linear category.

(3) A representation of 𝑃 (e.g., considered in [28]) is defined to be
a functor from 𝐶(𝑃) to vect𝐾 , which is uniquely extended to a
𝐾-linear functor from 𝐾[𝐶(𝑃)] to vect𝐾 . Hence by (2) above, the
category of representations of 𝑃 is isomorphic to the category of
left 𝐾(𝐻(𝑃), 𝑅(𝑃))-modules, and hence to the category of represen-
tations of the bound quiver (𝐻(𝑃), 𝑅(𝑃)). In this way, the represen-
tations of a poset are covered by those of a bound quiver (Keep this
point of view in mind when reading Remarks 4.13 and 4.15).

A fundamental result in representation theory is the Krull-Schmidt
theorem (see [3, Theorem 12.9] or [6, I.4.10 Unique decomposition
theorem]).

Theorem 2.2 (Krull-Schmidt). Let  be a complete set of representatives
of isomorphism classes of indecomposable representations of a bound quiver
(𝑄, 𝑅). For each representation 𝑀 of (𝑄, 𝑅), there exists a unique function
𝑑𝑀 ∶  →ℤ≥0 such that

𝑀 ≅
⨁
𝐿∈

𝐿𝑑𝑀 (𝐿).

The function 𝑑𝑀 is called the multiplicity function of 𝑀 , and the value
𝑑𝑀 (𝐿) the multiplicity of the indecomposable 𝐿 in 𝑀 .

As an example, let us consider the equioriented 𝐴𝑛-type quiver:

𝐴𝑛 ∶ 1 2 ⋯ 𝑛 .

H. Asashiba, E.G. Escolar, K. Nakashima et al. Journal of Computational Algebra 6–7 (2023) 100007
It is known that in this case,  is the set {𝕀[𝑏, 𝑑]}1≤𝑏≤𝑑≤𝑛 of the so-called
interval representations 𝕀[𝑏, 𝑑] of 𝐴𝑛 [26]. The interval representation
𝕀[𝑏, 𝑑] is

𝕀[𝑏, 𝑑]∶ 0⟶⋯⟶ 0⟶
𝑏-th
𝐾 ⟶𝐾⟶⋯⟶

𝑑-th
𝐾 ⟶ 0⟶⋯⟶ 0,

which has the vector space 𝕀[𝑏, 𝑑](𝑖) =𝐾 at the vertices 𝑖 with 𝑏 ≤ 𝑖 ≤ 𝑑,
and 0 elsewhere, and where the maps between the neighboring vec-
tor spaces 𝐾 are identity maps and zero elsewhere. In the context of
persistent homology [23,21], a persistence module can be viewed as
a representation of 𝐴𝑛, and the multiplicity function 𝑑𝑀 encodes the
information of the persistence diagram.

The underlying bound quiver we study in this work is the equior-
iented commutative grid 𝐺⃗𝑚,𝑛 defined below. Then, we consider 2D
persistence modules as representations of 𝐺⃗𝑚,𝑛.

Definition 2.3 (Equioriented commutative grid). Let 0 < 𝑚, 𝑛 ∈ ℤ. The
bound quiver 𝐺⃗𝑚,𝑛, is defined to be the 2D grid of size 𝑚 × 𝑛 with all
horizontal arrows in the same direction and all vertical arrows in the
same direction, together with full commutativity relations. It is also
called the equioriented commutative grid of size 𝑚 × 𝑛.

For example, the equioriented 2 × 4 commutative grid 𝐺⃗2,4 is the
quiver

∙ ∙ ∙ ∙

∙ ∙ ∙ ∙
with full commutativity relations.

As mentioned in the introduction, for large enough size, 𝐺⃗𝑚,𝑛 is
of wild representation type. That is,  can be very complicated. In-
stead, we consider a restricted class of representations, the interval-
decomposable representations. Following the notation in [1], we first
recall the definition of interval subquivers and interval representations
for general bound quivers.

Definition 2.4 (Interval subquiver).

(1) Let 𝑄 be a quiver. A full subquiver 𝑄′ of 𝑄 is said to be convex in
𝑄 if and only if for all vertices 𝑥, 𝑦 ∈𝑄′

0 and all vertices 𝑧 ∈𝑄0, the
existence of paths 𝑥 to 𝑧 and 𝑧 to 𝑦 in 𝑄 imply that 𝑧 ∈𝑄′

0.
(2) A quiver Q is said to be connected if it is connected as an “undirected

graph”,
(3) A full subquiver 𝑄′ of 𝑄 is said to be an interval subquiver of 𝑄 if 𝑄′

is convex (in 𝑄) and connected.

Since an interval subquiver 𝐼 of 𝐺⃗𝑚,𝑛 is a full subquiver, (with 𝐺⃗𝑚,𝑛
fixed) 𝐼 is completely determined by its set of vertices 𝐼0. Thus, we
identify 𝐼 with its set of vertices 𝐼0 where convenient.

For any two full subquivers 𝑄′, 𝑄′′ of 𝑄, the intersection 𝑄′ ∩ 𝑄′′

(respectively, the union 𝑄′ ∪ 𝑄′′) of 𝑄′ and 𝑄′′ is defined as the full
subquiver of 𝑄 having the vertex set 𝑄′

0 ∩𝑄
′′
0 (respectively, 𝑄′

0 ∪𝑄
′′
0).

Suppose that 𝑄′ and 𝑄′′ are interval subquivers of 𝑄 with 𝑄′
0 ∩𝑄

′′
0 ≠

∅. Note that 𝑄′ ∩𝑄′′ may not be connected, in general, and so may not
be an interval. However, the following statement can be checked.

Lemma 2.5. Let 𝑄′ and 𝑄′′ be interval subquivers of 𝑄. Then, 𝑄′ ∩𝑄′′ is
a disjoint union of interval subquivers of 𝑄.

Proof. To see this, we write 𝑄′ ∩𝑄′′ as a disjoint union of its connected
components 𝐶𝑖 for 𝑖 = 1, ⋯ , 𝑛 and show that each connected component
𝐶𝑖 is actually an interval subquiver of 𝑄. It suffices to check that 𝐶𝑖 is
convex.

For that, let 𝑥, 𝑦 be vertices of 𝐶𝑖 and 𝑧 a vertex of 𝑄 such that there
exist paths 𝑥 to 𝑧 and 𝑧 to 𝑦 in 𝑄. We show that 𝑧 is a vertex of 𝐶𝑖.

For each path 𝑧 = 𝑧0 → 𝑧1 →⋯ → 𝑧𝓁 = 𝑦 in 𝑄, since 𝑄′ and 𝑄′′ are
convex and 𝑥, 𝑦 are both in 𝑄′ and 𝑄′′, each 𝑧𝑘 is a vertex of 𝑄′ and 𝑄′′.
5

Thus, all 𝑧𝑘 are vertices in 𝑄′ ∩𝑄′′ and the path 𝑧 = 𝑧0 → 𝑧1 →⋯ → 𝑧𝓁 =
𝑦 is in fact a path in 𝑄′ ∩𝑄′′. Since 𝑧𝓁 = 𝑦 ∈ 𝐶𝑖 and 𝐶𝑖 is a connected
component, we must have 𝑧0 = 𝑧 ∈ 𝐶𝑖. Thus 𝐶𝑖 is convex. □

On the other hand, 𝑄′ ∪𝑄′′ is not an interval subquiver in general,
even if 𝑄′ and 𝑄′′ are interval subquivers of 𝑄 with 𝑄′

0 ∩𝑄
′′
0 ≠ ∅. While

connectedness is guaranteed since 𝑄′
0 ∩ 𝑄

′′
0 ≠ ∅, convexity may fail to

hold.

Definition 2.6. For 0 < 𝑚, 𝑛 ∈ℤ, define 𝕀𝑚,𝑛 to be the set of all nonempty
interval subquivers of 𝐺⃗𝑚,𝑛.

It is known that the interval subquivers of 𝐺⃗𝑚,𝑛 take on a distinctive
“staircase” shape. See [1]. Below is an example of an interval subquiver
of 𝐺⃗4,6.

◦ ∙ ∙ ∙ ◦ ◦

◦ ◦ ∙ ∙ ◦ ◦

◦ ◦ ∙ ∙ ∙ ◦

◦ ◦ ◦ ◦ ∙ ∙

(2.1)

We also recall the example of a non-interval in (1.1).
Recall that for 𝑀 a representation of a bound quiver (𝑄, 𝑅), the

support supp𝑀 of 𝑀 is the full subquiver of 𝑄 with vertices {𝑖 ∈ 𝑄 ∣
𝑀(𝑖) ≠ 0}. Finally, we are ready to recall the following generalization
of interval representations of 𝐴𝑛.

Definition 2.7 (Interval representations). Let 𝐼 be an interval subquiver
of a quiver 𝑄. Then we define a representation 𝑉𝐼 of 𝑄 as follows. For
each 𝑥 ∈𝑄0 and each arrow 𝛼∶ 𝑥 → 𝑦 in 𝑄,

𝑉𝐼 (𝑥) ∶=

{
𝐾 if 𝑥 ∈ 𝐼0,
0 otherwise,

and 𝑉𝐼 (𝛼) ∶=

{
1𝐾 if 𝑥, 𝑦 ∈ 𝐼0,
0 otherwise.

A representation of a bound quiver (𝑄, 𝑅) is called an interval represen-

tation if it is isomorphic to 𝑉𝐼 for some interval subquiver 𝐼 of 𝑄.

Note that by construction, 𝑉𝐼 satisfies all the commutativity rela-
tions in 𝑄. It is obvious that supp𝑉𝐼 = 𝐼 . For example, if 𝐼 is the interval
subquiver of 𝐺⃗4,6 given by the quiver (2.1), then the dimension vector
of 𝑉𝐼 is given by (3.2).

A representation 𝑀 ∈ rep(𝑄, 𝑅) is said to be interval-decomposable if
it can be expressed as a direct sum of interval representations. Equiv-
alently, by Theorem 2.2, 𝑀 is interval-decomposable if and only if
𝑑𝑀 (𝐿) = 0 for all non-interval indecomposables 𝐿.

2.2. Posets and lattices

In this subsection, we recall some basic definitions from poset and
lattice theory. See [39] for more details.

Recall that a poset (partially ordered set) (𝑃 , ≤) is a set 𝑃 with partial
order ≤. A poset 𝑃 is said to be finite if 𝑃 is finite as a set. The opposite

poset 𝑃 op of 𝑃 is defined to be a poset (𝑃 , ≤op), where for all 𝑥, 𝑦 ∈ 𝑃 ,
𝑥 ≤op 𝑦 if and only if 𝑦 ≤ 𝑥. Throughout this work, all posets are assumed
to be finite.

Definition 2.8. Let 𝑃 be a poset and 𝑥, 𝑦 ∈ 𝑃 . The segment [𝑥, 𝑦] between
𝑥 and 𝑦 is defined to be

[𝑥, 𝑦] ∶= {𝑧 ∈ 𝑃 ∣ 𝑥 ≤ 𝑧 ≤ 𝑦}

and define Seg(𝑃) to be the set of all segments of 𝑃 . The poset 𝑃 is said
to be locally finite if all segments of 𝑃 are finite sets. The open segment

(𝑥, 𝑦) between 𝑥 and 𝑦 is defined to be

(𝑥, 𝑦) ∶= {𝑧 ∈ 𝑃 ∣ 𝑥 < 𝑧 < 𝑦}.

H. Asashiba, E.G. Escolar, K. Nakashima et al. Journal of Computational Algebra 6–7 (2023) 100007
It is clear that each segment of 𝑃 (respectively each open segment) of
𝑃 forms a subposet of 𝑃 . We say that 𝑦 covers 𝑥 if 𝑥 < 𝑦 and (𝑥, 𝑦) = ∅.
The set of the elements covering 𝑥 is denoted by Cov(𝑥).

We note that a segment [𝑥, 𝑦] is also called an interval in the litera-
ture, but we do not use this term to avoid confusion.

Definition 2.9. Let 𝑃 be a poset and 𝑆 a subset of 𝑃 .

(1) An element 𝑢 ∈ 𝑃 is said to be an upper bound of 𝑆 if 𝑠 ≤ 𝑢 for
each 𝑠 ∈ 𝑆. The set of upper bounds of 𝑆 is denoted by 𝑈 (𝑆). For a
singleton 𝑆 = {𝑠}, we abuse the notation and write 𝑈 (𝑠) for 𝑈 ({𝑠}).

(2) An element 𝑥 ∈ 𝑈 (𝑆) is said to be the join of 𝑆 if 𝑥 ≤ 𝑢 for each
𝑢 ∈𝑈 (𝑆). Note that the join of 𝑆 is unique if it exists, and is denoted
by ⋁𝑆. When 𝑆 = {𝑎, 𝑏}, then the join of 𝑆 is denoted by 𝑎 ∨ 𝑏.

Dually,

(3) An element 𝑙 ∈ 𝑃 is said to be an lower bound of 𝑆 if 𝑙 ≤ 𝑠 for each 𝑠 ∈
𝑆. The set of lower bounds of 𝑆 is denoted by 𝐿(𝑆). For a singleton
𝑆 = {𝑠}, we abuse the notation and write 𝐿(𝑠) for 𝐿({𝑠}).

(4) An element 𝑥 ∈ 𝐿(𝑆) is said to be the meet of 𝑆 if 𝑙 ≤ 𝑥 for each
𝑙 ∈𝐿(𝑆). Note that the meet of 𝑆 is unique if it exists, and is denoted
by ⋀𝑆. When 𝑆 = {𝑎, 𝑏}, then the meet of 𝑆 is denoted by 𝑎 ∧ 𝑏.

Definition 2.10. Let 𝑃 be a poset.

(1) 𝑃 is called a join-semilattice (respectively, meet-semilattice) if each
two-element subset {𝑎, 𝑏} ⊆ 𝑃 has a join (respectively, meet).

(2) 𝑃 is called a lattice if 𝑃 is a join-semilattice and a meet-semilattice.
(3) When 𝑃 is a lattice, 𝑃 is said to be distributive if for all 𝑥, 𝑦, 𝑧 ∈ 𝑃 ,

𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)

or equivalently, if for all 𝑥, 𝑦, 𝑧 ∈ 𝑃 ,

𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧).

For a join-semilattice 𝑃 and 𝑎, 𝑏, 𝑐 ∈ 𝑃 , note that (𝑎 ∨ 𝑏) ∨ 𝑐 =⋁
{𝑎, 𝑏, 𝑐} = 𝑎 ∨ (𝑏 ∨ 𝑐). Thus the binary operation ∨ satisfies associa-

tivity, and hence generalized associativity. Therefore in general, if
𝑆 = {𝑥1, … , 𝑥𝑛} ⊂ 𝑃 , then

𝑥1 ∨ 𝑥2 ∨⋯ ∨ 𝑥𝑛

is well-defined and equal to ⋁𝑆. A similar remark holds for ⋀𝑆 in
meet-semilattices.

The following fact is well-known and can be checked easily.

Proposition 2.11. If 𝑃 is a finite join-semilattice (meet-semilattice) with a
lower bound (upper bound) of 𝑃 , then 𝑃 is a lattice.

We will see later that the poset of intervals does not form a lattice
globally, so we provide the following “local” definitions.

Definition 2.12.

(1) A poset 𝑃 is called a local lattice if for any 𝑥, 𝑦 ∈ 𝑃 , the segment
[𝑥, 𝑦] is a lattice.

(2) A local lattice 𝑃 is said to be locally distributive if for any 𝑥, 𝑦 ∈ 𝑃 ,
the segment [𝑥, 𝑦] is a distributive lattice.

2.3. The incidence algebra

Let 𝐹 be a field, and 𝑃 a locally finite poset. Recall that Seg(𝑃) is
the set of segments of 𝑃 . The incidence algebra of 𝑃 over 𝐹 is the set of
6

functions from Seg(𝑃) to 𝐹 , together with a “pointwise” + operation,
and convolution ∗ as the multiplication operation. More precisely, for
𝑓, 𝑔 ∶ Seg(𝑃) → 𝐹 , define 𝑓 ∗ 𝑔 ∶ Seg(𝑃) → 𝐹 by

(𝑓 ∗ 𝑔)([𝑥, 𝑦]) ∶=
∑
𝑥≤𝑧≤𝑦

𝑓 ([𝑥, 𝑧])𝑔([𝑧, 𝑦]).

Note that the sum above is finite because 𝑃 is locally finite, and hence
𝑓 ∗ 𝑔 is well-defined. It can be shown that the incidence algebra of 𝑃
over 𝐹 is indeed an 𝐹 -algebra, which we denote by 𝐼(𝑃). Its identity
element is the delta function 𝛿 ∶ Seg(𝑃) → 𝐹 with

𝛿([𝑥, 𝑦]) =
{

1𝐹 if 𝑥 = 𝑦,
0 otherwise.

Remark 2.13. For readers familiar with quiver representation theory,
the following facts may be helpful to understand the incidence algebra.

(1) We can regard 𝐼(𝑃) as the 𝐹 -algebra 𝐴 whose underlying vector
space consists of all infinite (if 𝑃 is an infinite poset) linear com-
binations of symbols [𝑥, 𝑦] ∈ Seg(𝑃) by identifying each element
𝑓 ∈ 𝐼(𝑃) with∑
[𝑥,𝑦]∈Seg(𝑃)

𝑓 ([𝑥, 𝑦])[𝑥, 𝑦],

having the multiplication defined first by setting

[𝑥, 𝑦][𝑢, 𝑣] ∶=

{
[𝑥, 𝑣] if 𝑦 = 𝑢
0 if 𝑦 ≠ 𝑢

for all [𝑥, 𝑦], [𝑢, 𝑣] ∈ Seg(𝑃) and then extending to all of 𝐼(𝑃) bi-
linearly. Note that the multiplication is well-defined by the local
finiteness of 𝑃 . In particular, the identity element 𝛿 corresponds to
the sum ∑𝑥∈𝑃 [𝑥, 𝑥].

(2) Therefore, in the case where 𝑃 is a finite poset, 𝐼(𝑃) = 𝐴 above is
isomorphic to the matrix algebra6 of the category 𝐹 (𝐻(𝑃 op), 𝑅(𝑃 op))
(see Remark 2.1), where each [𝑥, 𝑦] ∈ Seg(𝑃) corresponds to the
coset [𝑥 ← 𝑦] of a path from 𝑦 to 𝑥 in 𝐻(𝑃 op) (≅ 𝐻(𝑃)op), and
the composite [𝑥, 𝑦][𝑢, 𝑣] = 𝛿𝑦,𝑢[𝑥, 𝑣] corresponds to [𝑣 ← 𝑢][𝑦 ←
𝑥] = 𝛿𝑦,𝑢[𝑣 ← 𝑥] in 𝐹 (𝐻(𝑃), 𝑅(𝑃)). Thus the category of (finite-
dimensional) left 𝐼(𝑃)-modules is equivalent to the category of left
𝐹 (𝐻(𝑃 op), 𝑅(𝑃 op))-modules, and hence to the category of represen-
tations of the bound quiver (𝐻(𝑃 op), 𝑅(𝑃 op)) over 𝐹 .

2.4. Möbius functions

In this subsection, we assume that the characteristic of the field 𝐹
is zero, and we review some basic facts about Möbius functions. We
refer the reader again to [39] for more details. In Sect. 5, we apply the
contents of this section in the setting that 𝐹 =ℝ and 𝑃 = 𝕀𝑚,𝑛.

Definition 2.14 (Zeta and Möbius functions). The zeta function 𝜁 ∶
Seg(𝑃) → 𝐹 is the function with constant value 1𝐹 . Then, it can be
shown that 𝜁 is an invertible element of 𝐼(𝑃), with inverse called the
Möbius function 𝜇.

