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A B S T R A C T

Recently, computational techniques that employ physical systems (physical computing systems) have been
developed. To utilize physical computing systems, their design strategy is important. Although there are
practical learning-based methods and theoretical approaches, no general method exists that provides specific
design guidelines for given systems with rigorous theoretical support. In this paper, we propose a novel
algebraic design framework for a physical computing system, which is capable of extracting specific design
guidelines. Our approach describes input–output relationships algebraically and relates them to given target
tasks. Two theorems are presented in this paper. The first theorem offers a basic strategy for algebraic
design. The second theorem explores the ‘‘replaceability’’ of such systems. Their possible implementations are
investigated through experiments. In particular, the design of inputs of a system so that it generates multiple
target time-series and the replacement of stationary or non-stationary target systems by a given system that
is designed algebraically are included. The proposed framework is shown to have the potential of designing
given physical computing systems with theoretical support.
1. Introduction

Recent developments in sensing and Internet of Things technology
require enormous complex time-series data to be processed efficiently
in real-time. The von Neumann architecture, which is a conventional
computational architecture that aligns the processor and memory sep-
arately, causes an intrinsic limitation in processing speed, the von
Neumann bottleneck. To design a successful real-time information pro-
cessing method with lower computational and energy costs, it is nec-
essary to reconsider the computational architecture and concept [1].
Therefore, many approaches based on the non-von Neumann type
architectures have recently been proposed, capitalizing on the power
of material properties [2,3] and the diverse dynamics of physical sys-
tems [4]. Physical systems outsource the computational load to natural
physical dynamics and add some properties in addition to computation,
such as robustness against a radioactive environment [5,6], which
significantly extends the application domains. In this paper, the term
systems refers to physical computing systems, and we propose a design
principle for the systems based on the theory of algebra.

We focus on mapping input sequences to output sequences, which
we consider computing in this paper. In the field of physical computing
and its related domains, the terms ‘‘time-series’’ and ‘‘sequence’’ are
used to refer to both continuous and discrete cases [7–11]. In the
following, ‘‘time-series’’ refers specifically to continuous time-series,
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while discrete time-series are referred to as ‘‘discrete time-series.’’ In
this paper, we examine physical computing, where a physical system
characterized by its parameters is employed to map an input sequence
(Fig. 1). In the research field of physical computing, designing a system
that exhibits desirable computing has been a focus of attention [12–15].
Common and practical methods include simulation- [12] and learning-
based methods [13]. Although the efficacy of such methods has been
partially confirmed, they basically rely on an enormous number of trial
and error attempts or simulations, and/or it is necessary to learn their
input–output relationships, which are not supported by theories. On
one hand, researchers [14,16] have attempted to understand the design
principle of physical computing systems, which are based on the theory
of nonlinear filter approximation [17]. In these studies, computational
tasks are reduced to the approximation of a class of filters by the
systems. In other words, each filter in the class has the role of mapping
an input stream to an output stream. Then, sufficient conditions for the
approximation such as the echo-state property [18,19], fading memory
property and point separation property [14,17] are provided. However,
the practical use of such theories can be challenging. Specifically, it
is difficult to design physical computing systems so that they satisfy
these conditions; specific design guidelines for the systems based on
the nonlinear filter approximation theory are difficult to obtain. There
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is another direction for theoretically investigating physical computing
systems, which is based on static feedback linearizability [15,20].
Static feedback linearizability is a well established tool in the field
of nonlinear control theory, targeting systems described in state-space
representation. Roughly speaking, a static feedback linearizable system
is a system such that it can be transformed into a linear system by
a change of coordinates and a static feedback control. In [15,20],
mass–spring systems are targeted and their feedback linearizablity are
demonstrated. Based on this, such systems of dimension 𝑁 , with an
appropriate change of coordinates and feedback control, are shown to
be able to enumerate solutions of 𝑁th order differential equations in
esponse to an external input. Since the proof of feedback lineariz-
bility of the systems in [15,20] is constructive, one can say that
hese theories provide specific design guidelines, the feedback controls
n these case, in contrast to the theories based on nonlinear filter
pproximation [14,16]. However, a class of static feedback lineariz-
ble system is limited and hence the theoretical frameworks provided
n [15,20] are only applicable to a limited class of physical computing
ystems. In the field of nonlinear control theory, there is a property of
ystem called differential flatness [21–23], which is closely related to
eedback liniearizability. Roughly speaking, differentially flat systems
an be transformed into linear systems with a change of coordinates
nd a dynamic feedback control [24]. Thus, the differential flatness is
generalized concepts of feedback linearization which has a potential

o extend the theories such as [15,20]. However, the existence of
computable criterion so as to decide if a system is differentially

lat remains open [24]. Thus, challenges for existing approaches in
esigning physical computing systems can be organized as follows:

• The theoretical approaches for physical computing system based
on nonlinear filter approximation [14,16] do not provide specific
design methods.

• Practical simulation- or learning-based approaches [12,13] may
provide specific design guidelines for physical computing systems,
however, they do not have theoretical guarantees.

• The theoretical methods based on static feedback linearizabil-
ity [15,20] allow us to obtain specific design guidelines of physi-
cal computing systems. However, their applicability is limited to
a subclass of physical computing systems.

• The applicability of the approaches [15,20] may be extended by
introducing differential flatness [21–23]. However, determining
whether a system is differentially flat in a systematic manner
remains an open problem.

Based on the above, we aim at establishing a theoretical framework
or designing physical computing systems that can offer specific design
uidelines based on algebraic theory and related computational tech-
iques. We assume that a physical computing system is modeled as a
tate-space model and examine its specific design guidelines via state
ariables elimination supported by algebraic theory. An overview of
ur framework is depicted in Fig. 1. In this framework, the specific
nput–output relationships of a given system, 𝐹 = 0 in Fig. 1, are first
escribed via elimination of the state variables. Then, 𝐹 is related to the
omputational tasks (Theorems 1 and 2). To be more precise, the input–
utput relationships are characterized by the Gröbner basis, which is
n algebraic technique. This makes it possible to describe the relation-
hips and obtain design guidelines using computer algebra software
ithout being aware of the underlying algebraic theory. In contrast

o existing theories based on nonlinear filter approximation [14,16] or
eedback linearization [15,20], our approach does not essentially limit
he class of physical computing systems while extracting specific design
uidelines. This is because, our approach relies on 𝐹 = 0, which is
xplicitly computable for any physical computing systems described by
olynomial state-space models. In addition, it is worth to mention that
ur approach has the relation to differential flatness as demonstrated
n Section 4.2. This suggests that our approach could serve as a clue for
urther developing existing theories.
2 
In this study, two main theorems are provided. Theorem 1 outlines
fundamental design strategy for computational tasks. Such a process

or adjustments is often conducted empirically in practical methods
12,13]. We demonstrate how the proposed strategy works when de-
igning inputs in Experiments 1 and 2. Theorem 2 extends Theorem 1
y addressing situations where one physical computing system might
e preferable over another, considering the ‘‘replaceability’’ of systems.
s an example, such a situation may arise as a result of the emer-
ence of diverse implementations of physical computing. Experiment 3
emonstrates the effectiveness of Theorem 2, which provides specific
uidelines for replacing one system with another. The limitations of
ur framework are discussed in Section 5.

. Algebraic preliminaries

.1. Algebraic terminology

As preparation, we introduce some algebraic terminology related to
he study. For basic terminology concerning the field, ring, polynomial
ing, and order, please refer to [25,26]. Throughout this study, 𝐾[𝑥]

denotes a polynomial ring whose variables are 𝑥 = (𝑥1,… , 𝑥𝑠) over a
ield 𝐾.

efinition 1 (Ideal on a Polynomial Ring). A non-empty subset 𝐼 of 𝐾[𝑥]
satisfies

if 𝑝 ∈ 𝐼, 𝑞 ∈ 𝐼, then 𝑝 + 𝑞 ∈ 𝐼, (1)

if 𝑝 ∈ 𝐼, 𝑞 ∈ 𝐾[𝑥], then 𝑞𝑝 ∈ 𝐼, (2)

where 𝐾[𝑥] is a polynomial ring; 𝑝, 𝑞 are polynomials.

Definition 2 (Generating Set). For an ideal 𝐼 , suppose that there exists
a non-zero subset

{

𝑝𝜆 ∣ 𝜆 ∈ 𝛬
}

of ring 𝐾[𝑥] that satisfies

𝐼 =

{

∑

𝜆∈𝛬
𝑞𝜆𝑝𝜆

|

|

|

|

|

for all 𝑞𝜆 ∈ 𝐾[𝑥]

}

. (3)

Then,
{

𝑝𝜆 ∣ 𝜆 ∈ 𝛬
}

is defined as a generating set of 𝐼 . 𝑝𝜆(𝜆 ∈ 𝛬) is
efined as a generator of 𝐼 .

Notably, the set on the right side of (3) is shown to satisfy the
definition of the ideal [25]. Representing the ideal 𝐼 , whose generator
is

{

𝑝𝜆 ∣ 𝜆 ∈ 𝛬
}

, is commonly expressed as follows:

𝐼 =
⟨{

𝑝𝜆 ∣ 𝜆 ∈ 𝛬
}⟩

. (4)

The underlying algorithm for deriving the key equation 𝐹 = 0 in
Fig. 1, called the input–output equation, is polynomial division. When
performing division between the polynomials of a single variable, in
general, we first arrange the terms of the polynomial in descending
order of the degree of the variable. We then focus on the monomials
whose variable degree is the highest in the polynomial to be divided
and for the division. If the monomial for the polynomial to be divided
is higher than or equal to that of the polynomial to divide, then the
polynomial to be divided is factorized by the highest degree term
of the polynomial to divide. Therefore, the order of monomials is
critical in dividing polynomials of a single variable. This holds for the
multivariate case as well [25]. In general, the monomial ordering fixes
the order of the monomials in the set of monomials of interest [25].
Below, we consider the monomial order to handle polynomials, which
is a special type of the total order.

