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Abstract. In edge AI technologies, reducing memory bandwidth and computa-
tional complexity without reducing inference accuracy is a key challenge. To 
address this difficulty, partial quantization has been proposed to reduce the 
number of bits in weight parameters of neural network models. However, exist-
ing techniques monotonically degrade accuracy with the compression ratio 
without retraining. In this paper, we propose an algorithm for semilayer-wise 
partial quantization without accuracy degradation or back-propagation retrain-
ing. Each layer is divided into two channel groups (semilayers): one being posi-
tive for loss degradation and the other negative. Each channel is classified as 
positive or negative in terms of cross-entropy loss and assigned to a semilayer 
accordingly. The evaluation was performed with validation data as input. Then, 
the quantization priority for every semilayer is determined based on the magni-
tude in the Kullback-Leibler divergence of the softmax output before and after 
quantization. We observed that ResNet models achieved no degradation in ac-
curacy at certain parameter compression ratios (i.e., 79.43%, 78.01%, and 
81.13% for ResNet-18, ResNet-34, and ResNet-50, respectively) in partial 6-bit 
quantization on classification tasks using the ImageNet dataset. 

Keywords: Partial Quantization, Sensitivity Analysis, Image Classification 

1 Introduction 

Compression methods such as quantization [21], which reduces the number of bits, 
have been proposed to reduce the size and computational costs of neural network 
models. Quantization is an effective method of compressing learning models because 
it can reduce their size, memory requirements, and computational cost. Nonetheless, 
there is a tradeoff relation between the compression ratio and the accuracy of the 
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compressed model; that is, quantization degrades accuracy. In previous studies on full 
quantization of neural networks, models were uniformly quantized with the same bit 
width [8, 16]. However, differing distributions of weights in each layer have been 
shown to exhibit different impacts on accuracy in quantization. Therefore, partial 
quantization, in which quantization is selectively performed for some parts of a model 
(e.g., layers), can be used to make a tradeoff between accuracy and size. Sensitivity 
analysis methods [20] have been proposed to answer the question of which layers and 
channels should be quantized; either accuracy or loss are used as measures of sensitiv-
ity. Layer-wise [18, 19] and channel-wise quantization [2, 11, 15] methods have been 
used to prioritize network regions where quantization should be performed. In these 
methods, quantization is performed on a layer-by-layer or channel-by-channel basis. 
Layer-wise quantization is more compatible with edge AI and is easy to handle for 
hardware owing to its larger granularity. In some earlier studies [7, 15, 18, 19], learn-
ing models were quantized without retraining. Naturally, quantized models must be 
created in a practical computation time. This approach also prevents the possible deg-
radation of generalization performance owing to retraining. However, models quan-
tized using these existing methods cannot be compressed sufficiently while maintain-
ing accuracy. 

In this study, to achieve compression of neural models while suppressing accuracy 
degradation resulting from quantization, we propose a new layer-wise partial quanti-
zation method. The proposed method examines the Δloss of the entire model when 
quantizing only one channel for all convolutional layers of a pretrained neural net-
work. The evaluation was performed with validation data as input. It then divides 
each convolutional layer into two channel groups according to the positive and nega-
tive values of Δloss for all channels. These are referred to as “semilayers”. The pro-
posed method quantizes the model on a semilayer basis. We also incorporate Kull-
back-Leibler (KL) divergence in the sensitivity analysis. In fact, Δloss includes more 
information than accuracy. Moreover, it is effective in terms of sensitivity [15]. How-
ever, the change compared to the original model cannot be considered by Δloss, 
whereas the KL divergence measures changes between models and tends to exhibit a 
large value when the absolute value of Δloss is large. Thus, introducing KL diver-
gence as a measure of sensitivity is effective in suppressing large model changes due 
to compression. 

