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Abstract. In this paper, we present a SAT-based Attractor Finder
(SAF) which computes attractors in biological regulatory networks mod-
elled as asynchronous automata networks. SAF is based on translating
the problem of finding attractors of a bounded size into a satisfiability
problem to take advantage of state-of-the-art SAT encodings and solvers.
SAF accepts an automata network and outputs attractors in ascending
size order until the bound is reached. SAF’s main contribution is pro-
viding an alternative to existing attractor finders. There are cases where
it is able to find some attractors while other techniques fail to do so.
We observed such capability on both automata networks and Boolean
networks. SAF is simple to use: it is available as a command line tool as
well as a web application. Finally, SAF being written in Scala, it can run
on any operating system with a Java virtual machine when combined
with the SAT solver Sat4j.

Keywords: Automata Networks · Attractor · Boolean Networks · SAT
Solvers .

1 Introduction

Asynchronous automata networks (hereafter abridged as automata networks or
AN) [12,16] are a multi-valued mathematical model widely studied for the quali-
tative analysis of the dynamical behavior of biological regulatory networks. Fig-
ure 1 (i) is an example of automata network which contains three automata
a, b and c whose possible state values are a, b ∈ {0, 1}, c ∈ {0, 1, 2}. The arcs
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Fig. 1. Example of AN and its corresponding STG in asynchronous semantics

and their labels denote transitions that change the state value of an automaton
with its labeled condition, e.g., a transition will change the state value of the
automaton a from 0 to 1 with the condition b = 1 and c = 2. Among dynamical
properties, Attractors raise a specific interest by their capacity to help validate
the design of a biological model and predict possible asymptotic behaviors (e.g.,
capturing differentiation processes). Attractors can be defined from the state
transition graph built from the automata network. Formally, a trap domain is a
set of states that do not have outgoing arcs, meaning they cannot be escaped and
thus loop indefinitely. An attractor is a subset minimal trap domain. Figure 1
(ii) represents the state transition graph of the automata network (i). It con-
tains four attractors of sizes 1, 1, 2, and 4, corresponding to the colored states.
However, few software tools are available to the general public despite the im-
portance of attractors in automata networks. Pint [17] is a popular tool, but it
cannot compute complex attractors. A method based on Answer Set Program-
ming (ASP) presented in the paper [6,7] can compute complex attractors, but
sometimes fails to do so for large models.

To fill these gaps, we propose the software SAF using a SAT-based method
for finding attractors of bounded size in asynchronous automata networks. SAF
has been developed based on a recently proposed SAT-based method [19]. The
existing ASP-based method [7] encodes attractors as a not-simple cycle between
states, while our SAT encoding models attractors as a set of states. The complex-
ity of our encoding is the attractor’s size, while the ASP encoding’s complexity
lies in the cycle’s length. In our running example, the attractors of size four
will be computed as {000, 001, 002, 100} by the SAT encoding while it will be
computed as (100, 000, 001, 002, 001, 000, 100) by the ASP encoding. SAF ben-
efits from the following characteristics: Efficiency. SAF can take advantage of
the wide availability of state-of-the-art SAT solvers and SAT enumerators, have
received considerable attention and saw impressive progress during the last two
decades [10]. The efficiency of such an approach is comparable and sometimes
better than existing ASP-based methods [19]. Portability. The current version
of SAF adopts Sat4j [15] as default back-end SAT solver. The combination of
SAF and Sat4j provides a portable software tool that runs on any platform sup-
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Fig. 2. SAF Architecture. The parts enclosed in dashed lines are included in saf.jar.

porting Java. Easy-to-use. SAF is available as a command line tool as well as
a web application https://saf-app.herokuapp.com/. Those tools using Sat4j can
be used without installing any other dependency.

2 Architecture and Implementation

The architecture of SAF is summarized in Fig. 2. This section explains in detail
its input, output, and the design of the core-engine.
I/O. SAF takes as input an automata network, but also supports other for-
mats, e.g., .sbml, .bnet, .booleannet, which will be translated into automata
networks using BioLQM [11]. In addition, a bound k can be given, limiting the
computation to attractors of size at most or equal to k. The output is a set
of attractors of increasing size, printed to the standard output as soon as the
calculation is completed.
Core-engine. The computation of attractors of a bounded size is delegated to
a SAT solver, i.e., we build a formula Ψk such that each model of Ψk is a trap
domain of size less than or equal to k. After finding a trap domain, we modify
the formula Ψk to prevent finding it again. The procedure enumerates that way
all trap domains of size k. Applying the procedure with an increasing value of
k, it is possible to guarantee that all trap domains found are minimal and thus
are also attractors of size bounded by k. The main challenges in SAT-based
approaches are minimizing encoded SAT problems and enumerating numerous
attractors. We address the former by employing the set-based encoding discussed
above and tackle the latter by utilizing low-level integration with SAT solvers
through the incremental IPASIR interface [1] and dedicated model enumerators
for large attractor counts.

