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ON BIRATIONAL BOUNDEDNESS OF

SOME CALABI–YAU HYPERSURFACES

TARO SANO

Abstract. We show the birational boundedness of anti-canonical ir-
reducible hypersurfaces which form 3-fold plt pairs. We also treat a
collection of Du Val K3 surfaces which is birationally bounded but un-
bounded.
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1. Introduction

In the classification of algebraic varieties, Calabi–Yau manifolds (CY
manifolds for short) form an important class. It is not known whether
n-dimensional CY manifolds form a bounded family for a fixed n ≥ 3.

On the other hand, in the 2-dimensional case, there are infinitely many
projective families of K3 surfaces although they are analytically deforma-
tion equivalent. Reid observed that there are only 95 families of weighted
K3 hypersurfaces ([Rei80, pp.300], [IF00, 13.3]). Inspired by this, we ask
whether K3 surfaces in a 3-fold are bounded or not. We show the following
statement in this note.

Theorem 1.1. Let (X,D) be a plt pair such that dimX = 3, D is irreducible
and reduced, and KX +D ∼ 0. Then D forms a birational bounded family.

An interesting feature is that X can be unbounded as in Example 2.11. In
fact, we study the birational boundedness of a prime divisor D for a 3-fold
plt pair (X,D) such that KX +D ≡ 0 in Theorem 2.12. It turns out that
D is birationally bounded unless X is birational to a conic bundle over a
Du Val surface S with KS ∼ 0. The divisor D can be unbounded as in
the exceptional case as in Example 2.15. The pair as above is called a plt
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CY pair in this note (Definition 2.1). CY pairs have been studied in several
contexts of algebraic geometry (cf. [CK16], [KX16], [Bir19], etc).

The following example due to Oguiso forces us to use ‘birational bound-
edness’ rather than ‘boundedness’ in Theorem 1.1.

Theorem 1.2. (=Example 3.2) Fix any positive integer d. Then we have an
unbounded collection of Du Val K3 surfaces which are birational contractions
of smooth K3 surfaces of degree 2d.

When d = 2, the examples are birational contractions of some smooth
quartic surfaces and infinitely many of them can be embedded into rational
3-folds (Remark 3.3). Thus the statement in Theorem 1.1 is optimal in a
sense.

Classically, examples of CY 3-folds are constructed by taking weighted
or toric hypersurfaces. In Section 4, we ask whether CY hypersurfaces in
rationally connected varieties form a bounded family. We confirm that toric
hypersurfaces form a bounded family in Corollary 4.6.

Throughout this paper, we work over the complex number field C.

2. Finiteness of anticanonical Calabi–Yau surfaces in a 3-fold

We follow the notation in [KM98].

Definition 2.1. We say that (X,D) is a plt Calabi–Yau (CY) pair if (X,D)
is a plt pair such that KX +D ≡ 0. A plt CY pair (X,D) is called a reduced
plt CY pair if D is a reduced divisor.

Note that X can be non-Q-Gorenstein, but the support of the round down
⌊D⌋ of D is normal (cf. [KM98, Proposion 5.51]). Note also that X is Q-
factorial in codimension 2 (cf. [GKKP11, Proposition 9.1]) and KX +D is
torsion (cf. [Kaw13, Corollary 10], [Gon13, Theorem 1.2]).

When KX +D ∼ 0 and D is reduced, we have the following.

Proposition 2.2. Let (X,D) be a reduced plt CY pair such that KX+D ∼ 0.
Then D has only canonical singularities. If X is Q-Gorenstein, then X

has only canonical singularities.

Proof. We can take a log resolution µ : X̃ → X of (X,D) such that

KX̃ + D̃ = µ∗(KX +D) +
∑

aiEi

for some integers ai ≥ 0, where D̃ is the strict transform of D and Ei is
the exceptional divisor. Note that ai ≥ 0 since KX + D is Cartier. This
implies that X has only canonical singularities in codimension 2 (outside
the non-Q-Gorenstein locus). In particular, we see that KX is Cartier in
codimension 2 and (KX + D)|D = KD is trivial. Thus, by restricting the

equality to D̃, we see that D has only canonical singularities. □

The plt CY property is preserved by steps of the KX -MMP as follows.
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Proposition 2.3. Let (X,D) be a reduced plt CY pair such that X is pro-
jective and Q-factorial. Let ϕ : X 99K Y be a birational map which is a step
of a KX-MMP, that is, ϕ is either a divisorial contraction or a flip. Let
DY := ϕ∗D.

Then the pair (Y,DY ) is also a plt CY pair.

Remark 2.4. We can not hope that (Y,DY ) is dlt when (X,D) is so. Consider
the pair (P3, D) for a quartic surface D with a simple elliptic singularity
p ∈ D and its blow-up X1 → P3 at p. Let D1 ⊂ X1 be the strict transform
of D and E1 be the exceptional divisor. Then (X1, D1 + E1) is a dlt CY
pair, X1 → P3 is a KX -negative divisorial contraction and (P3, D) is lc and
not dlt.