To evaluate the performance of the proposed method, we conducted experiments 
on standard image classification tasks using the ImageNet dataset [3] with various 
ResNet models [24] and the CIFAR-10 dataset [22] with a VGG-16-bn model [25]. 
The contributions of this study are summarized as follows: 

 We propose a new quantization granularity for convolutional neural network 
(CNN) models, which considers “semilayers” as an alternative to layers and chan-
nels. A positive semilayer has positive channels in Δloss. A negative semilayer 
contains negative channels in Δloss. Consequently, the accuracy of this approach 
can be improved after priority quantization of the negative semilayers. 

 For the sensitivity analysis, we consider KL divergence for each semilayer. Intro-
ducing KL divergence improves the tradeoff between accuracy and compression. 
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 We observed that the proposed semilayer-wise partial quantization exhibited max-
imum accuracy greater than that of baseline models, and that it caused no accuracy 
degradation at certain compression ratios in the image classification tasks of the 
ImageNet and CIFAR-10 datasets. For example, the proposed method maintained a 
76.12% accuracy at a compression ratio of 81.13% for ResNet-50. 

2 Related Work 

Prior works have proposed a unified framework for CNNs, referred to as quantized 
CNNs (Q-CNNs) [21], which simultaneously accelerates and compresses CNN mod-
els with only slight performance degradation. The results indicate that Q-CNN models 
can perform especially fast computation in the testing phase and that they significant-
ly reduce storage and memory requirements. Specifically, this approach can achieve 
4–6× speedup and compress a model by a factor of 15–20 while decreasing classifica-
tion accuracy by less than 1%. Furthermore, the Q-CNN models can be implemented 
on mobile devices and have been shown to classify images in less than one second. 
Quantization has also been widely adopted to assess compression methods. An earlier 
report [11] described that introducing channel-wise quantization instead of layer-wise 
quantization could reduce the degradation in accuracy after 8-bit quantization without 
finetuning. One study [2] indicated that a channel-wise quantization scheme that min-
imized the mean square error was effective for 4-bit quantization. In addition, a quan-
tization step size designed to minimize cross-entropy loss has been used [14]. Another 
report [13] proposed the use of approximate loss functions to optimize rounding. As 
another approach, one study proposed performing partial quantization based on indi-
vidually investigated layer sensitivities before employing quantization aware learning 
[20]. Reportedly, Δloss analysis (DLA) [15], in which quantization is selectively per-
formed depending on the parts of the model (e.g., layers), is useful to make a tradeoff 
between accuracy and model size. Along these lines, a sensitivity search method has 
also been proposed based on the idea that accuracy can be improved using Δloss, 
especially at the channel level of each convolutional layer. In other studies [18, 19], a 
deterministic greedy search algorithm (GSA) inspired by submodular optimization 
was used to derive a practical solution to the bit assignment problem without retrain-
ing. Another approach proposed a mixed hardware-friendly quantization (MXQN) 
method [7] that applies fixed-point quantization and logarithmic quantization without 
finetuning deep CNNs. Constrained-optimization-based algorithm for mixed-
precision quantization (CQ) exploited Hessians [1], but it required retraining. In the 
present work, our proposed method allows sufficient quantization of the trained mod-
el without accuracy degradation or back-propagation retraining. 

3 Proposed Method 

For simplicity, the proposed method is described in this section using the case of a 
ResNet-18 model for the ImageNet dataset. We consider quantization for weights 
only and not for activation. 



  

Fig. 1. Histograms of Δlosschannel for all channels in layers (a) 9 and (b) 13 at 6-bit quantization. 

3.1 Semilayer-Wise Quantization Using Δloss per Channel 

The ResNet-18 network has 16 convolutional layers. Here, we refer to these as layers 
1, 2, ..., 16, starting from the layer closest to the input. First, a pretrained model to be 
quantized1 is prepared. Next, we perform a validation test on the trained model to 
check its baseline cross-entropy lossbefore as the classification error. The evaluation 
using ImageNet classification was performed with 50-k validation data as input. Then, 
only one of the first channels of the first layer is quantized, and a validation test is 
performed to obtain its cross-entropy loss lossafter-1,1. Similarly, after lossafter-i,j is cal-
culated for the i-th layer and the j-th channel, the difference between the loss func-
tions Δlossi,j is calculated for every layer and every channel as 