https://saf-app.herokuapp.com/
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Table 1. Comparisons between SAF and ASP-based Method

Statictics Existing SAF
Instance |Σ| |T | Attractors k |Smax| ASP [4] Sat4j Ext

Example 4 12 1(3):2(1):4(1) 4 3 0.2 1.7 1.7
Lambda phage 4 46 1(1):2(1) 2 4 0.1 1.8 1.9
Trp-reg 4 14 1(2):4(1) 4 3 0.2 1.7 1.8
Fission-yeast 9 43 1(1) 1 3 0.0 1.5 1.5
Mamm. 10 34 1(1) 1 2 0.0 1.3 1.3
Tcrsig 40 85 1(8) 1 2 0.0 1.8 1.7
FGF 59 102 1(1536) 1 3 0.0 4.2 2.0
T-helper (AN) 101 316 1(5875504) 1 3 148.3 T.O. 32.9
star05 5 10 6(1) 6 2 1.6 1.8 1.9
star10 10 20 11(1) 11 2 148.0 5.3 4.0
star12 12 24 13(1) 13 2 9959.3 7.8 4.7
star15 15 30 16(1) 16 2 T.O. 26.2 8.8
star20 20 40 21(1) 21 2 T.O. 117.0 41.0
star30 30 60 31(1) 31 2 T.O. 8252.9 878.8
star40 40 80 41(1) 41 2 T.O. T.O. 9329.9
star50 50 100 51(1) 51 2 T.O. T.O. T.O.

Implementation. SAF is implemented in Scala. It can work on any system
with a Java Virtual Machine (JVM) version 8 or greater using the Java SAT
solver Sat4j [15]. For better performances, we also provide one state-of-the-art
SAT solver, CaDiCaL [9] and SAT enumerator, BDD Minisat all [21], which need
to be compiled on the host system. In the current implementation, by explicitly
adding command line options, BDD Minisat all is called when k = 1 and CaDiCaL
or Sat4j are called when k ≥ 2.

3 Performance

We carried out experimental comparisons against the state-of-the-art tools to
check the performance of SAF. We executed all experiments on a computer with
a 3GHz CPU and 16GB of RAM. All benchmark instances and execution logs
are available in https://doi.org/10.5281/zenodo.8062837.
Automata Network. We compared our system with the ASP-based tool pre-
sented in the literature [7]. Both use bounded search and are systems requiring an
upper bound k. Benchmark instances are all instances from the literature [7,19],
which consists in 8 biologically inspired networks, and artificial star networks
that have increasing size attractors proposed in [19]. Those attractors have cycle
sizes that are twice as large as their number of states (for detail, see Section 6.1
of [19]). The time limit is 3 hours. Table 1 shows the result. From left to right,
columns denote the name of the automata networks, the number of automata in-
cluded, the number of transitions included, the sizes of the attractors, the bound
k given to both solvers, the maximum number of states of automata denoted as
Smax, the CPU time of the compared ASP-based method, SAF using Sat4j and

https://doi.org/10.5281/zenodo.8062837
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Table 2. Comparisons between SAF and Boolean network tools

Instance #Var Boolsim Cabean Pyboolnet Pystable. Aeon SAF
[13] [20] [14] [18] [8] Ext

T-Cell 2006 40 7/1 0/0 7/1 7/1 7/1 7/0
ABA 44 16/12 16/12 16/12 16/12 16/12 16/3
T-LGL 61 0/0 0/0 0/0 172/886 172/142 172/92
EMT 69 13/0 13/0 0/0 13/0 13/0 13/0
T-Cell 2007 101 0/0 0/0 0/0 104/24 104/24 104/0

T-helper (BN) 103 0/0 0/0 0/0 0/0 0/0 5875504/0

external SAT solvers denoted as Ext. In the biologically inspired benchmarks, all
methods solved them within a few seconds. The main reason is that they contain
small-sized attractors and thus k is also small. One other difference between the
ASP-based method and SAF comes from the implementation language: C++
and Scala. SAF is implemented on Scala which is running on JVM for the mod-
eling part and thus there is a small disadvantage on this point. One exception
is T-helper which contains a large number of attractors. On this problem, our
approach takes advantage of the SAT solver BDD MINISAT ALL dedicated to the
fast enumeration of solutions. On star benchmarks, the difference between each
encoding is more obvious. Our set-based encoding outperforms ASP cycle-based
encoding. The CPU time of the ASP-based method increases exponentially, and
it cannot solve star15 within 3 hours. On the other hand, although SAF+Sat4j
cannot solve star30, SAF+external SAT solvers successfully solved them until
star40. In summary, while the ASP-based method is faster at finding small-sized
attractors, it may fail to detect some; on the other hand, SAF is more robust at
finding attractors, but it faces difficulties when their size exceeds 50.