Now, let 𝐹𝑃 be the set of all functions 𝑃 → 𝐹 . Note that 𝐹𝑃 has a
natural 𝐹 -vector space structure by pointwise addition and scalar mul-
tiplication of functions. The incidence algebra 𝐼(𝑃) acts on 𝐹𝑃 from the
left by the following. For each 𝑓 ∈ 𝐹𝑃 , 𝜙 ∈ 𝐼(𝑃), define 𝜙𝑓 ∈ 𝐹𝑃 by

6 For a 𝐹 -linear category 𝐶 with the set 𝐶0 of objects finite, the matrix algebra
Mat(𝐶) of 𝐶 is defined to be the 𝐹 -vector space ⨁(𝑦,𝑥)∈𝐶0×𝐶0

𝐶(𝑥, 𝑦) of matrices
with (𝑦, 𝑥)-entries in 𝐶(𝑥, 𝑦) together with the usual matrix multiplication. Then
the category of (finite-dimensional) left Mat(𝐶)-modules is equivalent to the
category of left 𝐶-modules.

H. Asashiba, E.G. Escolar, K. Nakashima et al. Journal of Computational Algebra 6–7 (2023) 100007
(𝜙𝑓)(𝑥) ∶=
∑
𝑥≤𝑦

𝜙([𝑥, 𝑦])𝑓 (𝑦).

It can be checked that 𝐹𝑃 is a left 𝐼(𝑃)-module with this left action. For
example, the computation

(𝜓(𝜙𝑓))(𝑥) =
∑
𝑥≤𝑦

𝜓([𝑥, 𝑦])(𝜙𝑓)(𝑦)

=
∑
𝑥≤𝑦

𝜓([𝑥, 𝑦])

(∑
𝑦≤𝑧

𝜙([𝑦, 𝑧])𝑓 (𝑧)

)
=
∑
𝑥≤𝑦≤𝑧

(𝜓([𝑥, 𝑦])𝜙([𝑦, 𝑧]))𝑓 (𝑧)

=
∑
𝑥≤𝑧

(∑
𝑥≤𝑦≤𝑧

𝜓([𝑥, 𝑦])𝜙([𝑦, 𝑧])

)
𝑓 (𝑧)

=
∑
𝑥≤𝑧

(𝜓 ∗ 𝜙)([𝑥, 𝑧])𝑓 (𝑧)

= [(𝜓 ∗ 𝜙)𝑓](𝑥),

valid for all 𝑓 ∈ 𝐹𝑃 , 𝜙, 𝜓 ∈ 𝐼(𝑃), and 𝑥 ∈ 𝑃 , shows that this action is
compatible with the multiplication (convolution) in 𝐼(𝑃).

Remark 2.15. Again for readers more familiar with quiver representa-
tion theory, we make the following comment. Consider the case that
𝑃 is a finite poset and its Hasse quiver is connected. By the equiva-
lence of categories explained in Remark 2.13(2), the left 𝐼(𝑃)-module
𝐹𝑃 defined above corresponds to the interval representation 𝑉𝑃 op of the
bound quiver (𝐻(𝑃 op), 𝑅(𝑃 op)). This point of view may be useful for
understanding Equation (5.1) and the surrounding discussion.

3. Local lattice of intervals

In this section, we study the set of isomorphism classes of interval
representations for a fixed equioriented commutative 2D grid 𝐺⃗𝑚,𝑛. Note
that an interval representation is uniquely defined (up to isomorphism)
by its support, and thus it suffices to consider the set of interval sub-
quivers 𝕀𝑚,𝑛. We also recall that with 𝐺⃗𝑚,𝑛 fixed, an interval subquiver
𝐼 is completely determined by its set of vertices 𝐼0, and we identify 𝐼
with its set of vertices 𝐼0 where this does not cause any confusion.

First, we start with the following easy observation.

Proposition 3.1. With the order ≤ on 𝕀𝑚,𝑛 defined by 𝐼 ≤ 𝐼 ′ ⟺ 𝐼 ⊆ 𝐼 ′,
(𝕀𝑚,𝑛, ≤) is a poset.

Proof. This is immediate from the definitions. □

By Proposition 4.1 in [1], each element 𝐼 of 𝕀𝑚,𝑛 has a “staircase”
form, which was denoted by:

𝐼 =
𝑡⨆
𝑖=𝑠

[𝑏𝑖, 𝑑𝑖]𝑖

for some integers 1 ≤ 𝑠 ≤ 𝑡 ≤𝑚 and some integers 1 ≤ 𝑏𝑖 ≤ 𝑑𝑖 ≤ 𝑛 for each
𝑠 ≤ 𝑖 ≤ 𝑡 such that

𝑏𝑖+1 ≤ 𝑏𝑖 ≤ 𝑑𝑖+1 ≤ 𝑑𝑖 for all 𝑖 ∈ {𝑠,… , 𝑡− 1}. (3.1)

In this notation, each [𝑏𝑖, 𝑑𝑖]𝑖 is the “slice” of the staircase at height
𝑖. For example, the interval 𝐼 = [5, 6]1 ⊔ [3, 5]2 ⊔ [3, 4]3 ⊔ [2, 4]4 of 𝐺⃗4,6
can be visualized by the dimension vector of its corresponding interval
representation:

⎛⎜⎜⎝
0 1 1 1 0 0
0 0 1 1 0 0
0 0 1 1 1 0
0 0 0 0 1 1

⎞⎟⎟⎠ . (3.2)

In general, the interval 𝐼 =⨆𝑡
𝑖=𝑠[𝑏𝑖, 𝑑𝑖]𝑖 means that 𝐼 has vertices

𝐼0 = {(𝑖, 𝑥) ∣ 𝑠 ≤ 𝑖 ≤ 𝑡, 𝑏𝑖 ≤ 𝑥 ≤ 𝑑𝑖}.
7

As above, we abuse the notation and use the corresponding dimension
vector to denote the interval 𝐼 .

Proposition 3.2. Let 𝐼 ∈ 𝕀𝑚,𝑛 and 𝐽 ∈ Cov(𝐼). Then, the number of vertices
of 𝐽 is one more than that of 𝐼 .

Sketch of Proof. Suppose that 𝐼 ⊊ 𝐽 . We show that there exists a point
𝑝 ∈ 𝐽0 ⧵𝐼0 that can be added to 𝐼 to obtain an interval 𝐼 ′ with 𝐼 ⊊ 𝐼 ′ ⊆ 𝐽 .
The result immediately follows from this, since if 𝐽 ∈ Cov(𝐼), then 𝐽 = 𝐼 ′
by definition. That is, 𝐽 has one more vertex compared to 𝐼 .

Let

𝐼 =
𝑡⨆
𝑖=𝑠

[𝑏𝑖, 𝑑𝑖]𝑖 and 𝐽 =
𝑣⨆
𝑗=𝑢

[𝑐𝑗 , 𝑒𝑗]𝑗 .

Since 𝐼 ⊊ 𝐽 , it follows that 𝑢 ≤ 𝑠 ≤ 𝑡 ≤ 𝑣 and 𝑐𝑘 ≤ 𝑏𝑘 ≤ 𝑑𝑘 ≤ 𝑒𝑘 for each
𝑘 ∈ [𝑠, 𝑡], in addition to the requirements for 𝐼 and 𝐽 to be intervals. We
give below the point 𝑝 ∈ 𝐽0 ⧵ 𝐼0 that can be added to 𝐼 to obtain the
interval 𝐼 ′.

∙ In case that 1 ≤ 𝑢 < 𝑠,

∙ if 𝑐𝑠−1 ≤ 𝑑𝑠, then choose the point 𝑝 = (𝑠 − 1, 𝑑𝑠);
∙ otherwise, if 𝑐𝑠−1 > 𝑑𝑠, choose 𝑝 = (𝑠, 𝑑𝑠 + 1).

∙ The case 𝑡 < 𝑣 ≤𝑚 is dual to the previous case.

∙ If 𝑏𝑡 ≤ 𝑒𝑡+1 choose 𝑝 = (𝑡 + 1, 𝑏𝑡);
∙ otherwise, 𝑝 = (𝑡, 𝑏𝑡 − 1) works.

∙ Otherwise, we have 𝑢 = 𝑠 ≤ 𝑡 = 𝑣. In this case, we define

𝐿 = {𝑘∈ [𝑠, 𝑡] ∣ (𝑘, 𝑏𝑘 − 1) ∈ 𝐽0} and 𝑅 = {𝑘 ∈ [𝑠, 𝑡] ∣ (𝑘,𝑑𝑘 + 1) ∈ 𝐽0}.

These are the row indices where a point to the left (and right, re-
spectively) of 𝐼 is in 𝐽 . Since 𝐼 ≠ 𝐽 , it is clear that at least one of 𝐿
and 𝑅 is nonempty.

∙ If 𝐿 ≠ ∅, choose the point 𝑝 = (max𝐿, 𝑏max𝐿 − 1).
∙ If 𝑅 ≠ ∅, choose the point 𝑝 = (min𝑅, 𝑑min𝑅 + 1).

For each of the cases above (which exhausts all possibilities), a routine
check using the definitions shows that the chosen point 𝑝 can be added
to 𝐼 to obtain an interval 𝐼 ′. This completes the proof. □

The above result implies that 𝕀𝑚,𝑛 is a graded poset with rank func-
tion 𝜌 ∶ 𝕀𝑚,𝑛 →ℕ given by 𝜌(𝐼) = #𝐼0, the number of vertices of 𝐼 .

Example 3.3. For any 𝑛 ∈ ℕ and any interval 𝐼 = [𝑏1, 𝑑1]1 ⊔ [𝑏2, 𝑑2]2 ∈
𝕀2,𝑛, # Cov(𝐼) ≤ 4. Indeed, any cover of 𝐼 takes on one of the following
forms:

[𝑏1 − 1, 𝑑1]1 ⊔ [𝑏2, 𝑑2]2,
[𝑏1, 𝑑1 + 1]1 ⊔ [𝑏2, 𝑑2]2,
[𝑏1, 𝑑1]1 ⊔ [𝑏2 − 1, 𝑑2]2, or
[𝑏1, 𝑑1]1 ⊔ [𝑏2, 𝑑2 + 1]2.

In general, we have the following, which follows immediately from
Proposition 3.2 and the characterization of interval subquivers of 𝐺⃗𝑚,𝑛
as staircases.

Proposition 3.4. Let 𝐼 ∈ 𝕀𝑚,𝑛. Then, Cov(𝐼) = ℭ ∩ 𝕀𝑚,𝑛 where ℭ is the set
of subquivers of 𝐺⃗𝑚,𝑛 obtained from 𝐼 by one of the following operations (if
the result is a subquiver):

(1) extending one row of 𝐼 by one adjacent vertex left of the row,

(2) extending one row of 𝐼 by one adjacent vertex right of the row,

H. Asashiba, E.G. Escolar, K. Nakashima et al. Journal of Computational Algebra 6–7 (2023) 100007
(3) adding one vertex above the upper-left vertex of 𝐼 , or

(4) adding one vertex below the lower-right vertex of 𝐼 .

Let us express the above using the notation of

𝐼 =
𝑡⨆
𝑖=𝑠

[𝑏𝑖, 𝑑𝑖]𝑖

for some integers 1 ≤ 𝑠 ≤ 𝑡 ≤ 𝑚 and some integers 1 ≤ 𝑏𝑖 ≤ 𝑑𝑖 ≤ 𝑛 for
each 𝑠 ≤ 𝑖 ≤ 𝑡 such that 𝑏𝑖+1 ≤ 𝑏𝑖 ≤ 𝑑𝑖+1 ≤ 𝑑𝑖 for any 𝑖 ∈ {𝑠, … , 𝑡 − 1}.
Then Cov(𝐼) is the set of valid interval subquivers in the following set of
candidates ℭ:

∙ for 𝑗 ∈ {𝑠, … , 𝑡},

𝑡⨆
𝑖=𝑠

[𝑏′𝑖 , 𝑑𝑖]𝑖, where 𝑏′𝑖 =

{
𝑏𝑖 − 1 if 𝑖 = 𝑗,
𝑏𝑖 otherwise,

∙ for 𝑗 ∈ {𝑠, … , 𝑡},

𝑡⨆
𝑖=𝑠

[𝑏𝑖, 𝑑′𝑖]𝑖, where 𝑑′𝑖 =

{
𝑑𝑖 + 1 if 𝑖 = 𝑗,
𝑑𝑖 otherwise,

∙
𝑡⨆
𝑖=𝑠

[𝑏𝑖, 𝑑𝑖]𝑖 ⊔ [𝑏𝑡, 𝑏𝑡]𝑡+1,

∙ [𝑑𝑠, 𝑑𝑠]𝑠−1 ⊔
𝑡⨆
𝑖=𝑠

[𝑏𝑖, 𝑑𝑖]𝑖.

Note that some candidates may exceed the bounds of the commutative
grid. Those candidates are immediately disqualified.

Example 3.5. We provide an example using the interval 𝐼 (filled-in
circles):

◦ ◦ ◦ ◦ ◦ ◦

◦ ∙ ∙ ∙ ◦ ◦

◦ ◦ ∙ ∙ ◦ ◦

◦ ◦ ∙ ∙ ∙ ◦

◦ ◦ ◦ ◦ ∙ ∙

in the commutative grid 𝐺⃗5,6. We illustrate the vertices in Proposi-
tion 3.4.

∙ Vertices 𝑣 with 𝐼0 ∪ {𝑣} = 𝐶0 for some 𝐶 ∈ Cov𝐼 are denoted with
green check marks. These give all the cover elements 𝐶 .

∙ The remaining vertices 𝑣 do not form cover elements. That is, there
is no interval 𝐶 with 𝐶0 = 𝐼0 ∪ {𝑣}. These are denoted with red
crosses. Note that two of them go out of bounds.

◦ ✓ ◦ ◦ ◦ ◦

✓ ∙ ∙ ∙ ✗ ◦

◦ ✓ ∙ ∙ ✓ ◦

◦ ✗ ∙ ∙ ∙ ✓

◦ ◦ ◦ ✓ ∙ ∙ ✗

✗

Repeating the point above, each 𝐶 ∈ Cov(𝐼) is the unique interval sub-
quiver 𝐶 with 𝐼0 ∪ {𝑣} = 𝐶0 for some vertex 𝑣 given by the green check
marks.

Proposition 3.6. The poset 𝕀𝑚,𝑛 is a local lattice.
8

Proof. Let 𝐼, 𝐽 be intervals of 𝕀𝑚,𝑛 with 𝐼 ≤ 𝐽 . We show that the seg-
ment [𝐼, 𝐽] is a lattice.

Let 𝐽1, 𝐽2 ∈ [𝐼, 𝐽]. Then, by Lemma 2.5, the intersection 𝐽1 ∩ 𝐽2 is

given by the disjoint union of some intervals 𝐶𝑖:
𝑙⨆
𝑖=1
𝐶𝑖. In this setting,

there exists a unique 𝑗 such that 𝐶𝑗 contains 𝐼 . Then the meet 𝐽1 ∧ 𝐽2
of 𝐽1 and 𝐽2 in the segment [𝐼, 𝐽] is exactly the interval 𝐶𝑗 . Proposi-
tion 2.11 implies that the segment [𝐼, 𝐽] is a lattice. □

Note that in the above argument, the interval 𝐽 did not play any
role in determining the meet in [𝐼, 𝐽]. We could have replaced 𝐽 by
the maximum element 𝑀 in 𝕀𝑚,𝑛, which is the entire quiver of 𝐺⃗𝑚,𝑛.
That is, the meet of 𝐽1, 𝐽2 in [𝐼, 𝐽] is the same as the meet of 𝐽1, 𝐽2 in
[𝐼, 𝑀] =𝑈 (𝐼). Thus, we also call the meet of 𝐽1, 𝐽2 in [𝐼, 𝐽] as the meet
of 𝐽1, 𝐽2 over 𝐼 .

On the other hand, the join 𝐽1 ∨ 𝐽2 in [𝐼, 𝐽] is the minimum interval
containing 𝐽1 ∪ 𝐽2 by definition. Clearly, 𝐽1 ∪ 𝐽2 ⊂ 𝐽 ⊂ 𝑀 , and so the
join of 𝐽1, 𝐽2 in [𝐼, 𝐽] is the same as the join of 𝐽1, 𝐽2 in [𝐼, 𝑀] = 𝑈 (𝐼).
Thus, we also call the join of 𝐽1, 𝐽2 in [𝐼, 𝐽] as the join of 𝐽1, 𝐽2 over 𝐼 .

Example 3.7. Let 𝐼 =
(
0 1 0
0 0 0

)
be an interval of 𝕀2,3. The intervals 𝐽 =(

0 1 1
0 0 0

)
, 𝐽 ′ =

(
0 1 0
0 1 0

)
in 𝑈 (𝐼) have join 𝐽 ∨ 𝐽 ′ =

(
0 1 1
0 1 1

)
over 𝐼 .

While we have seen in Proposition 3.6 that 𝕀𝑚,𝑛 is a local lattice, it
is not a lattice as a whole (Example 3.8), nor is it locally distributive
(Example 3.9).

Example 3.8. In general, the meet and join are ill-defined. For example,
let 𝐽 =

(
1 0 0
0 0 0

)
and 𝐽 ′ =

(
0 0 0
0 0 1

)
be intervals in 𝕀2,3. We note that 𝐽 ∩

𝐽 ′ = ∅, so that there is no 𝐼 ∈ 𝕀𝑚,𝑛 with 𝐽 , 𝐽 ′ ∈ 𝑈 (𝐼). Then, 𝑋1 =
(
1 1 1
0 0 1

)
and 𝑋2 =

(
1 0 0
1 1 1

)
are both minimal among intervals containing both 𝐽

and 𝐽 ′. Thus, 𝐽 ∨ 𝐽 ′, which is supposed to be the minimum interval
containing 𝐽 ∪ 𝐽 ′, is not well-defined. The poset 𝕀𝑚,𝑛 is not a lattice, in
general.

Example 3.9. In general, the local lattice 𝕀𝑚,𝑛 is not locally distributive.
Indeed, let 𝐼 =

(
0 1 0 0
0 0 0 0

)
and 𝐽 =

(
1 1 1 1
1 1 1 1

)
be intervals of 𝕀2,4. Moreover,

let 𝐼1 =
(
1 1 0 0
1 1 1 0

)
, 𝐼2 =

(
0 1 0 0
0 1 1 1

)
, and 𝐼3 =

(
0 1 1 1
0 0 0 1

)
be intervals of the

segment [𝐼, 𝐽]. Then we compute 𝐼1 ∨ (𝐼2 ∧ 𝐼3) = 𝐼1 and (𝐼1 ∨ 𝐼2) ∧ (𝐼1 ∨
𝐼3) =

(
1 1 0 0
1 1 1 1

)
≠ 𝐼1.

4. Compression and compressed multiplicities

In this section, we present the underlying mechanism for “replacing”
(in Section 5) a persistence module by a related interval-decomposable
object. Here, we define compression functors based on certain essential
vertices. These compression functors then lead to what we call com-
pressed multiplicities. We show that the well-known dimension vector
and rank invariant are in fact special cases of compressed multiplicities.
Furthermore, we show that for interval-decomposable representations,
the true multiplicity information can be recovered from the compressed
multiplicities.

4.1. Essential vertices

First, we define two types of “essential vertices”.
Recall that a vertex 𝑥 is said to be a source if there are no arrows 𝛼

with target 𝑡(𝛼) = 𝑥, and is said to be a sink if there are no arrows 𝛼 with
source 𝑠(𝛼) = 𝑥.