 ∆𝑙𝑜𝑠𝑠𝑖,𝑗 = 𝑙𝑜𝑠𝑠𝑎𝑓𝑡𝑒𝑟−𝑖,𝑗 − 𝑙𝑜𝑠𝑠𝑏𝑒𝑓𝑜𝑟𝑒 . (1) 

Some examples of the channel-wise distribution of Δlosschannel for ImageNet 
classification when 6-bit quantization is applied in ResNet-18 are shown in Fig. 1. 
The horizontal axis represents the Δlosschannel bins. Almost half of the channels have 
negative values in Δlosschannel. This may indicate that quantization of half of a 
pretrained model could improve its accuracy. 

In quantization, a set of weights w are shifted by a quantization error Δw. In 
channel-wise quantization, the weights and quantization errors respectively have 
vectors with channel sizes w and Δw. In this case, Δloss is approximated as a 
quadratic function [13] 

 ∆𝑙𝑜𝑠𝑠 ≈ ∆𝒘յ · 𝒈 + 1/2 ∆𝒘յ · 𝑯 · ∆𝒘 + ⋯ , (2) 

where g and H denote the gradients and Hessians, respectively. Fig. 2 shows the rela-
tionships between ||Δw||1 (an L1 norm for weights) and Δloss. Some channels appar-
ently behave as quadratic functions; this phenomenon has been analyzed in [13]. In 
particular, some channels in the negative semilayer seem to have a minimum point in 
Δloss. That is, the 6-bit quantization is superior to others in this case. Therefore, we 
mainly chose 6-bit quantization. 

We propose the division of each layer into two channel groups (semilayers) ac-
cording to the positive and negative values of channel-wise Δloss. For example, if 
Δloss of the first channel of layer 1 is negative, then it is assigned to the semilayer 

                                                           
1  Note that the quantization method is the same approach as the “qint” cast in PyTorch [6]. 



  
Fig. 2. Scattering plots of ||Δw||1 and Δlosschannel for channels in layer 13 of a ResNet-18 model. 
(a) only channels with negative Δlosschannel for 6-bit quantization and corresponding points for 
4-bit and 8-bit quantizations are shown. (b) only channels with positive Δlosschannel for 6-bit 

quantization and corresponding points for 4-bit and 8-bit quantizations are shown. 

1-negative. The positive channel of layer 1 is assigned to the semilayer 1-positive. 
This process is performed for all channels in all layers. The purpose of this operation 
is to divide each layer into channels for which quantization is expected to improve 
accuracy and channels for which there is some possibility of decreasing accuracy. 

3.2 KL Divergence in Sensitivity Analysis 

We calculated the KL divergence for all semilayers. The KL divergence DKL for a 
semilayer is calculated as follows. 

 𝐷έί(𝑃 ||𝑄) = ∑ 𝑃(𝑥) log ձ(֓)
ղ(֓)֓∈ۛ

 , (3) 

where x is one of output, X is number of classifications (1000 for ImageNet classifica-
tions), P(∙) denotes the softmax output of the pretrained model, and Q(∙) denotes the 
softmax output of the model after quantization of all channels in a semilayer. The 
evaluation using ImageNet classification was performed with 50-k validation data as 
input. As described herein, KL divergence for each semilayer was calculated for all 
50-k inputs individually. The average value of the 50-k data was taken as the KL 
divergence after quantization for that semilayer. This KL divergence was calculated 
for each of the 32 semilayers in ResNet-18 with 16 convolutional layers. 