Definition 3 (Total Order). ≤ is a total order on a set 𝛴 if the followings
holds for all 𝑎, 𝑏, 𝑐 ∈ 𝛴:

𝑎 ≤ 𝑎, (5)

𝑎 ≤ 𝑏 or 𝑏 ≤ 𝑎, (6)

if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎, then 𝑎 = 𝑏, (7)

if 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑐, then 𝑎 ≤ 𝑐. (8)
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Fig. 1. Overview of the proposed framework. The framework of a physical computing system is depicted at the upper left. Theorems on the algebraic design of physical computing
systems are summarized in the upper right, which corresponds to the main results. Experiments 1 and 3 are illustrated at the bottom.
Conventionally, we denote 𝑎 < 𝑏 if both 𝑎 ≤ 𝑏 and 𝑎 ≠ 𝑏 hold.
Among a set 𝛴 equipped with a total order, we can compare every pair
of elements. By adding some properties to the total order, the monomial
orderings are defined as follows.

Definition 4 (Monomial Order). Monomial order < is the total order on
a set of monomials 𝑀𝑠 of a polynomial ring such that

1 < 𝑢, for all 𝑢 ∈𝑀𝑠, 𝑢 ≠ 1, (9)

if 𝑢 ≤ 𝑣 𝑢, 𝑣 ∈𝑀𝑠 then 𝑢𝑤 ≤ 𝑣𝑤, for all𝑤 ∈𝑀𝑠. (10)

Definition 5 (Lexcographic Order). Let us consider a ring 𝐾[𝑥] and
monomial order < on the ring such that for arbitrary 𝑢 = 𝑥𝛼11 𝑥

𝛼2
2 ,… , 𝑥𝛼𝑠𝑠 ,

𝑣 = 𝑥𝛽11 𝑥
𝛽2
2 ,…, and 𝑥𝛽𝑠𝑠 ∈ 𝐾[𝑥], 𝑢 < 𝑣 holds if the left-most element

among the non-zero elements of (𝛽1 − 𝛼1, 𝛽2 − 𝛼2,… , 𝛽𝑠 − 𝛼𝑠) is positive.
We define < as the lexcographic order.

The lexicographic order can be used to eliminate variables from
ideals [25]; hence, it is used in this study. To eliminate variables,
To eliminate variables, we perform computation of the Gröbner basis,
whose underlying algorithm is polynomial division. Before explaining
this, we introduce related terminology.

Definition 6. The largest monomial in the set of monomials, whose
coefficients are non-zero, appearing in a polynomial 𝑝 ∈ 𝐾[𝑥] with
respect to a given monomial order < is defined as the leading monomial
of 𝑝. We denote this by LM<(𝑝).

Definition 7. The coefficient of the leading monomial of 𝑝 ∈ 𝐾[𝑥]
with respect to a given monomial order < is defined as the leading
coefficient of 𝑝. We denote this as LC<(𝑝).

Definition 8. Let us consider a ring 𝐾[𝑥] with a given a monomial
order <. Suppose we have non-zero polynomials 𝑝 and ℎ in 𝐾[𝑥]. We
represent ℎ as

ℎ = 𝑞𝑝 + 𝑅, (11)

where the followings holds:

• if 𝑅 ≠ 0, then 𝑅 is not represented by 𝑅 = 𝑞′𝑝, where 𝑞′ ∈ 𝐾[𝑥];
• if 𝑞 ≠ 0, then LM<(ℎ) ≥ LM<(𝑞𝑝).

𝑅 is defined as the remainder of ℎ divided by 𝑝 with respect to < over
𝐾[𝑥].
3 
The existence of 𝑞 and 𝑅 in Definition 8 is shown [25, p. 64].
Although this is the case of a polynomial being divided by a single
polynomial, it can be extended to polynomial division using a set
of polynomials [25]. See [25] for the details and algorithms on the
division of polynomials of multiple variables. In general, because the
division algorithm is implemented on computer algebra software, 𝑅
can be specifically computed using a given ℎ, 𝑝, and monomial order.
Because LM<(ℎ)≥LM<(𝑞𝑝) holds if 𝑞 ≠ 0, LM<(ℎ) < LM<(𝑞𝑝) implies
𝑞 = 0, which leads to an identical equation ℎ = 𝑅. That is, if the leading
monomial of a polynomial to be used to divide is greater than that of
the polynomial to be divided, the remainder is trivial.

3. Problem setting

In this study, we assume that the physical computing system is
modeled by a system of differential equations with an observation
function as follows:
d𝑥
d𝑡

= 𝑓 (𝑥, 𝑢; 𝜃), (12a)

𝑦 = 𝑔(𝑥, 𝑢; 𝜃) (12b)

where 𝑓 (⋅, ⋅; 𝜃) ∶ R𝑁×R𝑀 → R𝑁 , 𝑔(⋅, ⋅; 𝜃) ∶ R𝑁×R𝑀 → R. 𝑥 ∈ R𝑁 is the
state variable vector of the physical computing system; 𝑢 ∈ R𝑀 is the
input vector; 𝑦 ∈ R𝑀 is the output variable; 𝜃 ∈ R𝑛 is the parameter
vector. Let us denote the initial state variable vector as 𝑥(0) ∈ R𝑁 .
The system of differential Eqs. (12a) describes the physical system of
interest. We assume the existence and uniqueness of its solution.

An observation equation (12b) describes how to observe the output
of the system. In the field of reservoir computing [27], this is commonly
referred to as the readout, where the outputs (12b) correspond to the
outputs from readouts equipped with a physical reservoir.

To employ the algebraic methods, throughout this paper, we assume
that 𝑓 and 𝑔 are polynomials of 𝑥, 𝑢, whose coefficients are rational
functions of 𝜃; 𝑓 (𝑥, 𝑢; 𝜃), 𝑔(𝑥, 𝑢; 𝜃) ∈ C(𝜃)[𝑥, 𝑢]. Hereafter, symbols with
a hat denote outputs from the physical computing system and those
with a bar or tilde denote the given time-series.

To design physical computing system, we first consider whether the
output of a given system generates target time-series 𝑦̄(𝑡).

Target task 1 (Time-Series Generation). Let us denote output 𝑦(𝑡) of (12b)
as 𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0)) given 𝜃 ∈ 𝛩, 𝑥(0) ∈ R𝑁 , and 𝑢 in a set of functions, R →
R𝑀 , denoted as 𝑈 . Suppose that we have a target time-series denoted as 𝑦̄(𝑡)
over a time duration. A time-series generation task is to find (𝜃, 𝑢, 𝑥(0)) ∈
R𝑛 ×𝑈 ×R𝑁 such that 𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0)) = 𝑦̄(𝑡) holds over the specified domain.
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As mentioned in the previous section, various implementations of
physical computing have been proposed using diverse physical systems
and materials. Therefore, a situation in which computing with a cer-
tain physical computing system is preferable over another may arise.
The following task that considers such a situation can be successfully
handled using our algebraic approaches, as shown in Section 4.3.

Target task 2 (Designing a System and Exploiting Its Replaceability with
Another System). Suppose that we have two systems described by state-
space models such as (12a), (12b). The first is a system to be designed,
whereas the other is the target. With the same input 𝑢 ∈ 𝑈 , their output
variables are denoted as 𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0)) and 𝑦̄(𝑡; 𝜃, 𝑢, 𝑥̃(0)) given initial states
𝑥(0), 𝑥̃(0) ∈ R𝑁 and parameter vectors 𝜃 ∈ R𝑛, 𝜃 ∈ R𝑛̃, respectively. In this
task, (𝜃, 𝑥(0)) ∈ R𝑛 ×R𝑁 is to be found, if it exists, so that 𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0)) =
̄(𝑡; 𝜃, 𝑢, 𝑥̃(0)) holds over the specified duration. Note that if such (𝜃, 𝑥(0))
exists, the system is said to be replaceable with respect to the target system.

We make two assumptions regarding target time-series 𝑦̄(𝑡). The first
relates to its smoothness (Assumption 1), which is assumed throughout
this paper. See Section 5 for a discussion related to this assumption.
The other assumption (Assumption 2) is introduced in Section 4.3 and
is related to the replaceability.

Assumption 1. Target time-series 𝑦̄(𝑡) is a sufficiently smooth function
from R to R over the duration under consideration.

Assumption 2. Let 𝑢 denote a set of sufficiently smooth functions
containing functions from R to R𝑀 . Given and fixed 𝑢 ∈ 𝑢 and 𝜃 ∈ R𝑛̃,
target time-series 𝑦̄(𝑡) satisfies ℎ

(

d𝑁 𝑦̄
d𝑡𝑁 ,… , 𝑦̄, d

𝑁 𝑢
d𝑡𝑁 ,… , 𝑢; 𝜃

)

= 0 where ℎ
is a polynomial differential equations up to the 𝑁th order of 𝑦̄.

4. Proposed framework

4.1. Key ingredient in algebraic design: the input–output map of physical
computing systems

The most important idea in the proposed framework is to extract
the input–output relations of systems by using an algebraic method.
To extract equations representing the input–output relations in the
system modeled by (12a) and (12b), we consider eliminating its state
variables. Proposition 1 shown in [28] below states that this elimina-
tion is certainly possible. Also, because (12a) contains derivatives of
the state variables, such eliminations are realized through algebraic
manipulations and derivations of the model described by (12a), (12b).
Here, the question is how many times we need to differentiate the
models to extract equations representing the input–output relations,
which may not be bounded.