Proof. Since we have DY = ϕ∗(D) ∈ |−KY |Q, it is enough to show that
(Y,DY ) is plt. Let E be an exceptional divisor over Y (hence over X).
If ϕ : X → Y is a divisorial contraction and E is the ϕ-exceptional prime
divisor, we see that E ̸⊂ SuppD by the negativity lemma (cf. [BCHM10,
Lemma 3.6.2]) since D is ϕ-ample. Hence we have −1 < a(E,X,D) =
a(E, Y,DY ) since both KX +D and KY +DY are trivial. Also when ϕ is a
flip, we have the same equality by the same reason. Hence we see that both
discrepancies are greater than −1, thus (Y,DY ) is also plt. □

The following is based on the argument in the e-mail from Chen Jiang.

Proposition 2.5. Let n ∈ Z>0 and I ⊂ [1, 0]∩Q be a DCC set. Let (X,D)
be an n-dimensional projective plt CY pair such that the coefficients of D
belong to I. Then we have the following.

(i) (X,D) is ϵ-plt for some ϵ > 0 which only depends on n and I, that is,
for an exceptional divisor E over X, the discrepancy a(E;X,D) >
−1 + ϵ.

(ii) Assume that dimX = 3 and D is reduced.
Then D is bounded except when D has only Du Val singularities

and X is smooth in codimension 2 around D.
We have (KX +D)|D = KD in the exceptional case.

Proof. (i) This can be shown by the same argument as [CS, Corollary 2.9]
(In fact, (i) follows from [Bir19, Lemma 2.48]). Suppose that there exists
a plt CY pair (Xn, Dn) which is ϵn-plt for some ϵn > 0 such that (ϵn)n
is a decreasing sequence and limn→∞ ϵn = 0. Then there is an extraction
X̃n → Xn of a divisor En with a(En;Xn, Dn) = −1 + ϵn so that (X̃n, D̃n +
(1 − ϵn)En) satisfies the assumption of the global ACC [HMX14, Theorem
1.5] since I ∪{1− ϵn | n ∈ N} is a DCC set. Thus {1− ϵn | n ∈ N} is a finite
set and this is a contradiction.

(ii) By the adjunction using the different, we have an equality

KX +D|D = KD +
l∑

i=1

biBi
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as Q-divisors for some prime divisors B1, . . . , Bl. Note that bi belongs to
some finite set I0 by the global ACC [HMX14, Theorem 1.5] since bi belongs
to a DCC set {1− 1

n | n ∈ N}. Suppose that bi ≠ 0 for some i. Then we see
that (D,

∑
biBi) is ϵ-lc for some ϵ independent of X. By [Ale94, Theorem

6.9], we see that D belongs to a bounded family.
Hence the problem is reduced to the case KX +D|D = KD. This implies

that X is smooth at all codimension 1 points of D by the local computation
of the different (cf. [Kol13, Proposition 4.5 (1)]). Thus we see that KD ≡ 0.
Such surfaces are bounded except when D has only Du Val singularities by
[Ale94, Theorem 6.9]. □

If a plt CY pair (X,D) admits a del Pezzo fibration X → C over a curve,
then D belongs to a bounded family as follows. (Note that C is either P1

or an elliptic curve by the canonical bundle formula. )

Proposition 2.6. Let (X,D) be a projective Q-Gorenstein 3-fold plt CY
pair with a fiber space ϕ : X → C over a smooth curve C such that D is
irreducible, reduced and ϕ-ample.

Then there exist a positive integer N and an ample line bundle H on D
such that N is independent of X and H2 ≤ N , thus such D’s form a bounded
family.

Proof. Note first that (X,D) is ϵ-plt by Proposition 2.5 (i) for some ϵ > 0
and the general fiber Xp over p ∈ C of ϕ is an ϵ-lc log del Pezzo surface. By
Proposition 2.5(ii), it is enough to consider the case where D has only Du
Val singularities and X is smooth in codimension 2 around D. By this, the
restriction −KX |D is determined as a Weil divisor.

Claim 2.7. There exists a positive integer m such that m is independent of
X and mL is a Cartier divisor for all Weil divisor L on D.

Proof of Claim. The claim follows since there are finitely many possibilities
for the singularities on D (cf. [ABR02, (4.8.1)]). Let νD : D̃ → D be the

minimal resolution. If D is singular, then D̃ is either a K3 surface or an
Enriques surface. Then the number of the νD-exceptional (−2)-curves is less

than ρ(D̃) ≤ 20 (or < 10 if D̃ is Enriques) since the exceptional curves are

linearly independent in Pic D̃. □

We shall find an ample divisor of the form m(−KX + aF )|D for a fiber
F := ϕ−1(p). The point is that a can be unbounded as in Example 2.11,
but the degree of the divisor is bounded.

Let ϕD := ϕ|D : D → C and FD := ϕ−1
D (p) be its fiber over p ∈ C. Then

ϕD is an elliptic fibration since, for a general p ∈ C, we have FD ∈ |−KF |Q
for a log del Pezzo surface F and we check h0(FD,OFD

) ≃ C.
Let LD := m(−KX |D) be the restricted divisor which is ϕD-ample. Let

α := min{a ∈ Z | h0(D,LD + aFD) ̸= 0}.
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Then we have an exact sequence

0 = H0(D,LD+(α−1)FD) → H0(D,LD+αFD) → H0(FD, (LD+αFD)|FD
).