H. Asashiba, E.G. Escolar, K. Nakashima et al. Journal of Computational Algebra 6–7 (2023) 100007
Definition 4.1 (Source-sink-essential vertices). Let 𝐼 be an interval sub-
quiver of 𝐺⃗𝑚,𝑛. A vertex 𝑥 ∈ 𝐼0 is said to be source-sink-essential (ss-
essential) if 𝑥 is a source or a sink in 𝐼 .

The set of ss-essential vertices of 𝐼 will be denoted by 𝐼 ss
0 .

Example 4.2. In the following interval subquiver 𝐼 in 𝐺⃗6,4:

𝐼 =

⊛

∙ ∙ ⊛

⊛ ∙ ∙ ∙ ⊛

⊛ ∙ ∙ ∙ ⊛,

the vertices denoted by ⊛ are ss-essential vertices of 𝐼 .

Lemma 4.3. Let 𝐼, 𝐽 be intervals of 𝕀𝑚,𝑛. Assume that 𝐼 ss
0 ⊆ 𝐽0. Then we

have 𝐼 ≤ 𝐽 .

Proof. Let 𝑥 ∈ 𝐼0. Then, there is a source 𝑦, a sink 𝑧, and a path 𝜇 in 𝐼
from 𝑦 to 𝑧 such that 𝜇 passes through 𝑥. Since 𝑦, 𝑧 ∈ 𝐼 ss

0 ⊆ 𝐽0 and 𝐽 is
convex, we have 𝑥 ∈ 𝐽0, as desired. □

Definition 4.4 (Corner-complete-essential vertices). Let 𝐼 be an interval
subquiver of 𝐺⃗𝑚,𝑛. We set 𝐼cc0 ∶= (pr1 𝐼 ss

0 × pr2 𝐼 ss
0) ∩ 𝐼0, where pr𝑖 ∶ ℤ ×

ℤ →ℤ is the projection map to the 𝑖-th coordinate. Elements of 𝐼cc0 are
said to be corner-complete-essential (cc-essential), and the full subquiver
of 𝐺⃗𝑚,𝑛 given by this set is denoted by 𝐼cc.

Example 4.5. For the interval subquiver 𝐼 used in Example 4.2:

𝐼 =

⊛

⊛ ⊛ ⊛

⊛ ⊛ ⊛ ∙ ⊛

⊛ ⊛ ∙ ⊛ ⊛

the vertices denoted by ⊛ are cc-essential vertices of 𝐼 .

Lemma 4.6. Let 𝐼, 𝐽 be intervals of 𝕀𝑚,𝑛. Assume that 𝐼cc
0 ⊆ 𝐽0. Then we

have 𝐼 ≤ 𝐽 .

Proof. Since 𝐼 ss
0 ⊆ 𝐼

cc
0 ⊆ 𝐽0, we have 𝐼 ≤ 𝐽 by Lemma 4.3. □

4.2. Compression

In this subsection, we treat both types of essential vertices in parallel
to define two types of compression of representations of the equiori-
ented 2D commutative grid 𝐺⃗𝑚,𝑛 = (𝑄, 𝑅). In the previous subsection,
we defined the sets of essential vertices 𝐼 ss

0 and 𝐼cc
0 . We consider the

full subcategories of 𝐾𝐺⃗𝑚,𝑛 =𝐾(𝑄, 𝑅) =𝐾𝑄∕⟨𝑅⟩ they induce.

Definition 4.7 (ss-compressed category and cc-compressed category). Let
𝐼 be an interval subquiver of 𝐺⃗𝑚,𝑛 and 𝐸 be the set of all ss-essential
vertices (or cc-essential vertices, respectively) of 𝐼 . The ss-compressed
category 𝐼 ss (resp. cc-compressed category 𝐼cc) of 𝐼 is the full subcategory
of 𝐾𝐺⃗𝑚,𝑛 with set of objects 𝐸.

For completeness, we also introduce the following concept, where
we take all vertices of 𝐼 to be essential. We use the designation “tot” to
stand for “total”, since all vertices are considered essential in 𝐼 tot.

Definition 4.8 (compressed category). The compressed category 𝐼 tot is the
full subcategory of 𝐾𝐺⃗𝑚,𝑛 consisting of all vertices of 𝐼 .
9

Remark 4.9. For an interval 𝐼 , we distinguish the following similar but
different notions related to 𝐼 : 𝐼 itself as a full subquiver of 𝐺⃗𝑚,𝑛, 𝑉𝐼 the
representation of 𝐾𝐺⃗𝑚,𝑛 with support 𝐼 , and 𝐼 tot as the full subcategory
of 𝐾𝐺⃗𝑚,𝑛 with objects the vertices of 𝐼 .

We note that the bound quiver of 𝐼 tot is (𝐼, 𝑅𝐼) with the set of
full commutativity relations 𝑅𝐼 . The ss-compressed category or cc-
compressed category can also be expressed as a bound quiver, and we
identify rep(𝑄∗

𝐼
, 𝑅∗

𝐼
) ≅ rep𝐼∗, where (𝑄∗

𝐼
, 𝑅∗

𝐼
) is the bound quiver of the

compressed category 𝐼∗ for ∗= ss, cc, tot.
Throughout the rest of this work, we shall use the symbol ‘∗’ to stand

for either ‘ss’, ‘cc’ or ‘tot’ for statements that apply to all three cases as
long as it does not cause any confusion.

Example 4.10. For the interval subquiver 𝐼 in Example 4.2, the com-
pressed categories (displayed as bound quivers) are the following:

𝐼 ss ∶

⊛

⊛

⊛ ⊛

⊛ ⊛

and

𝐼cc ∶

⊛

⊛ ⊛ ⊛

⊛ ⊛ ⊛ ⊛

⊛ ⊛ ⊛ ⊛

while

𝐼 tot ∶

⊛

⊛ ⊛ ⊛

⊛ ⊛ ⊛ ⊛ ⊛

⊛ ⊛ ⊛ ⊛ ⊛

.

Definition 4.11 (Compression functor). Let 𝐼 be an interval subquiver
of 𝐺⃗𝑚,𝑛 and let 𝜄ss

𝐼
∶ 𝐼 ss ↪ 𝐾𝐺⃗𝑚,𝑛 (or 𝜄cc

𝐼
∶ 𝐼cc ↪ 𝐾𝐺⃗𝑚,𝑛, or 𝜄tot

𝐼
∶ 𝐼 tot ↪

𝐾𝐺⃗𝑚,𝑛, respectively) be the inclusion functor into the equioriented 2D
commutative grid.

The ss-compression functor Compss
𝐼 (−) ∶ rep𝐾𝐺⃗𝑚,𝑛 → rep𝐼 ss (the cc-

compression functor Compcc
𝐼 (−) or the tot-compression functor Comptot

𝐼 (−),
respectively) is defined by Compss

𝐼 (𝑀) =𝑀◦𝜄ss
𝐼

(Compcc
𝐼 (𝑀) =𝑀◦𝜄cc

𝐼
or

Comptot
𝐼 (𝑀) =𝑀◦𝜄tot

𝐼
, respectively). That is,

Comp∗𝐼 (𝑀) =𝑀◦𝜄∗𝐼

for ∗= ss, cc, tot.
Note that these functors are exactly the restriction functors.

It is clear that the ss-compression, cc-compression, and tot-compres-
sion functors are additive by definition. To simplify the notation, we let
Comp∗𝐼 (−) stand for Compss

𝐼 (−), Compcc
𝐼 (−), or Comptot

𝐼 (−) for statements
that hold for all three versions of compression.

Given 𝑀 ∈ rep 𝐺⃗𝑚,𝑛, the compressed representation Comp∗𝐼 (𝑀) is a
representation of 𝐼∗. Similary, the interval representation 𝑉𝐼 associ-
ated to the interval 𝐼 has a compressed representation Comp∗𝐼 (𝑉𝐼). For
example, the interval 𝐼 in Example 4.2 is associated to the interval rep-
resentation

H. Asashiba, E.G. Escolar, K. Nakashima et al. Journal of Computational Algebra 6–7 (2023) 100007
𝑉𝐼 ∶

𝐾 0 0 0 0 0

𝐾 𝐾 𝐾 0 0 0

𝐾 𝐾 𝐾 𝐾 𝐾 0

0 𝐾 𝐾 𝐾 𝐾 𝐾

1
1

1

1
1

1
1

1
1

1

1
1

1
1 1

1
1

1

which has ss-compressed representation (a representation of 𝐼 ss):

Comp𝑠𝑠𝐼 (𝑉𝐼) ∶

𝐾

𝐾

𝐾 𝐾

𝐾 𝐾.

1

1
1

1
11

While the compressed representation Comp∗𝐼 (𝑀) may be interesting
in its own right, in the next definition we only consider the multiplicity
of Comp∗𝐼 (𝑉𝐼) in Comp∗𝐼 (𝑀).

Definition 4.12 (Compressed multiplicities). Let 𝑀 be a representation
of 𝐺⃗𝑚,𝑛 and 𝐼 ∈ 𝕀𝑚,𝑛. Define the source-sink (ss)-compressed multiplicity
of 𝐼 in 𝑀 as

𝑑ss
𝑀
(𝐼) ∶= 𝑑Compss

𝐼
(𝑀)(Compss

𝐼 (𝑉𝐼)).

While not the main focus of this paper, for completeness we also define
the corner-complete (cc) and total (tot) compressed multiplicities of 𝐼
in 𝑀

𝑑cc
𝑀
(𝐼) ∶= 𝑑Compcc

𝐼
(𝑀)(Compcc

𝐼 (𝑉𝐼)),

and

𝑑tot
𝑀
(𝐼) ∶= 𝑑Comptot

𝐼
(𝑀)(Comptot

𝐼 (𝑉𝐼)).

In the above, 𝑑?(−) is the usual multiplicity function obtained from The-
orem 2.2.

One motivation for the above definitions is that we want to compute
the multiplicity of an interval module 𝑉𝐼 as a direct summand of 𝑀 .
However, as this may not be straightforward, we instead compute the
multiplicity with respect to compressed versions of 𝑀 and 𝐼 . The rest of
this section is devoted to exploring the consequences of this approach.

Remark 4.13. Let rk(𝑀) ∶ 𝐂𝐨𝐧(𝑃) →  () be the generalized rank in-
variant as defined in [28], applied to the setting we consider. That is, 𝑃
is the poset corresponding to the 𝑚 × 𝑛 commutative grid, and the tar-
get set is  () =  (vect𝐾), the set of isomorphism classes of 𝐾-vector
spaces. By definition 𝐂𝐨𝐧(𝑃) is the set of path-connected subposets of
𝑃 , which contains the set of intervals. See [28] for more detailed defi-
nitions. We note that for 𝐼 ∈ 𝕀𝑚,𝑛, the equality

𝑑tot
𝑀
(𝐼) = dim rk(𝑀)(𝐼)

holds. This follows immediately from Lemma 3.1 of [15] applied to
Comptot

𝐼 (𝑀). That is, for intervals 𝐼 , the tot-compressed multiplicity co-
incides with the generalized rank invariant of [28].

As the next example shows, the values of 𝑑ss
𝑀
(𝐼) and 𝑑tot

𝑀
(𝐼) =

dim rk(𝑀)(𝐼) can be different in general.

Example 4.14. Let 𝑀 be the representation of 𝐺⃗2,3 given by

𝐾 𝐾2 𝐾

0 𝐾 𝐾

[
1
1
]

[0 1]

1

[
0
1
]

1

For the interval
10
𝐼 ∶
∙ ∙ ∙

∙ ∙
it can be computed that 𝑑ss

𝑀
(𝐼) = 1 while 𝑑tot

𝑀
(𝐼) = 0.

Remark 4.15. If we allow to change the form of the “input” to the
function dim rk(𝑀)(-) and broaden its domain of definition, the equal-
ity 𝑑ss

𝑀
(𝐼) = dim rk(𝑀)(Source(𝐼) ∪ Sink(𝐼)) holds by the same reasoning

as the previous remark. Note that in general, Source(𝐼) ∪ Sink(𝐼) is not
necessarily a path-connected subposet ([28, Definition 2.16]), and thus
the original definition of the generalized rank invariant cannot be used.
That is, the values of the source-sink compressed multiplicity can be
expressed as some value of the generalized rank invariant suitably gen-
eralized.

4.3. Rank invariant and dimension vector as compression

In this subsection, we show that the compressed multiplicity gener-
alizes the rank invariant [17], a well-known invariant for 2D persistence
modules.

Recall that the rank invariant is the function assigning to each pair
𝑠, 𝑡 ∈ 𝐺⃗𝑚,𝑛 with a path from 𝑠 to 𝑡, the value

rank(𝑀(𝑠→ 𝑡))

where 𝑀(𝑠 → 𝑡) ∶𝑀(𝑠) →𝑀(𝑡) is the linear map associated by 𝑀 to a
path from 𝑠 to 𝑡. Note that this is well-defined due to the commutativity
relations imposed on 𝑀 .

An interval 𝑅 =⨆𝑦
𝑖=𝑥[𝑏𝑖, 𝑑𝑖]𝑖 ∈ 𝕀𝑚,𝑛 is said to be a rectangle if there

exist 𝑏, 𝑑 (1 ≤ 𝑏 ≤ 𝑑 ≤ 𝑛) such that 𝑏𝑖 = 𝑏 and 𝑑𝑖 = 𝑑 for any 𝑖 = 𝑥, ⋯ , 𝑦.
That is, 𝑅 =⨆𝑦

𝑖=𝑥[𝑏, 𝑑]𝑖. The set of rectangles in 𝕀𝑚,𝑛 is denoted by 𝑅𝑚,𝑛.
It is immediate that any rectangle 𝑅 has a unique source 𝑠 and a unique
sink 𝑡. Below is an example of a rectangle together with its source and
sink.

𝑅 ∶

∙ ∙ ∙ ∙ ∙ ⊛

∙ ∙ ∙ ∙ ∙ ∙

∙ ∙ ∙ ∙ ∙ ∙

⊛ ∙ ∙ ∙ ∙ ∙
s

t

We comment that if 𝐺⃗𝑚,𝑛 is viewed as a subposet of ℤ × ℤ with
coordinate-wise ≤, the rectangle 𝑅 is in fact the segment 𝑅 = [𝑠, 𝑡] in
the poset ℤ ×ℤ. In this work, we do not directly use this point of view
since we defined 𝐺⃗𝑚,𝑛 as a bound quiver and not as a poset.

Conversely, given any pair 𝑠, 𝑡 ∈ 𝐺⃗𝑚,𝑛 with a path from 𝑠 to 𝑡 (as
in the definition of the rank invariant), there is a unique rectangle 𝑅
with source 𝑠 and sink 𝑡. Thus, the rank invariant can be equivalently
defined as the function assigning to each rectangle 𝑅 in 𝕀𝑚,𝑛 the value
rank(𝑀(𝑠 → 𝑡)), where 𝑠 is the unique source of 𝑅 and 𝑡 the unique sink.

Let 𝑅 be a rectangle with source 𝑠 and sink 𝑡. Let us compute the
values of the compressed multiplicities at 𝑅.

∙ The ss-compressed category of 𝑅 is: 𝑅ss ∶ 𝑠 𝑡, so that Compss
𝑅 (𝑀)

is 𝑀(𝑠) 𝑀(𝑡)𝑀(𝑠→𝑡)
. Note that a linear map 𝑓 ∶ 𝑉 → 𝑊 between

finite-dimensional vector spaces is equivalent to the direct sum
(𝐾 → 0)dimker 𝑓 ⊕ (𝐾

1
←←←←←←→𝐾)rank 𝑓 ⊕ (0 →𝐾)dimcoker 𝑓 . Then we compute

𝑑ss
𝑀
(𝑅) = 𝑑(

Compss
𝑅
(𝑀)

)(Compss
𝑅 (𝑉𝑅))

= 𝑑(
𝑀(𝑠) 𝑀(𝑡)𝑀(𝑠→𝑡)

)(𝐾 𝐾
1)

= rank(𝑀(𝑠→ 𝑡)).

∙ Next, let us show that 𝑑tot
𝑀
(𝑅) = rank(𝑀(𝑠 → 𝑡)). Note that via the

equality with the generalized rank invariant (Remark 4.13), this is

H. Asashiba, E.G. Escolar, K. Nakashima et al. Journal of Computational Algebra 6–7 (2023) 100007
already known (see for example, [28, Example 3.6(iii)]), but for
completeness we provide a proof. For simplicity, put here 𝑀 ′ ∶=
Comptot

𝑅 (𝑀). Then 𝑀 ′ is the representation of 𝑅tot = 𝑅 obtained
by restricting 𝑀 to the rectangle 𝑅. Furthermore, Comptot

𝑅 (𝑉𝑅) is
isomorphic to both the injective indecomposable representation 𝐼(𝑡)
of 𝑅 and to the projective indecomposable representation 𝑃 (𝑠) of
𝑅 corresponding to the vertex 𝑠. By applying [4, Theorem 3] to
Comptot

𝑅 (𝑉𝑅) ≅ 𝐼(𝑡), we have

𝑑tot
𝑀
(𝑅) = 𝑑𝑀 ′ (𝐼(𝑡))

= dimHom𝑅(𝐼(𝑡),𝑀 ′) − dimHom𝑅(𝐼(𝑡)∕ soc𝐼(𝑡),𝑀 ′),
(4.1)

where soc𝐼(𝑡) is the socle of 𝐼(𝑡), which is the sum of all simple
submodules of 𝐼(𝑡) by definition.
Here, the first term is given by

dimHom𝑅(𝐼(𝑡),𝑀 ′) = dimHom𝑅(𝑃 (𝑠),𝑀 ′) = dim𝑀 ′(𝑠) = dim𝑀(𝑠).

For the second term, consider the canonical short exact sequence

0→ soc𝐼(𝑡)
𝜇
←←←←←←←→ 𝐼(𝑡)

𝜀
←←←←←←→ 𝐼(𝑡)∕ soc𝐼(𝑡)→ 0

in the category of representations of 𝑅. By applying the (contravari-
ant left-exact) functor Hom𝑅(−, 𝑀 ′) to this sequence, we have the
first isomorphism in the following calculation:

Hom𝑅(𝐼(𝑡)∕ soc𝐼(𝑡),𝑀 ′) ≅ ker Hom𝑅(𝜇,𝑀 ′)

= {𝑓 ∈Hom𝑅(𝐼(𝑡),𝑀 ′) ∣ 𝑓𝜇 = 0}

= {𝑓 ∈Hom𝑅(𝐼(𝑡),𝑀 ′) ∣ 𝑓 (soc𝐼(𝑡)) = 0}
(a)
= {𝑓 ∈Hom𝑅(𝑃 (𝑠),𝑀 ′) ∣ 𝑓 (𝑝𝑡,𝑠) = 0}
(b)
≅ {𝑚 ∈𝑀 ′(𝑠) ∣𝑀 ′(𝑝𝑡,𝑠)(𝑚) = 0}

= ker𝑀 ′(𝑝𝑡,𝑠),

where 𝑝𝑡,𝑠 is the morphism of 𝑅 given by the path 𝑠 → 𝑡, the equality
(a) follows from soc𝐼(𝑡) = 𝐾𝑝𝑡,𝑠, and the isomorphism (b) follows
from the canonical isomorphism Hom𝑅(𝑃 (𝑠), 𝑀 ′) ≅𝑀 ′(𝑠). Then,

dimker𝑀 ′(𝑝𝑡,𝑠) = dim𝑀 ′(𝑠) − dim Im𝑀 ′(𝑝𝑡,𝑠)

= dim𝑀 ′(𝑠) − rank𝑀 ′(𝑝𝑡,𝑠)

= dim𝑀(𝑠) − rank𝑀(𝑠→ 𝑡).