In the sensitivity analysis, KL divergence obtained using the operation above is 
normalized by the number of parameters in the semi-layer. In the proposed approach, 
KL divergence normalization is calculated as KLparameterized 

 𝐾𝐿𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑧𝑒𝑑 =
𝐷KL(𝑃||𝑄)

𝑝𝑎𝑟𝑎𝑚(𝑋)
 , (4) 

where param(∙) represents the number of parameters in the semilayer. In the case of a 
process that quantizes multiple parameters together, such as layer-wise quantization, a 
greater number of parameters quantized is associated with a greater effect on the out-
put of the neural network. Therefore, to consider the number of parameters in a semi-
layer, we normalize KL divergence in Equation (3) by the number of parameters in a 
given semilayer. 
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Fig. 3. Correlation between KLparameterized and Δlosssemilayer with semilayers quantized. 

Actually, in sensitivity analysis, it might be seen that the Δloss is more informative 
and effective for partial quantization [15]. However, the degree of change from the 
original model is not considered in Δloss when it is used as a sensitivity. That is, a 
semi-layer with larger absolute values of the Δloss (= Δlosssemilayer) might incur great-
er model change. The large changes in weight prevent continuous compression with-
out accuracy degradation. Thus, we adopt the KL divergence to limit changes in the 
model or its weights to moderate levels. KL divergence tends to be smaller when the 
absolute values of the Δlosssemilayer are smaller. Fig. 3 shows the correlation between 
KLparameterized and Δlosssemilayer for 6-bit quantization in ResNet-18 when each semilayer 
was quantized separately. The correlation coefficient of the negative semi-layer was 
−0.129. That of the positive semi-layer was 0.834. The figure shows that the absolute 
values of the Δlosssemilayer with larger KLparameterized were larger. In fact, a more nega-
tive Δlosssemilayer indicates good performance in terms of loss, but it is not effective as 
a measure of sensitivity owing to the large changes in the model. To suppress this 
shortcoming, the KL divergence is prioritized for the evaluation index. 

3.3 Postponing Strategy after Sensitivity Analysis 

For the KLparameterized obtained in the preceding subsection, all semilayers are quantized 
in order of decreasing value according to the sensitivity analysis findings. As an 
exception, we introduce “postponing” only once for each semilayer. This process 
ensures that the accuracy is improved and contributes to the efficiency of parameter 
compression. To perform this process within a practical computational time, we use 
semilayers, which is not a channel-wise approach, but rather is closer to layer-wise. In 
all, 32 semilayer-wise quantizations are performed on ResNet-18 models in order of 
decreasing KLparameterized. In the postponing strategy, however, if the accuracy is lower 
than the state before semilayer-wise quantization, then the semilayer is not quantized 
at this time step, and is instead postponed. The next semilayer is examined and 
inference performed similarly, starting in the original sorted order. When all sorted 
semilayers have been examined, postponing the first trial is completed. An 
improvement in accuracy is expected in the first trial.  

Next, the remaining semilayers that have not yet been quantized are quantized and 
inferred again as the second trial, according to the sensitivity analysis. The postponing 
strategy is not adopted in the second trial, where accuracy degradation is expected. 
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Based on this tendency, by improving the accuracy in the first trial and slightly 
decreasing the accuracy in the second trial, accuracy and the parameter compression 
ratio are maximally improved without any reduction in accuracy, as shown by the 
results of the experiments described below. The pseudocode of the algorithm for the 
proposed semilayer-wise quantization is shown in Algorithm 1. 
 

 

4 Experiments 

4.1 ResNets for ImageNet 

We used ResNet-18, ResNet-34, and ResNet-50 [24] in the experimental evaluation 
of the proposed approach. Fig. 4 shows the results obtained from 6-bit and 4-bit 
quantizations using a pretrained ResNet-18 model as the ImageNet dataset. Our 
method compressed the number of parameters of the model by 79.43% in 6-bit 
quantization and by 33.82% for 4-bit quantization without degradation of accuracy. 

Algorithm 1: Proposed method 
Input: Pre-trained FP32 model. 