Before showing the precise statement of Proposition 1, we introduce
some algebraic notation. In terms of algebra, we regard the model
as polynomials of the states, inputs, outputs, and their higher-order
derivatives. To deal with (12a) and (12b) as polynomial equations,
we introduce a notation of variables with a superscript non-negative
integer 𝑖 in parentheses 𝑥(𝑖), and replace d𝑖𝑥

d𝑡𝑖 with it. The same notation
is introduced for 𝑦 and 𝑢. The variable correspondence is summarized
in Table 1. Note that 𝑥(𝑖) and 𝑥(𝑗) are distinct variables if 𝑖 ≠ 𝑗.
Introducing the notation in the right-sides of (12a), (12b), we ob-
tain 𝑓 (𝑥(0), 𝑢(0); 𝜃), 𝑔(𝑥(0), 𝑢(0); 𝜃). Polynomial equations corresponding to
(12a) and (12b) are represented as follows:

𝑥(1) = 𝑓 (0)(𝑥(0), 𝑢(0); 𝜃), 𝑓 (0)(𝑥(0), 𝑢(0); 𝜃) ∈ C(𝜃)[𝑥(0), 𝑢(0)], (13a)

𝑦(0) = 𝑔(0)(𝑥(0), 𝑢(0); 𝜃), 𝑔(0)(𝑥(0), 𝑢(0); 𝜃) ∈ C(𝜃)[𝑥(0), 𝑢(0)], (13b)

where the symbols 𝑓, 𝑔 are replaced with 𝑓 (0), 𝑔(0). Although the ele-
ments of (𝑥, d𝑥d𝑡 , 𝑦, 𝑢) depend on 𝑡 by definition of (12a), (12b), the ones
in (𝑥(1), 𝑥(0), 𝑦(0), 𝑢(0)) does not, and thus, (13a), (13b) are regarded as

(1) (0) (0) (1) (0) (0) (0)
polynomial equations; 𝑥 − 𝑓 , 𝑦 − 𝑔 ∈ C(𝜃)[𝑥 , 𝑥 , 𝑦 , 𝑢 ].

4 
Table 1
Correspondence of variables in differential equations (12a), (12b) and polynomial
equations (13a), (13b). 𝑖 denotes a non-negative integer.

Variables in (12a), (12b) Variables in (13a), (13b)
d𝑖𝑥
d𝑡𝑖

𝑥(𝑖)
d𝑖𝑦
d𝑡𝑖

𝑦(𝑖)
d𝑖𝑢
d𝑡𝑖

𝑢(𝑖)

In the following, we consider differential equations and polynomial
equations that are obtained by differentiating (12a), (12b) with respect
to 𝑡 up to 𝑁th order:

d
d𝑡

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑥
d𝑥
d𝑡

⋮

d𝑁𝑥
d𝑡𝑁

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d𝑥
d𝑡
d2𝑥
d𝑡2

⋮

d𝑁+1𝑥
d𝑡𝑁+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑓 (𝑥, 𝑢; 𝜃)
d
d𝑡𝑓 (𝑥, 𝑢; 𝜃)

⋮

d𝑁
d𝑡𝑁 𝑓 (𝑥, 𝑢; 𝜃)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (14a)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑦
d𝑦
d𝑡

⋮

d𝑁 𝑦
d𝑡𝑁

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑔(𝑥, 𝑢; 𝜃)
d
d𝑡 𝑔(𝑥, 𝑢; 𝜃)

⋮

d𝑁
d𝑡𝑁 𝑔(𝑥, 𝑢; 𝜃)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (14b)

Here, d𝑖
d𝑡𝑖 𝑓 (𝑥, 𝑢; 𝜃),

d𝑖
d𝑡𝑖 𝑔(𝑥, 𝑢; 𝜃) denote 𝑖th order derivatives of 𝑓, 𝑔 with

respect to 𝑡. Note that d𝑖
d𝑡𝑖 𝑓 (𝑥, 𝑢; 𝜃),

d𝑖
d𝑡𝑖 𝑔(𝑥, 𝑢; 𝜃) can be regarded as

polynomials of d𝑖𝑥
d𝑡𝑖 ,… , 𝑥, d

𝑖𝑢
d𝑡𝑖 ,… , 𝑢. For a non-negative integer 𝑖, let

𝑓 (𝑖)(𝑥(𝑖),… , 𝑥(0), 𝑢(𝑖),… , 𝑢(0)), 𝑔(𝑖)(𝑥(𝑖),… , 𝑥(0), 𝑢(𝑖),… , 𝑢(0))

∈ C(𝜃)[𝑥(𝑖),… , 𝑥(0), 𝑢(𝑖),… , 𝑢(0)] (15)

denote the polynomials obtained by replacing d𝑖𝑥
d𝑡𝑖 ,… , 𝑥, d

𝑖𝑢
d𝑡𝑖 ,… , 𝑢 of

d𝑖
d𝑡𝑖 𝑓 (𝑥, 𝑢; 𝜃),

d𝑖
d𝑡𝑖 𝑔(𝑥, 𝑢; 𝜃) with 𝑥(𝑖),… , 𝑥(0), 𝑢(𝑖),…, 𝑢(0), respectively. Thus,

using the notations in Table 1, (14a), (14b) can be represented as
polynomial equations

⎛

⎜

⎜

⎜

⎜

⎝

𝑥(1)

𝑥(2)

⋮
𝑥(𝑁+1)

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

𝑓 (0)(𝑥(0), 𝑢(0); 𝜃)
𝑓 (1)(𝑥(1), 𝑥(0), 𝑢(1), 𝑢(0); 𝜃)

⋮
𝑓 (𝑁)(𝑥(𝑁),… , 𝑥(0), 𝑢(𝑁),… , 𝑢(0); 𝜃)

⎞

⎟

⎟

⎟

⎟

⎠

, (16a)

⎛

⎜

⎜

⎜

⎜

⎝

𝑦(0)

𝑦(1)

⋮
𝑦(𝑁)

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

𝑔(0)(𝑥(0), 𝑢(0); 𝜃)
𝑔(1)(𝑥(1), 𝑥(0), 𝑢(1), 𝑢(0); 𝜃)

⋮
𝑔(𝑁)(𝑥(𝑁),… , 𝑥(0), 𝑢(𝑁),… , 𝑢(0); 𝜃)

⎞

⎟

⎟

⎟

⎟

⎠

, (16b)

where d𝑖
d𝑡𝑖 𝑓,

d𝑖
d𝑡𝑖 𝑔 are replaced with 𝑓 (𝑖), 𝑔(𝑖). To consider the order

of derivatives required to extract the input–output relations in (12a),
(12b), let us denote a set of polynomials obtained through algebraic
manipulations of the model differentiated up to the 𝑚th order as 𝐼 (𝑚).
Specifically, for (12a), (12b), given a non-negative integer 𝑚, we define
the ideal 𝐼 (𝑚) as follows:

𝐼 (𝑚) =⟨𝑥(1) − 𝑓 (0),… , 𝑥(𝑚) − 𝑓 (𝑚−1),… , 𝑦(0) − 𝑔(0),… , 𝑦(𝑚) − 𝑔(𝑚)⟩ (17)
⊂ C(𝜃)[𝑥(𝑚),… , 𝑥(0), 𝑦(𝑚),… , 𝑦(0), 𝑢(𝑚),… , 𝑢(0)],

where 𝑓 (𝑖)(𝑥(𝑖),… , 𝑥(0), 𝑢(𝑖),… , 𝑢(0); 𝜃), 𝑔(𝑖)(𝑥(𝑖),… , 𝑥(0), 𝑢(𝑖),… , 𝑢(0); 𝜃) are
denoted as 𝑓 (𝑖), 𝑔(𝑖), for 𝑖 = 0,… , 𝑚, respectively. Using (17), a set
of polynomials in which 𝑥(𝑚),… , 𝑥(0) are eliminated are described as
follows:

𝐼 (𝑚) ∩ C(𝜃)[𝑦(𝑚),… , 𝑦(0), 𝑢(𝑚),… , 𝑢(0)],

which is a set of polynomials representing the input–output relation-
ships of the model (Fig. 1d).

Proposition 1 shows the existence of the equations representing
the input–output relations of the physical computing systems modeled
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by (12a), (12b). More precisely, it is shown that (19) has a non-zero
polynomial, and also the specific number of derivations needed for the
existence is provided.

Proposition 1 (Theorem Shown in [28]). For a model (12a), (12b)
with 𝑓 (𝑥, 𝑢; 𝜃), 𝑔(𝑥, 𝑢; 𝜃) ∈ C(𝜃)[𝑥, 𝑢], let us consider 𝐼 (𝑁) where 𝑁 is the
dimension of the state vector of the system:

𝐼 (𝑁) =⟨𝑥(1) − 𝑓 (0),… , 𝑥(𝑁) − 𝑓 (𝑁−1),… , 𝑦(0) − 𝑔(0),… , 𝑦(𝑁) − 𝑔(𝑁)
⟩ (18)

⊂ C(𝜃)[𝑥(𝑁),… , 𝑥(0), 𝑦(𝑚),… , 𝑦(0), 𝑢(𝑁),… , 𝑢(0)].

Then,

𝐼 (𝑁) ∩ C(𝜃)[𝑦(𝑁),… , 𝑦(0), 𝑢(𝑁),… , 𝑢(0)], (19)

is not zero ideal.

The following Lemma shown in [28] is used to prove Proposition 1.

Lemma 1 (Theorem 1.6 of [28]). Let 𝐾 be the field. Polynomials 𝑝1,… , 𝑝𝑆
∈ 𝐾[𝑥1,… , 𝑥𝑠] are algebraically dependent over 𝐾 if 𝑆 > 𝑠, that is, there
exists a non-zero polynomial 𝑃 ∈ 𝑘[𝑧0,… , 𝑧𝑆 ] such that 𝑃 (𝑝1,… , 𝑝𝑆 ) = 0.

Proof of Proposition 1. Regarding 𝑦(𝑁),… , 𝑦 satisfying (12a), (12b)
and their higher order derivatives up to the 𝑁th order, the following
holds:

𝑦(𝑁),… , 𝑦(0) ∈ C(𝑢(𝑁),… , 𝑢(0), 𝜃)[𝑥(0)1 ,… , 𝑥(0)𝑁 ], (20)

because the higher order derivatives of 𝑥1,… , 𝑥𝑁 of (12a) can be
represented by those with the lower order derivatives. According
to Lemma 1, 𝑦(𝑖)(𝑖 = 0,… , 𝑁) being algebraically dependent over
C(𝑢(𝑁),… , 𝑢(0), 𝜃) holds. Thus, a non-zero polynomial 𝑃 ∈ C(𝑢(𝑁),… ,
𝑢(0), 𝜃)[𝑧0,… , 𝑧𝑁 ] exists such that 𝑃 (𝑦(𝑁),… , 𝑦(0)) = 0. By clearing
the denominators of the coefficients of 𝑃 (𝑦(𝑁),… , 𝑦(0)), we obtain a
polynomial in 𝐼 (𝑁) ∩C(𝜃)[𝑦(𝑁),… , 𝑦(0), 𝑢(𝑁),… , 𝑢(0)]. This concludes the
proof of Proposition 1. □

Next, we explain how to characterize (19), which represents the
input–output relations of the model. In terms of algebra, this problem
involves describing the ideal where the Gröbner basis is known to be a
key.