Therefore, we have

𝑑tot
𝑀
(𝑅) = 𝑑𝑀 ′ (𝐼(𝑡)) = dim𝑀(𝑠) − (dim𝑀(𝑠) − rank𝑀(𝑠→ 𝑡))

= rank𝑀(𝑠→ 𝑡)

as claimed.
∙ Finally, we show that 𝑑cc

𝑀
(𝑅) = rank(𝑀(𝑠 → 𝑡)). Since 𝑅 has source 𝑠

and sink 𝑡 together with its two other corners (say 𝑢 and 𝑤) as its
cc-essential vertices, the cc-compressed category of 𝑅 is:

𝑅cc ∶
𝑢 𝑡

𝑠 𝑤

so that 𝑀 ′ ∶= Compcc
𝑅 (𝑀) is

𝑀(𝑢) 𝑀(𝑡)

𝑀(𝑠) 𝑀(𝑤)
.

Furthermore, Compcc
𝑅 (𝑉𝑅) is the injective indecomposable represen-

tation 𝐼(𝑡) associated to the vertex 𝑡:

𝐼(𝑡) =
𝐾 𝐾

1

1
1 1 .
𝐾 𝐾

11
The proof proceeds as in the total compressed multiplicity case, but
this time computing over 𝑅cc instead of over 𝑅tot =𝑅. By [4, Theo-
rem 3 (see also Example 3)]

𝑑cc
𝑀
(𝑅) = 𝑑⎛⎜⎜⎜⎜⎝

𝑀(𝑢) 𝑀(𝑡)

𝑀(𝑠) 𝑀(𝑤)

⎞⎟⎟⎟⎟⎠
(
𝐾 𝐾

𝐾 𝐾

1

1
1 1)

= dimHom𝑅cc (𝐼(𝑡),𝑀 ′) − dimHom𝑅cc (𝐼(𝑡)∕ soc𝐼(𝑡),𝑀 ′)
= dim𝑀(𝑠) − (dim𝑀(𝑠) − rank(𝑀(𝑠→ 𝑡)))
= rank(𝑀(𝑠→ 𝑡)).

The above considerations prove the following.

Proposition 4.16. Let 𝑀 be a representation of 𝐺⃗𝑚,𝑛 and 𝑅 a rectangle.
For ∗= ss, cc, tot, we have

𝑑∗
𝑀
(𝑅) = rank𝑀(𝑠→ 𝑡),

where 𝑠 is the unique source vertex of 𝑅 and 𝑡 is the unique sink vertex of
𝑅.

In this sense, the compressed multiplicities 𝑑∗
𝑀
(−) are generaliza-

tions of the rank invariant. With our invariant we hope to capture finer
information that cannot be detected by just the rank invariant.

Next, we give an example of representations with the same rank
invariants but different compressed multiplicities for intervals that are
not rectangles.

Example 4.17. Let 𝐼 =
∙ ∙

∙
be an interval of 𝐺⃗2,2 =

∙ ∙

∙ ∙
. Note that 𝐼

is not a rectangle. We consider the following representations of 𝐺⃗2,2:

𝑀 =
𝐾 𝐾2

0 𝐾

[
1
0
]

[
1
0
]
, 𝑁 =

𝐾 𝐾2

0 𝐾

[
1
0
]

[
0
1
]
.

Clearly, rank invariants of 𝑀 and 𝑁 coincide. However, we have
𝑑ss
𝑀
(𝐼) = 1 ≠ 0 = 𝑑ss

𝑁
(𝐼).

We end this subsection with the following observation.

Proposition 4.18. Let 𝑀 be a representation of 𝐺⃗𝑚,𝑛 and 𝑖 a vertex of
𝐺⃗𝑚,𝑛. For ∗= ss, cc, tot, we have

𝑑∗
𝑀
({𝑖}) = dim𝑀(𝑖),

where {𝑖} is the interval subquiver consisting of only the vertex 𝑖.

Proof. A direct computation shows that

𝑑∗
𝑀
({𝑖}) = 𝑑Comp∗{𝑖}(𝑀)(Comp∗{𝑖}(𝑉{𝑖})) = 𝑑𝑀(𝑖)(𝐾) = dim𝑀(𝑖).

Alternatively, this follows immediately from Proposition 4.16 by con-
sidering the rectangle with 𝑠 = 𝑡 = 𝑖. □

Namely, the compressed multiplicities 𝑑∗
𝑀
(−) restricted to vertices

coincide with the dimension vector of 𝑀 .

4.4. Compression and inversion

Next, we derive some basic properties of 𝑑∗
𝑀
(−), and end this section

with Theorem 4.23, which states that for interval-decomposable repre-

sentations 𝑀 , we can recover the true multiplicity function 𝑑𝑀 using
𝑑∗
𝑀
(−).
First, we start with some Lemmas that lead to a Key Lemma 4.21.

H. Asashiba, E.G. Escolar, K. Nakashima et al. Journal of Computational Algebra 6–7 (2023) 100007
Lemma 4.19. If a representation 𝑀 of 𝐺⃗𝑚,𝑛 decomposes as 𝑀 =𝑀1⊕𝑀2,
then

𝑑∗
𝑀
(𝐼) = 𝑑∗

𝑀1
(𝐼) + 𝑑∗

𝑀2
(𝐼)

for ∗= ss, cc, tot.

Proof. Since the compression functor Comp∗𝐼 (−) is additive, we have
Comp∗𝐼 (𝑀) = Comp∗𝐼 (𝑀1) ⊕ Comp∗𝐼 (𝑀2). Then the statement follows by
the Krull-Schmidt theorem. □

Lemma 4.20. Let 𝐼, 𝐽 be intervals of 𝐺⃗𝑚,𝑛. Then

𝑑∗
𝑉𝐽
(𝐼) =

{
1 if 𝐽 ∈𝑈 (𝐼) (i.e. 𝐼 ≤ 𝐽),
0 otherwise.

for ∗= ss, cc, tot.

Proof. If 𝐼 ≤ 𝐽 , then Comp∗𝐼 (𝑉𝐽) = Comp∗𝐼 (𝑉𝐼), thus 𝑑∗
𝑉𝐽
(𝐼) = 1.

On the other hand, if 𝐼 ≰ 𝐽 , then there exists some 𝑖 ∈ 𝐼∗0 ⧵ 𝐽0 by
Lemma 4.3 or Lemma 4.6 for ∗= ss, cc, respectively, and by the fact that
𝐼 tot
0 = 𝐼0, for ∗= tot. Thus, 𝑖 ∈ supp(Comp∗𝐼 (𝑉𝐼)) but 𝑖 ∉ supp(Comp∗𝐼 (𝑉𝐽)).

This means that Comp∗𝐼 (𝑉𝐽) does not have a direct summand isomorphic
to Comp∗𝐼 (𝑉𝐼), showing that 𝑑∗

𝑉𝐽
(𝐼) = 0. □

Lemma 4.21 (Key Lemma). Let 𝑀 be an interval-decomposable represen-

tation of 𝐺⃗𝑚,𝑛 and 𝐼 an interval in 𝕀𝑚,𝑛. Then

𝑑∗
𝑀
(𝐼) =

∑
𝐽∈𝑈 (𝐼)

𝑑𝑀 (𝑉𝐽)

for ∗= ss, cc, tot.

Proof. Let 𝑀 ≅
⨁
𝐽∈𝕀𝑚,𝑛

𝑉
𝑑𝑀 (𝑉𝐽)
𝐽

be an interval decomposition of a repre-

sentation 𝑀 of 𝐺⃗𝑚,𝑛. Then

𝑑∗
𝑀
(𝐼) =

∑
𝐽∈𝕀𝑚,𝑛

𝑑𝑀 (𝑉𝐽) ⋅ 𝑑∗𝑉𝐽 (𝐼) =
∑

𝐽∈𝑈 (𝐼)
𝑑𝑀 (𝑉𝐽)

by Lemmas 4.19 and 4.20. □

As a consequence, in the case that 𝑀 is interval-decomposable,
𝑑∗
𝑀
(𝐼) does not depend on ∗.
Readers familiar with the Möbius theory for (locally-finite) posets

[38] may recognize that Lemma 4.21 simply states that for interval-
decomposable representations, the function 𝑑∗

𝑀
(−) is equal to 𝑑𝑀 (−)

multiplied by the zeta function. Theorem 4.23 below can then be seen
as an application of Möbius inversion. Here, we give a direct proof of
Theorem 4.23 and delay these Möbius-theoretic considerations to a later
section.

First, we note the following proposition which follows immediately
from Lemma 4.21.

Proposition 4.22. Let 𝑀 be an interval-decomposable representation of
𝐺⃗𝑚,𝑛 and 𝐼 an interval in 𝕀𝑚,𝑛. Then

𝑑𝑀 (𝑉𝐼) = 𝑑∗𝑀 (𝐼) −
∑

𝐽∈𝑈 (𝐼)∖{𝐼}
𝑑𝑀 (𝑉𝐽).

for ∗= ss, cc, tot.

Theorem 4.23 (For interval-decomposables, compressed multiplicity recov-

ers the multiplicity). Let 𝑀 be an interval decomposable representation of
𝐺⃗𝑚,𝑛 and 𝐼 an interval in 𝕀𝑚,𝑛. Then:

𝑑𝑀 (𝑉𝐼) = 𝑑∗𝑀 (𝐼) +
∑

∅≠𝑆⊆Cov(𝐼)
(−1)#𝑆𝑑∗

𝑀
(
⋁
𝑆).

for ∗= ss, cc, tot.
12
Proof. We define the function 𝑓 ∶ 2𝑈 (𝐼) → ℤ by 𝑓 (𝑆) ∶= ∑
𝐽∈𝑆

𝑑𝑀 (𝑉𝐽)

for 𝑆 ∈ 2𝑈 (𝐼), where 2𝑈 (𝐼) is the power set of 𝑈 (𝐼). Rewriting Propo-
sition 4.22, we have

𝑑𝑀 (𝑉𝐼) = 𝑑∗𝑀 (𝐼) − 𝑓

(⋃
𝐽∈Cov(𝐼)

𝑈 (𝐽)

)
since 𝑈 (𝐼) ⧵ {𝐼} =⋃𝐽∈Cov(𝐼)𝑈 (𝐽). Here, the inclusion-exclusion princi-
ple7 shows that

𝑓

(⋃
𝐽∈Cov(𝐼)

𝑈 (𝐽)

)
=

∑
∅≠𝑆⊆Cov(𝐼)

(−1)(#𝑆−1)𝑓

(⋂
𝐽∈𝑆

𝑈 (𝐽)

)
.

By Proposition 3.6, the join ⋁𝑆 in 𝑈 (𝐼) exists, and it can be checked
that⋂
𝐽∈𝑆

𝑈 (𝐽) =𝑈 (
⋁
𝑆)

by definition. Therefore

𝑓

(⋂
𝐽∈𝑆

𝑈 (𝐽)

)
= 𝑓 (𝑈 (

⋁
𝑆)) = 𝑑∗

𝑀
(
⋁
𝑆)

by Lemma 4.21, which completes our proof. □

Theorem 4.23 says that to calculate 𝑑𝑀 (𝑉𝐼), it is enough to calculate
𝑑ss
𝑀
(𝐽) (which is equal to 𝑑cc

𝑀
(𝐽) and also to 𝑑tot

𝑀
(𝐽) since 𝑀 is interval-

decomposable) for certain intervals 𝐽 . We warn that the assumption
that 𝑀 is interval-decomposable is necessary for Key Lemma 4.21, and
so is also necessary here. It is easy to construct examples where the
equality in Theorem 4.23 fails for non-interval-decomposable represen-
tations.

Example 4.24. Let us follow the proof of Theorem 4.23 by computing a
particular example. Let 𝑀 be an interval-decomposable representation
of 𝐺⃗2,4 and let 𝐼 =

(
0 1 1 0
0 1 1 0

)
∈ 𝕀2,4, an interval. In this case,

Cov(𝐼) =
{
𝐼1 ∶=

(
1 1 1 0
0 1 1 0

)
, 𝐼2 ∶=

(
0 1 1 0
0 1 1 1

)}
and 𝐼1 ∨ 𝐼2 =

(
1 1 1 0
0 1 1 1

)
. By Lemma 4.21, we have

𝑑∗
𝑀
(𝐼) =

∑
𝐽∈𝑈 (𝐼)

𝑑𝑀 (𝑉𝐽)

= 𝑑𝑀
((

0 1 1 0
0 1 1 0

))
+ 𝑑𝑀

((
1 1 1 0
0 1 1 0

))
+ 𝑑𝑀

((
0 1 1 0
0 1 1 1

))
+ 𝑑𝑀

((
1 1 1 0
1 1 1 0

))
+ 𝑑𝑀

((
1 1 1 0
0 1 1 1

))
+ 𝑑𝑀

((
0 1 1 1
0 1 1 1

))
+ 𝑑𝑀

((
1 1 1 0
1 1 1 1

))
+ 𝑑𝑀

((
0 1 1 1
0 1 1 1

))
+ 𝑑𝑀

((
1 1 1 0
1 1 1 1

))
= 𝑑𝑀 (𝑉𝐼) +

∑
𝐽∈(𝑈 (𝐼1)∪𝑈 (𝐼2))

𝑑𝑀 (𝑉𝐽))

= 𝑑𝑀 (𝑉𝐼) +
∑

𝐽∈𝑈 (𝐼1)
𝑑𝑀 (𝑉𝐽) +

∑
𝐽∈𝑈 (𝐼2)

𝑑𝑀 (𝑉𝐽)

−
∑

𝐽∈(𝑈 (𝐼1)∩𝑈 (𝐼2))
𝑑𝑀 (𝑉𝐽)

= 𝑑𝑀 (𝑉𝐼) +
∑

𝐽∈𝑈 (𝐼1)
𝑑𝑀 (𝑉𝐽) +

∑
𝐽∈𝑈 (𝐼2)

𝑑𝑀 (𝑉𝐽) −
∑

𝐽∈𝑈 (𝐼1∨𝐼2)
𝑑𝑀 (𝑉𝐽).

We thus have

𝑑𝑀 (𝑉𝐼) = 𝑑∗𝑀 (𝐼) − 𝑑∗
𝑀
(𝐼1) − 𝑑∗𝑀 (𝐼2) + 𝑑∗𝑀 (𝐼1 ∨ 𝐼2)

which is also given by Theorem 4.23.

7 More precisely, we use the inclusion-exclusion principle for finite measures,
where we note that (𝑈 (𝐼), 2𝑈 (𝐼), 𝑓) is a finite measure space.

H. Asashiba, E.G. Escolar, K. Nakashima et al. Journal of Computational Algebra 6–7 (2023) 100007
As another example, let us consider the equioriented 𝐴𝑛-type quiver,
which can be viewed as 𝐺⃗1,𝑛. In this setting, Theorem 4.23 reduces
to the following well-known formula related to inclusion-exclusion. In
fact, this perspective of using the inclusion-exclusion formula figured
heavily in the early development of persistence diagrams, before the
definition using indecomposables. See for example [31], [25], [37],
[16], [21], [12], [14] and others.

Corollary 4.25. Let 𝑀 ∈ rep 𝐺⃗1,𝑛. For 𝕀[𝑖, 𝑗] an interval representation of
𝐺⃗1,𝑛,

𝑑𝑀 (𝕀[𝑖, 𝑗]) = [rank𝑀((𝑖− 1)→ (𝑗 + 1)) − rank𝑀((𝑖− 1)→ 𝑗)]−
[rank𝑀(𝑖→ (𝑗 + 1)) − rank𝑀(𝑖→ 𝑗)] ,

where if 𝑖 − 1 and/or 𝑗 + 1 is not in 𝐺⃗1,𝑛, the corresponding term above is 0.

Proof. In 𝐺⃗1,𝑛, it follows immediately from the definition that

𝑑∗
𝑀
(𝕀[𝑖, 𝑗]) = rank𝑀(𝑖→ 𝑗)

for ∗= ss, cc, tot. Furthermore, Cov(𝕀[𝑖, 𝑗]) contains 𝕀[𝑖 −1, 𝑗] if 𝑖 −1 ∈ 𝐺⃗1,𝑛
and contains 𝕀[𝑖, 𝑗 + 1] if 𝑗 + 1 ∈ 𝐺⃗1,𝑛, and no other elements.

It is well-known that all representations of 𝐺⃗1,𝑛 are interval-
decomposable, and thus Theorem 4.23 is applicable. Thus,

𝑑𝑀 (𝕀[𝑖, 𝑗]) = 𝑑∗
𝑀
(𝕀[𝑖, 𝑗])

− 𝑑∗
𝑀
(𝕀[𝑖− 1, 𝑗]) − 𝑑∗

𝑀
(𝕀[𝑖, 𝑗 + 1])

+ 𝑑∗
𝑀
(𝕀[𝑖− 1, 𝑗 + 1]),

where if 𝑖 − 1 and/or 𝑗 + 1 is not in 𝐺⃗1,𝑛, the corresponding term above
is 0. Expanding and rearranging terms gives us the required expres-
sion. □

We note that the same formula has been obtained by using
Auslander-Reiten theory in the paper [4] (Equation (9) of [4]). Our
Theorem 4.23 here uses only the local lattice structure of 𝕀𝑚,𝑛, and it
may be interesting to explore Theorem 4.23 using Auslander-Reiten
theory, and more generally, a representation-theoretic perspective.

4.5. Restriction to equioriented 2 × 𝑛 commutative grid

In this subsection, we study the special case of 𝐺⃗2,𝑛, which is the
equioriented commutative ladder. In this setting, the compressed cate-
gories take on very nice forms.

Proposition 4.26. Let 𝐼 ∈ 𝕀2,𝑛. The quiver of the ss-compressed category
𝐼𝑠𝑠 has one of the following forms:

(1) ∙,
(2) ∙ ∙,
(3) ∙ ∙ ∙,
(4) ∙ ∙ ∙,
(5) ∙ ∙ ∙ ∙.

Proof. A direct computation shows this. □

Similarly, we have the following.

Proposition 4.27. Let 𝐼 ∈ 𝕀2,𝑛. The bound quiver of the cc-compressed cat-

egory 𝐼𝑐𝑐 has one of the following forms:
13
(1) ∙,
(2) ∙ ∙,
(3) ∙ ∙ ∙,
(4) ∙ ∙ ∙,
(5) ∙ ∙ ∙ ∙.

(6)
∙ ∙

∙ ∙
,

(7)
∙ ∙ ∙

∙ ∙
,

(8)
∙ ∙

∙ ∙ ∙
,

(9)
∙ ∙ ∙

∙ ∙ ∙
.

Proof. It is immediate that there are at most 6 cc-essential vertices,
arranged in the shape of (9), for an interval in 𝕀2,𝑛. The rest of the forms
cover the cases where some of those vertices are not cc-essential in
𝐼 . □

For 𝐼 ∈ 𝕀2,𝑛 with 𝑛 ≥ 5, 𝐼 tot is of infinite representation type (see [9,
Theorem 1.3] or [22] for example). Therefore, it may be difficult to
calculate the values 𝑑tot

𝑀
(𝐼).

On the other hand, Proposition 4.26 and Proposition 4.27 show that
𝐼 ss and 𝐼cc are of finite type for any 𝐼 ∈ 𝕀2,𝑛. In addition, the Auslander-
Reiten quivers for the bound quivers in the lists of Proposition 4.26 and
Proposition 4.27 can be calculated explicitly. Thus, it is not difficult to
calculate the values 𝑑∗

𝑀
(𝐼) for ∗= ss, cc, in the setting of the equioriented

2 × 𝑛 commutative grid.
We discuss more about computations in Section 6.

5. Interval-decomposable replacement

In this section, let us discuss how to use the above ideas for re-
placing a general 2D persistence modules in rep 𝐺⃗𝑚,𝑛 by an interval-
decomposable one. First, let us rephrase Theorem 4.23 using the lan-
guage of Möbius inversion, as discussed in Subsection 2.4, with under-
lying field 𝐹 =ℝ.

