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1 Introduction

How can we explore the nature of quantum gravity by experiments? Ideally, we would like
to probe a phenomenon whose energy scale is as high as the Planck scale Mpl, but it is too
high to access directly. However, recent progress in the Swampland Program [1] points an
interesting possibility that the nature of quantum gravity may show up in particle physics
and cosmology through hidden quantum gravity constraints on low-energy effective field
theories (EFTs). Such swampland conditions have been proposed and studied with various
degrees of rigours and motivations. See [2–4] for review articles.

Positivity bounds on low-energy scattering amplitudes offer a useful tool to derive such
ultraviolet (UV) constraints on low-energy EFTs [5, 6]. They are based on fundamental
properties of the S-matrix such as unitarity, analyticity and the mild high-energy behavior
in the Regge limit, the former two of which are summarized into the twice-subtracted
dispersion relation in particular. Those UV properties of scattering amplitudes provide
various inequalities among Wilson coefficients as a necessary condition for a low-energy
EFT to have a standard UV completion.

While positivity bounds are originally formulated in nongravitational theories and
well established in gapped theories, their generalization to gravity theories is crucial for
the Swampland Program. For example, the bounds on tree-level light-by-light scattering
in the graviton-photon EFT imply that macroscopic extremal black holes satisfy the Weak
Gravity Conjecture bound [7]. See, e.g., [8–11]. Furthermore, if the bounds are applicable
to the matter-matter scattering amplitudes at loop level in four spacetime dimentions up
to O(M−2

pl ), one may derive constraints on the spectrum and interactions of light particles
well below the Planck scale [11–18].

This motivation led to various attempts to formulate positivity bounds on gravitational
theories. An obvious obstruction is the absence of proof of twice-subtracted dispersion
relation. For recent discussions on this point, see [19]. The twice-subtracted dispersion
relation for four-point scattering amplitudes M(s, t) with negative momentum transfer
t < 0 is often assumed in the literature and satisfied in known examples, i.e., tree-level
string amplitudes. We simply use this property as a postulate in this work. Interestingly,
it is still nontrivial to derive positivity bounds due to the presence of graviton t-channel
pole.

To avoid the t-channel pole issue, [20] proposed to work in finite impact parameter
b ∼ M−1 to make the contributions of graviton finite. This method works in higher
spacetime dimensions D > 4 and it was found that the coefficient c2(0) of the s2 term
in the IR amplitude (see eq. (2.1) for its definition) can be negative but the modulus of
negativity is bounded from below by the scale of new physicsM . It also proved an expected
scaling that Wilson coefficients of higher-derivative corrections are suppressed by the scale
of new physicsM . Intuitively, this would simply state that the length scales of interactions
between light particles mediated by heavy physics cannot exceed the Compton wavelength
of heavy mediators and the dimensionless light-heavy coupling strength cannot exceed O(1)
due to the unitarity bounds.
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However, their method suffers from infrared (IR) divergences in D = 4 when moving
from momentum space to the impact parameter space. As a result, the bounds have
logarithmic dependence on the IR cutoff [20, 21]. This IR divergence comes from graviton
1/t pole. Although this is a physical singularity, the IR divergence in the bound obtained
via their method may be simply a technical problem: physically, it would be natural to
expect the existence of the bounds in D = 4 which are similar to those derived in higher
dimensions. It is desirable to derive bounds in D = 4, especially for phenomenological
application.

Besides the finite-t program mentioned above, another methodology based on the
Regge behavior has been proposed in [8, 22] and discussed in [23–25]. In this method,
the graviton t-channel pole in the dispersive sum rule for c2(0) is canceled with the dis-
persive integral of the Regge amplitude M(s, t) ∼ f(t)s2+α′t+α′′t2/2+··· up to some finite
O(t0) residuals: for details, see section 2. The Regge behavior is realized by the tower of
higher-spin states whose onset is Ms, which corresponds to the string scale in the pertur-
bative string. It was found in [22] that such finite terms include O(M−2

pl M
−2) negative

terms which are obstructions for ruling out a tiny amount of negativity, that is consistent
with [26]. Here, the scaleM is determined once the details of the Regge behavior are given.

An advantage of this approach is that it does not suffer from the IR divergence even in
D = 4 case up to O(M−2

pl ). On the other hand, there is also a disadvantage that the scaleM
is unknown unless the details of the Regge behavior at UV are given: ultimately the bound
becomes meaningless if the scale M can be arbitrarily small although it seems plausible
to assume M ∼ Ms as long as the Regge behavior is governed by the exchange of heavy
higher-spin states. This issue becomes more subtle if loops of light particles are included:1

see e.g., [24] for recent discussions for photon-graviton scatterings. Apart from the purely
theoretical study, the interesting possibility of exploring the properties of quantum gravity
such as the scale M via experimental search of dark sector physics has been pointed out
quantitatively in [18].

In this paper, we derive constraints on the scaleM to further develop the latter method
based on the Regge behavior as a tool to provide interesting bounds in D = 4 spacetime
dimensions. As a proof of concept, we focus on the two-to-two scattering of an identical
massless scalar φ coupled to gravity. To determine the scaleM , we need to know the details
of the Regge behavior. It has been known that the so-called finite-energy sum rules (FESRs)
are useful to constrain the Regge behavior from low-energy data in the context of physics
of strong interactions [28–33]. This is because, FESRs express the Regge parameters in
terms of the dispersive integral below the Reggeization scales and the latter can be fixed by
low-energy measurements alone. Historically, this idea was proposed by Igi in [28] and the
more detailed analysis in [32, 33] lead to the finding of so-called Dolen-Horn-Schmidt (DHS)
duality, the novel feature which is not explained by the ordinary Feynman diagrams. Soon
after this finding, the works [34, 35] based on the duality and FESRs gave a tantalizing
hint for the existence of Veneziano amplitude [36], which is now known as the tree-level
string amplitude.

1Note that loop corrections from higher-derivative vertices may not affect the tree-level results so
much [27].
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We rekindle this classic idea of FESRs to get more information of the Reggeization
of graviton exchange which is realized by higher-spin towers. Although we do not have
any experimental data for higher-spin particles above Ms, we can use the null constraints
derived from crossing symmetry as an input. We then derive constraints on the Regge
parameters and the scale M , leading to the manifestly IR finite gravitational positivity
bounds in D = 4 spacetime dimensions. This is the key idea of this work. We find the
scaling M & Ms when ignoring loops of light particles. We also discuss how this result
changes once such loop contributions are taken into account.

This paper is organized as follows: in section 2, we briefly explain the original derivation
of gravitational positivity bounds based on the Regge behavior, which is developed in [22].
We also provide some technical comments. In section 3, we review the null constraints and
then discuss the sign of their IR part. The resultant bounds are useful for our purpose. In
section 4, we derive FESRs for the Regge parameters associated with graviton exchange.
We use them to derive constraints on the Regge parameters and the scale M in section 5.
We provide several remarks on our formalism in section 6. We then conclude in section 7.
Some technical details are collected in appendices.

2 Gravitational positivity bounds

We consider a low-energy EFT of a massless scalar φ and the graviton, and its UV comple-
tion. We denote the four-point scattering amplitude of φ in the UV complete description
byM(s, t). In the present analysis, we ignore loops of light particles except in section 6.3.
Hence, we work up to O(M−2

pl ). While we do not specify details of the UV complete theory,
we postulate several UV properties of the scattering amplitude M(s, t) and discuss their
implications for the UV constraints on the IR physics.

As we mentioned in the introduction, general UV properties of scattering amplitudes
in quantum gravity are still unknown. We thus postulate that M(s, t) is unitary and
analytic, and it has a mild UV behavior lim|s|→∞ |M(s, t < 0)/s2| = 0. Then, the location
of massive singularities ofM on the complex s-plane can be identified with the mass scale
of new physics beyond the scalar-graviton EFT. We define this scale byMs, which turns out
to be analogous to the string scale in our tree-level working assumption. Above the scale
Ms, unknown heavy states such as tower of higher-spin states appear and EFT description
breaks down. Note that we can add any particles whose spins are less than two to our EFT
without affecting our result, as long as they do not invalidate the tree-level approximation
in the EFT. This is because we can simply subtract poles associated with particles with
spin lower than two without affecting the dispersion relation derived below.

Now we define the low-energy expansion coefficients {cn(t)} as

M(s, t)− (s, t, u-channel poles) =
∞∑
n=0

c2n(t)
(2n)!

(
s− u

2

)2n
=
∞∑
n=0

c2n(t)
(2n)!