Definition 9 (Gröbner Basis). For an ideal 𝐼 on a polynomial ring 𝐾[𝑥]
with a given monomial order, if its generator 𝐺 =

{

𝑔1,… , 𝑔𝑠
}

satisfies

𝑝 ∈ 𝐼 ⇔ 𝑝 is divisible by 𝐺, (21)

then 𝐺 is called the Gröbner basis of 𝐼 .

For an arbitrary non-zero ideal on polynomial rings with a fixed
monomial order, there exists a Gröbner basis [25]. Although the Gröb-
ner basis of an ideal with respect to a fixed monomial order is not
unique, the following is unique.

Definition 10 (Reduced Gröbner Basis). For an ideal 𝐼 on a polynomial
ring 𝐾[𝑥] with a given monomial order, if 𝐺 =

{

𝑔1,… , 𝑔𝑠
}

is the
Gröbner basis of 𝐼 and satisfies the followings:

• LC(𝑔𝑖) is 1 for all 𝑖 = 1,… , 𝑠; and
• if 𝑖 ≠ 𝑗, any monomial in the set of monomials, whose coefficients

are non-zero, appear in 𝑔𝑖 is not divisible by LM(𝑔𝑖),

then 𝐺 is the reduced Gröbner basis of 𝐼 .

According to (21), any polynomial in an ideal can be represented
as a linear combination of its Gröbner basis. Furthermore, according
to (21), the Gröbner basis is known to solve a membership problem,
i.e., discriminate whether a given polynomial is in the ideal [25], and
thus characterize the ideal. Therefore, (19) can be characterized by its
Gröbner basis. In particular, any polynomial equation corresponding to
 c

5 
a polynomial in (19) holds if all the equations constituting the Gröbner
basis for (19) hold. In other words, the Gröbner basis for (19) explicitly
describes the input–output relations for a given physical computing
system. Notably, the Gröbner basis can be derived automatically using
computer algebra software. Furthermore, there is another benefit of
using the Gröbner basis. The Gröbner basis can be used to determine
whether a given differential equation belongs to (19). This allows us to
compare different physical implementations of a physical computing
system, and thus, solve Target task 2 as explained in Section 4.3.

A type of lexcographic order shown in the following examples is
what we used to compute the Gröbner basis and derive input–output
equations.

Example 1. For a physical computing system modeled as (12a), (12b),
we consider the polynomial ring

C(𝜃)[𝑥(𝑁),… , 𝑥(0), 𝑦(𝑁),… , 𝑦(0), 𝑢(𝑁),… , 𝑢(0)] (22)

as in Proposition 1. To eliminate 𝑥(𝑁),… , 𝑥(0) from the ideal (18)
corresponding to the model, we fix the monomial order of the ring
to the lexcographic order such that 𝑥(𝑁) > ⋯ > 𝑥(0) > 𝑦(𝑁) > ⋯ >
𝑦(0) > 𝑢(𝑁) > ⋯ > 𝑢(0). That is, monomials in the ring are considered as
(

𝑥(𝑁))𝛼1(𝑥(𝑁−1))𝛼2 ⋯
(

𝑢(1)
)𝛼𝑠−1(𝑢(0)

)𝛼𝑠 , where the derivatives (e.g., 𝑥(𝑁))
are considered distinct from the ordinary variables (e.g., 𝑥).

In Section 4.3, we consider the polynomial ring C(𝜃)[𝑦(𝑁),… , 𝑦(0),
𝑢(𝑁),… , 𝑢(0)], which is the subset of the ring considered in Example 1.
The input–output order defined in Definition 11 is the order induced
by the lexcographic order explained in Example 1. That is, we fix
the monomial order of the ring to the lexcographic order such that
𝑦(𝑁) > ⋯ > 𝑦(0) > 𝑢(𝑁) > ⋯ > 𝑢(0). This corresponds to considering
monomials in the ring as

(

𝑦(𝑁))𝛽1(𝑦(𝑁−1))𝛽2 ⋯
(

𝑢(1)
)𝛽𝑠−1(𝑢(0)

)𝛽𝑠 .

Definition 11 (Input–Output Order). Let us denote the ring C(𝜃)[𝑦(𝑁),… ,
𝑦(0), 𝑢(𝑁),… , 𝑢(0)] as C(𝜃)[𝑧], in which each element of 𝑧 = (𝑧1, 𝑧2,… , 𝑧𝑠)
corresponds to 𝑦(𝑁),… , 𝑦(0), 𝑢(𝑁),… , 𝑢(0) in order. Let us consider a
monomial order < such that for arbitrary 𝑞 = 𝑧𝛼11 𝑧

𝛼2
2 ,… , 𝑧𝛼𝑠𝑠 , 𝑝 =

𝛽1
1 𝑧

𝛽2
2 ,… , 𝑧𝛽𝑠𝑠 ∈ C(𝜃)[𝑧], 𝑞 < 𝑝 holds if the left-most element among

he non-zero elements of (𝛽1 − 𝛼1, 𝛽2 − 𝛼2,… , 𝛽𝑠 − 𝛼𝑠) is positive. We
efine < as an input–output order.

An element of the Gröbner basis of (19), representing the input–
output relationships of a model of physical computing system (12a),
(12b). It is uniquely obtained by fixing the monomial order to the one
appears in Example 1 and computing the reduced Gröbner basis. For
simplicity, we consider the polynomial equation obtained in this way,
which is unique, and denote it as follows:

𝐹 (𝑦(𝑁),… , 𝑦(0), 𝑢(𝑁),… , 𝑢(0); 𝜃) = 0, (23)

where 𝐹 (𝑦(𝑁),… , 𝑦(0), 𝑢(𝑁),… , 𝑢(0); 𝜃) ∈ C(𝜃)[𝑦(𝑁),… , 𝑦(0), 𝑢(𝑁),… , 𝑢(0)].
The input–output equation of (12a), (12b) can be obtained by replacing
𝑦(𝑁),… , 𝑦(0), 𝑢(𝑁),… , 𝑢(0) of (23) with d𝑁 𝑦

d𝑡𝑁 ,… , 𝑦, d
𝑁 𝑢
d𝑡𝑁 ,… , 𝑢 as follows:

𝐹
(

d𝑁𝑦
d𝑡𝑁

,… , 𝑦, d
𝑁𝑢
d𝑡𝑁

,… , 𝑢; 𝜃
)

= 0. (24)

.2. Main Theorem 1: Deriving design guidelines of physical computing
ystems algebraically

Firstly, we consider Target Task 1 (time-series generations.) The-
rem 1 shown below is a fundamental theorem for deriving design
uidelines from (24) for Target Task 1. Intuitively, it provides a dis-
riminator to determine whether a given physical computing system
enerates 𝑦̄(𝑡), which reveals design guidelines for the system.

We first introduce some definitions. Let 𝑦 denote a set of suffi-
iently smooth functions containing functions from R to R.
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Definition 12 (Consistent Initial Values). For a given input 𝑢 ∈ 𝑢 and
nitial values of (12a), denoted as 𝑥(0) ∈ R𝑁 , we define the consistent

initial values of (14a) as
(

𝑥(0),… , d𝑁𝑥
d𝑡𝑁

|

|

|𝑡=0

)

∈ R𝑁×(𝑁+1) that satisfies

d𝑥
d𝑡
|

|

|𝑡=0
⋮

d𝑁𝑥
d𝑡𝑁

|

|

|𝑡=0

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

𝑓 (0) (𝑥(0), 𝑢(0); 𝜃)
⋮

𝑓 (𝑁−1)
(

d𝑁−1𝑥
d𝑡𝑁−1

|

|

|

|𝑡=0
,… , 𝑥(0), d𝑁 𝑢

d𝑡𝑁
|

|

|𝑡=0
,… , 𝑢(0); 𝜃

)

⎞

⎟

⎟

⎟

⎠

. (25)

According to (15), 𝑓 (𝑖) is a function of 𝑥(0),… , 𝑥(𝑖), 𝑢(0),… , 𝑢(𝑖) for
𝑖 = 0,… , 𝑁 − 1. Hence, for arbitrary 𝑥(0) ∈ R𝑁 , 𝑢 ∈ 𝑢, by substi-
uting

(

𝑥(0),… , d𝑖𝑥
d𝑡𝑖

|

|

|𝑡=0
, 𝑢(0),… , d𝑖𝑢

d𝑡𝑖
|

|

|𝑡=0

)

into
(

𝑥(0),… , 𝑥(𝑖), 𝑢(0),… , 𝑢(𝑖)
)

of 𝑓 (𝑖) in the order of 𝑖 = 0,… , 𝑁 − 1, consistent initial values
(

𝑥(0),… , d𝑁𝑥
d𝑡𝑁

|

|

|𝑡=0

)

can be obtained.

Lemma 2. Suppose that the system of differential Eqs. (12a) with a given
𝑢 ∈ 𝑢 and a given initial state vector 𝑥(0) admits a unique solution. Then,
the system of differential equations that consists of (12a) and its higher
order derivatives up to the 𝑁 th order (14a) admits a unique solution given
consistent initial values. Furthermore, the output satisfying the observation
Eq. (12b) and their derivatives up to the 𝑁 th order are also unique given
the unique solution of (14a) .