We can view 𝑑𝑀 and 𝑑∗
𝑀

as functions 𝕀𝑚,𝑛 →ℝ (taking only nonneg-
ative integer values). For 𝑑𝑀 , this is an abuse of notation, since 𝑑𝑀 is
a function from (isomorphism classes of) all indecomposables, but here
we are using the symbol to denote it restricted to the interval represen-
tations of 𝐺⃗𝑚,𝑛, identified with the set of intervals 𝕀𝑚,𝑛.

In the notation of Subsection 2.4, we have 𝑑𝑀, 𝑑∗𝑀 ∈ℝ𝕀𝑚,𝑛 . Then, the
Key Lemma 4.21 states that for 𝑀 interval-decomposable,

𝑑∗
𝑀

= 𝜁𝑑𝑀 (5.1)

where the multiplication of 𝜁 in Eq. (5.1) is precisely the left action
of 𝐼(𝕀𝑚,𝑛) on ℝ𝕀𝑚,𝑛 . By Möbius inversion (multiplication of 𝜇 = 𝜁−1), we
obtain

𝑑𝑀 = 𝜇𝑑∗
𝑀
. (5.2)

This expresses 𝑑𝑀 in terms of 𝑑∗
𝑀

, a conclusion similar to the one of
Theorem 4.23. Next, we show that the coefficients appearing in Theo-
rem 4.23 give the values of the Möbius function 𝜇([𝐼, 𝐽]) of 𝕀𝑚,𝑛.

Definition 5.1. Define the function 𝜇′ ∶ Seg(𝕀𝑚,𝑛) →ℝ, an element of the
incidence algebra 𝐼(𝕀𝑚,𝑛) by the following.

𝜇′([𝐼, 𝐽]) =
⎧⎪⎨⎪⎩
1 if 𝐼 = 𝐽 ,∑
𝐽=
⋁
𝑆

∅≠𝑆⊆Cov(𝐼)

(−1)#𝑆 otherwise. (5.3)

Note that in the case 𝐼 ≠ 𝐽 and where there is no ∅ ≠ 𝑆 ⊆ Cov(𝐼)
such that 𝐽 =

⋁
𝑆, the sum above is empty, and thus 𝜇′([𝐼, 𝐽]) = 0. The

values of 𝜇′ are exactly the coefficients appearing in the formula of
Theorem 4.23, from which we immediately get the following Corollary.

Corollary 5.2 (Restatement of Theorem 4.23). Let 𝑀 be an interval-

decomposable representation of 𝐺⃗𝑚,𝑛 and 𝐼 an interval in 𝕀𝑚,𝑛. Then:

H. Asashiba, E.G. Escolar, K. Nakashima et al. Journal of Computational Algebra 6–7 (2023) 100007
𝑑𝑀 = 𝜇′𝑑∗
𝑀

for ∗= ss, cc, tot.

Theorem 5.3. Let 𝜇′ be as defined in Definition 5.1, and 𝜇 be the Möbius
function of the poset 𝕀𝑚,𝑛. Then,

𝜇 = 𝜇′.

In particular, Equation (5.3) gives the values of 𝜇.

Proof. Let 𝐼 ≤ 𝐿 be intervals in 𝕀𝑚,𝑛. Below, we compare the values
𝜇([𝐼, 𝐿]) and 𝜇′([𝐼, 𝐿]) by induction on 𝐿.

First, let us consider 𝐿 a cover of 𝐼 and fix 𝑀 = 𝑉𝐿. By Corollary 5.2
and Equation (5.2), we have

𝜇′𝑑∗
𝑀

= 𝜇𝑑∗
𝑀
.

We obtain the following sequence of equations by working on both sides
the equation.

(𝜇′𝑑∗
𝑀
)(𝐼) = (𝜇𝑑∗

𝑀
)(𝐼)∑

𝐼≤𝐽

𝜇′([𝐼, 𝐽])𝑑∗
𝑀
(𝐽) =

∑
𝐼≤𝐽

𝜇([𝐼, 𝐽])𝑑∗
𝑀
(𝐽)∑

𝐼≤𝐽≤𝐿

𝜇′([𝐼, 𝐽])𝑑∗
𝑀
(𝐽) =

∑
𝐼≤𝐽≤𝐿

𝜇([𝐼, 𝐽])𝑑∗
𝑀
(𝐽)

𝜇′([𝐼, 𝐼]) + 𝜇′([𝐼,𝐿]) = 𝜇([𝐼, 𝐼]) + 𝜇([𝐼,𝐿])

1 + 𝜇′([𝐼,𝐿]) = 1 + 𝜇([𝐼,𝐿]),

where going from the second line to the third line follows by
Lemma 4.20. We conclude 𝜇′([𝐼, 𝐿]) = 𝜇([𝐼, 𝐿]) for any 𝐿 ∈ Cov(𝐼).

Next, we assume that for any interval 𝐿′ with 𝐿′ < 𝐿, 𝜇′([𝐼, 𝐿′]) =
𝜇([𝐼, 𝐿′]). Then we have the following sequence of equations by taking
𝑀 = 𝑉𝐿 and again using Lemma 4.20:

(𝜇′𝑑∗
𝑀
)(𝐼) = (𝜇𝑑∗

𝑀
)(𝐼)∑

𝐼≤𝐽≤𝐿

𝜇′([𝐼, 𝐽]) =
∑

𝐼≤𝐽≤𝐿

𝜇([𝐼, 𝐽])∑
𝐼≤𝐽<𝐿

𝜇′([𝐼, 𝐽]) + 𝜇′([𝐼,𝐿]) =
∑

𝐼≤𝐽<𝐿

𝜇([𝐼, 𝐽]) + 𝜇([𝐼,𝐿]).

Since we have ∑
𝐼≤𝐽<𝐿

𝜇′([𝐼, 𝐽]) = ∑
𝐼≤𝐽<𝐿

𝜇([𝐼, 𝐽]) by the inductive assump-

tion, we obtain 𝜇′([𝐼, 𝐿]) = 𝜇([𝐼, 𝐿]). By the induction, we get the con-
clusion. □

As we have seen, 𝑑𝑀 = 𝜇𝑑∗
𝑀

for 𝑀 interval-decomposable. Even in
the case where 𝑀 is not interval-decomposable, we nevertheless can do
the transformation. Thus we define 𝛿∗

𝑀
∶= 𝜇𝑑∗

𝑀
in general.

Definition 5.4. Put ∗= ss, cc, tot. Define 𝛿∗
𝑀

∶= 𝜇𝑑∗
𝑀

. In particular, for
each 𝐼 ∈ 𝕀𝑚,𝑛 an interval subquiver of 𝐺⃗𝑚,𝑛,

𝛿∗𝑀 (𝐼) ∶= 𝑑∗
𝑀
(𝐼) +

∑
∅≠𝑆⊆Cov(𝐼)

(−1)#𝑆𝑑∗
𝑀
(
⋁
𝑆).

First, we note the following obvious property of 𝛿∗
𝑀
(−).

Lemma 5.5. If 𝑀 ≅𝑀1 ⊕𝑀2, then we have

𝛿∗𝑀 (−) = 𝛿∗𝑀1
(−) + 𝛿∗𝑀2

(−).

Proof. Since 𝑑∗
𝑀
(−) = 𝑑∗

𝑀1
(−) + 𝑑∗

𝑀2
(−) by Lemma 4.19, we have the

desired equation by definition. □

Since in general

𝑀 ≅
⨁

𝑋𝑑𝑀 (𝑋)
𝑋∈

14
by Theorem 2.2 (where 𝑑𝑀 is the actual multiplicity function, not re-
stricted to intervals), one way of constructing an interval-decomposable
object is to naively define

𝛿∗(𝑀) =
⨁
𝐼∈𝕀𝑚,𝑛

(
𝑉𝐼
)𝛿∗
𝑀
(𝐼)

(5.4)

by taking the function 𝛿∗
𝑀

on 𝕀𝑚,𝑛 as a substitute for the function 𝑑𝑀 on
. Defined this way, 𝑀 ≅ 𝛿∗(𝑀) for interval-decomposable 𝑀 . How-
ever, the value 𝛿∗

𝑀
(𝐼) can be negative in general, and thus the direct

sum in Eq. (5.4) does not make sense.
For example, we have the following.

Example 5.6. Let 𝑀 be the representation of 𝐺⃗2,3 given by

𝐾 𝐾2 𝐾

0 𝐾 𝐾

[
1
1
]

[0 1]

1

[
0
1
]

1

The value of 𝛿ss
𝑀
(𝐼) is 0 except in the cases of 𝐼 being one of the intervals

𝐼1, 𝐼2, 𝐼3, 𝐼4 given below.

(1) For 𝐼1 ∶
∙ ∙

∙ ∙
, 𝛿ss
𝑀
(𝐼1) = −1,

(2) For 𝐼2 ∶
∙ ∙ ∙

∙ ∙
, 𝛿ss
𝑀
(𝐼2) = 1,

(3) For 𝐼3 ∶
∙

∙ ∙
, 𝛿ss
𝑀
(𝐼3) = 1,

(4) For 𝐼4 ∶
∙ ∙

, 𝛿ss
𝑀
(𝐼4) = 1.

Proof. We directly use Definition 5.4 to compute 𝛿ss
𝑀
(𝐼1). We let

Cov(𝐼1) = {𝐼2, 𝐼5}, and let 𝐼6 = 𝐼2 ∨ 𝐼5, where the intervals are given be-
low. We first compute the value of the compressed multiplicity 𝑑ss

𝑀
(−)

of these intervals. We have:

𝐼1 ∶
∙ ∙

∙ ∙
, 𝑑ss

𝑀
(𝐼1) = 0,

𝐼2 ∶
∙ ∙ ∙

∙ ∙
, 𝑑ss

𝑀
(𝐼2) = 1,

𝐼5 ∶
∙ ∙

∙ ∙ ∙
, 𝑑ss

𝑀
(𝐼5) = 0,

𝐼6 ∶
∙ ∙ ∙

∙ ∙ ∙
, 𝑑ss

𝑀
(𝐼6) = 0.

Thus, by definition,

𝛿ss
𝑀
(𝐼1) = 0 − 1 − 0 + 0 = −1.

The other computations follow similarly. □

For 𝑀 interval-decomposable, it is clear from the above that all
values of 𝛿∗

𝑀
are nonnegative, as it is equal to 𝑑𝑀 itself. In the next

example we see that the converse does not hold, and so we cannot use
the nonnegativity of 𝛿∗

𝑀
to check for interval-decomposability.

Example 5.7 (Continuation of Example 5.6). There exists a persistence
module 𝑁 over 𝐺⃗𝑚,𝑛 (for some 𝑚, 𝑛) such that 𝛿∗

𝑁
is nonnegative, but 𝑁

is not interval-decomposable.
In particular, let 𝑀 and 𝐼𝑖 (𝑖 = 1, 2, 3, 4) be as given in Example 5.6.

Then 𝑁 ∶=𝑀 ⊕𝐼1 is such an example.

Proof. Since 𝑁 =𝑀 ⊕𝐼1, 𝛿ss
𝑁
= 𝛿ss

𝑀
+ 𝛿ss

𝐼1
by Lemma 5.5. Then we have

𝛿ss (𝐼1) = −1 + 1 = 0

𝑁

H. Asashiba, E.G. Escolar, K. Nakashima et al. Journal of Computational Algebra 6–7 (2023) 100007
and 𝛿ss
𝑁
(𝐼) = 𝛿ss

𝑀
(𝐼) + 0 ≥ 0 for all intervals 𝐼 ≠ 𝐼1. Thus, 𝛿ss

𝑁
is nonnega-

tive, but 𝑁 is not interval-decomposable since 𝑀 is an indecomposable
summand of 𝑁 that is not isomorphic to an interval representation. □

To deal with the possibility of negative terms in 𝛿∗
𝑀

in general, we
use the formalism of the split Grothendieck group to express the addi-
tion of a negative number of copies of an interval in a direct sum. For
more details, see for example the notes [32, Chapter 2].

Definition 5.8. The split Grothendieck group Gr() of an additive cate-
gory  is the free abelian group generated by isomorphism classes [𝐶]
of objects in  modulo the relations [𝐶1 ⊕ 𝐶2] = [𝐶1] + [𝐶2] for all ob-
jects 𝐶1, 𝐶2 of . For an object 𝐶 of , we denote by [[𝐶]] the element
of Gr() represented by [𝐶].

In the following we consider the split Grothendieck group
Gr(rep 𝐺⃗𝑚,𝑛) of rep 𝐺⃗𝑚,𝑛. Then by the Krull-Schmidt theorem we eas-
ily see that it has a basis {[[𝐿]] ∣ 𝐿 ∈ }, where  is a complete set of
representatives of the isomorphism classes of indecomposable represen-
tations of 𝐺⃗𝑚,𝑛 (see [32, Theorem 2.3.6]). Thus each 𝑋 ∈Gr(rep 𝐺⃗𝑚,𝑛) is
uniquely expressed in the form

𝑋 =
∑
𝐿∈

𝑎𝐿 [[𝐿]]

with 𝑎𝐿 ∈ℤ for all 𝐿 ∈ . Here we define the representations

𝑋+ ∶=
⨁
𝐿∈
𝑎𝐿≥0

𝐿𝑎𝐿 and 𝑋− ∶=
⨁
𝐿∈
𝑎𝐿<0

𝐿(−𝑎𝐿), (5.5)

which are called the positive part and the negative part of 𝑋, respec-
tively. Note that they are representations of 𝐺⃗𝑚,𝑛 with the property
that 𝑋 = [[𝑋+]] − [[𝑋−]] because [[𝑋+]] =

∑
𝐿∈
𝑎𝐿≥0

𝑎𝐿 [[𝐿]] and [[𝑋−]] =∑
𝐿∈
𝑎𝐿<0

(−𝑎𝐿) [[𝐿]]. Therefore, 𝑋 can be uniquely presented by the pair

(𝑋+, 𝑋−) of representations of 𝐺⃗𝑚,𝑛.

Definition 5.9 (interval-decomposable replacement). Let 𝑀 ∈ rep 𝐺⃗𝑚,𝑛.
Define the interval-decomposable replacement (or interval-decomposable
approximation)8 𝛿∗(𝑀) of 𝑀 by

𝛿∗(𝑀) ∶=
∑
𝐼∈𝕀𝑚,𝑛

𝛿∗𝑀 (𝐼)[[𝑉𝐼]] ∈ Gr(rep 𝐺⃗𝑚,𝑛) (5.6)

for ∗= ss, cc, or, tot.

By the above observation, 𝛿∗(𝑀) can be expressed by the pair (
𝛿∗(𝑀)+, 𝛿∗(𝑀)−

)
of interval-decomposable representations, where

𝛿∗(𝑀)+ =
⨁
𝐼∈𝕀𝑚,𝑛
𝛿∗
𝑀
(𝐼)>0

𝑉𝐼
𝛿∗
𝑀
(𝐼) and 𝛿∗(𝑀)− =

⨁
𝐼∈𝕀𝑚,𝑛
𝛿∗
𝑀
(𝐼)<0

𝑉𝐼
(−𝛿∗

𝑀
(𝐼)).

Theorem 5.10. Let 𝑀 ∈ rep 𝐺⃗𝑚,𝑛 be interval-decomposable. Then,

𝛿∗(𝑀) = [[𝑀]], or equivalently, 𝛿∗(𝑀)+ ≅𝑀 and 𝛿∗(𝑀)− = 0.

Proof. Because 𝑀 is interval-decomposable, 𝛿∗
𝑀

= 𝑑𝑀 . The conclusion
follows immediately from this. □

Note that the converse trivially holds. If 𝛿∗(𝑀) = [[𝑀]] then 𝑀 is
interval-decomposable.

Let us discuss the relationship between 𝑀 and 𝛿∗(𝑀). In particular,
we focus on dimension vectors and rank invariants.

8 See footnote 2.
15
Example 5.11 (Continuation of Example 5.6). With the same notation as
in Example 5.6, we have the equality∑
𝐼∈𝕀2,3

𝛿ss
𝑀
(𝐼) ⋅ dim(𝑉𝐼) =

(
1 1 1
0 1 1

)
+
(
0 1 0
0 1 1

)
+
(
1 1 0
0 0 0

)
−
(
1 1 0
0 1 1

)
=
(
1 2 1
0 1 1

)
= dim(𝑀).

For 𝛿cc
𝑀

, we have a similar equality of the dimension vectors for
the example above. This is not a coincidence, and in fact the equality
always holds (see Corollary 5.14). First we prove the following stronger
statement.

Theorem 5.12. Let 𝑀 be a representation of 𝐺⃗𝑚,𝑛 = (𝑄, 𝑅), and let 𝑖 and 𝑗
be vertices of 𝑄 such that there exists a path from 𝑖 to 𝑗 in 𝑄. Then we have∑
𝐼∈𝕀𝑚,𝑛

𝛿∗𝑀 (𝐼) ⋅ rank 𝑉𝐼 (𝑖→ 𝑗) = rank𝑀(𝑖→ 𝑗). (5.7)

for ∗= ss, cc, tot.

To prove the theorem above we need the following lemma, which is
the essence of Theorem 5.12.

Lemma 5.13. Let 𝑀 ∈ rep 𝐺⃗𝑚,𝑛 and 𝐼 ∈ 𝕀𝑚,𝑛. Then

𝑑∗
𝑀
(𝐼) =

∑
𝐼≤𝐽∈𝕀𝑚,𝑛

𝛿∗𝑀 (𝐽)

Proof. This follows from Möbius inversion. That is, by definition 𝛿∗
𝑀

∶=
𝜇𝑑∗

𝑀
and thus

𝑑∗
𝑀

= 𝜁𝛿∗𝑀
since 𝜇−1 = 𝜁 . The right-hand side expanded out gives the result. □

Then we prove Theorem 5.12.

Proof of Theorem 5.12. Since there is a path from 𝑖 to 𝑗, the rectangle
with source 𝑖 and sink 𝑗 exists. We denote this rectangle with source 𝑖
and sink 𝑗 by 𝑅𝑖,𝑗 .

We note that for an interval 𝐼 ∈ 𝕀𝑚,𝑛, rank 𝑉𝐼 (𝑖 → 𝑗) is 1 if and only
if 𝐼 contains the rectangle 𝑅𝑖,𝑗 and is 0 otherwise. This gives the first
equality in the following computation. We have∑
𝐼∈𝕀𝑚,𝑛

𝛿∗𝑀 (𝐼) ⋅ rank 𝑉𝐼 (𝑖→ 𝑗) =
∑

𝑅𝑖,𝑗≤𝐼∈𝕀𝑚,𝑛

𝛿∗𝑀 (𝐼)

= 𝑑∗
𝑀
(𝑅𝑖,𝑗)

= rank𝑀(𝑖→ 𝑗),

where the second equality follows from Lemma 5.13, and the last equal-
ity follows by applying Proposition 4.16. □

As a corollary of Theorem 5.12, we have the following desired equa-
tion for dimension vectors.

Corollary 5.14. Let 𝑀 be a representation of 𝐺⃗𝑚,𝑛. Then we have∑
𝐼∈𝕀𝑚,𝑛

𝛿∗𝑀 (𝐼) ⋅ dim(𝑉𝐼) = dim(𝑀). (5.8)

Proof. It is enough to show that for any 𝑖 ∈𝐺0,∑
𝐼∈𝕀𝑚,𝑛

𝛿∗𝑀 (𝐼) ⋅ (dim(𝑉𝐼))𝑖 = (dim(𝑀))𝑖.