Note that (LD + αFD)|FD
= −mKX |FD

and its degree is m(−K2
F ) =: md,

where F is a general fiber of ϕ which is an ϵ-lc del Pezzo surface of degree
d. Indeed, we have

−KX · FD = −KX ·D · F = (−KX)2 · F = (−KF )
2 = d.

Note that d ≤ δ for some integer δ = δϵ determined by ϵ (the maximal
integer degree of ϵ-lc del Pezzo surfaces. See [Jia13] for the optimal bound.
). Since FD is an elliptic curve, we have h0(FD, (LD + αFD)|FD

) = md.
Thus, by the above exact sequence, we see that

(1) h0(D,LD + αFD) ≤ md.

Claim 2.8. The Cartier divisor LD + (k + α)FD is ample for k > 2δm.

Proof of Claim. Let νD : D̃ → D be the minimal resolution of D and FD̃ :=

ν∗D(FD) be the pull-back, and ϕD̃ := νD ◦ ϕD : D̃ → C be the composition.
Let ν∗D(LD +αFD) = M +E be the decomposition to the mobile part M

and fixed part E. We can write E =
∑l

i=1 aiCi for some ai ≥ 0 and (−2)-
curves C1, . . . , Cl so that C1, . . . , Cl′ are ϕD̃-horizontal and Cl′+1, . . . , Cl are
ϕD̃-vertical. Note that

md = ν∗D(LD + αFD) · FD̃ ≥ E · FD̃ = (

l∑
i=1

aiCi) · FD̃ ≥
l′∑

i=1

ai

since Ci is vertical for i > l′. Hence we obtain

ai ≤ δm (i = 1, . . . , l′).

In order to check LD + (k + α)FD is nef, it is enough to check

ν∗D(LD + (α+ k)FD) · Ci ≥ 0

for i = 1, . . . , l′ since LD is ϕD-ample. For k ≥ 2δm, we have

ν∗D(LD + (α+ k)FD) · Ci = (M + E + kFD̃) · Ci

≥ (aiCi + kFD̃) · Ci = −2ai + k(FD̃ · Ci) ≥ −2δm+ k(FD̃ · Ci) ≥ 0.

since Ci is horizontal and FD̃ · Ci ≥ 1. Thus LD + (α + k)FD is nef for
k ≥ 2δm, thus ample when k > 2δm. □

For a positive integer β and a divisor Lβ := LD + (α+ β)FD, we have an
exact sequence

0 → H0(D,Lβ) → H0(D,Lβ+1) → H0(FD,Lβ+1|FD
).

By h0(FD,Lβ+1|FD
) = h0(FD,LD|FD

) = md as before, we have

h0(D,Lβ+1) ≤ h0(D,Lβ) +md.



6 TARO SANO

By this and (1), we obtain

h0(D,L2δm+1) ≤ md+ (2δm+ 1)md = 2δm2d+ 2md ≤ 2m2δ2 + 2mδ.

Since L2δm+1 is ample, we have hi(D,L2δm+1) = 0 for i = 1, 2. Since L2δm+1

is Cartier, we obtain

h0(D,L2δm+1) = χ(D,L2δm+1) = χD +
(L2δm+1)

2

2
,

where χD := χ(D,OD) = 0, 1, 2 since D is either a (Du Val) K3 surface,
Enriques surface or abelian surface.

Thus we see that L2
2δm+1 is bounded by the constant 2(2m2δ2+2mδ−χD)

and H := L2δm+1 has the required property. By [Ale94, Lemma 3.7 (1)], we
see that D forms a bounded family.

□

Remark 2.9. When D is an abelian surface, we have the same statement as
Claim 2.8 for k > 0 since an effective divisor on D is nef.

Example 2.10. There are infinitely many examples of conic bundles with
smooth anticanonical members in [Kol17, Example 20]. Let P := P(OP2 ⊕
OP2(3) ⊕ OP2(c)) for c ≥ 3 and X := Xc ∈ |OP(2)| be a smooth member.
Then ϕ : X → P2 is a conic bundle and |−KX | contains a smooth member
D. Since D is also an anticanonical member of P(OP2 ⊕ OP2(3)), we see
that D is bounded with a polarization OP(1)|D of degree 18. We see that
ρ(X) = 2 by the Lefschetz type theorem [RS06, Theorem 2] and check that
the collection {Xc}c=1,2,... is unbounded. Indeed, a nef and big divisor on X
can be written as

Ha,b := −aKX + bF = a(−KX + cF ) + (b− ca)F,

where a, b ∈ Z>0 satisfy b ≥ ca and F := ϕ∗OP2(1). Thus we compute

H3
a,b ≥ (−KX + cF )3 = 2(OP(1)

4) = 2(c2 + 3c+ 9)

by using H · (H − 3f) · (H − cf) = 0 for H := OP(1) and f := π∗OP2(1)
for π : P → P2. Indeed, since we have H3 = (c + 3)H2 · f − 3cH · f2 and
H2 · f2 = 1, we obtain

H4 = H(H3) = H((c+ 3)H2 · f − 3cH · f2) = (c+ 3)H3 · f − 3c(H2f2)

= (c+3)((c+3)H2 · f − 3cH · f2) · f − 3c · 1 = (c+3)2− 3c = c2+3c+9.