Proof. Let us substitute the unique solution of (12a) into their right
side, 𝑓 (𝑥, 𝑢; 𝜃). We then obtain a unique d𝑥

d𝑡 , which is well defined
because 𝑓 (𝑥, 𝑢; 𝜃)= 𝑓 (0)(𝑥, 𝑢; 𝜃) is a polynomial vector with respect to
𝑥 and 𝑢. Then, d𝑥

d𝑡
|

|

|𝑡=0
= 𝑓 (𝑥(0), 𝑢(0); 𝜃) = 𝑓 (0)(𝑥, 𝑢; 𝜃) holds. By sub-

tituting 𝑥(𝑡), d𝑥d𝑡 , 𝑢(𝑡),
d𝑢
d𝑡 into the right side of the derivative of the

ystem of differential equations, d
d𝑡𝑓 (𝑥, 𝑢; 𝜃), we obtain a unique d2𝑥

d𝑡2 .
d2𝑥
d𝑡2 is well defined because d

d𝑡𝑓 (𝑥, 𝑢; 𝜃) = 𝑓 (1)( d𝑥d𝑡 , 𝑥,
d𝑢
d𝑡 , 𝑢; 𝜃) is a poly-

nomial vector with respect to d𝑥
d𝑡 , 𝑥,

d𝑢
d𝑡 , 𝑢. Thus, it holds that d2𝑥

d𝑡2
|

|

|

|𝑡=0
=

𝑓 (1)( d𝑥
d𝑡
|

|

|𝑡=0
, 𝑥(0), d𝑢

d𝑡
|

|

|𝑡=0
, 𝑢(0); 𝜃). By repeating these procedures, we ob-

ain a unique 𝑥(𝑡), d𝑥d𝑡 ,… , d𝑥
𝑁

d𝑡𝑁 , that is, the solution of (14a) given
consistent initial values (25). Furthermore, 𝑦(𝑡), d𝑦d𝑡 ,… , d

𝑁 𝑦
d𝑡𝑁 are shown

to be unique by substituting 𝑥(𝑡), d𝑥d𝑡 ,… , d
𝑁𝑥
d𝑡𝑁 into the right side of (14b),

𝑔(𝑥, 𝑢; 𝜃) = 𝑔(0)(𝑥, 𝑢), … , d𝑁

d𝑡𝑁
𝑔(𝑥, 𝑢; 𝜃) = 𝑔(𝑁)

(

d𝑁𝑥
d𝑡𝑁

,… , 𝑥, d
𝑁𝑢
d𝑡𝑁

,… , 𝑢; 𝜃
)

. □

(26)

Definition 13 (Consistent Outputs). Suppose that the system of differen-
ial Eqs. (12a) with a given 𝑢 ∈ 𝑢 and a given initial state vector admits

a unique solution. We define the consistent outputs of (14a), (14b) as
𝑦,… , d

𝑁 𝑦
d𝑡𝑁 such that the unique solution of (14a) given consistent initial

values are substituted into the right-side of (14b).

Assumption 3 (Generic Physical Computing System). Given a physical
computing system (12a), (12b) and initial values of the consistent
outputs of (14a), (14b), (𝑦(0),… , d𝑁 𝑦

d𝑡𝑁
|

|

|

|𝑡=0
) ∈ R𝑁+1, we assume that

he input–output Eq. (24) given initial values (𝑦(0),… , d𝑁−1𝑦
d𝑡𝑁−1

|

|

|

|𝑡=0
) ∈ R𝑁

admits a unique solution for arbitrary 𝑢 ∈ 𝑢.

Assumption 4 (Generic Parameter Vectors). For a physical computing
system (12a), (12b) with the input–output Eq. (24), a specific param-
eter vector 𝜃∗ ∈ R𝑛 is defined as generic if the input–output equation
of (12a), (12b) with 𝜃 = 𝜃∗ is equivalent to (24) with 𝜃∗ substituted for
𝜃. Throughout this work, we consider generic parameter vectors and a
set of generic parameter vectors 𝛩 ⊂ R𝑛.

In general, generic parameters can be configured using a com-
rehensive Gröbner system [29–31]. See Appendix B for additional

omments on generic parameter vectors.

6 
Theorem 1. Let 𝛩 ⊂ R𝑛 be a set of generic parameter vectors and
𝑦̄(𝑡) ∈ 𝑦 be a target time-series. Suppose that a physical computing system
(12a) , (12b) satisfies Assumption 3. Let 𝜃 ∈ 𝛩, 𝑢 ∈ 𝑢, 𝑥(0) ∈ R𝑁 be
iven and fixed. Let us denote the consistent outputs of (14a), (14b) as
𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0)),… , d𝑁

d𝑡𝑁 𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0)). Then, 𝑦̄(𝑡) can be generated by (12a),
12b) given 𝑥(0) ∈ R𝑁 on a time interval [0, 𝑇 ] if and only if

𝐹
(

d𝑁 𝑦̄
d𝑡𝑁

,… , 𝑦̄(𝑡), d
𝑁𝑢
d𝑡𝑁

,… , 𝑢(𝑡); 𝜃
)

= 0, (27)

olds over [0, 𝑇 ] and

𝑦̂(0; 𝜃, 𝑢, 𝑥(0)) = 𝑦̄(0),… , d𝑁

d𝑡𝑁
𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0))

|

|

|

|𝑡=0
=

d𝑁 𝑦̄
d𝑡𝑁

|

|

|

|

|𝑡=0
. (28)

roof of Theorem 1. Let us take an arbitrary (𝜃, 𝑢, 𝑥(0)) ∈ 𝛩×𝑢×R𝑁 .
ccording to Lemma 2, 𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0)),…, d𝑁

d𝑡𝑁 𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0)) is unique.
First, we show that for any 𝑥(0) ∈ R𝑁 , 𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0)) = 𝑦̄(𝑡) holds over

0, 𝑇 ] if (27) and (28) hold. Considering that 𝐹 is in (18) and 𝜃 ∈ 𝛩, it
follows that

𝐹
(

d𝑁

d𝑡𝑁
𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0)),… , 𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0)), d

𝑁𝑢
d𝑡𝑁

,… , 𝑢(𝑡); 𝜃
)

= 0.

Considering that (12a), (12b) is generic and that both 𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0)) and
𝑦̄(𝑡) satisfy (24), given the initial condition (28), 𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0)) and 𝑦̄(𝑡)

ust coincide over [0, 𝑇 ].
Next, we show that for any 𝑥(0) ∈ R𝑁 , (27) and (28) holds if 𝑦̄(𝑡) can

e generated by (12a), (12b). Let us again take an arbitrary 𝑥(0) ∈ R𝑁 .
ecause 𝑦̄(𝑡) ∈ 𝑦 can be generated by (12a), (12b), this is equivalent
o 𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0)) up to the 𝑁th order, where 𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0)) is a unique so-
ution of (12a), (12b), as shown in Lemma 2. Hence, it holds that (28).
urthermore,

(

𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0)),… , d𝑁
d𝑡𝑁 𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0))

)

satisfies (24) because

𝐹 is in 𝐼 (𝑁) and 𝜃 ∈ 𝛩. Therefore,
(

𝑦̄,… , d
𝑁 𝑦̄
d𝑡𝑁

)

satisfies 𝐹 , that is, (27)
holds. This concludes the proof. □

Theorem 1 guarantees that (24) plays a role in deriving the design
guidelines of the system for the time-series generation task. A ‘‘specific
design guideline’’ for Target task 1 is the one explains how to adjust a
system to generate a target time series. In existing literatures [15,20],
for physical computing systems that are static feedback linearizable,
specific design guidelines in the form of feedback control laws have
been derived. On the other hand, our approach allows more general
physical computing systems, described as (12a), (12b) and obtains the
specific design guideline (27). (27) indicates that if inputs satisfying
(27) are applied to the system, the target time series can be generated.
In this sense, (27) serves as a specific design guideline for physical
computing systems if (28) holds. It is noteworthy that our approach
derives (27) explicitly and systematically based on algebraic theory and
Gröbner bases computation. (28) is critical for non-stationary tasks,
whereas it is not for stationary ones. See Experiment 3 for examples.

Experiment 1. Designing inputs applied to physical computing systems.
We consider the physical system modeled using the FitzHugh–Nagumo
equation [32],
d𝑥1
d𝑡

= 𝑥1
(

𝑥1 − 1
)

(

1 − 1
3
𝑥1
)

− 𝑥2 + 𝑢,
d𝑥2
d𝑡

= 𝑥1. (29)

We assume that 𝑥2 is observed; 𝑦 = 𝑥2. Then, following the
procedures explained in Example A.2 in Supplementary material, the
input–output equation of this system, 𝑦+ 1

3

(

d𝑦
d𝑡

)3
− 4

3

(

d𝑦
d𝑡

)2
+ d𝑦

d𝑡 +
d2𝑦
d𝑡2 −𝑢 =

0 is obtained.

According to Theorem 1, the input–output equation in which a
target time-series is substituted, provides specific design guidelines for
generation tasks. Manipulating 𝑦+ 1

3

(

d𝑦
d𝑡

)3
− 4

3

(

d𝑦
d𝑡

)2
+ d𝑦

d𝑡 +
d2𝑦
d𝑡2 − 𝑢 = 0,

design guideline

= 𝑦̄ + 1
(

d𝑦̄
)3

− 4
(

d𝑦̄
)2

+
d𝑦̄

+
d2𝑦̄

, (30)

3 d𝑡 3 d𝑡 d𝑡 d𝑡2
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Fig. 2. Generation of chaotic time-series (the Lorentz and the Rössler equations) by the physical computing system (29).
is derived. Let us set an initial states of (29) as (𝑥1(0), 𝑥2(0))⊤ =
( d𝑦̄
d𝑡
|

|

|𝑡=0
, 𝑦̄(0))⊤. We obtain ( d𝑥1

d𝑡
|

|

|𝑡=0
, d𝑥2

d𝑡
|

|

|𝑡=0
)
⊤

by substituting (𝑥1(0),
𝑥2(0))⊤ into the right-side of top 2 equations of (25). By substituting
(𝑥1(0), 𝑥2(0),

d𝑥1
d𝑡

|

|

|𝑡=0
, d𝑥2

d𝑡
|

|

|𝑡=0
)⊤ into the third and fourth equations, we

obtain ( d2𝑥1
d𝑡2

|

|

|

|𝑡=0
, d2𝑥2

d𝑡2
|

|

|

|𝑡=0
)
⊤
. By repeating these procedures, we obtain a

consistent initial values. Given the consistent initial values, the outputs
of (29) and their derivatives up to 2nd order, 𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0)), d

d𝑡 𝑦̂(𝑡; 𝜃, 𝑢,

𝑥(0)), d2
d𝑡2 𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0)) consistent. Since it holds that 𝑦 = 𝑥2 and d𝑦

d𝑡 =
d𝑥2
d𝑡 = 𝑥1, it must hold that 𝑦̂(0) = 𝑥2(0) = 𝑦̄(0) and d

d𝑡 𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0))
|

|

|𝑡=0
=

𝑥1(0) = d𝑦̄
d𝑡
|

|

|𝑡=0
, which satisfies (28). Using the input defined as (30)

and given initial values (𝑥1(0), 𝑥2(0))⊤ = ( d𝑦̄
d𝑡
|

|

|𝑡=0
, 𝑦̄(0))⊤, the system

generates the given time-series, 𝑦̄. The guideline derived based on
Theorem 1, (30), suggests that the system can generate several target
time-series by adjusting its input.