Note that (dim(𝑉𝐼))𝑖 = rank 𝑉𝐼 (𝑖 → 𝑖) and (dim(𝑀))𝑖 = rank𝑀(𝑖 → 𝑖),
where the path 𝑖 → 𝑖 means the path 𝑒𝑖 of length 0 at 𝑖. Thus, by Theo-
rem 5.12, we obtain the above equation. □

H. Asashiba, E.G. Escolar, K. Nakashima et al. Journal of Computational Algebra 6–7 (2023) 100007
Let us give another consequence of this result, which warns us
against thinking of 𝛿∗

𝑀
as a kind of approximation in terms of func-

tions. In more detail, each 𝑀 ∈ rep 𝐺⃗𝑚,𝑛 can be written as 𝑀 ≅𝑀𝐼 ⊕𝑋,
where 𝑀𝐼 is interval-decomposable, and 0 ≠ 𝑋 has no interval repre-
sentation as a summand. By Lemma 5.5,

𝛿∗𝑀 = 𝛿∗𝑀𝐼
+ 𝛿∗𝑋 = 𝑑𝑀𝐼

+ 𝛿∗𝑋 ∶ 𝕀𝑚,𝑛 →ℝ (5.9)

where we also use the fact that 𝛿∗
𝑀𝐼

= 𝑑𝑀𝐼
because 𝑀𝐼 is interval-

decomposable. Restricted to 𝕀𝑚,𝑛, 𝑑𝑀 has the same values as 𝑑𝑀𝐼
. Pre-

cisely speaking, by our abuse of notation 𝑑𝑀 ∶ 𝕀𝑚,𝑛 →ℝ above is the full
multiplicity function 𝑑𝑀 restricted to the set of interval representations,
which can be identified with 𝕀𝑚,𝑛. Thus, we may be tempted to think of
using 𝛿∗

𝑀
to approximate 𝑑𝑀𝐼

= 𝑑𝑀 as functions on 𝕀𝑚,𝑛. To measure the
error involved, we use the 𝓁1-norm of functions 𝑓 ∶ 𝕀𝑚,𝑛 →ℝ defined by ‖𝑓‖1 =∑𝐼∈𝕀𝑚,𝑛 |𝑓 (𝐼)|. Let us consider the value of

‖‖‖𝛿∗𝑋‖‖‖1 = ‖‖‖𝛿∗𝑀 − 𝑑𝑀
‖‖‖1 .

We remind the reader that we are considering 𝑑𝑀 as a function on 𝕀𝑚,𝑛
by restriction.

Corollary 5.15. Let 𝐺⃗𝑚,𝑛 be an equioriented commutative grid of size at
least 2 × 5 or 5 × 2. For any 𝓁 ∈ ℕ, there exists an indecomposable non-

interval representation 𝑋 ∈ rep 𝐺⃗𝑚,𝑛, such that

‖‖‖𝛿∗𝑋‖‖‖1 ≥ 𝓁.

Proof. The construction in [10] provides such an indecomposable non-
interval 𝑋 ∈ rep 𝐺⃗2,5 (for 𝐺⃗𝑚,𝑛 larger than 2 ×5, we simply pad with zero
spaces and zero maps):

𝐾𝓁 𝐾2𝓁 𝐾2𝓁 𝐾𝓁 0

0 𝐾𝓁 𝐾2𝓁 𝐾2𝓁 𝐾𝓁

[
𝐸
0
]

[𝐸 0]

[
𝐸
0
][

𝐸
𝐸

] [
𝐸 𝐸
𝐸 𝐽

]
[𝐸 0]

[𝐸 𝐸]

where each 𝐸 is an 𝓁 × 𝓁 identity matrix, and 𝐽 is the 𝓁 × 𝓁 Jordan
block with eigenvalue 𝜆 = 1.

Let 𝑖 be one of the vertices such that 𝑋(𝑖) has dimension at least 𝓁.
We compute:

𝓁 ≤ dim𝑋(𝑖) =
∑
𝐼∈𝕀𝑚,𝑛

𝛿∗𝑋 (𝐼) ⋅ (dim(𝑉𝐼))𝑖

=
∑
𝐼∶𝑖∈𝐼

𝛿∗𝑋 (𝐼)

≤
∑
𝐼∶𝑖∈𝐼

|𝛿∗𝑋 (𝐼)|
≤
∑
𝐼∈𝕀𝑚,𝑛

|𝛿∗𝑋 (𝐼)|
= ‖‖‖𝛿∗𝑋‖‖‖1 ,

where the first line follows from Corollary 5.14. □

Remark 5.16. A simpler proof can be provided, if we allow 𝑋 to not
be indecomposable in the preceding corollary, as follows. Let 𝑁 be an
indecomposable non-interval representation, which is known to exist.
For example, the above indecomposable can be reused. Then, defining
𝑋 as the direct sum of 𝓁 copies of 𝑁 , we have that 𝑋 and
16
‖‖‖𝛿∗𝑋‖‖‖1 = ‖‖‖‖‖‖
𝓁∑
𝑖=1
𝛿∗𝑁

‖‖‖‖‖‖1 = 𝓁 ‖‖‖𝛿∗𝑁‖‖‖1 ≥ 𝓁

since ‖‖‖𝛿∗𝑁‖‖‖1 ≥ 1 (otherwise 𝛿∗
𝑁
= 0 and thus 𝑁 = 0, a contradiction).

In other words, the “error term” ‖‖‖𝛿∗𝑋‖‖‖1 can be made arbitrarily large
by varying 𝑀 . However, in the above analysis, we considered the “error
term” ‖‖‖𝛿∗𝑋‖‖‖1 = ‖‖‖𝛿∗𝑀 − 𝑑𝑀

‖‖‖1 where 𝑑𝑀 is considered as a function on 𝕀𝑚,𝑛
by restriction. That is, its values on non-intervals are ignored. A more
comprehensive analysis could potentially take into account those terms
as well.

Finally, let us give an interpretation of Theorem 5.12 and Corol-
lary 5.14. The left-hand side

∑
𝐼∈𝕀𝑚,𝑛

𝛿∗𝑀 (𝐼) ⋅ rank 𝑉𝐼 (𝑖→ 𝑗)

of Equation (5.7) in Theorem 5.12 and the left-hand side

∑
𝐼∈𝕀𝑚,𝑛

𝛿∗𝑀 (𝐼) ⋅ dim(𝑉𝐼)

of Equation (5.8) in Corollary 5.14 can be viewed as the rank invariant
and the dimension vector of the interval-decomposable replacement

𝛿∗(𝑀) =
∑
𝐼∈𝕀𝑚,𝑛

𝛿∗𝑀 (𝐼)[[𝑉𝐼]],

respectively. That is, the rank invariant (dimension vector, respectively)
of 𝛿∗(𝑀) can be defined by adding the rank invariants (dimension
vectors, respectively) of its summands. With this, Theorem 5.12 and
Corollary 5.14 simply states that the interval-decomposable replace-
ment 𝛿∗(𝑀) preserves the rank invariant and dimension vector of 𝑀 . It
is in this sense that we think of replacing (or loosely speaking, approxi-
mating) 𝑀 by 𝛿∗(𝑀).

6. Algorithms for equioriented commutative ladders

Let 𝑀 be a persistence module over an equioriented 𝑚 ×𝑛 commuta-
tive grid. For completeness, we first present a high-level overview of an
algorithm for the computation of our proposed interval-decomposable
replacement 𝛿∗(𝑀). Afterwards, we consider the case of persistence
modules over equioriented commutative ladders (2 × 𝑛 commutative
grids).

The computation of interval-decomposable replacement 𝛿∗(𝑀) =∑
𝐼∈𝕀𝑚,𝑛

𝛿∗
𝑀
(𝐼)[[𝑉𝐼]] of 𝑀 involves two major steps:

(1) (Algorithm 1) computation of the compressed multiplicity function
𝑑∗
𝑀

∶ 𝕀𝑚,𝑛 →ℕ, defined by

𝑑∗
𝑀
(𝐼) ∶= 𝑑Comp∗

𝐼
(𝑀)(Comp∗𝐼 (𝑉𝐼))

for 𝐼 ∈ 𝕀𝑚,𝑛, and
(2) (Algorithm 2) computation of the Möbius inversion 𝛿∗

𝑀
= 𝜇𝑑∗

𝑀

given by

𝛿∗𝑀 (𝐼) ∶= 𝑑∗
𝑀
(𝐼) +

∑
∅≠𝑆⊆Cov(𝐼)

(−1)#𝑆𝑑∗
𝑀
(
⋁
𝑆).

for 𝐼 ∈ 𝕀𝑚,𝑛.

Algorithm 1 below for the computation of the compressed multiplic-
ity simply expands upon the definition.

H. Asashiba, E.G. Escolar, K. Nakashima et al. Journal of Computational Algebra 6–7 (2023) 100007
Algorithm 1 Compressed multiplicity 𝑑∗
𝑀

of 𝑀 .

1: function COMPRESSEDMULTIPLICITY(𝑀)
2: Initialize the function 𝑑∗

𝑀
on 𝕀𝑚,𝑛 to zero

3: for 𝐼 ∈ 𝕀𝑚,𝑛 do

4: Compute the compressed representation 𝑀 ′ = Comp∗
𝐼
(𝑀).

5: Compute the compressed representation 𝐼 ′ = Comp∗
𝐼
(𝑉𝐼).

(which is simply the interval representation with the whole of 𝐼∗ as
support)

6: Compute the multiplicity 𝑑𝑀 ′ (𝐼 ′) of 𝐼 ′ in 𝑀 ′ .
7: 𝑑∗

𝑀
(𝐼) ← 𝑑𝑀 ′ (𝐼 ′)

8: end for

9: return 𝑑∗
𝑀

10: end function

Line 4 of Algorithm 1 for the compressed representation 𝑀 ′ =
Comp∗𝐼 (𝑀) simply means forgetting about the vector spaces (internal
linear maps, resp.) of 𝑀 corresponding to objects (morphisms, resp.)
not in the compressed category 𝐼∗. Note that depending on how 𝑀 is
stored, extra computations are needed (if some of the internal maps
of 𝑀 are not explicitly stored, they may need to be computed explic-
itly and stored if they rely on internal maps about to be forgotten). We
provide an example of this with the 2 × 𝑛 case later.

In general, the computation of the multiplicity 𝑑𝑀 ′ (𝐼 ′) of 𝐼 ′ in 𝑀 ′

(Line 6 of Algorithm 1) can be accomplished by computing the dimen-
sions of certain homomorphism spaces to entries in the almost split
sequence9 starting at 𝐼 ′ (see [4, Theorem 3], [19, Corollary. 2.3] and
also [1, Algorithms 3, 4]). Indeed, for Algorithm 1 and its specialization
to the 2 × 𝑛 commutative grids in Algorithm 3, we rely heavily on [4].

Algorithm 2 is also a straightforward expansion of the definition.

Algorithm 2 Möbius inversion 𝛿∗
𝑀

of 𝑑∗
𝑀

.

1: function MÖBIUSINVERSION(𝑑∗
𝑀

)
2: Initialize the function 𝛿∗

𝑀
on 𝕀𝑚,𝑛 to zero

3: for 𝐼 ∈ 𝕀𝑚,𝑛 do

4: 𝑎 ← 𝑑∗
𝑀
(𝐼)

5: Compute Cov(𝐼)
6: for ∅ ≠ 𝑆 ⊆ Cov(𝐼) do

7: Compute ⋁𝑆
8: 𝑎 ← 𝑎 + (−1)#𝑆𝑑∗

𝑀
(
⋁
𝑆)

9: end for

10: 𝛿∗
𝑀
(𝐼) ← 𝑎

11: end for

12: return 𝛿∗
𝑀

13: end function

Algorithm 2 requires the computation of joins of cover elements of 𝐼 .
We comment on this below. Let 𝐼 =⨆𝑡

𝑖=𝑠[𝑏𝑖, 𝑑𝑖]𝑖. By Proposition 3.4, the
elements of Cov(𝐼) are given by a specific form. We recall that Propo-
sition 3.4 only provides a list of candidates, from which picking up all
valid intervals forms Cov(𝐼). We single out the following four potential

cover elements specified by Proposition 3.4 that need special consider-
ation:

(1) extension of the top row of 𝐼 by one adjacent vertex left of the row
(top-left)

𝐶𝑡𝑙 =
𝑡⨆
𝑖=𝑠

[𝑏′𝑖 , 𝑑𝑖]𝑖, where 𝑏′𝑖 =

{
𝑏𝑖 − 1 if 𝑖 = 𝑡,
𝑏𝑖 otherwise,

(2) extension of the bottom row of 𝐼 by one adjacent vertex right of the
row (bottom-right)

𝐶𝑏𝑟 =
𝑡⨆
𝑖=𝑠

[𝑏𝑖, 𝑑′𝑖]𝑖, where 𝑑′𝑖 =

{
𝑑𝑖 + 1 if 𝑖 = 𝑠,
𝑑𝑖 otherwise,

9 A non-split short exact sequence (𝐸) ∶ 0 → 𝑋
𝑓
←←←←←←→ 𝑌

𝑔
←←←←←→ 𝑍 → 0 is called an

almost split sequence starting at 𝑋 if both 𝑋 and 𝑍 are indecomposable, and
if for any homomorphism ℎ∶ 𝑋 → 𝑉 , either ℎ is a split monomorphism or the
pushout of (𝐸) along ℎ splits.
17
(3) addition of one vertex above the upper-left vertex of 𝐼 (top)

𝐶𝑡 =
𝑡⨆
𝑖=𝑠

[𝑏𝑖, 𝑑𝑖]𝑖 ⊔ [𝑏𝑡, 𝑏𝑡]𝑡+1,

(4) addition of one vertex below the lower-right vertex of 𝐼 (bottom)

𝐶𝑏 = [𝑑𝑠, 𝑑𝑠]𝑠−1 ⊔
𝑡⨆
𝑖=𝑠

[𝑏𝑖, 𝑑𝑖]𝑖.

Remark 6.1. It is clear that if 𝑆 ⊂ Cov(𝐼)

∙ does not contain both 𝐶𝑡𝑙 and 𝐶𝑡, and
∙ does not contain both 𝐶𝑏𝑟 and 𝐶𝑏,

then ⋁𝑆 =
⋃
𝐶∈𝑆 𝐶 . That is, simply taking the union is enough since

the union is an interval.
Otherwise, we need to add at most two vertices to ⋃𝐶∈𝑆 𝐶 in order

to obtain ⋁𝑆. If 𝑆 ⊂ Cov(𝐼) contains both 𝐶𝑡𝑙 and 𝐶𝑡, then an additional
vertex in the top left needs to be added to form an interval. Similarly,
if 𝑆 ⊂ Cov(𝐼) contains both 𝐶𝑏𝑟 and 𝐶𝑏, then an additional vertex in the
bottom right needs to be added to form an interval.

Example 6.2. We provide an example using the interval 𝐼 in the com-
mutative grid 𝐺⃗5,6 with candidate vertices marked as in Example 3.5.

◦ ◦ ◦ ◦

◦ ∙ ∙ ◦

◦ ◦ ∙ ◦

◦ ◦ ◦ ◦

◦ ✓ ◦ ◦

✓ ∙ ∙ ✗

◦ ✓ ∙ ✓

◦ ◦ ✓ ◦

In dimension vector notation,

𝐼 =
⎛⎜⎜⎝
0 0 0 0
0 1 1 0
0 0 1 0
0 0 0 0

⎞⎟⎟⎠
and all the cover elements are given by

𝐶𝑡𝑙 =
⎛⎜⎜⎝
0 0 0 0
1 1 1 0
0 0 1 0
0 0 0 0

⎞⎟⎟⎠ , 𝐶𝑡 =
⎛⎜⎜⎝
0 1 0 0
0 1 1 0
0 0 1 0
0 0 0 0

⎞⎟⎟⎠ ,
𝐶𝑏𝑟 =

⎛⎜⎜⎝
0 0 0 0
0 1 1 0
0 0 1 1
0 0 0 0

⎞⎟⎟⎠ , 𝐶𝑏 =
⎛⎜⎜⎝
0 0 0 0
0 1 1 0
0 0 1 0
0 0 1 0

⎞⎟⎟⎠ ,
𝐶 =

⎛⎜⎜⎝
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎞⎟⎟⎠ .
Thus, for example,

𝐶𝑏𝑟 ∨𝐶𝑡 ∨𝐶 =
⎛⎜⎜⎝
0 1 0 0
0 1 1 0
0 1 1 1
0 0 0 0

⎞⎟⎟⎠ = 𝐶𝑏𝑟 ∪𝐶𝑡 ∪𝐶
while

𝐶𝑡𝑙 ∨𝐶𝑡 ∨𝐶𝑏𝑟 =
⎛⎜⎜⎝
1 1 0 0
1 1 1 0
0 0 1 1
0 0 0 0

⎞⎟⎟⎠ = {𝑣} ∪𝐶𝑡𝑙 ∪𝐶𝑡 ∪𝐶𝑏𝑟

where 𝑣 is the vertex at the upper-left corner.

Theorem 6.3. Algorithm 2, which computes 𝛿∗
𝑀

given 𝑑∗
𝑀

, can be per-

formed with time complexity 𝑂(#𝕀𝑚,𝑛2𝐷𝐷𝑚), where 𝐷 =max𝐼∈𝕀𝑚,𝑛 # Cov(𝐼).

Proof. For each 𝐼 ∈ 𝕀𝑚,𝑛, there are at most 2𝐷 − 1 nonempty subsets 𝑆
of Cov(𝐼). By the formula

H. Asashiba, E.G. Escolar, K. Nakashima et al. Journal of Computational Algebra 6–7 (2023) 100007
𝛿∗𝑀 (𝐼) ∶= 𝑑∗
𝑀
(𝐼) +

∑
∅≠𝑆⊆Cov(𝐼)

(−1)#𝑆𝑑∗
𝑀
(
⋁
𝑆)

for each 𝑆, we need to compute ⋁𝑆, which is the join of at most 𝐷
intervals.

We first compute ⋃𝐶∈𝑆 𝐶 by the following. Assuming that inter-
vals are represented in the form of 𝐼 =⨆𝑡

𝑖=𝑠[𝑏𝑖, 𝑑𝑖]𝑖 (row-wise), with the
number of rows equal to 𝑚, the union of two cover elements can be
computed by iterating through the 𝑚 rows and taking the union of the
corresponding intervals [𝑏𝑖, 𝑑𝑖]𝑖 ∪ [𝑏′𝑖 , 𝑑

′
𝑖]𝑖. We iterate over the elements

of 𝑆 (at most 𝐷) to obtain ⋃𝐶∈𝑆 𝐶 .
Finally, the above discussion around Remark 6.1 concerning the four

cover elements 𝐶𝑡𝑙, 𝐶𝑡, 𝐶𝑏𝑟, 𝐶𝑏 that need special consideration provides
the computation of ⋁𝑆 by modifying the union ⋃𝐶∈𝑆 𝐶 . We simply
need to check for the presence of both 𝐶𝑡𝑙 and 𝐶𝑡 in 𝑆, and both 𝐶𝑏𝑟
and 𝐶𝑏 in 𝑆, and add the additional vertices to ⋃𝐶∈𝑆 𝐶 to obtain ⋁𝑆,
as noted in Remark 6.1.

By the above, we have as an upper bound #𝕀𝑚,𝑛 ⋅ (2𝐷 −1) ⋅𝐷 ⋅𝑚 oper-
ations, giving the claimed time complexity. □

Next, we consider the case of equioriented commutative ladders
with ∗= ss, where it has been noted in Subsection 4.5 that the ss-
compressed category is of Dynkin 𝐴𝑛-type with 𝑛 ≤ 4 (Proposition 4.26).
So, let 𝑀 be a persistence module over the 2 × 𝑛 commutative grid, and
let

𝑑 = max
𝑣∈
(
𝐺⃗2,𝑛

)
0

dim𝑀(𝑣).