1: for i = 1, 2, …, I, j = 1, 2, …, J do 
2:    ∆𝑙𝑜𝑠𝑠քӴօ = 𝑙𝑜𝑠𝑠ռց֏ր֍−քӴօ − 𝑙𝑜𝑠𝑠սրց֊֍ր  (1) 
3: end for 
4: for i = 1, 2, …, I do 
5:    semilayer_i-negative ← Index of channel with negative ∆𝑙𝑜𝑠𝑠௜,௝  
6:    semilayer_i-positive ← Index of channel with positive ∆𝑙𝑜𝑠𝑠௜,௝  
7:    semilayers ← semilayer_i-negative, semilayer_i-positive 
8: end for 
9: for semilayers do 

10:    𝐷έί(𝑃 ||𝑄) = ∑ 𝑃(𝑥) log५ձ(֓)
ղ(֓)६֓∈ۛ

 (3) 

11:    𝐾𝐿𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑖𝑧𝑒𝑑 =
𝐷KL(𝑃||𝑄)

𝑝𝑎𝑟𝑎𝑚(𝑿)
 (4) 

12: end for 
13: sorted_semilayers ← Index of KLparameterized sorted in decreasing order 
14: for s ∈ sorted_semilayers do 
15:    Quantize s and Inference model. 
16:    if the accuracy deteriorates when s is quantized 
17:       Postpone quantization of s that was quantized. 
18:       skipped_semilayers ← s 
19:    end if 
20: end for 
21: for s ∈ skipped_semilayers do 
22:    Quantize s and Inference model. 
23: end for 
Output: Compressed model. 
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Fig. 5 shows other results for the 6-bit and 4-bit quantizations on ResNet-34. Our 
method compressed the number of parameters by 78.01% for 6-bit quantization and 
by 38.05% compression for 4-bit quantization without degradation of accuracy. On 
ResNet-50, 6-bit quantization compressed the number of parameters by 81.13%, as 
shown in Fig. 6. 

  

Fig. 4. Accuracies in (a) 6-bit quantization and (b) 4-bit quantization of a ResNet-18 model. 

  

Fig. 5. Accuracies in (a) 6-bit quantization and (b) 4-bit quantization of a ResNet-34 model. 

 

Fig. 6. Accuracies in 6-bit quantization of a 
ResNet-50 model. 

 

Fig. 7. Accuracies in 6-bit quantization on a 
VGG-16-bn model for CIFAR-10 dataset.
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4.2 VGG-16-bn for CIFAR-10 

Fig. 7 presents the results obtained for 6-bit quantization using VGG-16-bn as the 
trained model and a classification task on the CIFAR-10 evaluation dataset. Our 
method achieved 81.10% parameter compression with 6-bit quantization without 
accuracy degradation. 

Table 1. Results for ImageNet dataset. The “bMP” refers to mixed-precision quantization, 
where b is the lowest bits used for weights. 

Network Method Baseline Quantization 
bit 

Compression 
ratio 

Top-1 
/ quant 

Top-1 
/ drop Retraining 

ResNet-
18 

GSA [18,19] 69.75% 4 ±00.00% 69.75% ±0.00% No 
GSA [18,19] 69.75% 6 −64.34% 69.79% +0.04% No 

DLA [15] 69.75% 4 −35.23% 69.82% +0.07% No 
DLA [15] 69.75% 6 −79.06% 69.77% +0.02% No 

MXQN [7] 69.75% 8 −75.00% 67.61% −2.14% No 
CQ [1] 69.75% 3MP −87.98% 69.66% −0.09% Yes 
CQ [1] 69.75% 2MP −90.61% 69.39% −0.36% Yes 
Ours 69.75% 4 −33.82% 69.88% +0.13% No 
Ours 69.75% 6 −79.43% 69.77% +0.02% No 

ResNet-
34 

GSA [18,19] 73.31% 4 −12.23% 73.31% ±0.00% No 
GSA [18,19] 73.31% 6 −36.36% 73.33% +0.02% No 

DLA [15] 73.31% 4 −34.26% 73.35% +0.04% No 
DLA [15] 73.31% 6 −69.88% 73.32% +0.01% No 