(
s+ t

2

)2n
. (2.1)

Note that (su/M2
plt) ∈ (t-channel poles) expresses the graviton t-channel pole. The prop-
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erties mentioned above give rise to the following sum rule for c2(t):

c2(t) = 4
π

∫ ∞
M2

s

ds ImM(s, t)
(s+ (t/2))3 + 2

M2
plt

. (2.2)

To ensure the regularity of the left-hand side (l.h.s. ) in the forward limit, ImM must grow
at least as fast as s2 in the limit t→ −0.2 This naturally motivates the Regge behavior3

ImM(s, t) ' ImMR(s, t) = f(t)
(

s+ (t/2)
M2

s /ε+ (t/2)

)α(t)
(for s ≥M2

∗ > M2
s ) , (2.3)

where α(t) = 2 + α′t + α′′t2/2 + · · · with α′ > 0 and Ms denotes the lightest mass of
heavy states including tower of higher-spin states which realize the Regge behavior. We
also introduce a tiny positive constant ε ≤ (M2

s /M
2
∗ ) < 1 in (2.3) just for a notational

convenience. Then, we perform the integral on the right-hand side (r.h.s. ) of eq. (2.2)
from s = M2

s /ε to s =∞ by using (2.3) and take the t→ −0 limit to get

c2(0) ' 4
π

∫ M2
s /ε

M2
s

ds ImM(s, 0)
s3 + F0 , F0 := − 1

M2
pl

[2f ′

f
− 2ε
M2

s
− α′′

α′

]
. (2.4)

Here, f := f(0) and f ′ := ∂tf(t)|t=0. Note that the condition fε2 = πM4
s α
′/(2M2

pl) is
required by the absence of t−1-singularity in (2.4). The condition f ′/f ≥ 0, which is
imposed by unitarity, explains why c2(0) can be negative in general. Let us denote the
scaling of the t-dependence of f(t) and α(t) by the scale M as f ′/f , −α′′/α′ . O(M−2).
Then, (2.4) reads

c2(0) > F0 > −O(M−2
pl M

−2) . (2.5)

Our goal is to prove the scaling,

M &Ms , (2.6)

including a numerical factor, when ignoring the loops of light particles, by providing a
lower bound on F0. We also discuss the case where such loops are taken into account in
section 6.3.

A comment on ε-dependence. A brief comment on the ε-dependence of the sum
rule will be useful. A precise value of F0 depends on the ε, while the r.h.s. of (2.4) can
be shown to be independent of ε [22].4 This means that, combined with the positivity
condition ImM(s, 0) > 0, F0 is a monotonically decreasing function of ε. Hence, we can
take ε arbitrarily as long as (2.3) is a good approximation. To optimize (2.5), we should

2This will be true provided that ImM(s, t) is regular for (s, t) satisfying s ≥M2
s and −δ < t ≤ 0, where

δ is some infinitesimal positive constant. This condition will be satisfied when we ignore loop corrections
from massless particles such as gravitons.

3In general we can also add sub-leading terms to (2.3). We briefly discuss how the presence of such
terms may modify our analysis in section 6.2.

4For this purpose, it is more convenient to parameterize ImMR in an ε-independent manner unlike (2.3).
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take ε as large as possible. We thus take ε = M2
s /M

2
∗ < 1, the possible largest choice of ε.

We in general expect that the amplitude is Reggeized at energy scales above which many
higher-spin states are excited. In known Regge amplitudes, such as string amplitudes, we
have M2

s /M
2
∗ = O(0.01). We will then take ε = 0.01 as a benchmark point later. We

stress however that the ε-dependence of our final bounds on F0 is weak so that our main
conclusion is insensitive to the choice of ε.

3 Null constraints and low-energy pieces

We first introduce null constraints known in the literature in section 3.1. We then discuss
the IR part of the null constraints in section 3.2. The resultant bounds turn out to be
useful to constrain the Regge parameters such as α(t) in the succeeding sections.

3.1 Null constraints

Crossing symmetries imply the s-t-u permutation invariance ofM(s, t). This imposes non-
trivial relations among different low-energy coefficients. As a result, the relations among
sum rules for different coefficients are also imposed, leading to the so-called null con-
straints. The null constraints have been used to tighten positivity bounds in nongravita-
tional setup [37–41]. Also, the null constraints are used in the impact-parameter method
to derive positivity bounds in the presence of gravity in higher dimensional spacetime pro-
posed by [20]. The sum rules for coefficients of sntm with n ≥ 4 are unaffected by the
graviton t-channel pole. Hence, higher-order null constraints which are associated with
crossing relations imposed on such coefficients can be derived just as in nongravitational
theories. Useful sum rules which generate null constraints systematically are [20, 39]

〈X`(t; s, J)〉 = 0 (` = 4, 6, · · · ) , (3.1)

X`(t; s, J) := 2s+ t

t(s+ t)
PJ(1 + 2t

s )
(ts(s+ t))`/2

− Res
x=0

[
(2s+ x)(s− x)(s+ 2x)

x(t− x)(s+ x)(s− t)(s+ t+ x)
PJ(1 + 2x

s )
(xs(x+ s))`/2

]
. (3.2)

Here, we define the average 〈(· · · )〉 with respect to the nonnegative spectral density ρJ(s) as

〈(· · · )〉 :=
∫ ∞
M2

s

ds
s

∑
evenJ≥0

nJρJ(s) (· · · ) , (3.3)

ImM(s, t) =
∑

evenJ≥0
nJρJ(s)PJ

(
1 + 2t

s

)
, nJ = (16π)(2J + 1) . (3.4)

We define the null constraints derived from the sum rules 〈∂k−3
t X4(t; s, J)|t=0〉 = 0 (k =

3, 4, 5, · · · ) as 〈Nk(J 2) s−4−k〉 = 0, where J 2 := J(J + 1). Nk(J 2) is a polynomial of J 2

of degree k and we impose the normalization condition such that Nk(J 2)→ 2(J 2)k in the
large J limit: for example, N3(J 2) = J 2(J 2 − 6)(2J 2 − 49). Explicit expressions for Nk
with k = 4, 5, 6 are shown in appendix A as concrete examples.

– 5 –
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Nk(J 2) is positive definite at large J , while it can be negative at low J . For example,
N3(J 2) = 0 for J = 0, 2 and N3(J 2) < 0 for J = 4, while N3(J 2) > 0 for J = 6, 8, · · · .
Then the N3-constraint provides a non-trivial balance between the low-spin contribution
and the higher-spin contributions. This feature holds in general for Nk-constraints with
k = 3, 4, 5, · · · .

3.2 IR part of null constraints

We can write the Nk-constraints in terms of ImM as

〈s−4−kNk(J 2)〉 =
∫ ∞
M2

s

ds s−5−k
k∑

n=1
ck,n(s∂t)nImM(s, t)|t=0 = 0 , (3.5)

by using the fact that (s∂t)nPJ(1+ 2t
s ) is a polynomial in J of degree 2n with n ≤ J . Here,

ck,n’s are dimensionless constants and the normalization of Nk concludes ck,k > 0: e.g.,
we have (c3,3, c3,2, c3,1) = (12,−90, 180). We can evaluate the high-energy pieces of the
integral on the r.h.s. by using the Regge amplitude ImMR. In particular, let us consider
the integration from s = M2

s /ε to s = ∞. For sufficiently tiny ε, the term with n = k

becomes dominant because s−5−k(s∂t)nImMR|t=0 ∼ s−3−(k−n)[ln(s)]n. As a result, the
contributions to the r.h.s. of (3.5) from high energy regions s > M2

s /ε become positive
definite because of the condition ck,k > 0 and the positivity ∂kt ImMR|t=0 > 0 implied by
unitarity. This means that the following inequalities hold for sufficiently tiny ε� 1,

〈s−4−kNk(J 2)〉s ∼M2
s

= −
∫ ∞
M2

s /ε
ds s−5−k

k∑
n=1

ck,n(s∂t)nImM(s, t)|t=0 ≤ 0 , (3.6)

where we introduced the following notation:

〈(· · · )〉s ∼M2
s

:=
∫ M2

s /ε

M2
s

ds
s

∑
evenJ≥0

nJρJ(s) (· · · ) (3.7)

=
∫ 1

ε

dy
y

∑
evenJ≥0

nJρJ(yM2
s /ε) (· · · ) , y := s

M2
s /ε

. (3.8)

When terms (· · · ) inside the angle bracket 〈〉 is written in terms of y, the average should
be understood as (3.8).

Physically, the relation (3.6) may follow from the simple intuition: null constraints (3.5)
require that the contributions from the IR part of the integral are exactly canceled with
those from UV part. These contributions must have opposite sign with each other. Large-
J states which positively contribute to Nk(J 2) are effectively excited only at UV, while
low-J states negatively contribute to Nk. As a result, the UV (IR) part of the integral tend
to be positive (negative). As explained in section 2, we choose ε = M2

s /M
2
∗ . We suppose

that (3.6) is also valid for this choice of ε.
We emphasize that the derivation of (3.6) is merely based on the simple high-energy

behavior of the amplitude. It is not necessary to use any special properties of gravitational
or Regge amplitudes for motivating (3.6): we also expect the validity (3.6) in the context
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without gravity. For instance, we can confirm that (3.6) is satisfied by a scalar box am-
plitudeMbox because we have s−5−k(s∂t)nImMbox ∼ s−6−(k−n) at high energies. We can
also show the validity of (3.6) for string amplitudes: see appendix B for more details on
these points.