In particular 𝑀 ∈ rep 𝐺⃗2,𝑛 is given as the following collection of vector
spaces and linear maps

𝑀(2,1) 𝑀(2,2) ⋯ 𝑀(2, 𝑛)

𝑀(1,1) 𝑀(1,2) ⋯ 𝑀(1, 𝑛)

𝑀((2,1)→(2,2)) 𝑀((2,1)→(2,3)) 𝑀((2,𝑛−1)→(2,𝑛))

𝑀((1,1)→(1,2))
𝑀((1,1)→(2,1))

𝑀((1,2)→(1,3))
𝑀((1,2)→(2,2))

𝑀((1,𝑛−1)→(1,𝑛))
𝑀((1,𝑛)→(2,𝑛))

such that

𝑀(2, 𝑗) 𝑀(2, 𝑗 + 1)

𝑀(1, 𝑗) 𝑀(1, 𝑗 + 1)

𝑀((2,𝑗)→(2,𝑗+1))

𝑀((1,𝑗)→(1,𝑗+1))
𝑀((1,𝑗)→(2,𝑗)) 𝑀((1,𝑗+1)→(2,𝑗+1))

commutes for all 𝑗 ∈ {1, 2, … , 𝑛 − 1}. For (𝑥, 𝑦), (𝑖, 𝑗) distinct vertices of
𝐺⃗2,𝑛 such that 𝑥 ≤ 𝑖 and 𝑦 ≤ 𝑗 (that is, there exists a path from (𝑥, 𝑦) to
(𝑖, 𝑗) in 𝐺⃗2,𝑛), 𝑀((𝑥, 𝑦) → (𝑖, 𝑗)) is the composition 𝑀(𝑝) =𝑀(𝛼𝓁) ⋯ 𝑀(𝛼1)
where 𝑝 = (𝛼𝑙, … , 𝛼𝓁) is a path from (𝑥, 𝑦) to (𝑖, 𝑗) in 𝐺⃗2,𝑛. Note that by
the commutativity relations, the composition does not depend on the
path chosen.

In Algorithm 3, we specialize Algorithm 1 to this setting and
add more details. In particular, we precompute all the compositions
𝑀((𝑥, 𝑦) → (𝑖, 𝑗)) (as each will be used at some point in the algorithm,
anyway), and explicitly write down formulae for 𝑑𝑀 ′ (𝐼 ′) using ranks of
certain matrices.

Algorithm 3 ss-compressed multiplicity (2 × 𝑛 case).
1: function SSCOMPRESSEDMULTIPLICITYTWOBYN(𝑀)
2: Initialize the function 𝑑ss

𝑀
on 𝕀2,𝑛 to zero

3: Compute 𝑀((𝑥, 𝑦) → (𝑖, 𝑗)) for all (𝑥, 𝑦) ≠ (𝑖, 𝑗) with a path from (𝑥, 𝑦) to (𝑖, 𝑗)
4: for 𝐼 ∈ 𝕀2,𝑛 do

5: Compute 𝑑𝑀 ′ (𝐼 ′) using the formula in Proposition 6.4,
where 𝑀 ′ = Compss

𝐼
(𝑀) and 𝐼 ′ = Compss

𝐼
(𝑉𝐼).

6: 𝑑ss
𝑀
(𝐼) ← 𝑑𝑀 ′ (𝐼 ′)

7: end for

8: return 𝑑ss
𝑀

9: end function

Proposition 6.4. Let 𝑀 ∈ rep𝐾𝐺⃗2,𝑛, 𝐼 ∈ 𝕀2,𝑛 and let 𝑀 ′ = Compss
𝐼 (𝑀)

and 𝐼 ′ = Compss
𝐼 (𝑉𝐼) be their respective compressed representations of 𝐼 ss.
18
Below, we use the convention that the symbols 𝑠1 and 𝑡1 stand for vertices
on row 1 (i.e. have coordinates (1, ?)), and that 𝑠2 and 𝑡2 stand for vertices
on row 2 (i.e. have coordinates (2, ?)).

Then 𝐼 is in one of the following four cases, and the value of the com-

pressed multiplicity 𝑑ss
𝑀
(𝐼) = 𝑑𝑀 ′ (𝐼 ′) is given by the respective formula.

∙ If 𝐼 is a rectangle with source 𝑠 and sink 𝑡 then

𝑑𝑀 ′ (𝐼 ′) = rank𝑀(𝑠→ 𝑡)

∙ If 𝐼 has sources 𝑠1, 𝑠2 and sink 𝑡2 then

𝑑𝑀 ′ (𝐼 ′) = rank𝑀(𝑠2 → 𝑡2) + rank𝑀(𝑠1 → 𝑡2)

− rank
[
𝑀(𝑠2 → 𝑡2) 𝑀(𝑠1 → 𝑡2)

]
∙ If 𝐼 has source 𝑠1 and sinks 𝑡1, 𝑡2 then

𝑑𝑀 ′ (𝐼 ′) = rank𝑀(𝑠1 → 𝑡2) + rank𝑀(𝑠1 → 𝑡1) − rank
[
𝑀(𝑠1 → 𝑡2)
𝑀(𝑠1 → 𝑡1)

]
∙ If 𝐼 has sources 𝑠1, 𝑠2 and sinks 𝑡1, 𝑡2 then

𝑑𝑀 ′ (𝐼 ′) = rank
[
𝑀(𝑠2 → 𝑡2) 𝑀(𝑠1 → 𝑡2)

0 𝑀(𝑠1 → 𝑡1)

]
+ rank𝑀(𝑠1 → 𝑡2)

− rank
[
𝑀(𝑠1 → 𝑡2)
𝑀(𝑠1 → 𝑡1)

]
− rank

[
𝑀(𝑠2 → 𝑡2) 𝑀(𝑠1 → 𝑡2)

]
Proof. Each element 𝐼 of 𝕀2,𝑛 has a staircase form, which is denoted by:

𝐼 =
𝑘⨆
𝑖=𝑗

[𝑏𝑖, 𝑑𝑖]𝑖

for some integers 1 ≤ 𝑗 ≤ 𝑘 ≤ 2 and some integers 1 ≤ 𝑏𝑖 ≤ 𝑑𝑖 ≤ 𝑛 for each
𝑗 ≤ 𝑖 ≤ 𝑘 such that 𝑏𝑖+1 ≤ 𝑏𝑖 ≤ 𝑑𝑖+1 ≤ 𝑑𝑖 for any 𝑖 ∈ {𝑗, … , 𝑘 − 1}.

The two cases given by

∙ 𝑗 = 𝑘, or
∙ 𝑏1 = 𝑏2 and 𝑑1 = 𝑑2

correspond to 𝐼 being a rectangle (with source 𝑠 = (𝑗, 𝑏𝑗) and sink
𝑡 = (𝑗, 𝑑𝑗), or source 𝑠 = (1, 𝑏1) and sink 𝑡 = (2, 𝑑2), respectively). Here,
Proposition 4.16 gives the formula for the compressed multiplicity.

Thus, we are left with the cases that 1 = 𝑗 < 𝑘 = 2, and that 𝑏1 ≠ 𝑏2
or 𝑑1 ≠ 𝑑2. By the general restriction that 𝑏2 ≤ 𝑏1 ≤ 𝑑2 ≤ 𝑑1, we have the
following three cases

∙ 𝑏2 < 𝑏1 ≤ 𝑑2 = 𝑑1. This corresponds to the case that 𝐼 has sources
𝑠1 = (1, 𝑏1), 𝑠2 = (2, 𝑏2) and sink 𝑡2 = (2, 𝑑2), as illustrated below:

with 𝐼 ss ∶ 𝑠1 𝑡2 𝑠2 emphasized. Then, the compressed repre-
sentations are given by

𝐼 ′ ∶ 𝐾 𝐾 𝐾
1 1

and

𝑀 ′ ∶ 𝑀(𝑠1) 𝑀(𝑡2) 𝑀(𝑠2)
𝑀(𝑠1→𝑡2) 𝑀(𝑠2→𝑡2).

We note that 𝐼 ′ is injective with socle given by

soc𝐼 ′ ∶ 0 𝐾 0.0 0

Using [4, Theorem 3], we have

𝑑𝑀 ′ (𝐼 ′) = dimHom(𝐼 ′,𝑀 ′) − dimHom(𝐼 ′∕ soc𝐼 ′,𝑀 ′).

H. Asashiba, E.G. Escolar, K. Nakashima et al. Journal of Computational Algebra 6–7 (2023) 100007
A homomorphism 𝐼 ′ →𝑀 ′ is given by triples (𝑥, 𝑦, 𝑧) such that

𝐾 𝐾 𝐾

𝑀(𝑠1) 𝑀(𝑡2) 𝑀(𝑠2)

1

𝑥 𝑦

1

𝑧

𝑀(𝑠1→𝑡2) 𝑀(𝑠2→𝑡2)

commutes. That is, 𝑦 =𝑀(𝑠2 → 𝑡2)𝑧 =𝑀(𝑠1 → 𝑡2)𝑥. In other words,
the homomorphism space Hom(𝐼 ′, 𝑀 ′) is given by solutions to[
𝑀(𝑠2 → 𝑡2) 𝑀(𝑠1 → 𝑡2)

] [𝑧
−𝑥

]
= 0

(with 𝑦 fully determined by 𝑥), which has dimension equal to

dim𝑀(𝑠2) + dim𝑀(𝑠1) − rank
[
𝑀(𝑠2 → 𝑡2) 𝑀(𝑠1 → 𝑡2)

]
.

On the other hand, a homomorphism 𝐼 ′∕ soc𝐼 ′ →𝑀 ′ is given by
triples (𝑥, 0, 𝑧) such that

𝐾 0 𝐾

𝑀(𝑠1) 𝑀(𝑡2) 𝑀(𝑠2)

0

𝑥 0

0

𝑧

𝑀(𝑠1→𝑡2) 𝑀(𝑠2→𝑡2)

commutes. Thus

dimHom(𝐼 ′∕ soc𝐼 ′,𝑀 ′) =
(
dim𝑀(𝑠1) − rank𝑀(𝑠1 → 𝑡2)

)
+
(
dim𝑀(𝑠2) − rank𝑀(𝑠2 → 𝑡2)

)
.

Combining the above formulas yields the claimed formula for
𝑑𝑀 ′ (𝐼 ′).

∙ 𝑏2 = 𝑏1 ≤ 𝑑2 < 𝑑1. This corresponds to the case that 𝐼 has source
𝑠1 = (1, 𝑏1) and sinks 𝑡1 = (1, 𝑑1), 𝑡2 = (2, 𝑑2) as illustrated below:

The proof for the formula of 𝑑𝑀 ′ (𝐼 ′) in this case is dual to the pre-
vious case.

∙ 𝑏2 < 𝑏1 ≤ 𝑑2 < 𝑑1. This corresponds to the case that 𝐼 has sources
𝑠1 = (1, 𝑏1), 𝑠2 = (2, 𝑏2) and sinks 𝑡1 = (1, 𝑑1), 𝑡2 = (2, 𝑑2) as illustrated
below:

Then, the compressed representations are given by

𝐼 ′ ∶ 𝐾 𝐾 𝐾 𝐾
1 1 1

and

𝑀 ′ ∶ 𝑀(𝑠2) 𝑀(𝑡2) 𝑀(𝑠1) 𝑀(𝑡1).
𝑀(𝑠2→𝑡2) 𝑀(𝑠1→𝑡2) 𝑀(𝑠1→𝑡1)

The almost split sequence starting from 𝐼 ′ is given by

0 𝐼 ′ 𝐵 𝐶 0

where

𝐵 ∶ 𝐾 𝐾 𝐾2 𝐾
1

[
1 0

] [
0 1

]

and

𝐶 ∶ 0 0 𝐾 00 0 0
.

Using [4, Theorem 3], we have

𝑑𝑀 ′ (𝐼 ′) = dimHom(𝐼 ′,𝑀 ′)−dimHom(𝐵,𝑀 ′)+dimHom(𝐶,𝑀 ′). (6.1)
19
For (𝑥, 𝑦, 𝑧, 𝑤) ∈Hom(𝐼 ′, 𝑀 ′), the commutativity of

𝐾 𝐾 𝐾 𝐾

𝑀(𝑠2) 𝑀(𝑡2) 𝑀(𝑠1) 𝑀(𝑡1)

1

𝑥 𝑦 𝑧

1 1

𝑤

𝑀(𝑠2→𝑡2) 𝑀(𝑠1→𝑡2) 𝑀(𝑠1→𝑡1)

is equivalent to

𝑀(𝑠2 → 𝑡2)𝑥 = 𝑦 =𝑀(𝑠1 → 𝑡2)𝑧 and 𝑤 =𝑀(𝑠1 → 𝑡1)𝑧.

Then, each homomorphism is uniquely determined by a solution of

[
𝑀(𝑠2 → 𝑡2) 𝑀(𝑠1 → 𝑡2)

] [𝑥
−𝑧

]
= 0.

Thus,

dimHom(𝐼 ′,𝑀 ′) = dim𝑀(𝑠2) + dim𝑀(𝑠1)

− rank
[
𝑀(𝑠2 → 𝑡2) 𝑀(𝑠1 → 𝑡2)

]
.

(6.2)

Next, for (𝑥, 𝑦, 𝑧, 𝑤) ∈Hom(𝐵, 𝑀 ′), the commutativity of

𝐾 𝐾 𝐾2 𝐾

𝑀(𝑠2) 𝑀(𝑡2) 𝑀(𝑠1) 𝑀(𝑡1)

1

𝑥 𝑦

[
1 0

] [
0 1

]
[
𝑧1 𝑧2

]
𝑤

𝑀(𝑠2→𝑡2) 𝑀(𝑠1→𝑡2) 𝑀(𝑠1→𝑡1)

is equivalent to

𝑀(𝑠2 → 𝑡2)𝑥 = 𝑦

𝑀(𝑠1 → 𝑡2)𝑧1 = 𝑦

𝑀(𝑠1 → 𝑡2)𝑧2 = 0

𝑀(𝑠1 → 𝑡1)𝑧1 = 0

𝑀(𝑠1 → 𝑡1)𝑧2 =𝑤.

Rewriting the above, we get that each homomorphism is uniquely
determined by a solution to[
𝑀(𝑠2 → 𝑡2) 𝑀(𝑠1 → 𝑡2)

0 𝑀(𝑠1 → 𝑡1)

][
𝑥

−𝑧1

]
= 0 and 𝑀(𝑠1 → 𝑡2)𝑧2 = 0

with 𝑦 and 𝑤 determined from 𝑥 and 𝑧2, respectively. Thus,

dimHom(𝐵,𝑀 ′) = dim𝑀(𝑠2) + dim𝑀(𝑠1)

− rank
[
𝑀(𝑠2 → 𝑡2) 𝑀(𝑠1 → 𝑡2)

0 𝑀(𝑠1 → 𝑡1)

]
+ dim𝑀(𝑠1) − rank𝑀(𝑠1 → 𝑡2)

(6.3)

Finally, it is clear that

dimHom(𝐶,𝑀 ′) = dim
(
ker𝑀(𝑠1 → 𝑡1) ∩ ker𝑀(𝑠1 → 𝑡2)

)
= dimker

[
𝑀(𝑠1 → 𝑡1)
𝑀(𝑠1 → 𝑡2)

]
= dim𝑀(𝑠1) − rank

[
𝑀(𝑠1 → 𝑡1)
𝑀(𝑠1 → 𝑡2)

]
.

(6.4)

Substituting Equations (6.2), (6.3), (6.4) into Equation (6.1)
gives the claimed formula. □

Let 𝜔 < 2.373 be the matrix multiplication exponent [20,42].

Theorem 6.5 (Compressed multiplicity (2 × 𝑛 case)). For 𝑀 a persistence
module over 𝐺⃗2,𝑛, Algorithm 3 computes 𝑑ss

𝑀
with time complexity

𝑂
(2𝜔 + 5

24
𝑛4𝑑𝜔

)
.

where 𝑑 =max
𝑣∈
(
𝐺⃗2,𝑛

) dim𝑀(𝑣).

0

H. Asashiba, E.G. Escolar, K. Nakashima et al. Journal of Computational Algebra 6–7 (2023) 100007
Proof. First, let us analyze Line 3 of Algorithm 3, which computes
𝑀((𝑥, 𝑦) → (𝑖, 𝑗)) =𝑀(𝑝) for (𝑥, 𝑦) ≠ (𝑖, 𝑗) with a path 𝑝 from (𝑥, 𝑦) to (𝑖, 𝑗).
The value of 𝑀(𝑝) for paths 𝑝 with length equal to 1 (arrows) are al-
ready known. Assume that the values of 𝑀(𝑝) for all paths of length 𝓁
are already computed. Then, the value of 𝑀(𝑝) for each path 𝑝 of length
𝓁 + 1 can be computed by one matrix multiplication each. We note fur-
ther that 𝑀((𝑥, 𝑦) → (𝑖, 𝑗)) =𝑀(𝑝) does not depend on which particular
path 𝑝 is taken from (𝑥, 𝑦) to (𝑖, 𝑗). Thus, we can inductively compute
the value of 𝑀((𝑥, 𝑦) → (𝑖, 𝑗)) using one matrix multiplication for each
pair of vertices (𝑥, 𝑦), (𝑖, 𝑗) such that (𝑥, 𝑦) ≠ (𝑖, 𝑗) and there is a path of
length greater than 1 from (𝑥, 𝑦) to (𝑖, 𝑗). Since there are

3
2
(𝑛+ 1)𝑛− 2𝑛− (3𝑛− 2) =𝑂

(3
2
𝑛2
)

such pairs of vertices (𝑥, 𝑦) ≠ (𝑖, 𝑗) in the 2 × 𝑛 commutative grid by a
simple combinatorial argument, Line 3 of Algorithm 3 can be performed
in 𝑂(32𝑛

2𝑑𝜔).
Next, we analyze Lines 4 to 7 of Algorithm 3. By [1, Corollary 4.12],

there are

#𝕀2,𝑛 =
1
24
𝑛(𝑛+ 1)(𝑛2 + 5𝑛+ 30) =𝑂

(1
24
𝑛4
)

intervals 𝐼 to process. For each interval 𝐼 , the computation of 𝑑𝑀 ′ (𝐼 ′)
using Proposition 6.4 involves computing the rank of a 2𝑑×2𝑑, a 2𝑑×𝑑,
a 𝑑 × 2𝑑, and a 𝑑 × 𝑑 matrix in the worst case. Note that the rank of an
𝑒 × 𝑓 matrix (𝑒 ≤ 𝑓) can be computed with 𝑂(𝑓𝑒𝜔−1) field operations by
Gaussian elimination [27]. Thus, we get a cost of 𝑂((2𝜔𝑑𝜔 + 5𝑑𝜔) 1

24 𝑛
4)

for the computation of 𝑑𝑀 ′ (𝐼 ′).
Overall, we get a cost of 𝑂(32𝑛

2𝑑𝜔 + 2𝜔+5
24 𝑛4𝑑𝜔) dominated by the

latter term, giving the result. □

For 𝐼 ∈ 𝕀2,𝑛, as shown in Example 3.3, # Cov(𝐼) ≤ 4. Thus, we get the
following.

Corollary 6.6 (Möbius inversion 𝛿∗
𝑀

(2 × 𝑛 case)). With 𝑚 = 2, Algorithm 2

(Möbius inversion 𝛿∗
𝑀

of 𝑑∗
𝑀

) can be performed with time complexity

𝑂
(16
3
𝑛4
)
.