Hence we see the unboundedness of Xc.
Moreover, we check that the collection {Xc | c ≥ 3} is birationally un-

bounded by the same argument as [Lin03]. Indeed, the discriminant curve
Bc ⊂ P2 of ϕc : Xc → P2 has degree 2c + 6 as [Kol17, Example 20], thus
4KP2 + Bc is effective when c ≥ 3. Hence the conic bundle ϕc : Xc → P2 is
birationally rigid (cf. [Cor00, Theorem 4.2]). Then we can use the argument
in [Lin03, Section 3] to show that {Xc | c ≥ 3} is birationally unbounded.
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Example 2.11. There also exist infinitely many examples of del Pezzo
fibrations X → P1 such that X is smooth and |−KX | contains a smooth
member. Let

X := Xn ⊂ P := PP1(O ⊕O ⊕O(2)⊕O(n))

be a smooth member of |OP(3)|. Then the induced projection ϕ : X → P1

is a del Pezzo fibration and |−KX | = |OP(1)⊗ϕ∗O(−n)| contains a smooth
member S. We see that S is isomorphic to an anticanonical member of
PP1(O ⊕ O ⊕ O(2)) and has a polarization of the degree independent of
n. However, the collection {Xn}n∈N is not bounded. Indeed, we see that
PicX = Z(−KX) ⊕ Z(F ) for F := ϕ∗OP1(1) as above, and a nef and big
line bundle

Ga,b := a(−KX) + bF = a(−KX + nF ) + (b− na)F

should satisfy b ≥ na. Thus we see the unboundedness of Xn by computing

G3
a,b ≥ (−KX + nF )3 = 3n+ 6

since 0 = H2 · (H − 2f)(H − nf) = H2(H2 − (n + 2)H · f + 2nf2) =
H4 − (n + 2)H3 · f = H4 − (n + 2), where H := OP(1) and f is the fiber
class.

For an elliptic curve C and a positive integer d, consider PC := P(OC ⊕
OC⊕OC⊕OC(dP )) and a smooth member Xd ∈ |OPC

(3)|. Then Xd → C is
a del Pezzo fibration and Sd ∈ |−KXd

| is an abelian surface with a bounded
polarization. We check the unboundedness of Xd by a similar calculation as
above.

The following implies Theorem 1.1.

Theorem 2.12. Let (X,D) be a projective 3-fold plt CY pair such that D
is irreducible and reduced. Then D is birationally bounded unless all of the
following hold:

(1) KX +D ̸∼ 0, but 2(KX +D) ∼ 0.
(2) X is birational to a conic bundle Y → S such that S is either a Du

Val K3 surface or an abelian surface.
(3) For the strict transform DY ⊂ Y of D, the induced morphism DY →

S is étale in codimension 1

In particular, Theorem 1.1 holds.

Proof. By taking a small Q-factorial modification (cf. [Kol13, Corollary
1.37]), we may assume that X is Q-factorial.

Let ϕ : X 99K Xm be a birational map induced by a KX -MMP and
ϕD : D 99K Dm be the birational map induced by ϕ. We also have a Mori
fiber space ϕm : Xm → S. Note that (Xm, Dm) is also a plt CY pair by
Proposition 2.3. It is enough to consider the case where Dm has only Du
Val singularities by Proposition 2.5(ii). The problem is to bound such Dm.
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Consider the case dimS = 0. Then Xm is a ϵ-lc Fano 3-fold for some
ϵ > 0 by Proposition 2.5, thus it is bounded by [Bir21, Theorem 1.1] and
Dm is also bounded.

Next consider the case dimS = 1. Then Xm → S is a del Pezzo fibration
and Dm is bounded by Proposition 2.6.

Next consider the case where dimS = 2 and the induced morphismDm →
S is of degree 2 and branched along a curve. Then (S, 12R) is a 1

2 -lc CY pair
(cf. [KM98, Proposition 5.20]), where R ∈ |−2KS | is the branch divisor of
the double cover πm : Dm → S (or its Stein factorization). Then (S, 12R)
is log bounded by [Ale94, Theorem 6.9]. Thus Dm is also bounded since
it is a crepant modification of the double cover of S branched along R
(For a polarization H on S with the bounded degree, π∗

mH gives a quasi-
polarization on Dm with the bounded degree).

Finally consider the case where dimS = 2 and πm : Dm → S is étale in
codimension 1. Then we see that KS ≡ 0. Thus S and Dm are bounded
unless S has only Du Val singularities by [Ale94, Theorem 6.8]. Since we
are interested in the birational boundedness of D, it is enough to assume
KS ∼ 0, that is, S is either a Du Val K3 surface or an abelian surface since
Enriques surfaces and bielliptic surfaces are bounded. Hence the problem is
reduced to the following claim.