We now numerically confirm how designed inputs based on The-
orem 1 generate target time-series well. We consider target dynamics
generated by chaotic systems called the Lorentz system [33],
d𝑥̄1
d𝑡

= 10(𝑥̄2 − 𝑥̄1),
d𝑥̄2
d𝑡

= 𝑥̄1(28 − 𝑥̄3) − 𝑥̄2,
d𝑥̄3
d𝑡

= 𝑥̄1𝑥̄2 −
8
3
𝑥̄3, (31)

and the Rössler system [34],
d𝑥̄1
d𝑡

= −𝑥̄2 − 𝑥̄3,
d𝑥̄2
d𝑡

= 𝑥̄1 +
1
10
𝑥̄2,

d𝑥̄3
d𝑡

= 1
10

+ 𝑥̄3(𝑥̄1 − 14). (32)

In this experiment, d𝑦̄
d𝑡
|

|

|𝑡=0
= 𝑥1(0) are estimated via the approximation

of the numerical solution of 𝑦̄ of (31) and (32) using polynomial
interpolants in the Chebyshev points [35]. We assume that data points
are sampled from the first variables of each system. We substituted the
discretized target time-series into the design guideline (30) to obtain
inputs. Then, they are applied to (29). Fig. 2 shows the designed
inputs and the outputs of the physical computing system for generating
the two types of time-series. Thus, the different time-series, both of
which are generated by chaotic dynamics, are numerically confirmed
to be generated by the physical computing system based on the design
guidelines derived by our approach. Notably, this property, which is
a type of multi-tasking property, is desirable in physical computing,
leading to the efficient use of given physical assets to perform various
computations.

As a conclusion of this experiment, the relationship between our
approach and differential flatness [21–24] is commented. In general,
(12a) is differentially flat if there exist relations

𝜉 ∶ R𝑁 ×
(

R𝑀
)𝑟+1

→ R𝑀 ,
7 
𝜙 ∶
(

R𝑀
)𝑟

→ R𝑁 ,

𝜓 ∶
(

R𝑀
)𝑟+1

→ R𝑀

such that

𝑦 = 𝜉
(

𝑥, 𝑢, d𝑢
d𝑡
,… , d

𝑟𝑢
d𝑡𝑟

)

,

𝑥 = 𝜙
(

𝑦,
d𝑦
d𝑡
,… ,

d𝑟𝑦
d𝑡𝑟

)

,

𝑢 = 𝜓
(

𝑦,
d𝑦
d𝑡
,… ,

d𝑟𝑦
d𝑡𝑟

)

.

(33)

The output 𝑦 of (33) is called the flat output. The physical computing
system considered in this experiment is represented as (29) with 𝜉(𝑥) =
𝑥2. Then, it is easy to find that 𝜙(𝑦, d𝑦d𝑡 ) can be taken as ( d𝑦d𝑡 , 𝑦)

⊤. In
addition, the specific design guideline obtained through the proposed
approach, (30) shows that it holds that 𝜓(𝑦, d𝑦d𝑡 ,

d2𝑦
d𝑡2 ) = 𝑦 + 1

3

(

d𝑦
d𝑡

)3
−

4
3

(

d𝑦
d𝑡

)2
+ d𝑦

d𝑡 +
d2𝑦
d𝑡2 . These conclude that the physical computing system

considered in Experiment 1 is differentially flat. Note that this con-
clusion is obtained systematically based on the algebraic framework
based on Gröbner basis computation. In general, the differential flatness
property enables the transformation of the original system into a linear
canonical form [36]. Subsequently, control methods for linear systems,
which are well-developed, become applicable in designing inputs for
the original system. Control methods based on such properties is called
flatness-based controls [24] and one of the examples is provided below.
The physical computing system represented by (29) and 𝑦 = 𝑥2 can be
transformed into the linear system

d
d𝑡

(

𝑦1
𝑦2

)

=
(

0 1
0 0

)(

𝑦1
𝑦2

)

+ 𝑣, (𝑦1, 𝑦2)⊤ =
(

𝑦,
d𝑦
d𝑡

)⊤
, (34)

where 𝑣 ∶ R → R denotes the input function satisfying

𝑢 = 𝑦1 +
1
3
𝑦2

3 − 4
3
𝑦2

2 + 𝑦2 + 𝑣. (35)

Note that (35) is obtained based on our design guideline (30). In the
linear system (34), 𝑣 can be designed so that (𝑦1, 𝑦2)⊤ fits to (𝑦̄, d𝑦̄d𝑡 )

⊤

by control methods such as a state feedback control based on pole
placement techniques [37]. Then, by substituting 𝑣 together with 𝑦1, 𝑦2
into (35), the input to the physical computing system 𝑢 is obtained. It
is also noteworthy that designing 𝑢 based on (35) does not require the
second order derivatives d2 𝑦̄

d𝑡2 unlike designing 𝑢 based on (30) solely. In
summary, our proposed design guideline (30) is shown to be applicable
for Target task 1, and moreover, incorporation of the concept of flatness
into it is promising, which may enable more practical use of physical
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computing systems. We leave further applications of flatness-based
controls as future work.

4.3. Main Theorem 2: Relating two different physical computing systems

In this section, we provide a theorem that enables the design of
physical computing systems that can be replaced with other computing
systems. Such a design is useful considering the diverse implementa-
tions of physical systems (Target task 2.) The basic idea is to provide
a description of the relationship between the input–output equations
of a given physical computing system and a target system. Such a
relationship provides information about whether those systems can be
interchanged, as well as providing design guidelines.

To accomplish this, we leverage another benefit of the Gröbner
basis. The Gröbner basis (e.g., (24)) can determine whether a given
polynomial in a set of polynomials corresponds to itself (e.g., (19));
a polynomial is shown to be or not to be in a certain ideal through
division by its Gröbner basis. Suppose that the input–output equation
of a target system, which is denoted as ℎ in Assumption 2, is set as the
polynomial to be divided. Then, intuitively, the division by (24) makes
it possible to determine whether the target input–output behavior is
realized by a given physical computing system. The monomial order
that we introduce for this purpose is the input–output order, defined in
Definition 11 The following is a example of the input–output order.

Example 2 (The Input–Output Order). Let us consider a polynomial,
ℎ ∶= 𝑦(2) + 𝑦(0) −

(

1 −
(

𝑦(0)
)2
)

𝑦(1) where the order of variables is
𝑦(2), 𝑦(1), 𝑦(0), as discussed in Experiment 3. The monomials in ℎ are
𝑦(2), 𝑦(0), 𝑦(1), and 𝑦(1)

(

𝑦(0)
)2. Given the input–output order, they are

ordered as 𝑦(2) > 𝑦(1)
(

𝑦(0)
)2 > 𝑦(1) > 𝑦(0).

The monomial with the highest order in polynomial 𝑝 with respect
to order < is denoted as LM<(𝑝) and the coefficient of LM<(𝑝) is denoted
as LC<(𝑝) (See Definitions 6 and 7). For instance, consider ℎ appears
in Example 2. LM<(ℎ) = 𝑦(2) and LC<(ℎ) = 1 hold with respect
to the input–output order. With these notations, a theorem on the
replaceability is provided. Let us consider the correspondence between
ℎ = 0 and the input–output equation of a target system for the practical
use of the theorem.

Theorem 2. Given and fixed 𝑢 ∈ 𝑢 and 𝜃 ∈ R𝑛̃, suppose that
there exists a target time-series 𝑦̄(𝑡) ∈ 𝑦 satisfying a differential equa-
tion ℎ

(

d𝑁 𝑦̄
d𝑡𝑁 ,… , 𝑦̄, d

𝑁 𝑢
d𝑡𝑁 ,… , 𝑢; 𝜃

)

= 0 defined over [0, 𝑇 ] and Assump-
ions 1 and 2. Let us consider a physical computing system described by
12a), (12b) satisfies Assumption 3. Let 𝛩 ⊂ R𝑛 be a set of generic
arameters. Let 𝜃 ∈ 𝛩 be given and fixed. We fix a monomial order
f C(𝜃, 𝜃)[𝑦(𝑁),… , 𝑦(0), 𝑢(𝑁),… , 𝑢(0)] as the input–output order <. Suppose
hat ℎ(𝑦(𝑁),… , 𝑦(0), 𝑢(𝑁),… ,𝑢(0); 𝜃) is divided by 𝐹 that is defined in (24),
nd represented as

(𝑦(𝑁),… , 𝑦(0), 𝑢(𝑁),… ,𝑢(0); 𝜃) = 𝑞(𝑦(𝑁),… , 𝑦(0), 𝑢(𝑁),… , 𝑢(0); 𝜃, 𝜃)𝐹

+ 𝑅(𝑦(𝑁),… , 𝑦(0), 𝑢(𝑁),… , 𝑢(0); 𝜃, 𝜃),
(36)

where we assume that LM<(ℎ) ≥ LM<(𝐹 ), LC<(𝐹 ) is non-zero, and the
coefficient of ℎ with respect to LM<(𝐹 ) is non-zero. Let us take arbitrary
initial values 𝑥(0) ∈ R𝑁 of (12a) and denote the consistent initial values
of (14a) as (𝑥(0),… , d𝑁𝑥

d𝑡𝑁
|

|

|𝑡=0
) ∈ R𝑁×(𝑁+1). Let us denote the consistent

utputs of (14a), (14b) as 𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0)),…, d𝑁
d𝑡𝑁 𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0)). Then, 𝑦̄(𝑡)

can be generated by (12a), (12b) given 𝑥(0) if
(

d𝑁 𝑦̄
d𝑡𝑁

,… , 𝑦̄(𝑡), d
𝑁𝑢
d𝑡𝑁

,… , 𝑢(𝑡); 𝜃, 𝜃
)

= 0 (37)

holds over [0, 𝑇 ] and (28) holds.

emark 1. To apply Theorem 2 to Target task 2, one may consider that
(

d𝑁 𝑦 ,… , 𝑦, d
𝑁 𝑢 ,… , 𝑢; 𝜃

)

= 0 is the input–output equation of a system,
d𝑡𝑁 d𝑡𝑁

8 
which is regarded as a Target system, of which parameters vector is
denoted as 𝜃.