4 Finite energy sum rules (FESRs)

Now we derive the multiple finite energy sum rules (FESRs). In section 4.1, we derive
FESRs for f ′ and α′′. Several useful relations are derived in section 4.2. Such relations
and the Nk-constraint (3.6) are then used to derive the bounds on f ′ and α′′ in the next
section. We note that the derivation of our FESRs can be straightforwardly extended to
the processes which are not invariant under the s-t-u permutation.

4.1 Finite energy sum rules

Let us consider the following complex integrals ofM and their implications:∮
C++CL

ds
2πiM(s, t)(s+ (t/2))2n+1 = 0 (n = 0, 1, 2, · · · ) , (4.1)

where the integration contour C+ +CL is shown in figure 1. The contour C+ is a semi-circle
on the upper half plane C+ centered at the s-u crossing symmetric point s = −t/2 and
its radius is M2

s /ε + (t/2). We emphasize that the analyticity of M outside the contour
C+ + CL is not imposed. Using the s-u crossing symmetry, we can recast (4.1) into the
form,

−
∫
C+

ds
2πiM(s, t)(s+ (t/2))2n+1 = 1

π

∫ M2
s /ε

−t/2
ds ImM(s, t)(s+ (t/2))2n+1 (4.2)

for n = 0, 1, 2, · · · . We assume that we can evaluate the l.h.s. by using the Regge amplitude
MR in a good approximation:5

−
∫
C+

ds
2πiM(s, t)(s+ (t/2))2n+1 ' −

∫
C+

ds
2πiMR(s, t)(s+ (t/2))2n+1 , (4.3a)

MR(s, t) =
−f(t)

(
e−iπα(t) + 1

)
sin (πα(t))

(
s+ (t/2)

M2
s /ε+ (t/2)

)α(t)
. (4.3b)

Here we wrote the Regge amplitude in a manifestly s-u symmetric form. We include only
the leading-order terms on the r.h.s. of (4.3): we assume the dominance of the Regge pole
with the spin-2 Regge intercept. Under this leading-order approximation, eq. (4.2) reduces
to the so-called finite-energy sum rules (FESRs) of the form,

S2n+1(t) = f(t)
α(t) + 2n+ 2 (n = 0, 1, 2, · · · ) , (4.4)

5The arc C+ contains the region close to the real s-axis. In this region, the amplitude may not be well
approximated byMR particulartly when poles are present in the vicinity of the real axis. This error will be
reduced by choosing the location of the arc C+ far away from the nearest pole as possible. Indeed, the FESRs
with this choice of C+ are well satisfied by the amplitudes consisting of infinite number of poles [35, 36].
As an illustrative example, we confirm that the FESRs are indeed well satisfied by the string amplitude in
appendix C.
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Figure 1. The integration contour on the complex s-plane which is considered in (4.1) to derive
the FESRs. A semi-circle on the upper half plane C+ is centered at s-u crossing symmetric point
s = −t/2 and the radius is M2

s /ε + (t/2). The wavy lines and the “×” represent the branch cuts
and poles of s, u-channel graviton exchange, respectively. We do not assume that M is analytic
outside the contour.

where S2n+1(t) is defined by

S2n+1(t) :=
[
M2

s /ε+ (t/2)
]−2n−2 ∫ M2

s /ε

M2
s

ds (s+ (t/2))2n+1 ImM(s, t) + pn(t) , (4.5)

pn(t) :=
( (t/2)
M2

s /ε+ (t/2)

)2n+1 πRess=0M(s, t)
(M2

s /ε+ (t/2)) , Ress=0M(s, t) ∼ −t
2

M2
pl
. (4.6)

The second term pn(t) expresses contributions from graviton s, u-channel poles. Note that
there can exist additional contributions to pn(t) from exchange of light particles other
than graviton in generic setups, but such poles can be subtracted without affecting the
properties of M(s, t) used so far. Hence, the discussions below can be extended to such
circumstances. Note that the definition of S2n+1 itself can be extended to negative n,
while the FESRs (4.4) are applicable only for n = 0, 1, 2, · · · . FESRs (4.4) are useful
to constrain the Regge amplitude. For instance, we can derive sum rules for the Regge
trajectory from (4.4) as

α(t) = (2m+ 2)S2m+1(t)− (2n+ 2)S2n+1(t)
S2n+1(t)− S2m+1(t) (n,m = 0, 1, · · · ) . (4.7)

Substituting these expressions back into (4.4), we can also obtain the sum rules for f(t). In
this way, we can derive sum rules for the Regge trajectory and the Regge residue which are
useful for constraining the Regge amplitude. The FESRs have been useful in the context of
the physics of strong interactions: see e.g., [28–35]. The expressions (4.4) relate the gravi-
tational Regge parameters to the low-energy data below the Reggeization scale. Although
we used the s-u permutation invariance to derive our FESRs (4.4) since the four-point
amplitude of an identical scalar is considered here, we emphasize that it is straightfor-
ward to obtain the FESRs even for non-crossing symmetric processes by just treating the
contributions from the left cut and the right cut separately when evaluating (4.1).
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For our purpose, it is more convenient to directly derive sum rules for f ′ and α′′ to
put bounds on F0. The FESRs for S′2n+1(0) := ∂tS2n+1(t)|t=0 read

S′2n+1(0) = 1
4(n+ 2)2

[
(2n+ 4)f ′ − α′f

]
. (4.8)

The relations (4.8) allow us to express f ′ in terms of S′2n+1(0) as

f ′ = 2
n−m

[
(n+ 2)2S′2n+1(0)− (m+ 2)2S′2m+1(0)

]
(4.9)

for two different nonnegative integers m and n. For example, for (m,n) = (0, 1), we have6

f ′ = ε

M2
s

〈
y
(
−36y3 + 27y2 + 8y − 4

)
+ y(18y2 − 8)J 2

〉
s ∼M2

s
. (4.10)

For (m,n) = (0, 2), we have

f ′ = ε

M2
s

〈
y
(
−48y5 + 40y4 + 4y − 2

)
+ y(16y4 − 4)J 2

〉
s ∼M2

s
. (4.11)

It is also straightforward to derive sum rules for α′ as

α′f = 4(m+ 2)(n+ 2)
n−m

[
(n+ 2)S′2n+1(0)− (m+ 2)S′2m+1(0)

]
. (4.12)

We have different expressions of sum rules for f ′ and α′ depending of the choice of (m,n).
We show explicitly how they are satisfied by string amplitudes in appendix C.7

Similarly, we can also derive sum rules for α′′ and f ′′ from FESRs for S′′2n+1(0) as

S′′2n+1(0) = f ′′

2(n+ 2) −
α′

n+ 2S
′
2n+1(0)− α′′f

4(n+ 2)2 . (4.14)

Then, we can derive a sum rule for α′′ as

α′′f

2 = −α′f ′ + ε2

M4
s

〈
y
[
a0(y) + a1(y)J 2 + a2(y)J 2(J 2 − 2)

]〉
s ∼M2

s
, (4.15)

where

a0(y) = 3360y5 − 4800y4 − 20y3 + 1944y2 − 402y − 56 , (4.16a)
a1(y) = −1920y4 + 1600y3 + 1296y2 − 972y − 112 + 56y−1 , (4.16b)
a2(y) = 160y3 − 162y + 28y−1 . (4.16c)

We can also derive different sum rules for α′′, although we do not show them here.
6Note that the term pn(t) in (4.5) does not appear in (4.10) because ∂m

t pn(t)|t=0 = 0 for m ≤ 2n + 2.
For the same reasoning, pn(t) is irrelevant in the analysis below.

7As a result, we can derive consistency conditions. For example, the relation 0 = (4.9)|(m,n)=(0,2) −
(4.9)|(m,n)=(0,1) gives rise to the following constraint:

0 = 1
f ′

〈
y
[
(48y5 − 40y4 − 36y3 + 27y2 + 4y − 2)− 2J 2 (8y4 − 9y2 + 2

)]〉
s ∼ M2

s
. (4.13)

The equation 0 = (4.12)|(m,n)=(0,2) − (4.12)|(m,n)=(0,1) also provides the same result. The results shown in
appendix C implies that this consistency condition also holds in string amplitudes. It would be interesting
to study how this can be used to constrain the particle spectrum. We leave this aspect for our future work.
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4.2 Useful bounds on the amplitude in the low-energy regime

Using FESRs (4.4), we can constrain the behavior of ImM(s, t) in the low-energy regime
M2

s < s < M2
∗ , for which we cannot use the Regge behavior: the forward limit of (4.4)

gives

S2n+1(0) =
〈
y2n+2

〉
s ∼M2

s
= f

2n+ 4 (n = 0, 1, 2, · · · ) . (4.17)

Since the condition f ∼M4
s α
′M−2

pl ε
−2 is required by the absence of t−1-singularity in (2.4),

the condition (4.17) shows that the integral of ρJ(s) from s = M2
s to M2

s /ε must be
suppressed by M−2

pl . Eqs. (4.17) can be also used to obtain the two-sided bounds on
〈y1−k〉s ∼M2

s
with k ≥ 0: the strongest bound comes from (4.17) with n = 0,

f

4 ≤
〈
y1−k

〉
s ∼M2

s
≤ f

4 ε1+k (k ≥ 0) . (4.18)

The k = 3 case provides the two-sided bounds on the first term on the r.h.s. of (2.4) as

ε2f

πM4
s
≤ 4
π

∫ M2
s /ε

M2
s

ds ImM(s, 0)
s3 ≤ f

πM4
s ε

2 . (4.19)

Examples. In the analysis below, we use eqs. (4.10), (4.15), and (4.17). These are the
FESRs for f ′, α′′, and f , respectively. It is then useful to investigate the validity of these
expressions in string amplitudes: see appendix C for details. It turns out that these FESRs
are satisfied in a good approximation for sufficiently tiny ε ≤ O(0.01)-O(0.1).