Claim 2.13. In the above setting, assume that S is a Du Val K3 surface or
an abelian surface. Then we have the following.

(i) KXm +Dm ̸∼ 0.
(ii) 2(KXm +Dm) ∼ 0.

Proof of Claim. Let X := Xm and D := Dm with a conic bundle ϕ : X → S.
Note that ϕD := ϕ|D is étale in codimension 1 and, if S is an abelian surface,
then ϕD is étale by the purity of the branch locus.
(i) Suppose that KX + D ∼ 0 and we shall find a contradiction. Since we
have the usual adjunction KX +D|D = KD and OX(KX) is S2, we obtain
an exact sequence

0 → OX(KX) → OX(KX +D) → OD(KD) → 0.

Since the restriction H0(X,KX +D) → H0(D,KD) is surjective, we obtain
the exact sequence

0 → H1(X,KX) → H1(X,OX)
α−→ H1(D,OD).

By the Serre duality and the Leray spectral sequence, we obtain

H1(X,KX) ≃ H2(X,OX)∗ ≃ H2(S,OS)
∗ ≃ C

and H1(X,OX) ≃ H1(S,OS). Note that Riϕ∗OX = 0 by the Kawamata-
Viehweg vanishing since −KX is ϕ-ample. If S is a Du Val K3 surface,
then we have H1(S,OS) = 0 and this contradicts the above exact sequence.
If S is an abelian surface, then we check that α in the exact sequence is
injective. Indeed, α can be regarded as ϕ∗

D : H1(S,OS) → H1(D,OD) and
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this is an isomorphism since ϕD is étale. This again contradicts the above
exact sequence. Thus we see that KX +D is not trivial.

(ii) Let m ∈ Z>1 be a minimal integer such that m(KX + D) ∼ 0 and let

Π: X ′ := Spec
⊕m−1

i=0 OX(i(KX + D)) → X be the cyclic cover defined by
an isomorphism OX(m(KX +D)) ≃ OX . Then D′ := Π−1(D) satisfies that

D′ ≃ Spec
⊕m−1

i=0 OX(i(KX +D)|D) ≃ Spec
⊕m−1

i=0 OX(iKD). By KD ∼ 0,
we see that D′ is a disjoint union of m copies of D. By KX′ +D′ ∼ 0 and
[Kol13, Proposition 4.37 (3)], we see that m = 2, that is, 2(KX+D) ∼ 0. □

This finishes the proof of Theorem 2.12. □

The case where Dm → S is étale really occurs as follows. We also have
examples where Dm can be any abelian surface, thus gives examples of
birationally unbounded D in Theorem 2.12 by Claim 2.17.

Example 2.14. Let S be an Enriques surface and X := PS(OS⊕ωS). Then
the linear system |−KX | = |OP(2)| is free. Indeed, it contains two members
2σ0, 2σ∞ with disjoint support, where σ0, σ∞ are the sections corresponding
to two surjections O ⊕ ωS ↠ O,O ⊕ ωS ↠ ωS . Then we see that a general
member D ∈ |OP(2)| is irreducible since we have an exact sequence

H0(OP) → H0(OD) → H1(OP(−2))

and obtain H0(D,OD) ≃ C by

H1(OP(−2)) = H1(ωP) ≃ H2(OP)
∗ ≃ H2(OS) = 0.

Then, since there is an étale double cover D → S, we see that D is a K3
surface. It is well-known that Enriques surface has a polarization H such
that H2 = 2, thus Enriques surfaces form a bounded family.

We can construct a similar example from any abelian surface A and its
translation τ ∈ AutA by a 2-torsion point on A. Note that the quotient
morphism q : A → A/τ is étale and Ā := A/τ is also an abelian surface. Let
Y := PĀ(O ⊕L), where q∗OA ≃ OĀ ⊕L. Then |OP(2)| is free and contains
a smooth member ∆ ≃ A as above. Note that −KY = OP(2) ⊗ π∗L, thus
−KY ≡ OP(2) but −KY ̸∼ OP(2). Note also that A forms a birationally
unbounded family by Claim 2.17.

The following gives unbounded examples in the case where Dm → S is
étale in codimension 1 and S is singular.

Example 2.15. Let D be a smooth K3 surface with a Nikulin involution
ι ∈ AutD, that is, ι is a symplectic involution so that S := D/ι is a Du
Val K3 surface with 8 A1-singularities p1, . . . , p8. There are infinitely many
components of the moduli space which parametrize K3 surfaces with Nikulin
involutions as in [vGS07, Proposition 2.3]. Let π : D → S be the quotient
morphism and S′ := S \ SingS be the smooth part. Note that π∗OD ≃
OS ⊕L for some reflexive sheaf L of rank 1 such that L[2] := (L⊗2)∗∗ ≃ OS .
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We can construct a Q-conic bundle

P := PS(j∗(Sym(OS′ ⊕ L|S′)) → S,

where j : S′ → S is an open immersion and Sym is the symmetric algebra.
We check that P has at most 1/2(1, 1, 1)-singularities by local computation.
We also check that |OP(2)| is a free linear system and contains a smooth
irreducible member ∆ as in Example 2.14. We see that ∆ is a K3 surface
which can be isomorphic to the original D. Then the pair (P,∆) is a plt
CY pair such that KP + ∆ is 2-torsion. We expect that the set of D with
Nikulin involutions form a birationally unbounded family.