Remark 2. The basic assumptions are the same as those for Theorem 1
together with Assumption 2. Additional assumptions are related to
the order of the monomials. In general, when the polynomials are
divided, the polynomials to be divided have higher-order monomials
than those used for the division. Hence, to consistently perform the
division, it must hold that LM<(ℎ) ≥ LM<(𝐹 ), which is one of the
dditional assumptions. In addition, we assume that LC<(𝐹 ) and LC<(ℎ)
re non-zero or non-zero functions over [0, 𝑇 ], which are generic ones.

roof. Because LM<(ℎ) ≥ LM<(𝐹 ) holds, 𝑞 in (36) is represented by
′∕LC(𝐹 ), that is, 𝑞 = 𝑞′∕LC(𝐹 ). According to the assumptions, LC<(𝐹 )
s non-zero and 𝑞′ is non-zero; thus, 𝑞 is non-zero. By substituting
𝑦̄,… , d

𝑁 𝑦̄
d𝑡𝑁 ) into (𝑦,… , d

𝑁 𝑦
d𝑡𝑁 ) of (36), the left side of (36) and 𝑅 take

zeros over 𝑡 ∈ [0, 𝑇 ] because 𝑦̄ is a solution of

ℎ
(

d𝑁𝑦
d𝑡𝑁

,… , 𝑦, d
𝑁𝑢
d𝑡𝑁

,… , 𝑢; 𝜃
)

= 0

and (37). Thus, it must hold that
(

d𝑁 𝑦̄
d𝑡𝑁

,… , 𝑦̄(𝑡), d
𝑁𝑢
d𝑡𝑁

,… , 𝑢(𝑡); 𝜃
)

= 0 (38)

over 𝑡 ∈ [0, 𝑇 ]. This is equivalent to (27). Hence, by connecting this to
he sufficiency of Theorem 1, we finish the proof. □

(37) is a differential polynomial equation up to the 𝑁th order,
hose coefficients are functions of 𝜃, 𝜃 and the variables are 𝑢. In the

ame manner as for (27), design guidelines for a physical computing
ystem can be derived from (37). However, in this case, they are related
o the replaceability of (12a), (12b) with a target system generating 𝑦̄.

xperiment 3. Exploitation of the replaceability and subsequent design.
e apply Theorem 2 and investigate specific design guidelines for a

hysical computing system to be utilized to replace a target system that
enerates parameterized time-series. Let us consider a physical comput-
ng system modeled by a FitzHugh–Nagumo equation with parameters
𝜃1,… , 𝜃4)⊤ ∈ R4,

d𝑥1
d𝑡

= 𝜃1
(

𝑥1 −
1
3
𝑥31 + 𝑥2 + 𝜃2

)

,
d𝑥2
d𝑡

= − 1
𝜃1

(

𝑥1 − 𝜃3 + 𝜃4𝑥2
)

(39)

ith readout 𝑦 = 𝑥1. We denote this system as 𝛴1 and regard this as the
ystem to be designed. The input–output equation of 𝛴1 is as follows:

4𝑦
3+3𝜃1

d𝑦
d𝑡
𝑦2+3

(

1 − 𝜃4
)

𝑦+3
d2𝑦
d𝑡2

−3
d𝑦
d𝑡

(

𝜃1 −
𝜃4
𝜃1

)

−3
(

𝜃3 − 𝜃2𝜃4
)

= 0.

(40)

We denote the left side of (40) as 𝐹1. Then, we consider a target
ystem that consists of van der Pol equation [38], d𝑥̃1

d𝑡 = 𝑥̃2,
d𝑥̃2
d𝑡 =

𝑥̃1+(1− 𝑥̃21)𝑥̃2 and observation equation 𝑦̃ = 𝑥1. We denote this system
s 𝛴2. The input–output equation of 𝛴2 is d2 𝑦̃

d𝑡2 + 𝑦̃ − (1 − 𝑦̃2) d𝑦̃d𝑡 = 0. By
dividing the left-side of this by 𝐹1 following the procedures explained
in Example C.1 in Supplementary material, we obtain the reminder 𝑅1
as follows:

𝑅1 ∶= (1 − 𝜃1)
d𝑦
d𝑡
𝑦2 −

𝜃4
3
𝑦3 +

𝜃21 − 𝜃1 − 𝜃4
𝜃1

d𝑦
d𝑡

+ 𝜃4𝑦 + (𝜃2𝜃4 + 𝜃3). (41)

Based on 𝑅1 and Theorem 2, it is shown that 𝛴1 generates a time-series
generated by 𝛴2 if, essentially, it holds that

(𝜃1, 𝜃3, 𝜃4)⊤ = (1, 0, 0)⊤ (42)

given appropriately chosen initial values of (39) such that the con-
d2 𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0)) evaluated at 𝑡 = 0 are
sistent outputs 𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0)),… , d𝑡2
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equal to 𝑦̄(0),… , d𝑁 𝑦̄
d𝑡𝑁

|

|

|

|𝑡=0
. Specifically, considering that 𝑦 = 𝑥1 in 𝛴1,

we solve the following systems of equations

⎛

⎜

⎜

⎜

⎜

⎝

𝑦̄(0)
d𝑦̄
d𝑡
|

|

|𝑡=0

d2 𝑦̄
d𝑡2

|

|

|

|𝑡=0

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

𝑥1(0)
d𝑥1
d𝑡

|

|

|𝑡=0
d2𝑥1
d𝑡2

|

|

|

|𝑡=0

⎞

⎟

⎟

⎟

⎟

⎠

(43)

with respect to 𝑥(0) = (𝑥1(0), 𝑥2(0))
⊤ noting that the following holds:

d𝑥1
d𝑡

|

|

|

|𝑡=0
= 𝜃1

(

𝑥1(0) −
1
3
𝑥1(0)

3 + 𝑥2(0) + 𝜃2
)

,

d𝑥2
d𝑡

|

|

|

|𝑡=0
= − 1

𝜃1

(

𝑥1(0) − 𝜃3 + 𝜃4𝑥2(0)
)

,

d2𝑥1
d𝑡2

|

|

|

|

|𝑡=0
= 𝜃1

(

d𝑥1
d𝑡

|

|

|

|𝑡=0
− 𝑥1(0)

2 d𝑥1
d𝑡

|

|

|

|𝑡=0
+

d𝑥2
d𝑡

|

|

|

|𝑡=0

)

,

d2𝑥2
d𝑡2

|

|

|

|

|𝑡=0
= − 1

𝜃1

(

d𝑥1
d𝑡

|

|

|

|𝑡=0
+ 𝜃4

d𝑥2
d𝑡

|

|

|

|𝑡=0

)

.

Given these constraints on the parameters and initial values, 𝛴1
is shown to be replaceable with 𝛴2. To numerically confirm this, we
conduct the following comparative experiments, in which the value of
𝜃2 is taken from [0, 1].

Experiment 3-1. Replaceability with respect to a single target time-series.
To demonstrate how the proposed method works numerically, we first
consider the target system 𝛴2 given an initial state (𝑥̃1(0), 𝑥̃2(0))⊤ =
(2, 0)⊤, and thus, consider the replaceability with respect to a target
time-series. In Fig. 3(a), 𝛴1 is designed such that it satisfies the con-
traints on the parameters (42) and (43). In particular, the values of
he parameters are as follows:

𝜃1, 𝜃2, 𝜃3, 𝜃4)⊤ = (1, 0.5, 0, 0)⊤. (44)

The details on the derivation of the consistent initial condition 𝑥(0) =
2, 0.167)⊤ is described in . As it follows the proposed design guidelines,
he numerically-computed output of 𝛴1 with 𝛴2 is well-fitted, and the
verage of the normalized MSE is 0.0056. In contrast, Figs. 3 (b) and
c) show that the results with 𝛴1 disobey some of these guidelines,
n particular, without the constraints on the (b) parameters and (c)
nitial states. As shown in Figs. 3 (b) and (c), when neither (42) nor
(0) = (2, 0.167)⊤ is unsatisfied, the outputs of 𝛴1 and 𝛴2 greatly differ.
he average values of the normalized MSE were 1.0395 and 0.0983.
e also consider the case in which the target system 𝛴2 lies in its

tationary state; 𝑡 ∈ [100, 200]. At this duration, states of 𝛴2 forms an
ttractor, as shown in the red line in Fig. 3(d). Considering that 𝛴2
s originally a two-dimensional system, the attractor is reconstructed
n a two-dimensional delayed coordinate. The time delay was set so
hat the autocorrelation function of a discretized time-series sampled
rom the target time-series takes the first local minima [39] . Owing
o the replaceability, the only condition left for the 𝛴1 to generate
he target time-series in stationary time could be (42). 𝛴1 under the
imilar condition as that in Fig. 3(c) can successfully reconstruct similar
ttractors, as shown in Fig. 3(d). Thus, we confirmed that 𝛴2 can be
eplaced by 𝛴1 under the design guideline (42) with initial conditions
(0) = (2, 0.167)⊤ for the stationary task, and Eq. (42) for the non-
tationary task. Note that both the stationary and non-stationary tasks
re accomplished using our algebraic approach.