5 Bounds from FESRs

We derive bounds on the Regge parameters f ′ and α′′ in section 5.1 and 5.2, respectively,
by using the FESRs and the Nk-constraints (3.6). We then derive bounds on c2 in sec-
tion 5.3, proving (2.6). We ignore the loop corrections from light particles in this section. A
straightforward extension to the case where loops of light particles are included is discussed
later in sec 6.3.

5.1 Constraints on f ′

By using eqs. (4.17), (4.18), and an inequality 〈y3〉s ∼M2
s
≤ 〈y2〉s ∼M2

s
, we have a lower

bound on −f ′ from (4.10) as

−f ′ > − 7εf
4M2

s
− ε

M2
s

〈
y(18y2 − 8)J 2

〉
s ∼M2

s
. (5.1)

To obtain a lower bound on the second term on the r.h.s. , we use the Nk-constraint (3.6)
to get

−f ′ > − 7εf
4M2

s
+ ε

M2
s

〈
yn+1In,k(y,J 2;β)

〉
s ∼M2

s
, (5.2)
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where

In,k(y,J 2;β) := y−n
[
(8− 18y2)J 2 + βy−5−kNk(J 2)

]
. (5.3)

We introduced an arbitrary positive constant β and a non-negative integer n. Because
βNk(J 2) ' 2β(J 2)k > 0 at large J , In,k(y,J 2;β) is bounded from below by some constant
An,k(β) in the regions

{
(y, J) : ε ≤ y ≤ 1 , J ∈ {0, 2, 4, · · · }

}
. In terms of An,k(β), we can

rewrite (5.2) as

−f ′ > ε

M2
s

[
−7f

4 +An,k(β)
〈
y1+n

〉
s ∼M2

s

]
. (5.4)

Here, we used the unitarity condition ρJ ≥ 0. The second term on the r.h.s. can be
evaluated by using (4.17) or (4.18). We can choose β and n to maximize An,k(β)〈y1+n〉.
We set n = 1 below for a while and explain why this choice will give the best bound. We
however emphasize for definiteness that the bounds derived below are valid irrespective of
whether the n = 1 case provides the best bound or not.

Now we determine A1,k(β) and choose a positive free parameter β appropriately to
maximize A1,k(β). βNk(J 2) is nonnegative for J ≥ Jk + 2 · · · , while it can be negative for
J = 0, 2, 4, · · · Jk. Here, the value of Jk depends on k: e,g., J3 = J4 = 4, J5 = J6 = 6, etc.
Accordingly, the behavior of I1,k(y,J 2;β) in the small-J region 0 ≤ J ≤ Jk differs from
the one in the large-J region J ≥ Jk + 2. We discuss these two cases separately. Below, we
consider k = 3, 4, 5, · · · , 24, while we also consider k = 36 case only in figure 3.

Small J analysis. We start with evaluating the minimum value of I1,k(y,J 2;β) within
the region y ∈ [ε, 1] and J ∈ {0, 2, 4, · · · Jk}. For such small J , Nk(J 2) can be negative.
We define an even integer J∗,k at which Nk(J 2) becomes the smallest. Typically, we have
J∗,k = Jk: we can check that this holds true for k = 3, 4, · · · , 24, 36 cases. I1,k(y,J 2;β) is
dominated by the second term on the r.h.s. of (5.3) when ε is sufficiently tiny and β is not
so small to satisfy β & ε5+k. Then, for such ε and β, I1,k(y,J 2;β) will be minimized at
(y, J) = (ε, J∗,k):

Asmall-J
1,k (β) := min

J∈{0,2,··· ,Jk}
y∈[ε,1]

I1,k(y,J 2;β) = I1,k(ε,J 2
∗,k;β) . (5.5)

Assuming that (5.5) is true, we choose β to optimize the bound. We will then confirm that
eq. (5.5) is indeed valid for such β. Asmall-J

1,k (β) is a monotonically decreasing function of β.

Large J analysis. Next, we consider the J ≥ Jk + 2 case. We first use an inequality
8− 18y2 ≥ −10y, which is valid within the region y ∈ [ε, 1], to get

I1,k(y,J 2;β) ≥ −10J 2 + βy−6−kNk(J 2) . (5.6)

The r.h.s. is minimized at y = 1 because Nk(J 2) > 0 for J ≥ Jk + 2. Also, we treat J as
continuous variables for convenience. Then, we have

min
evenJ≥Jk+2

y∈[ε,1]

I1,k(y,J 2;β) ≥ Alarge-J
1,k (β) := min

J≥Jk+2

[
−10J 2 + βNk(J 2)

]
. (5.7)
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Figure 2. A plot of Ak with k = 12. Black dots are numerical results obtained from βnum
k with

ε = 0.001, 0.002, · · · , 0.01. The solid line expresses analytic estimates (5.14) with k = 12 which
are valid at the leading order in small-ε expansions. This plot shows the analytic result correctly
reproduces the numerical results in a good approximation.

The function −10J 2 + βNk(J 2) is a polynomial of J 2 of degree k and its minimum can
be evaluated analytically in principle. −10J 2 + βNk(J 2) is a monotonically increasing
function of β, as well as Alarge-J

1,k (β).

Derivation of A1,k(β). We can then derive A1,k(β) from eqs. (5.5) and (5.7) via A1,k(β)
= min

[
Asmall-J

1,k (β), Alarge-J
1,k (β)

]
. Because Asmall-J

1,k (β) and Alarge-J
1,k (β) are monotonically in-

creasing and decreasing functions of β, respectively, there exists a point β = βexact
k for

which we have

Asmall-J
1,k (βexact

k ) = Alarge-J
1,k (βexact

k ) . (5.8)

Consequently, A1,k(β) is maximized at β = βexact
k . We solve eq. (5.8) numerically for given

ε. Writing the numerical solution for given ε as βnum
k , we compute A1,k(βnum

k ). In terms of
the obtained A1,k(βnum

k ), the bound (5.4) reads

−f ′/f > −Ak
M2

s
, Ak := 1

4 [−εA1,k(βnum
k ) + 7ε] . (5.9)

Here, we used (4.17). As an illustrative example, we consider the k = 12 case with ε =
0.001, 0.002, · · · , 0.01. We can check numerically that eq. (5.5) is indeed valid for our choice
of (ε, βnum

k ). The value of Ak[βnum
k ] as a function of ε is plotted in figure 2.

We do not perform numerical computations for k > 12 cases in the present analysis
because the numerical computations become heavier for higher-k. For such higher-k cases,
we use the analytic expressions which will be derived soon in section 5.1.1.

Comments on n 6= 1 cases. Let us briefly consider the n 6= 1 cases. For n = 0 case,
we get an additional ε−1 factor when using (4.18) to estimate 〈y〉s ∼M2

s
in (5.4). We do not

have this enhancement when estimating 〈y1+n〉s ∼M2
s
with n ≥ 1. Due to this, the bound in

the n = 1 case will be stronger than those obtained in the n = 0 case when ε� 1. For n > 1
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cases, we have An,k(β) = min
[
Asmall-J
n,k (β), Alarge-J

n,k (β)
]
with Asmall-J

n,k (β) = In,k(ε,J 2
∗,k;β)

and Alarge-J
n,k (β) = minJ≥Jk+2

[
−anJ 2+βNk(J 2)

]
, analogously to eqs. (5.5) and (5.7). Here,

an := miny∈[ε,1][(8 − 18y2)y−n]. We have Alarge-J
n,k ≤ Alarge-J

1,k (< 0) because an ≤ −10 for
n > 1. Also, we have Asmall-J

n,k � Asmall-J
1,k (< 0) for ε� 1 because In,k/I1,k ∼ ε1−n. Hence,

we will have An,k(β)� A1,k(β)(< 0) and consequently the bounds in the n > 1 cases will
be weaker than the one obtained in the n = 1 case when ε� 1.