We can do the same construction starting from any abelian surface A and
its (−1)-involution ι ∈ AutA. That is, we can construct a Q-conic bundle
X → T := A/ι with ∆ ⊂ X so that (X,∆) is plt, KX +∆ ≡ 0 and ∆ ≃ A
is an abelian surface.

Remark 2.16. Without the assumption that D is irreducible, the statement
is false. For example, consider the product X = S × P1 of a K3 surface
(or an abelian surface) S and P1. Note that families of K3 surfaces and
abelian surfaces are algebraically unbounded although they are analytically
bounded.

We can also show that the collection of projective K3 surfaces (or abelian
surfaces) is birationally unbounded as follows. (This may be well-known,
but we include the explanation for the possible convenience of the reader. )

Claim 2.17. Let C := {Sd | d ∈ Z>0} be the collection of smooth projective
K3 surfaces (or abelian surfaces), where Sd satisfies PicSd = Z·Hd and Hd is
an ample line bundle of degree H2

d = 2d. Then C is birationally unbounded.

Proof of Claim. The argument is similar as that of [Lin03, Section 3].
Suppose that C is birationally bounded. Then there exists a projective

morphism of algebraic schemes ϕ : S → T such that, for d ∈ Z>0, there exist
td ∈ T and a birational map µd : Std 99K Sd from the fiber Std := ϕ−1(td).

Let T ′ := {td | d ∈ Z>0} ⊂ T and Z := T ′ ⊂ T be its closure. Then there
exists an irreducible component Zi ⊂ Z containing infinitely many td’s. By
considering the base change to Zi, we may assume that T is irreducible and
that T ′ ⊂ T is dense and contains infinitely many td’s.

Let η ∈ T be the generic point and Sη be the generic fiber of ϕ. By taking
a resolution of Sη and replacing T by an open subset, we may assume that
ϕ : S → T is a smooth family of projective surfaces with birational maps
µd : Std 99K Sd for infinitely many d. By running a KS-MMP over T , we
may assume that KS/T is ϕ-nef, thus µd is an isomorphism for d with td ∈ T .

Let H be a ϕ-ample line bundle on S and M := (Ht)
2 > 0 be its degree. We

can take d ≫ 0 such that 2d > M and td ∈ T . Since PicSd = ZHd ∋ Htd

and H2
d = 2d > H2

td
= M > 0, this is a contradiction. Hence we see that C

is birationally unbounded. □
Remark 2.18. If we only assume that (X,D) is a log canonical pair such that
D is irreducible and KX + D ∼ 0, then such (X,D) forms an unbounded
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family. For example, we can consider a polarized K3 surface (S,L) of any
degree and its projective cone X := Cp(S,L).

Remark 2.19. For any d > 0, there exists an abelian variety A of dimen-
sion n ≥ 2 with a primitive ample divisor L of type (1, . . . , 1, d) such that
h0(A,L) = d (and Ln = n!d). A general abelian variety of type (1, 1, . . . , d)
has the Picard rank 1. Hence abelian varieties of dimension ≥ 2 are alge-
braically unbounded (cf. [BL04, 8.11(1)]).

The statement in Theorem 1.1 does not hold when dimX ≥ 4. Let
Xd := Ad × P2, where (Ad, Ld) is a general abelian variety with a primitive
polarization Ld of type (1, . . . , 1, d) as above. Then there exists a smooth
member Dd := Ad × C ∈ |−KXd

| so that (Xd, Dd) is a plt CY pair and
Dd is irreducible and reduced, where C ⊂ P2 is an elliptic curve. Such Dd

forms an unbounded family since there is no non-constant map C → Ad and
Pic(Ad × C) ≃ PicAd × PicC.

We can also show such Dd forms a birationally unbounded family by
a similar argument as Claim 2.17 using the relative MMP guaranteed by
[HMX18, Theorem 1.2] as follows. Suppose that {Dd | d ∈ Z>0} is bira-
tionally bounded. Then, as in Claim 2.17, we can construct a smooth family
ϕ : A → T over a smooth variety T with infinitely many points td ∈ T and
a birational map µd : Atd 99K Dd. By [HMX18, Theorem 1.2], we obtain a
birational map A 99K A′ to a good minimal model A′ of A over T with a
morphism ϕ′ : A′ → T . Since an abelian variety contains no rational curve
and there is no flop on it, we see that A′

td
≃ Dd for td ∈ T . Let H′ be a

ϕ′-ample line bundle on A′. By considering H′|A′
td

and its pull-back to Ad

for sufficiently large d, we obtain a contradiction as before. Hence we obtain
the required birational unboundedness.

3. Birational bounded family of Du Val K3 surfaces
which are unbounded

We consider the following problem in this section.

Problem 3.1. Let S be a smooth K3 surface with an ample line bundle L
with L2 = 2d for a fixed d > 0. Let S → S′ be a birational morphism onto
a normal surface S′ (which is a Du Val K3 surface). Does there exist an
ample line bundle L′ on S′ with L′2 ≤ Nd for some Nd determined by d?