Proof. Substituting 𝑚 = 2, 𝐶 = 4, and #𝕀2,𝑛 =𝑂
(

1
24 𝑛

4
)

into

𝑂(#𝕀𝑚,𝑛2𝐶𝐶min{𝑚,𝑛})

from Theorem 6.3, we get the result. □

Combining Theorem 6.5 and Corollary 6.6 with ∗= ss, we get an
overall cost of

𝑂
(2𝜔 + 5

24
𝑛4𝑑𝜔 + 16

3
𝑛4
)

for computing the interval-decomposable replacement 𝛿ss(𝑀) of 𝑀 in
the 2 × 𝑛 case.

Implementation As part of the software “pmgap” [24], we provide an
implementation of Algorithms 3 and 2 in the 2 × 𝑛 case. The software
“pmgap” builds upon the GAP [41] package QPA [40], which provides
data structures and algorithms for computations on (quotients of) path
algebras and their representations. The software “pmgap” uses those
data structures to represent equioriented commutative grids and persis-
tence modules over them, and implements the algorithms of this paper
not in QPA.

Randomly generated persistence modules For the computational experi-
ments below, given values for 𝑛 and 𝑑 we randomly generate persistence
modules 𝑉 (with 𝔽2 coefficients) over the commutative grid 𝐺⃗2,𝑛, such
that all the vector spaces of 𝑉 have dimension 𝑑.
20
Table 2

Runtimes (in ms) for the interval-decomposable replacement using pmgap.

𝑛

𝑑
100 200 400 800

4 11.88 34.40 112.40 471.80
8 131.20 328.20 1,152.80 5,115.60
16 1,881.40 4,415.80 14,918.80 67,171.60

* Runtimes are measured as an average of at least five runs.
* Runtimes do not include time needed for generating the underlying path al-
gebra, list of interval representations, and the persistence modules.

Below, whenever we say to randomly generate a 𝑗 × 𝑘 𝔽2-matrix 𝑀 ,
we simply generate a matrix with entries independently and uniformly
sampled from 𝔽2. If required, it is also possible to randomly choose a
valid rank and then generate a random matrix with that rank. However,
this comes at the cost of more computation time to generate the random
matrices.

We use the following procedure to randomly generate the persis-
tence module 𝑉 . First, we randomly generate 𝑑 ×𝑑 𝔽2-matrices for each
of the solid arrows below:

∙ ∙ ⋯ ∙ ∙

◦ ◦ ⋯ ◦ ∙.
Then, for each square from right to left, we iteratively compute pull-
backs (to guarantee commutativity) and multiply with another random
matrix (to reach the correct dimension 𝑑 and to add more randomness).
That is, given 𝑑 × 𝑑 matrices representing the linear maps 𝑓 and 𝑔 as
below:

𝔽 𝑑2 𝔽 𝑑2

𝔽 𝑘2 𝔽 𝑑2

𝔽 𝑑2

𝑓

𝜙1

𝜙2

𝑔

𝜙3

𝜙1𝜙3

𝜙2𝜙3

,

we compute (matrices with respect to some basis of) the pullback maps
(𝜙1, 𝜙2). Then, we randomly generate a 𝑘 × 𝑑 matrix representing 𝜙3,
and obtain the commutative diagram

𝔽 𝑑2 𝔽 𝑑2

𝔽 𝑑2 𝔽 𝑑2 .

𝑓

𝜙1𝜙3

𝜙2𝜙3

𝑔

It is clear that a persistence module 𝑉 over 𝐺⃗2,𝑛 is obtained by the
above.

Computational experiments We measure the time needed to compute
the interval-decomposable replacement using pmgap for some small
values of 𝑛 and 𝑑. Computations were performed on Ubuntu 20.04.2 LTS
running in WSL1 inside a Windows 10 Pro machine with an AMD Ryzen
5 5600X 6-Core10 Processor. In Table 2, we display the resulting run-
times in milliseconds. Each timing (each entry in the table) is measured
as the average of at least five runs. Each run consists of the computation
of the compressed multiplicity and interval-decomposable replacement
of a given persistence module. Additional runs are performed as needed
so that the total time taken exceeds 100 ms, to ensure reliable measure-
ment of runtimes; this is only needed for the smaller values of 𝑛 and 𝑑.
Note that we exclude the time taken for generating the underlying path
algebra, list of interval representations, and the persistence modules 𝑉 .

10 Note that the current implementation does not take advantage of multiple
cores or threads.

H. Asashiba, E.G. Escolar, K. Nakashima et al. Journal of Computational Algebra 6–7 (2023) 100007
Table 3

Runtimes (in ms) in pmgap.
operation 𝒏

algebra
and

its intervals

4 31.0
8 562.0
16 16,578.0

𝒅 100.0 200.0 400.0 800.0
operation 𝒏

random
persistence

module

4 46.0 171.0 640.0 2594.0
8 94.0 375.0 1,422.0 5,516.0
16 219.0 781.0 3,047.0 12,609.0

interval-
decomposable
replacement

4 15.0 31.0 109.0 484.0
8 125.0 328.0 1,156.0 5,141.0
16 1,828.0 4,422.0 14,953.0 67,218.0

For completeness, we also time the following operations: genera-
tion of the underlying path algebra and its list of interval representa-
tions, generation of a random persistence module, computation of the
interval-decomposable replacement. The results (of just one run each)
are displayed in Table 3. Note that the underlying path algebra and its
list of interval representations do not depend on the dimension 𝑑. Thus,
we time that operation only once for each 𝑛.

Demonstrations The pmgap repository [24] contains demonstrations
for these computations.

We also provide a browser-based implementation [35] demonstrat-
ing the computation of interval-decomposable replacement of randomly
generated persistence modules. Note that the browser-based demo [35]
was developed separately of pmgap, and does not rely on the installa-
tion of pmgap.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Link to the code used for computational experiments is available in
the main text.

Acknowledgements

On behalf of all authors, the corresponding author states that there
is no conflict of interest.

References

[1] Hideto Asashiba, Mickaël Buchet, Emerson G. Escolar, Ken Nakashima, Michio
Yoshiwaki, On interval decomposability of 2d persistence modules, Comput. Geom.
105 (2022) 101879.

[2] Hideto Asashiba, Emerson G. Escolar, Ken Nakashima, Michio Yoshiwaki, Approxi-
mation by interval-decomposables and interval resolutions of persistence modules,
J. Pure Appl. Algebra 227 (10) (2023) 107397.

[3] Frank W. Anderson, Kent R. Fuller, Rings and Categories of Modules, vol. 13,
Springer Science & Business Media, 1992.

[4] Hideto Asashiba, Ken Nakashima, Michio Yoshiwaki, Decomposition theory of mod-
ules: the case of Kronecker algebra, Jpn. J. Ind. Appl. Math. 34 (2) (Aug 2017)
489–507.

[5] Hideto Asashiba, Relative Koszul coresolutions and relative Betti numbers, arXiv
preprint, arXiv :2307 .06559, 2023.

[6] Ibrahim Assem, Andrzej Skowroński, Daniel Simson, Elements of the Representation
Theory of Associative Algebras: Volume 1: Techniques of Representation Theory,
vol. 65, Cambridge University Press, 2006.

[7] Benjamin Blanchette, Thomas Brüstle, Eric J. Hanson, Homological approximations
in persistence theory, Can. J. Math. (2021) 1–38.

[8] Benjamin Blanchette, Thomas Brüstle, Eric J. Hanson, Exact structures for persis-
tence modules, arXiv preprint, arXiv :2308 .01790, 2023.

[9] Ulrich Bauer, Magnus B. Botnan, Steffen Oppermann, Johan Steen, Cotorsion torsion
triples and the representation theory of filtered hierarchical clustering, Adv. Math.
369 (2020) 107171.

[10] Mickaël Buchet, Emerson G. Escolar, Realizations of indecomposable persistence
modules of arbitrarily large dimension, in: 34th International Symposium on Com-
putational Geometry (SoCG 2018), Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2018.

[11] Magnus Bakke Botnan, Steffen Oppermann, Steve Oudot, Signed barcodes for multi-
parameter persistence via rank decompositions and rank-exact resolutions, arXiv
preprint, arXiv :2107 .06800, 2021.

[12] Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas J. Guibas, Steve Y.
Oudot, Proximity of persistence modules and their diagrams, in: Proceedings of
the Twenty-Fifth Annual Symposium on Computational Geometry, ACM, 2009,
pp. 237–246.

[13] Wojciech Chachólski, Andrea Guidolin, Isaac Ren, Martina Scolamiero, Francesca
Tombari, Koszul complexes and relative homological algebra of functors over posets,
arXiv preprint, arXiv :2209 .05923, 2023.

[14] Andrea Cerri, Claudia Landi, Hausdorff stability of persistence spaces, Found. Com-
put. Math. 16 (2016) 343–367.

[15] Erin Wolf Chambers, David Letscher, Persistent homology over directed acyclic
graphs, in: Research in Computational Topology, Springer, 2018, pp. 11–32.

[16] David Cohen-Steiner, Herbert Edelsbrunner, John Harer, Stability of persistence di-
agrams, in: Proceedings of the Twenty-First Annual Symposium on Computational
Geometry, 2005, pp. 263–271.

[17] Gunnar Carlsson, Afra Zomorodian, The theory of multidimensional persistence, Dis-
crete Comput. Geom. 42 (1) (2009) 71–93.

[18] Tamal K. Dey, Woojin Kim, Facundo Mémoli, Computing generalized rank invari-
ant for 2-parameter persistence modules via zigzag persistence and its applications,
arXiv preprint, arXiv :2111 .15058, 2021.

[19] Piotr Dowbor, Andrzej Mróz, The multiplicity problem for indecomposable decom-
positions of modules over a finite-dimensional algebra. Algorithms and a computer
algebra approach, Colloq. Math. 107 (2) (2007) 221–261.

[20] Coppersmith Don, Winograd Shmuel, Matrix multiplication via arithmetic progres-
sions, J. Symb. Comput. 9 (3) (1990) 251–280.

[21] Herbert Edelsbrunner, John Harer, Persistent homology-a survey, Contemp. Math.
453 (2008) 257–282.

[22] Emerson G. Escolar, Yasuaki Hiraoka, Persistence modules on commutative ladders
of finite type, Discrete Comput. Geom. 55 (1) (2016) 100–157.

[23] Letscher, Edelsbrunner, Zomorodian, Topological persistence and simplification,
Discrete Comput. Geom. 28 (4) (November 2002) 511–533.

[24] G. Emerson, Escolar. pmgap: computations for persistence modules using GAP,
https://github .com /emerson -escolar /pmgap, 2020–2021.

[25] Patrizio Frosini, Claudia Landi, Size theory as a topological tool for computer vision,
Pattern Recognit. Image Anal. 9 (4) (1999) 596–603.

[26] Peter Gabriel, Unzerlegbare darstellungen I, Manuscr. Math. 6 (1) (1972) 71–103.
[27] Oscar H. Ibarra, Shlomo Moran, Roger Hui, A generalization of the fast lup matrix

decomposition algorithm and applications, J. Algorithms 3 (1) (1982) 45–56.
[28] Woojin Kim, Facundo Mémoli, Generalized persistence diagrams for persistence

modules over posets, J. Appl. Comput. Topol. 5 (4) (2021) 533–581.
[29] Woojin Kim, Samantha Moore, The generalized persistence diagram encodes the

bigraded Betti numbers, arXiv preprint, arXiv :2111 .02551, 2021.
[30] Zbigniew Leszczyński, On the representation type of tensor product algebras, Fun-

dam. Math. 144 (2) (1994) 143–161.
[31] Claudia Landi, Patrizio Frosini, New Pseudodistances for the Size Function Space,

Vision Geometry VI, vol. 3168, SPIE, 1997, pp. 52–60.
[32] Weiyun Lu, Aaron K. McBride, Algebraic Structures on Grothendieck Groups. De-

partment of Mathematics and Statistics, University of Ottawa, 2013.
[33] Zbigniew Leszczynski, Andrzej Skowronski, Tame triangular matrix algebras, Colloq.

Math. 86 (2) (2000) 259–303.
[34] Alexander McCleary, Amit Patel, Edit distance and persistence diagrams over lat-

tices, SIAM J. Appl. Algebra Geom. 6 (2) (2022) 134–155.
[35] Ken Nakashima, Demo program of interval approximation for CL(n), https://hfipy3 .

github .io /intv _demo /en .html, 2021.
[36] Amit Patel, Generalized persistence diagrams, J. Appl. Comput. Topol. 1 (3–4)

(2018) 397–419.
[37] Vanessa Robins, Towards computing homology from finite approximations, Topol.

Proc. 24 (1) (1999) 503–532.
[38] Gian-Carlo Rota, On the foundations of combinatorial theory I. Theory of Möbius

functions, Probab. Theory Relat. Fields 2 (4) (1964) 340–368.
[39] Richard P. Stanley, Enumerative Combinatorics Volume 1, second edition, Cam-

bridge Studies in Advanced Mathematics, 2011.
[40] The QPA-team, QPA - Quivers, path algebras and representations - a GAP package,

Version 1.31, https://folk .ntnu .no /oyvinso /QPA/, 2020.
[41] The GAP Group, GAP – groups, algorithms, and programming, Version 4.11.1,

https://www .gap -system .org, 2021.
[42] Virginia Vassilevska Williams, Multiplying matrices faster than Coppersmith-

Winograd, in: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory
of Computing, 2012, pp. 887–898.
21

http://refhub.elsevier.com/S2772-8277(23)00004-9/bib5639E4EEDD21A3641470D2A0FE59518Fs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib5639E4EEDD21A3641470D2A0FE59518Fs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib5639E4EEDD21A3641470D2A0FE59518Fs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib7DB124CC32C33CA51E07D1BF3CAC407Bs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib7DB124CC32C33CA51E07D1BF3CAC407Bs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib7DB124CC32C33CA51E07D1BF3CAC407Bs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib60E35CB0AC9A37498628CAB482253037s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib60E35CB0AC9A37498628CAB482253037s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibCFE23336CD4CFD853096DD475891B210s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibCFE23336CD4CFD853096DD475891B210s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibCFE23336CD4CFD853096DD475891B210s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib2C6A4D72900BEFF6B8926B124756F9A9s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib2C6A4D72900BEFF6B8926B124756F9A9s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibB0C70865CF29FD636B03B6E62A742C63s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibB0C70865CF29FD636B03B6E62A742C63s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibB0C70865CF29FD636B03B6E62A742C63s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib548ECD398D913CA452F8B07C15C1D9E4s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib548ECD398D913CA452F8B07C15C1D9E4s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib726F8A354D4384BFAE9D5A175CB63D7Cs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib726F8A354D4384BFAE9D5A175CB63D7Cs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib2047A550982CF25B9C249C0A8CB66822s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib2047A550982CF25B9C249C0A8CB66822s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib2047A550982CF25B9C249C0A8CB66822s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibFDF5F7C4B0E24C5EB25655197B55FEDDs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibFDF5F7C4B0E24C5EB25655197B55FEDDs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibFDF5F7C4B0E24C5EB25655197B55FEDDs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibFDF5F7C4B0E24C5EB25655197B55FEDDs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibD4515E2ECBF0CCA0FD00FF77DA75A67Es1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibD4515E2ECBF0CCA0FD00FF77DA75A67Es1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibD4515E2ECBF0CCA0FD00FF77DA75A67Es1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib0D698922B79CE71241E20CF8CB6361AAs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib0D698922B79CE71241E20CF8CB6361AAs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib0D698922B79CE71241E20CF8CB6361AAs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib0D698922B79CE71241E20CF8CB6361AAs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib919D9C1ADECDBB6C050A0A524E02877Es1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib919D9C1ADECDBB6C050A0A524E02877Es1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib919D9C1ADECDBB6C050A0A524E02877Es1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib05F1BD630529D5F6F7A90B22A49B98AFs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib05F1BD630529D5F6F7A90B22A49B98AFs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibFBDD671899F2932778BB98196CBDB364s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibFBDD671899F2932778BB98196CBDB364s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib0A6D07E94D52490B1620F99EF81C4FCBs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib0A6D07E94D52490B1620F99EF81C4FCBs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib0A6D07E94D52490B1620F99EF81C4FCBs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibBBD60B91256621A18BAEA724D48ECCACs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibBBD60B91256621A18BAEA724D48ECCACs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib11BBC25B00C9FE4B0922B8701A808E36s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib11BBC25B00C9FE4B0922B8701A808E36s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib11BBC25B00C9FE4B0922B8701A808E36s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib4C80DBE7F0E6C90BCA274AA5A923E138s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib4C80DBE7F0E6C90BCA274AA5A923E138s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib4C80DBE7F0E6C90BCA274AA5A923E138s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib98975B0408E6A6074D54823C85BD6638s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib98975B0408E6A6074D54823C85BD6638s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibAE9B9C00669DAE71004F7850043D179Ds1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibAE9B9C00669DAE71004F7850043D179Ds1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib9039EB15E56396108E5A9FA49E26AB49s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib9039EB15E56396108E5A9FA49E26AB49s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib34F42F1A393A3224A6CFE1CDC290C66As1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib34F42F1A393A3224A6CFE1CDC290C66As1
https://github.com/emerson-escolar/pmgap
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibE72256EA90966B5A99F06E714134D77Ds1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibE72256EA90966B5A99F06E714134D77Ds1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibA7FC6AB5720C44B745B06565ECE0B47Cs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib49173B93393FC238EC153FCD33012144s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib49173B93393FC238EC153FCD33012144s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib31800F6617500FB8244E4A20655D63FAs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib31800F6617500FB8244E4A20655D63FAs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib38CDD50CA41CB53C214BD409E8D3AAC0s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib38CDD50CA41CB53C214BD409E8D3AAC0s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibE4E49097136D3DAB406201B9F9CDE1D2s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibE4E49097136D3DAB406201B9F9CDE1D2s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib13DDADCA434489E4D9581272CD24A690s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib13DDADCA434489E4D9581272CD24A690s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibD76A873B91233487ECA2A53724887E88s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibD76A873B91233487ECA2A53724887E88s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib080A81C15BF2D2BA3344FBD921A5B80Fs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib080A81C15BF2D2BA3344FBD921A5B80Fs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibD7905576DFAA5829AF29198D464BCBC7s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibD7905576DFAA5829AF29198D464BCBC7s1
https://hfipy3.github.io/intv_demo/en.html
https://hfipy3.github.io/intv_demo/en.html
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib3C87E62DAD38FB5203897EF3F352A55Fs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib3C87E62DAD38FB5203897EF3F352A55Fs1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib6245C1D4B512E9A23A047938EEE321C7s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib6245C1D4B512E9A23A047938EEE321C7s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib822F3EC532307C3E4DE85FCF6CED0011s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib822F3EC532307C3E4DE85FCF6CED0011s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib0293E362CA284600BDB6B9C3DD313122s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bib0293E362CA284600BDB6B9C3DD313122s1
https://folk.ntnu.no/oyvinso/QPA/
https://www.gap-system.org
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibAEFE76718F20D260C6E52B72ABC68FA9s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibAEFE76718F20D260C6E52B72ABC68FA9s1
http://refhub.elsevier.com/S2772-8277(23)00004-9/bibAEFE76718F20D260C6E52B72ABC68FA9s1

	On approximation of 2D persistence modules by interval-decomposables
	1 Introduction
	1.1 Related literature

	2 Background
	2.1 Representation theory
	2.2 Posets and lattices
	2.3 The incidence algebra
	2.4 Möbius functions

	3 Local lattice of intervals
	4 Compression and compressed multiplicities
	4.1 Essential vertices
	4.2 Compression
	4.3 Rank invariant and dimension vector as compression
	4.4 Compression and inversion
	4.5 Restriction to equioriented 2×n commutative grid

	5 Interval-decomposable replacement
	6 Algorithms for equioriented commutative ladders
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