MXQN [7] 73.31% 8 −75.00% 71.43% −1.88% No 
Ours 73.31% 4 −38.05% 73.31% ±0.00% No 
Ours 73.31% 6 −78.01% 73.34% +0.03% No 

ResNet-
50 

GSA [18,19] 76.12% 6 −73.45% 76.13% +0.01% No 
DLA [15] 76.12% 6 −79.36% 76.13% +0.01% No 

MXQN [7] 76.12% 8 −75.00% 74.06% −2.06% No 
CQ [1] 76.12% 2MP −91.83% 75.28% +0.16% Yes 
Ours 76.12% 6 −81.13% 76.12% ±0.00% No 

VGG-
16-bn 

GSA [18,19] 93.90% 6 −81.03% 93.91% +0.01% No 
DLA [15] 93.90% 6 −80.83% 93.90% ±0.00% No 

Ours 93.90% 6 −81.10% 93.90% ±0.00% No 

4.3 Comparison with Other Methods 

Table 1 presents our experimental results. Compared with conventional methods, the 
proposed method provided sufficient compression without back-propagation 
retraining or accuracy degradation. The GSA and The DLA were ineffective because 
they achieved lower parameter compression values than the proposed method did. 
Mixed hardware-friendly quantization (MXQN) [7] and constrained optimization-
based algorithm for mixed-precision quantization (CQ) [1] achieved a parameter 
compression ratio of 75.0% and 91.83%, respectively, in ResNet-50; especially, CQ 
was superior in terms of compression ratio. However, CQ was impractical because it 
required retraining and degraded the accuracy compared to the baseline. 



 

Fig. 8. Accuracies in 8-bit, 2-bit, and 1-bit 
quantizations. 

 

Fig. 9. Accuracies in 6-bit quantizations on 10 
epochs trained ResNet-18.

4.4 Quantization with More and Fewer Bits 

Here, we also provide experimental results obtained from 8-bit, 2-bit, and 1-bit 
quantizations of a ResNet-18 model. Fig. 8 shows the results for 8-bit, 2-bit, and 1-bit 
quantization for the pretrained ResNet-18 model performing a classification task on 
the ImageNet evaluation dataset. The proposed method is not suitable for 8-bit 
quantization because the maximum compression ratio by bit reduction is lower than 
that of 6-bit quantization that can compress parameters efficiently. The 8-bit 
quantization is near the original pretrained model and far from the minimum point in 
Δloss (see Fig. 2(a)). In the 2-bit and 1-bit quantizations, Δloss seems to have reached 
a massive value, which cannot maintain accuracy. 

4.5 Experiment with Another Trained Model 

We ran the same experiment on another trained model under varying conditions to 
demonstrate the reproducibility of the proposed method. We experimented with a 
publicly available ResNet-18 model [24] that was retrained for 10 epochs by 1.2-M 
training data. Fig. 9 shows the results obtained from 6-bit quantization using the 
retrained ResNet-18 model; we observed that the baseline was improved by 0.45% 
(compare to Fig. 4(a)). Even in such case, our method achieved 79.40% parameter 
compression for 6-bit quantization without accuracy degradation. These results show 
that the proposed method can provide efficient compression for models with different 
levels of training. 

5 Conclusions 

In this paper, we proposed a new method for the quantization of trained neural net-
works. This method enables more efficient compression without reduction of accura-
cy. The proposed method is a semilayer-wise quantization in which each layer is clas-
sified into two channel groups according to Δloss, in contrast to layer-wise quantiza-
tion. The results of the experimental evaluation of the proposed method on classifica-
tion tasks with the ImageNet dataset using various trained neural networks have 
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shown that it can improve the tradeoff between reducing the size of a model and de-
grading its accuracy. Specifically, using a trained network as a starting point, the pro-
posed method successfully compressed the number of parameters of a ResNet-18 
model through 6-bit quantization by 79.43% without accuracy degradation, and by 
78.01% and 81.13% for a ResNet-34 model with 6-bit quantization and a ResNet-50 
model with 6-bit quantization, respectively. 
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