The following example in the e-mail from Keiji Oguiso is a counterexample
to the problem and shows that a birational bounded family of Du Val K3
surfaces can be unbounded.

Example 3.2. Let d,m be any positive integers. Let S be a polarized K3
surface of degree 2d of Picard number 2 such that Pic (S) = ZH ⊕ZC with
intersection form

(H2) = 2d , (H.C) = m , (C2) = −2
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which is constructed in [Ogu94, Theorem 3] (The d = 2 case is treated in
[Mor84]). We know that H is very ample when d ≥ 2 and C is a (−2)-curve
by [Ogu94, Lemma 1.2].

We have a contraction π : S → T of C to the rational double point of
type A1. Let L be an ample Cartier divisor on T . (Note that the local class
group of A1 is Z/2 so that 2L′ is Cartier for any Weil divisor L′ on T ). Then

π∗L = aH + bC,

where a and b are integers and moreover a > 0, as π∗L is a nef and big
Cartier divisor. Since π is the contraction of C, it follows that (π∗L.C) = 0.
Hence, by π∗L = aH + bC, we have

a(H.C) + b(C2) = 0.

Substituting (H.C) = m and (C2) = −2 into the equation above, it follows
that

b =
am

2
.

Also, from π∗L−bC = aH with (π∗L.C) = 0, (C2) = −2 and (π∗L)2 = (L2)
(as π is a birational morphism), we have

(L2)− 2b2 = (π∗L− bC)2 = a2(H2) = 2da2.

Hence, for any ample Cartier divisor on T , we have

(L2) = 2da2 + 2b2 = a2(2d+
m2

2
) ≥ 2d+

m2

2
.

Since m can be taken any positive integer, it follows that the degree of
the polarizations on the birational contractions of polarized K3 surfaces of
degree 2d is unbounded. Hence contractions of polarized K3 surfaces of a
fixed degree do not necessarily form a bounded projective family.

Remark 3.3. In this remark, we ask whether the surface S and T in Example
3.2 can be embedded in a rationally connected 3-fold when d = 2.

We have an embedding S ⊂ P3 as a quartic surface. When m = 2l is
even, we can construct a 3-fold X̄ which contains T as an anticanonical
hypersurface so that (X̄, T ) is a plt CY pair as follows.

Assume that m = 2l is even. By the above consideration, the effective
cone NE(S) ⊂ Pic(S) ⊗ R of S is generated by (−2)-curves by [Kov94,
Theorem 2]. Hence we can write NE(S) = R≥0[C] + R≥0[Γ] for some (−2)-
curve Γ. Note that lH−C is effective since (lH−C)2 = −2 and (lH−C)·H =
2l > 0. Note that such classes can be reducible in general.

We show that Γ ∼ lH−C as follows. Note that we can write Γ = aH−bC
for some a, b ∈ Z>0. Since we have

−2 = (aH − bC)2 = 4a2 − 2mba− 2b2,

we obtain a(2a−mb) = 2a2 −mba = b2 − 1 = (b− 1)(b+ 1). If b > 1, then
we have 2a−mb = 2(a− lb) > 0 and

aH − bC = (a− lb)H + b(lH − C) ∈ R>0C + R>0(lH − C) ⊂ NE(S).
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Hence aH − bC is not on the boundary of NE(S). Thus we see that b = 1
and a = l, that is, Γ ∼ lH − C.

Now let µ : X → P3 be the blow-up along Γ. Let EΓ := µ−1(Γ) be the

exceptional divisor and S̃ ⊂ X be the strict transform of S. Let

L := µ∗OP3(l2 + 1)− lEΓ.

We see that the restriction L|S̃ = (l2+1)H− l(lH−C) = H+ lC is the line
bundle which induces the birational contraction π : S → T in Example 3.2.

Now assume that l > 4. We see that L is base point free and induces a
birational morphism as follows. Note that

(2) L = µ∗O(1) + l(µ∗O(l)− EΓ)

and the linear system |µ∗O(l)−EΓ| contains S̃+Sl−4 for all Sl−4 ∈ |µ∗O(l−
4)|. Hence the base locus BsL of |L| is contained in S̃. Since L|S̃ is base
point free, we see that L is nef. By (2), we see that L is big. Finally, we
have an exact sequence

H0(X,L) → H0(S̃, L|S̃) → H1(X,L− S) = 0

by the Kawamata-Viehweg vanishing since S̃ ∈ |−KX |, L − S̃ = KX + L
and L is nef and big. This implies that |L| is base point free and induces a

birational contraction ΦL : X → X̄. We see that ΦL(S̃) ≃ T .
We see that (X̄, T ) is a plt CY pair although X̄ is not Q-Gorenstein.