Boolean Network.We also compared our system with state-of-the-art Boolean
network tools: Boolsim [13], Cabean [20], Pyboolnet [14], Pystablemotifs [18] and
Aeon [8]. All compared tools execute comprehensive searches, i.e., those tools
run without specifying k. So, we run SAF with large enough k and compare the
number of attractors computed within the time limit 2,400 seconds. We employ
existing Boolean network instances to facilitate the comparison since no tool
is currently available for converting automata networks into Boolean networks.
Benchmark instances are all real cell model instances from the literature [18].
The specific instance T-LGL may vary from 58 to 61 variables depending on the
source. Our instance is available from our dataset [3]. In addition, we compare
one more instance, a Boolean Network version of T-helper [5] downloaded from
URL [2], which has a large number of attractors. Table 2 shows the result6. From
left to right, columns denote the name of the Boolean networks, the number of
atoms included, the number of attractors computed by compared tools and SAF
in the form of “n/m” where n denotes the number of singleton attractors and
m denotes the number of complex attractors. Unlike automata-network results,
SAF did not yield conclusive results on those benchmarks. The reasons for this

6 In our environment, Pystablemotifs version 3.3 throws an error to T-LGL on our
computer. Thus, we provide the number of attractors found in their paper [18]
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could be twofold: i) SAF converts Boolean networks into richer automata net-
works instead of directly solving them, and ii) it struggles with calculating large
attractors exceeding 50 due to its process of exploring attractors of increasing
size. However, Boolean network version of T-helper, which contains many at-
tractors, could not be enumerated by any other tool within the time limit.

4 Availability

Command line tool. The command line tool, sources, and instructions are
available on https://github.com/TakehideSoh/SAF. The command line tool can
be executed from users’ terminal as follows.

$ java -jar saf.jar [options] [inputFile]

The minimum example using Sat4j and k = 4 on the automata network file
runningexample.an is as follows.

$ java -jar saf.jar -k 4 runningexample.an

To run the above command, users do not need any installation on any platform
supporting Java 8 or greater. Improved performance is available by adding op-
tions of BDD Minisat all and CaDiCaL (or any IPASIR compatible software). In
this case, the installation of those SAT solvers in the system is necessary.
Web application. The web application version of SAF (see Fig. 3 in Appendix)
is available at https://saf-app.herokuapp.com/. It currently accepts multivalued
networks (.an .sbml), and Boolean networks (.bnet .booleannet). To use this
application, users initially edit their network in a textbox or upload local files.
Next, they specify a bound k and push “find attractors”. The result is printed
into another textbox. This service is hosted on HEROKU, one of the PaaS
providers. Due to service limitations, each execution is limited to 20 seconds,
but it has sufficient performance for simple use cases.

5 Conclusion

This paper presents a SAT-based Attractor Finder (SAF) for identifying attrac-
tors of biological regulatory networks modeled as dynamical multi-level discrete
models. SAF was developed with the goal of being an efficient, portable, and easy-
to-use tool. The core of the approach targets automata networks but, thanks to
existing translators between modeling frameworks, SAF handles models specified
in various Boolean network formats (Boolnet, Booleannet) and in SBML-qual.
Source code, executable as a Jar file and a web application are available to make
it easily usable by a wide range of users, from computer scientists to modelers.
Future work includes making the output of SAF compatible with JSON format
and graphical representations to make it more understandable for beginners. It
is also important to apply it to challenging instances of Boolean Networks. In ad-
dition, extending SAF to other semantics and considering other attractor-related
problems like bifurcation is interesting.

https://github.com/TakehideSoh/SAF
https://saf-app.herokuapp.com/
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11. Chaouiya, C., Bérenguier, D., Keating, S.M., Naldi, A., van Iersel, M.P., Rodriguez,
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A Input File and Web Interface of SAF

The automata network from Fig. 1 can be described by the following automata
network runningexample.an input file as in Figure 3. The web application ver-
sion of SAF is demonstrated in Figure 3 as well.
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"a" [0, 1]

"b" [0, 1]

"c" [0, 1, 2]

"a" 0 -> 1 when "b"=1 and "c"=2

"a" 0 -> 1 when "c"=0

"a" 1 -> 0 when "b"=0

"b" 1 -> 0 when "a"=0 and "c"=0

"c" 0 -> 1 when "a"=0

"c" 1 -> 2 when "a"=0 and "b"=0

"c" 1 -> 2 when "a"=1 and "b"=1

"c" 2 -> 1

"c" 1 -> 0 when "a"=0 and "b"=0

runningexample.an https://saf-app.herokuapp.com/

Fig. 3. Input File and Web Interface of SAF

https://saf-app.herokuapp.com/
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