5.1.1 Analytic expression

It is useful to derive an analytic expression of Ak at the lowest order in small ε. For this
purpose, we derive an analytic expression of Alarge-J

1,k (β) which is valid at the leading order
in small ε-expansions. When β is sufficiently small, the minimum of −10J 2 + βNk(J 2) is
realized at J � 1. In this case, we can approximate the function around its minimum as

−10J 2 + βNk(J 2) ' −10J 2 + 2β(J 2)k , (5.10)

where the r.h.s. is minimized at J 2 = (βk/5)
1

1−k � 1 for sufficiently small β. We then
obtain a simple but approximate expression of Alarge-J

1,k (β) as

Alarge-J
1,k (β) ' −10(k − 1)

k

( 5
βk

) 1
k−1

. (5.11)

We can also approximate Asmall-J
1,k as

Asmall-J
1,k ' βε−6−kNk(J 2

∗,k) . (5.12)

We approximately solve Asmall-J
1,k (β) = Alarge-J

1,k (β) by using (5.11) and (5.12) to get an
approximate expression of βexact

k : the result is

βexact
k ' βapprox

k := 5
k

(
−Nk(J 2

∗,k)
2k − 2

)−1+ 1
k

ε5+k− 6
k . (5.13)

This shows βapprox
k � ε5+k when ε is sufficiently tiny, providing an analytic understanding

why eq. (5.5) is indeed valid when choosing β ∼ βexact
k . Substituting (5.13) into Asmall-J

1,k (β)
or Alarge-J

1,k (β), we obtain an approximate expression of A1,k(β). Finally, an approximate
expression of Ak is obtained as

Ak '
5(k − 1)

2k

(
−Nk(J 2

∗,k)
2k − 2

) 1
k

ε−
6
k . (5.14)

The analytic estimates (5.14) are compared with the numerical results in figure 2 for
k = 12 case. The figure indicates that the analytic estimates (5.14) correctly reproduce
the numerical results in a good approximation. Since the numerical evaluations of Ak
become heavier for higher-k cases, eqs. (5.14) are useful to derive the bounds for such
higher-k efficiently. In the present study, we use (5.14) for evaluating Ak with k > 12. The
results (5.14) suggest that the large k cases provides the better bound when considering
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Figure 3. A plot of Ak with k = 12, 24, 36 based on (5.14). A region 10−5 ≤ ε ≤ 10−1 is considered.
This figure shows that large-k results provide better bounds for smaller ε.

௞

Figure 4. A plot of Ak with k = 14, 16, 18, 20, based on (5.14). The k = 14, 16, 18, 20 cases are
expressed by the black dotted line, the pink solid line, the blue solid line, and the gray dashed line,
respectively. The region 0.005 ≤ ε ≤ 0.02, including the benchmark point ε = 0.01, is considered
here. In this region, the bounds from k = 14, 16, 18, 20 give the tightest lower bound on −f ′/f
via (5.9).

very tiny ε. For example, figure 3 shows that for ε . 10−2(10−4), the bound with k = 24
(k = 36) is much better than the one with k = 12.

By using (5.14), we find that the bounds from k = 14, 16, 18, 20 give the tightest lower
bound on −f ′/f via (5.9) when considering the region 0.005 ≤ ε ≤ 0.02 in which the
benchmark point ε = 0.01 is included: see figure 4.

5.2 Constraints on α′′

Next, we derive a lower bound on α′′ from the sum rule (4.15) for α′′. By using an inequality
a0(y) > 3360y5 − 2876y3 − (402 + 56/ε)y, which is valid for y ∈ (ε, 1), we obtain a lower
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bound on α′′ from (4.15) as

α′′f

2 >− α′f ′ − f

M4
s

(
14ε+ 959ε2

6

)
+ ε2

M4
s

〈
y1+nHn,k(y,J 2; γ)

〉
s ∼M2

s
, (5.15)

where Hn,k(y,J 2; γ) is defined by

Hn,k(y,J 2; γ) := y−n
[
a1(y)J 2 + a2(y)J 2(J 2 − 2) + γy−5−kNk(J 2)

]
. (5.16)

To obtain (5.15), we also used the Nk-constraint (3.6). We introduced a positive parameter
γ and a nonnegative integer n. Because γNk(J 2) ' 2γ(J 2)k > 0 at large J , Hn,k(y,J 2; γ)
is bounded from below by some constant Bn,k(γ) in the regions

{
(y, J) : ε ≤ y ≤ 1 , J ∈

{0, 2, 4, · · · }
}
. In terms of Bn,k(γ), we can rewrite (5.15) as

α′′f

2 >− α′f ′ − f

M4
s

(
14ε+ 959ε2

6

)
+ ε2Bn,k(γ)

M4
s

〈
y1+n

〉
s ∼M2

s
. (5.17)

Here, we used the unitarity condition ρJ ≥ 0. We can choose n and γ to optimize the
bound. The methodology to derive a lower bound on α′′ from (5.17) is completely the
same as the one discussed in section 5.1. Hence, we show the final result only in the main
text, while the detailed analysis is performed in appendix D: the result is

α′′/α′ >− 2f ′/f − 2Bk
M4

s α
′ . (5.18)

As is done in section 5.1, we can also derive an approximate analytic expression of Bk at
the leading order in small ε-expansions as

Bk '
81− 8

√
70

2
k − 2
k

(
−Nk(J 2

∗,k)
k − 2

) 2
k

ε−
12
k . (5.19)

By using (5.19), we find that the bounds from k = 16, 18, 20 give the tightest lower bound
on α′′/α′ via (5.18) when considering the region 0.005 ≤ ε ≤ 0.02 in which the benchmark
point ε = 0.01 is included: see figure 5.

5.3 Constraints on c2

Now we derive a lower bound on c2(0) by substituting eqs. (5.9) and (5.18) into (2.5) as8

c2(0) > F0 >
−1

M2
plM

2
s

{
min

k=3,4,···
[4Ak] + min

k=3,4,···

[ 2Bk
M2

s α
′

]
− 2ε

}
(5.20)

with (5.14) and (5.19). This is one of the main result of this paper. For smaller ε, the best
bound is given by the larger k as illustrated in figure 3. Since the ε-dependence becomes

8To improve a lower bound on c2(0), we may also need to evaluate the first term on the r.h.s. of (2.4)
which is ensured to be positive. We have a two-sided bound (4.19). However, this two-sided bound is too
weak to improve the lower bound (5.20) by taking into account the relation f ∼ M4

s α
′M−2

pl ε
−2. We thus

simply use (2.5).
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Figure 5. A plot of Bk with k = 16, 18, 20, based on (5.19). The k = 16, 18, 20 cases are expressed
by the blue solid line, the black dashed line, and the pink solid line, respectively. The region
0.005 ≤ ε ≤ 0.02, including the benchmark point ε = 0.01, is considered here. In this region, the
bounds from k = 16, 18, 20 give the tightest lower bound on α′′/α′ via (5.18).

weaker for large k, our bound (5.20) is robust. For example, even for a wide range of ε with
10−5 . ε . 10−2, we have 103 . Ak . 5 × 103 and 106 . Bk . 2 × 107. As a benchmark
point, we choose ε = 0.01. In this case, the best bound on c2(0) is obtained by taking
k = 18:

c2(0) > F0 >
−1

M2
plM

2
s

(
3.7× 103 + 2.0× 106

M2
s α
′

)
. (5.21)

This proves (2.6), that the unknown scaleM is bounded byMs, the mass of lightest higher-
spin states. Physically, this bound states that the contributions from tower of higher-spin
particles to c2(0) can be negative, while its negativity must be suppressed not only by
M−1

s but also by M−1
pl , at least when loops of light particles are ignored. Thanks to this

suppression, our bound (5.21) can be regarded as the approximate positivity bound which
can be used to constrain the parameter space of gravitational EFTs in four spacetime
dimensions. This suppression of negativity has been proposed qualitatively in [8], and our
result verifies it quantitatively at least for the four-point amplitude of identical massless
scalar. It would be straightforward to extend our formalism to generic processes such as
the light-by-light scattering. We leave this aspect for future work.

Discussions. Our quantitative bound (5.21) is much weaker than the bound expected
from the EFT power counting c2(0) > −O(1)/(M2

plM
2
s ), however. We can obtain stronger

bounds on c2(0) in higher dimensions D > 4: we only show the results here, and details
of a straightforward extension of our formalism to higher dimensions can be found in
appendix E. Let us parameterize bounds on f ′/f , α′′/α′, and c2(0) in general D-dimensions
analogously to (5.9), (5.18), and (5.20) as

−f ′/f > −
A(D)
k

M2
s
, α′′/α′ > −2f ′/f − 2B(D)

k

M4
s α
′ , (5.22)

c2(0) > −1
M2

plM
2
s

{
min

k=3,4,···

[
4A(D)

k

]
+ min
k=3,4,···

[
2B(D)

k

M2
s α
′

]
− 2ε

}
. (5.23)
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The values of A(D)
k and B(D)

k are estimated at the benchmark point ε = 0.01 as9

min
k=3,4,···

[
A(D)
k

]
ε=0.01

' 102 × {9.1, 6.4, 5.1, 4.3, 3.7, 3.4, 3.1, 2.8, 2.7} (5.24a)

min
k=3,4,···

[
B(D)
k

]
ε=0.01

' 105 × {10, 6.0, 4.2, 3.2, 2.6, 2.1, 1.8, 1.6, 1.4} (5.24b)

for D = 4, 5, · · · , 12. Our bounds on c2(0) in higher dimensions are still much weaker than
the bound expected from the power counting. Hence, the weakness of our bound will not
be a feature peculiar to the D = 4 case. We expect the existence of the theoretical bounds
which are much stronger than our bounds in general dimensions.