Remark 3.4. Let S ⊂ P3 be as in Remark 3.3 for an odd m ≥ 3. As in
Remark 3.3, we see that NE(S) is generated by C and another −2-curve Γ.
However, it seems difficult to describe Γ explicitly. In order to find such a
class, we need to find an integer solution (a, b) of the quadratic equation

4a2 − 2mab− 2b2 = −2

with a, b > 0 . By a computer program in [Mat15], we find solutions for an
explicit m. For m = 15, the solutions are (a, b) = (2G,F − 15G), where

F +G
√
233 = (2144801346/2 + 140510608/2

√
233)n for n ≥ 0.

4. Some results in higher dimensional case

We consider the following problem in this section.

Problem 4.1. Let n > 0 and X be a normal projective rationally connected
n-fold with an irreducible D ∈ |−KX | such that (X,D) is a plt pair (and D
is a strict CY variety with only canonical singularities). Does such D form
a birationally bounded family?

Remark 4.2. If dimX = 4, then D is a CY 3-fold. By taking a small Q-
factorial modification and running KX -MMP as before, we may assume that
there is a Mori fiber space ϕ : X → S which induces a surjective morphism
ϕD := ϕ|D : D → S. The problem is to bound this D.

If dimS = 0, then X is a Q-Fano 4-fold with canonical singularities and
it is bounded (cf. [Bir21]), thus D is also bounded. If dimS = 2, then
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ϕD : D → S is an elliptic fibration. Indeed, we check this as in the proof
of Proposition 2.6 since its general fiber is an anticanonical member of the
general fiber of ϕ which is a log del Pezzo surface. Hence D is birationally
bounded by Gross’ theorem [Gro94]. If dimS = 3, then D → S is a gener-
ically 2:1-cover and D → S is branched along a divisor R ⊂ S since S is
rationally connected. Thus (S, 12R) is a klt CY pair and R ∈ |−2KS |. S is
birationally bounded by [CDCH+21, Theorem 1.6] and D is also birationally
bounded.

Hence the problem is reduced to the case dimS = 1. However, we don’t
know how to show the boundedness in these cases.

Chen Jiang also pointed out the following.

Proposition 4.3. Let n,m > 0. Let (X,D) be a n-dimensional reduced plt
CY pair such that X is of Fano type. Assume that there exists a Q-divisor
B ̸= D such that mB is integral, KX +B ≡ 0 and (X,B) is lc.

Then the pair (X,D) is log bounded.

Proof. We see that (X,D) is ϵ-plt for some ϵ > 0 by Proposition 2.5(i).
Then we see that (X, 12(B+D)) is ϵ′-lc for ϵ′ := min{1/2m, ϵ/2}. By [HX15,
Theorem 1.3], we see that (X,D) forms a log bounded family. □
Remark 4.4. The following is pointed out by Yoshinori Gongyo and Roberto
Svaldi after the submission to arXiv.

Proposition 4.5. Let (X,D) be a reduced plt CY pair such that X is of
Fano type.

(i) Then (X,D) is log bitarionally bounded.
(ii) Assume that X is Q-factorial. Then (X,D) is log bounded.

Proof. (i) By taking a small Q-factorial modification, we may assume that
X is Q-factorial. Let µ : X 99K X ′ be a birational map induced by a (−KX)-
MMP which exists since X is a Mori dream space by [BCHM10]. Then we
see that −KX′ is nef and big. Let D′ := µ∗D. Note that µ does not contract
D since D is big. Then the pair (X ′, D′) is also a plt CY and ϵ-plt for some
ϵ > 0 by Proposition 2.5. By these, we see that X ′ is an ϵ-lc weak Fano
variety, thus it is bounded by [Bir21]. Hence D′ ≡ −KX′ is also bounded.

(ii) We also use the notation in (i). Then (X ′, D′) is ϵ-plt and −KX′ is
nef and big. Thus we can take a positive integer m determined by dimX
such that −mKX′ is base point free. Then, by taking a general member of
A′ ∈ |−mKX′ | and putting B′ := 1

mA′, we obtain a 1
m -lc CY pair (X ′, B′).

Moreover, KX′ +B′ is an m-complement (cf. [Bir19, 2.18]). Then we obtain
an m-complement KX + B as in [Bir19, 6.1(3)], where B is the sum of
the strict transform of B′ and some effective divisor supported on the µ-
exceptional divisors. Hence, by Proposition 4.3, we see that (X,D) is log
bounded. □

Johnson–Kollár [JK01] proved that there are only finitely many quasi-
smooth weighted CY hypersurfaces of fixed dimension. Chen [Che15] proved
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that there are only finitely many families of CY weighted complete intersec-
tions. CY varieties in toric varieties are often considered in mirror symmetry
and so on. Although toric varieties are unbounded, we can show the follow-
ing.

Corollary 4.6. Let X be a normal projective toric variety with D ∈ |−KX |
with only canonical singularities. Then (X,D) form a log bounded family.
(Thus both X and D are bounded. )

Proof. Note that, since X is toric and Q-Gorenstein in codimension 2, we see
that X has only canonical singularities in codimension 2 by [Ste88, Theorem
5]. Thus D is Cartier in codimension 2 and (X,D) is plt by inversion of
adjunction (cf. [KM98, Theorem 5.50]).

Let ∆ ⊂ X be the union of toric divisors. Then we see that (X,∆) is lc.
By applying Proposition 4.3, we obtain the claim. □
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