xperiment 3-2. Replaceability with respect to initial values of a target
ystem. For simplicity, we consider the 𝛴1 that has the same parameter
alues, (44). Here, we randomly choose (𝑥̃1(0), 𝑥̃2(0))⊤ from [−2, 2]2 10
imes and design the initial states of 𝛴1 so that it they fit each target
ime-series. The results are summarized in Fig. 4(a) . The normalized
SE is 3.8173 × 10−6. As observed, when the initial values of 𝛴1 are

ppropriately chosen, 𝛴1 approximates the output of 𝛴2 well regardless
⊤
f the (𝑥̃1(0), 𝑥̃2(0)) . This indicates that the 𝛴1 satisfying the proposed a

9 
esign guidelines, that takes consistent initial values and satisfies the
arameter constraints, can be replaced with 𝛴2 for various initial states.

xperiment 3-3. Replaceability with respect to parameters of a target sys-
em. We consider a modified target system, denoted by 𝛴′

2. Differential
quations of 𝛴′

2 are

d𝑥̃1
d𝑡

= 𝑥̃2,
d𝑥̃2
d𝑡

= −𝑥̃1 + 𝜃(1 − 𝑥̃21)𝑥̃2 (45)

here 𝜃 ∈ R denotes its parameter and 𝑥̃1 is observed. The input–
utput equation of 𝛴′

2 is d2𝑦
d𝑡2 + 𝑦 − 𝜃(1 − 𝑦2) d𝑦d𝑡 . The remainder of this

by 𝐹1, the left-side of (40), with respect to the input–output order, is
as follows:

(−𝜃1 + 𝜃)
d𝑦
d𝑡
𝑦2 +

𝜃12 − 𝜃1𝜃 − 𝜃4
𝜃1

d𝑦
d𝑡

−
𝜃4
3
𝑦3 + 𝜃4𝑦 + (𝜃2𝜃4 + 𝜃3). (46)

Here, we let 𝜃 take 1,3, and −3 and set (𝜃1, 𝜃2, 𝜃3, 𝜃4)⊤ as (𝜃, 0.5, 0, 0)⊤.
he same initial values of the target system were applied as previous
xperiments and 𝑥(0) = (𝑥1(0), 𝑥2(0)) is set to (2, 0.167)⊤. As observed
n Fig. 4(b), if 𝛴1 satisfies (𝜃1, 𝜃3, 𝜃4)⊤ = (𝜃, 0, 0)⊤, it can be replaced
ith and approximate 𝛴′

2. The average of the normalized MSE was
.7765 × 10−6.

. Conclusion

In this paper, we proposed an algebraic design framework for
hysical computing systems that can offer specific design guidelines.
he proposed framework, unlike practical design methods [12,13],

s supported by rigorous theory, specifically, algebraic theory; unlike
xisting theories based on nonlinear filter approximation [14,16], it
rovides specific design guidelines; and unlike existing theories based
n feedback linearizability [15,20], the applicability is not essentially
imited — it is applicable regardless of whether it is feedback lin-
arizable or not. Theorems 1 and 2 are presented as the main results
ollowed by numerical experiments implementing our framework for
olving several time-series generation tasks and replaceability-related
asks. It is noteworthy that the proposed framework is supported by
omputer algebraic techniques, and thus, the users can

Theorem 1 provides specific design guidelines on inputs given phys-
cal system generates a target time-series. To do this, the input–output
ap of a given physical computing system, which can be fortunately

btained using computer algebra software, is connected to target tasks.
hanks to the explicit description of the input–output maps based on
lgebra, specific design guidelines are successfully obtained. This is
emonstrated through Experiments 1 and 2 in the context of time-series
eneration tasks. The derivation of specific design guidelines is the
undamental progress from existing approaches such as learning-based
ethods [12,13] and existing theories based on filter approximation

heories [14,16]. Interestingly, our proposed approach shows that the
hysical computing system considered in Experiment 1 is differentially
lat, meaning that it can be transformed into a linear systems with

certain feedback control. Differential flatness is beneficial property
ecause, with appropriate observation equations, the system can be
ransformed into a linear system, for which control methods are well-
eveloped and practically feasible. This fact suggests that the proposed
lgebraic approach has the potential to be practically applicable. In
act, problem settings of feedback controls are common for physical
omputing [14,15], and thus, combining flatness-based control and
ur approach is promising, which we leave as future work. Although
e emphasized the connection to differential flatness, our approach

s applicable regardless of whether the system is differentially flat, as
emonstrated through Experiment 2 in Supplementary material.

Theorem 2 considers the replaceability of given physical computing
ystems to target systems. By relating the input–output maps of a given
hysical system and target systems, the replaceability is discriminated

lgebraically and specific design guidelines are provided if it is shown
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Fig. 3. Replaceability of FitzHugh–Nagumo system (𝛴1) with respect to the target system (𝛴2) given constraints on the (a) parameters and initial states, (b) initial states, and (c)
parameters. (d) The reconstructed attractors under the same conditions as (c).
Fig. 4. Replaceability of 𝛴1 with respect to (𝑥̃1(0), 𝑥̃2(0))⊤ or 𝜃 of 𝛴2. The outputs of 𝛴1 are shown in dashed lines and the target time-series are shown in solid red lines.
to be replaceable. In Experiment 3, the replaceabilities concerning
initial values as well as parameters of a target system are investigated.
It is noteworthy that designing replaceability system is demanded but
not well examined in the field of physical computing. This implies room
for further contribution of the algebraic design framework for physical
computing.

One of the limitations of our framework is related to the com-
putational costs for the input–output equations; the Gröbner basis
computation is often computationally expensive for large physical com-
puting systems. Incorporating efficient methods for deriving input–
output equations such as [40], which is recently proposed, into our
framework may be a promising method to avoid such a scale limitation.

In this study, we assumed that physical computing system is mod-
eled by polynomial differential equations and polynomial observation
10 
equations. However, some systems are not described in these types
of equations. The existence of system noise and observation noise is
also of concern. Thus, from a technical viewpoint, the expansion of the
scope of our framework in terms of models is needed. In conventional
approaches [14,15,17] based on approximation theory of filters [17],
the Stone–Weierstrass theorem [41] is one of the keys. In the theorem,
errors between a continuous function that corresponds to a considered
filter and polynomial functions that approximate the filter are evalu-
ated. Thereafter, it is shown that there exists a polynomial function that
approximates the function representing the filter sufficiently under the
appropriate assumptions. This implies that algebraic frameworks may
be applicable to models described by continuous functions as well. This
may broaden the scope of our frameworks. Therefore, if algebraic ap-
proaches are combined with these conventional approaches, designing
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methods of physical computing system that are practically applicable
may be constructed, which we leave for future work.

Furthermore, applying the proposed framework to more practical
tasks remains a challenge to be addressed moving forward. In Experi-
ment 3, we confirmed that algebraic design allows physical computing
systems to perform non-stationary tasks. Although it should be noted
that imposing initial conditions as demonstrated may be practically
challenging, novel applications of physical computing systems may be
considered based on our results. For instance, sequence-to-sequence
tasks that appear in the field of natural language processing are in our
scope in principle. It is important to apply algebraic design to these ap-
plications while considering the above technical considerations, which
we leave for future work.
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ppendix A. Details of Experiments 1 and 3: estimations of con-
istent initial parameters

Theorem 1 and Theorem 2 require the consistent initial values
efined in Definition 13 and the consistent initial output defined
s (28). As explained soon after Definition 13, for arbitrary initial
alues of (12a), say 𝑥(0), consistent initial values 𝑥(0),… , d𝑥

d𝑡
|

|

|𝑡=0
can be

btained. Specifically, d𝑖𝑥
d𝑡𝑖

|

|

|𝑡=0
(𝑖 = 1,… , 𝑁) can be obtained by using

𝑥(0),… , d𝑖−1𝑥
d𝑡𝑖−1

|

|

|

|𝑡=0
, 𝑢(0),… , d𝑁 𝑢

d𝑡𝑁
|

|

|𝑡=0
. Thus, according to Lemma 2, the

utput and its derivatives up to 𝑁th order 𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0)),… ,
d𝑁
d𝑡𝑁 𝑦̂(𝑡; 𝜃, 𝑢, 𝑥(0))

|

|

|𝑡=0
are uniquely obtained for arbitrary 𝑥(0). Consid-

ring this, given 𝑦̄ ∈ 𝑦 and 𝑢 ∈ 𝑢, to make initial values of (14a) and
utputs of (14b) consistent, it suffices to set the initial values of (12a)
s the solution of (28) with respect to 𝑥(0). See a specific example in

Experiment 1.
In Experiment 3, the initial values of (39) must be fixed consistently

depending on initial values of 𝛴2. Here, we consider the case that
initial values of van der Pol equation, which is a part of 𝛴2, are
known. In this case, we first estimate the values of d𝑦̄

d𝑡
|

|

|𝑡=0
and d2 𝑦̄

d𝑡2
|

|

|

|𝑡=0
ia Chebyshev approximation similar as in Experiment in Section 4.2.
11 
The approximated values of d𝑦̄
d𝑡
|

|

|𝑡=0
and d2 𝑦̄

d𝑡2
|

|

|

|𝑡=0
together with known

𝑦̄(0) are then substituted into (43). In this procedure, 𝑦̄ is numerically
computed by the chebop function of chebfun . To perform polynomial
interpolation, we apply the interp1 function of chebfun. (43) is solved as
a nonlinear least-squares problem by the Levenberg-Marquardt method,
which estimates the initial values of 𝛴1.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.physd.2024.134382.
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