Indeed, such stronger bounds have been derived in higher dimensions D > 4 in [20]
by using the twice-subtracted dispersion relation in the finite impact parameter space
b ∼ Ms. The Reggeization of the graviton exchange is not assumed there. Consequently,
the contribution from the graviton 1/t-pole explicitly remains in their sum rules. Their
bounds in higher dimensions D > 4 are,10

c2(0)|Ref. [20] > −
1

M2
plM

2
s
× {36, 19, 14, 11, 9.6, 8.5, 7.8, 7.4} (D = 5, 6, · · · , 12) , (5.25)

where we calculated the numerator to two significant digits based on the set of inequalities
given in the table 3 of [20]. The bounds (5.25) are close to those expected from the power
counting and much stronger than our bounds in the D > 4 case.

In D = 4, however, the bound obtained in [20] is IR divergent:

c2(0)|Ref. [20] > −
50

M2
plM

2
s

log(0.3Msbmax) (D = 4) , (5.26)

where bmax denotes an IR cutoff introduced in the impact parameter space. This is because,
the presence of graviton 1/t-pole in their sum rule obstructs the derivation of the twice-
subtracted dispersion relation in the finite impact parameter space in D = 4 without
introducing an IR cutoff. By contrast, our bound (5.21) in D = 4 is manifestly IR finite.
This is because the problematic graviton 1/t-pole does not appear in our sum rule (2.4)
of c2(0): it is cancelled with the contributions from the gravitational Regge amplitude
as demonstrated in section 2. In D = 4 flat background, the quantitative bound on c2(0)
which is IR finite is only our bounds (5.21) to our knowledge. We also note that our bounds
on the Regge parameters f ′/f and α′′/α′ are new in the literature in general dimensions
D ≥ 4. A price we pay in our approach is the additional assumption of the Reggeization
of graviton exchange.

5.4 Comparison with the type II superstring amplitude

We can compare our bounds on c2(0), f ′/f , and α′′/α′ with concrete amplitudes. As an
illustrative example, we consider the type II closed superstring amplitude. The relevant

9Note that the minimum of A(D)
k at ε = 0.01 are realized at k = 18 and k = 20 for D = 4, 5, · · · , 10

and D = 11, 12, respectively. The minimum of B(D)
k at ε = 0.01 are realized at k = 18 and k = 20 for

D = 4, 5, · · · , 8 and D = 9, 10, 11, 12, respectively.
10Ref. [20] derived the bound on g2, where g2 is related to our c2(0) as c2(0) = 2g2.
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Regge parameters for this amplitude is given in eq. (C.2). Also c2(0) = 0 as a consequence
of supersymmetry. We summarize these results:

c2(0) = 0 , f ′/f = 1
M2

s
[2γ + 2 ln(1/ε) + ε] , α′ = M2

s /2 , α′′ = 0 , (5.27)

where γ denotes the Euler-Mascheroni constant. Our bounds on c2(0) and α′′/α′ are
trivially satisfied in this example. As for the f ′/f , we need to specify the value of ε. The
analysis in appendix C implies that we can set ε = 0.1 with maintaining the validity of
FESRs in a good approximation. With this choice, the value of f ′/f in this example is
f ′/f |ε=0.1 ' 5.86M−2

s while our bounds on f ′/f in general dimensions read

f ′/f < min
k=3,4,···

[
A(D)
k

M2
s

]
ε=0.1

' 102

M2
s
× {3.0, 2.2, 1.8, 1.5, 1.4, 1.3, 1.2, 1.1, 1.0} , (5.28)

for D = 4, 5, · · · , 12. Note that the best bounds for ε = 0.1 are obtained by taking k = 8
and k = 10 for D = 4 and D = 5, 6, · · · , 12, respectively. We find that our bounds are
easily satisfied in the type II amplitude. It would be interesting to study if one can sharpen
the bounds such that they are saturated by some string amplitude, leaving this direction
for our future work.

6 Remarks

In this section, we summarize several remarks. In section 6.1, we stress that the gravita-
tional positivity bounds (2.4) or (2.5) can be formulated as an FESR. In section 6.2, we
briefly discuss how our FESRs are affected by the sub-leading terms which are suppressed
in (2.3) or (4.3). In section 6.3, we discuss how our analysis can be extended to the case
where loops of light particles are included. In section 6.4, we summarize the assumptions
we imposed in the present analysis.

6.1 Gravitational positivity bounds as an FESR

In section 4, we derived FESRs for the Regge parameters, starting from (4.1). In (4.1), we
considered the complex integral ofM(s, t)(s+ (t/2))2n+1 along the contour C+ + CL with
n = 0, 1, 2, · · · . If we do the same analysis with n ≤ −1, then we will have additional terms
on the r.h.s. of (4.1) and consequently on (4.2). In particular, for n = −2, we have

−2
M2

plt
+ c2(t) + 4

π

(
M2

s
ε

+ t

2

)−2
f(t)

α(t)− 2 =
(
M2

s
ε

+ t

2

)−2 4
π
S−3(t) . (6.1)

Because the terms other than the first and the third terms on the l.h.s. are regular in the
vicinity of t = 0, (6.1) requires the cancellation of t−1 term on the l.h.s. . We then find
that (6.1) reduces to (2.4) in the forward limit. The expression (6.1) is valid even for t > 0,
while it is identical to the relation derived from the twice-subtracted dispersion relation
for t < 0. The essentially important assumption here is only the dominance of the Regge
pole with the spin-2 Regge intercept (4.3).
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An advantage of understanding the gravitational positivity bound (2.4) as an
FESR (6.1) is that it becomes manifest that only the information ofM below the Reggeiza-
tion scale M2

∗ is relevant for constraining c2(t). As long as there is a hierarchy between Ms
and Mpl such that Ms � Mpl, i.e., if gravity is UV completed within its weakly-coupled
regime, it is not necessary to concern about the super-Planckian physics where strong
dynamics of gravity such as creation of black holes and baby universes may be important.

6.2 Influence of sub-leading corrections

In general, we have sub-leading terms which are ignored in the approximation (2.3) or (4.3).
Let us write such terms as M(M2

s /ε, t) = MR(M2
s /ε, t) +Msub(M2

s /ε, t). Msub can be
the contributions from daughter trajectories, for instance. The presence of such term
may modify the FESRs for f ′ and α′′ derived in section 4, even though we expect that
such contributions can be ignored for sufficiently tiny ε. In fact, we can disentangle such
contributions once the high-energy behavior of such terms is fixed. We can then derive
FESRs for f ′ and α′′ by considering suitable linear combinations of {S2n+1}. As the
simplest toy example to demonstrate this, we consider the sub-leading term of the form
ImMsub(s, t) ' g(t)

(
s+ (t/2)

)(
M2

s /ε+ (t/2)
)−1. In this case, eq. (4.4) is modified as

S2n+1(t) = f(t)
α(t) + 2n+ 2 + g(t)

2n+ 3 (n = 0, 1, 2, · · · ) . (6.2)

In this case, the l.h.s. of FESR (4.10) is replaced by f ′ + 14
15g
′, where g′ := ∂tg(t)|t=0. In

this case, however, we consider −204S′1(0) + 900S′3 − 784S′5, leading to

f ′ = ε

M2
s

〈
y
(
1176y5 − 980y4 − 900y3 + 675y2 + 102y − 51

)〉
s ∼M2

s

−
〈
4y(196y4 − 225y2 + 51)J 2〉

s ∼M2
s
. (6.3)

Then, we can use (6.3) instead of (4.10) to constraint f ′/f . In this way, we can derive sum
rules for f ′ and α′′. This analysis suggests the existence of FESRs for Regge parameters
even in the presence of sub-leading terms represented by Msub, thanks to the multiple
FESRs. Although the bound on f ′/f obtained from (6.3) will be slightly weaker than (4.10)
(by a factor ∼ 7), the essential point that f ′/f is bounded from above by the scale Ms
remains unchanged. We therefore assume in this study that the sub-leading terms can be
ignored and the consequences of FESRs such as (4.10) are discussed under this assumption.
More careful analysis on this point in more generic setup is left for future work.

6.3 Inclusion of loops of light particles

Loop contributions from light particles are not taken into account in the previous sections.
It is useful to investigate how we can extend our analysis to include such loop corrections.
For this purpose, we discuss an extension of our FESRs to the case where the loops of
light particles are included. To avoid the IR divergence issues, we consider the situation
where the massive light particles are coupled to the massless scalar field φ and discuss their
contributions to the φφ→ φφ amplitudeM(s, t). Once such loop corrections are included,
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the location of the branch cuts of M is given by the mass scale of light massive particles
m2

th, rather than the mass scale of the lightest higher-spin state M2
s . Since the starting

point (4.2) of the derivation of the FESRs remains unchanged, our FESRs in the current
setup are simply given by (4.4) with replacing S2n+1(t) by S̃2n+1(t) as

S̃2n+1(t) = f(t)
α(t) + 2n+ 2 (n = 0, 1, 2, · · · ) , (6.4)

where S̃2n+1(t) is defined by

S̃2n+1(t) :=
[
M2

s /ε+ (t/2)
]−2n−2 ∫ M2

s /ε

m2
th

ds (s+ (t/2))2n+1 ImM(s, t) + pn(t) . (6.5)

Only the difference between the definition (4.5) of S2n+1(t) and that of S̃2n+1(t) is the value
of the lower end of the integral. Consequently, we can extend other FESRs derived in the
previous sections to those in the presence of loops of light particles by simply replacing the
value of the lower end of the integral by m2

th. This is equivalent to perform the following
replacement in the results obtained in the previous sections:

M2
s → m2

th , ε→ δ := (m2
th/M

2
s ) ε . (6.6)

For instance, we can derive the FESR for f ′ as

f ′ = δ

m2
th

〈
y
(
−36y3 + 27y2 + 8y − 4

)
+ y(18y2 − 8)J 2

〉
δ < y < 1

, (6.7)

where

〈(· · · )〉δ < y < 1 :=
∫ m2

th/δ

m2
th

ds
s

∑
evenJ≥0

nJρJ(s) (· · · ) (6.8)

=
∫ 1

δ

dy
y

∑
evenJ≥0

nJρJ(yM2
s /ε) (· · · ) , y = s

m2
th/δ

. (6.9)

Eq. (6.7) reduces to (4.10) when ignoring loop contributions from light particles. Similarly,
we can also derive FESRs for f , α′, and α′′ in the current setup. In this way, we can easily
generalize the FESRs obtained in the previous sections to include loop corrections from
light particles.

In the previous section, we derived bounds on the Regge parameters f ′ and α′′ with
ignoring the loop contributions, and eventually showed (2.6). Its naive generalization to
loops would imply

M & min
[
mth,m

2
th
√
α′
]
, (6.10)

but this does not mean that M has to always be the IR scale mth since our argument just
provides a lower bound on the energy scale M . It would be interesting to improve our
FESR analysis taking into account more detailed information of the IR physics. We leave
this direction for future work.

– 20 –



J
H
E
P
0
6
(
2
0
2
3
)
0
3
2

6.4 Summary of the working assumptions

It is useful to summarize the assumptions we imposed in this study. The following general
properties (i)-(iii) and one techinical property (iv) are assumed up to O(M−2

pl ):11

(i) Regge behavior ofM(s, t) at s ≥M2
∗ �M2

s due to a tower of higher-spin states, and
the dominance of the Regge pole term with the spin-2 Regge intercept at s = M2

∗ .

(ii) Unitarity and analyticity ofM(s, t) except for usual poles and cuts, which imply the
validity of ρJ(s) ≥ 0 and the FESRs combined with (i).

(iii) Crossing symmetry ofM(s, t), implying the s-t-u permutation invariance ofM.

(iv) Negativity of IR part of null constraints, i.e., the validity of (3.6) for ε = M2
s /M

2
∗ � 1.

The property (i) is the assumption that the behavior of amplitudeM(s, t) at high energies
above s = M2

∗ is softened by the Reggeization of graviton exchange due to the tower of
higher-spin states. This property is a natural consequence of the dispersion relation (see
around eq. (2.2)) and indeed satisfied in the perturbative string theory. The property (iii) is
used for deriving null constraints and also for just simplifying the sum rules. The property
(iv) is postulated to implement the null constraints into our FESRs. This is suggested by
the crossing symmetry and some simple physical intuition as discussed in section 3. We
confirm that the property (iv) is satisfied in known examples in appendix B.

The properties (i) and (ii) allow us to formulate the FESRs for the Regge parame-
ters and the gravitatinoal positivity bound (6.1) only in terms of the physics below the
Reggeization scale M2

∗ . In particular, if the hierarchy between Ms and Mpl exists and
gravity is UV completed by the Reggeization within its weakly-coupled regime, it is not
necessary to concern about the graviton loops. We can also consider a scenario in which
the hierarchy betweenMs andMpl is absent but strongly-coupled UV completion of gravity
is achieved by the Reggeization near the Planck scale. Our formulation may apply to this
case too although in this case, it will be necessary to take into account the graviton loop
corrections and the associated IR divergent issues should be correctly treated. Graviton
loops also modify the analytic structure of M. It would be interesting to consider such
scenario.

7 Conclusion

We considered two-to-two scattering of an identical massless scalar coupled to gravity
up to O(M−2

pl ) as the simplest example of matter-matter scatterings in the presence of
gravity. We developed a method to constrain the Regge amplitude of graviton exchange by
means of the multiple finite energy sum rules (FESRs) given in eqs. (4.4), which directly
connect gravitational Regge amplitudes at a finite ultraviolet scale with infrared physics.
Although the s-t-u permutation invariant process is considered in the present analysis, it is

11As a technical remark, we stress that the assumption made in the second line of (i) may be eliminated
without changing our main conclusion. This is motivated by the discussions in section 6.2. It is essential
here that we have multiple FESRs.
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straightforward to derive FESRs even for non crossing-symmetric processes as mentioned in
section 4.1. It is demonstrated explicitly that our FESRs are satisfied by string amplitudes.
The assumptions we imposed in the present analysis are summarized in section 6.4.

The FESRs relate the Regge parameters to the dispersive integral in the low-energy
regions below the energy scales of the Reggeization. We used the null constraints which
follow from the crossing symmetry as an input data of particle spectrum at such low-
energy regimes. We then derived constraints on the Regge parameters, particularly f ′ and
α′′, leading to the IR finite gravitational positivity bounds on the coefficient c2(0) of the
s2 term in the IR amplitude (see eq. (2.1) for its definition) via (2.4) in four spacetime
dimensions. Our result is complementary to the bounds derived by using the novel finite
impact parameter-space method [20, 21], which suffer from the logarithmic dependence on
the IR cutoff in four spacetime dimensions.

Concretely, our bound on c2(0) is (5.20) with (5.14) and (5.19) when the loops of light
particles are ignored. We also derived bounds in higher dimensions D > 4: see e.g., (5.23)
and (5.24) for final results. Our bounds involve a positive parameter ε = M2

s /M
2
∗ � 1. For

the discussions of ε-dependence/independence of the bound on c2(0), see section 2. When
we take ε = 0.01 as a benchmark point, the bound becomes (5.21). Since the ε-dependence
is weak, we conclude that the relation (2.6) is shown, i.e., the unknown scale M which
parameterize f ′/f and α′′/α′, is bounded by Ms, the mass of lightest higher-spin states.

We also discussed the case where loops of light particles are included in section 6.3. We
derived FESRs in the presence of loops of light particles. By simply extending the analysis
in section 5 to the loop level, we found that our bound on the scaleM is given by the weaker
one (6.10) instead of (2.6). This however does not necessarily mean that the scale M has
to always be identical to the mass scale mth of the light particles, simply because it just
provides a lower bound on the energy scale M . Given its phenomenological relevance (see
e.g., [11–18, 26]), it is important to develop a method to identify M for a given scattering
process and a UV completion scenario, e.g., by improving our FESR analysis taking into
account such detailed information. Also, it is in principle straightforward to extend our
FESRs to generic scattering processes. From these perspectives, our formulation provides
a basic framework for the further study of gravitational positivity bounds in four spacetime
dimensions.

Note added. After we completed the project, ref. [42] appeared on arXiv, which also
used the finite energy sum rule to give constraints on gravitational Regge amplitudes.
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A Concrete expressions of null constraints: examples

Here, we show the explicit expressions of Nk(J 2) with k = 3, 4, 5, 6 as examples.

N3 = ((J 2)− 6)(J 2)(2(J 2)− 49) , (A.1)
N4 = 2((J 2)− 38)((J 2)− 16)((J 2)− 6)(J 2) , (A.2)

N5 = ((J 2)− 6)(J 2)
(
2(J 2)3 − 193(J 2)2 + 5958(J 2)− 61560

)
, (A.3)

N6 = 2((J 2)− 6)(J 2)
(
(J 2)4 − 154(J 2)3 + 8434(J 2)2 − 194460(J 2) + 1522800

)
.

(A.4)

B Illustrative examples for IR part of null constraints

We investigate the validity of (3.6) in concrete examples. Only the case k = 3 is discussed
just for simplicity. We consider the type II closed superstring amplitude and the scalar
box amplitude in section B.1 and B.2, respectively.

B.1 Type II superstring amplitude

From the four-dimensional perspective, the ten-dimensional graviton polarized in the extra
dimensions can be regarded as a massless scalar. We consider four-point scattering of such
a four-dimensional massless scalar in type II closed superstring theory at the tree-level:

Mtype II(s, t) = − 1
π

(s2u2 + t2u2 + s2t2) Γ(−s/4)Γ(−t/4)Γ(−u/4)
Γ(1 + s/4)Γ(1 + t/4)Γ(1 + u/4) , (B.1)

which we call the type II superstring amplitude in short. Here an irrelevant proportionality
constant is omitted and we take M2

s = 4. In the regime s > 0 and t ∼ 0, this amplitude
has only s-channel poles,

ImMtype II(s, t)|s>0, t∼0 = 4(s2u2 + t2u2 + s2t2)
∞∑
j=0

( Γ(j + t/4)
Γ(1 + t/4)Γ(1 + j)

)2
δ(s− 4j) .

(B.2)

The high-energy behavior of ImMR can be captured by the Regge amplitude. We perform
the smearing procedure by considering the limit |s| → ∞ with 0 < arg(s)� 1 and fixed t
in (B.1) to observe the Regge behavior of the form,

ImMtype II(s, t)|s�4, t∼0 '
256

[Γ(1 + t/4)]2
(
s+ t/2

4

)2+t/2
. (B.3)

We evaluate the l.h.s. of (3.6) for given ε with k = 3 by using the exact form (B.2) or the
Regge amptliude (B.3). In the latter case, we use the relation,

〈s−4−kNk〉s ∼M2
s

= −
∫ ∞
M2

s /ε
ds s−5−k

k∑
n=1

ck,n(s∂t)nImM(s, t)|t=0 , (B.4)

and substitute (B.3) into the integral on the r.h.s. because the Regge behavior is a good
approximation only at high energies. The results are shown in figure 6, which shows
that (3.6) is indeed satisfied. The validity of the approximation (B.3) and the dominance
of the n = k(= 3) term in the r.h.s. of (B.4) for small ε are also demonstrated.
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Figure 6. The l.h.s. of (3.6) for the type II superstring amplitude. The numerical results obtained
by using (B.2) are expressed by the black dots. The colored lines show the numerical evaluations
based on the Regge behavior. The difference between the pink line and the blue line is that the
blue line is obtained when the subleading terms are ignored by setting c3,2 = c3,1 = 0. To obtain
the black dots, we perform the computation for given ε and our choice of ε is (1/ε) = q + (1/2)
with q ∈ N, following the mid-point prescription of [35, 36]. The plots show that (3.6) is indeed
satisfied. The solid lines converge to the series of data points for sufficiently tiny ε(. 0.1), implying
the validity of the approximation (B.3) and the dominance of the n = k(= 3) term in the r.h.s.
of (B.4) for small ε.

B.2 Scalar box diagram

Next, let us demonstrate how the relation (3.6) holds in the context without gravity. As
an illustrative example, we consider the scalar box amplitude. In particular, we consider
massless external line and massive internal line with mass m. Omitting irrelevant propor-
tionality constants, the amplitude can be evaluated as

ImMbox|s�m2, t∼0 ∝
30m4 + 5m2t+ t2 + · · ·

30m2s
+O(s−2) . (B.5)

This shows s−5−k(s∂t)nImMbox ∼ s−6−(k−n) at s � m2. We then expect the validity
of (3.6). We write M2

s = 4m2 for simplicity, where we just denote the location of the
normal threshold by M2

s . We take M2
s = 4 and numerically compute the l.h.s. of (3.6)

for given ε by using the exact form of ImMbox: the results are shown in the left panel of
figure 7. This shows that (3.6) is indeed satisfied by the scalar box amplitude.

We also compute the l.h.s. of (3.6) by using the high-energy approximation (B.5): the
results are shown in the right panel of figure 7. As comparison, the numerical results based
on the exact form of ImMbox are also shown. The results again confirm that (3.6) is indeed
satisfied. Also, the validity of the high-energy approximation (B.5) and the dominance of
n = k(= 3) in the r.h.s. of (B.4) for small ε are shown.

C FESRs for the type II superstring amplitude

We demonstrate how the type II superstring amplitude (B.1) satisfies FESRs for f , f ′, α′,
and α′′. For this purpose, by comparing (B.3) with the parameterization (2.3), we obtain
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Figure 7. The l.h.s. of (3.6) multiplied by the factor 109 for the scalar box amplitude. Numerical
results based on the exact form of Mbox are shown as the black dots in the both of the figures.
To draw these plots, We set (4/ε) = 4, 4.1, 4.2, · · · , 40 in the left figure and (4/ε) = 30, 31, · · · , 80
in the right figure. The solid lines on the right figure are obtained by using the high-energy
approximation (B.5). A difference between these lines is that we ignore the subleading terms
by setting c3,1 = c3,2 = 0 when drawing a gray line. The solid lines converge to the numerical
plots in a good approximation for sufficiently small ε, implying the validity of the high-energy
approximation (B.5) and the dominance of n = k(= 3) in the r.h.s. of (B.4) for small ε.

f(t) and α(t) of the type II superstring amplitude as

f(t) = 256
[Γ(1 + t/4)]2

(1
ε

+ t

8

)α(t)
, α(t) = 2 + t/2 . (C.1)

In particular, we have

fε2 = 256 , f ′/f = 1
4 [2γ + 2 ln(1/ε) + ε] , α′ = 1

2 , α′′ = 0 . (C.2)

Here, γ ≈ 0.5772 is the Euler–Mascheroni constant. Our interest in this section is if
these values are reproduced via FESRs such as (4.10) and (4.11) by evaluating the r.h.s.
of the equations for given ε. We parameterize ε as (1/ε) = q + (1/2) with q ∈ N, as we
did in section B. To clearly show the validity of FESRs, we choose q = 1, 2, · · · 14 in the
analysis of f while we choose q = 1, 3, 5, · · · 29 in the analysis of f ′/f and α′. We choose
q = 1, 3, 5, · · · 59 for α′′. We confirm below that the predictions made by FESRs converge
to the correct values of Regge parameters (C.2) for tiny ε as expected.

Reproduction of f and f ′/f . We use the FESRs for f , particularly (4.17) with n = 0
and n = 1 cases, to predict the value of f . The results for given ε are plotted in figure 8.
Similarly, we also compute the predictions of FESRs (4.10) and (4.11) for f ′/f : the results
are shown in figure 9. In both cases, we find a good agreement with the correct values
when taking ε to be sufficiently small.

Reproduction of α′ and α′′. We use (4.12) with (m,n) = (1, 0) and (m,n) = (2, 0),
the FESRs for α′, to predict the value of α′. The results are shown in figure 10. Similarly,
we also evaluate the prediction of FESR (4.15) for α′′: the results are shown in figure 11. In
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Figure 8. Predictions of the FESRs (4.17) with n = 0 and n = 1 for fε2 of Mtype II are plotted
as black dots on the left and the right panel, respectively. A choice of ε is (1/ε) = q + (1/2) with
q = 1, 2, · · · , 14. A correct value of fε2 is drawn as a blue dashed line. The FESR predictions
match well with the correct value for sufficiently tiny ε as expected.
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Figure 9. Predictions of the FESRs (4.10) and (4.11) for f ′/f ofMtype II are plotted as black dots
on the left and the right panel, respectively. A choice of ε is (1/ε) = q+(1/2) with q = 1, 3, 5, · · · , 29.
A correct value of f ′/f is drawn as a blue dashed line. This figure again confirms that FESR
predictions match well with the correct value when taking ε to be sufficiently as expected.

ᇱ

ୱ
ଶ

ୱ
ଶ

(* We take ୱ
ଶ

Figure 10. Predictions of the FESR (4.15) for α′ ofMtype II are plotted as black dots. A choice of
ε is (1/ε) = q + (1/2) with q = 1, 3, 5, · · · , 29. A correct value is α′ = 1/2, drawn as a blue dashed
line. The FESR predictions converge to the correct value for sufficiently tiny ε as expected.
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Figure 11. Predictions of the FESR (4.15) for α′′ ofMtype II are plotted as black dots. A choice
of ε is (1/ε) = q + (1/2) with q = 1, 3, 5, · · · , 59. A correct value is α′′ = 0, drawn as a blue dashed
line. The FESR predictions converge to the correct value for sufficiently tiny ε as expected.

both cases, we find a good agreement with the correct values when taking ε to be sufficiently
small.

Also, the results shown in figures 8, 9, and 10 demonstrate that different FESRs for
the same quantity such as eqs. (4.9) and (4.11) are consistent with each other. This implies
that the consistency condition (4.13) is also satisfied.

D Derivation of a lower bound on α′′

In this section, we derive eqs. (5.18) and (5.19).

D.1 Numerical evaluation

We first set n = 1 in (5.17) because this choice gives the best bound. The reason for this
is precisely analogous to the one mentioned in section 5.1. From now on, we determine
B1,k(γ) and choose a positive free parameter γ appropriately to maximize B1,k(γ). As in
the case of I1,k(y,J 2;β), the behavior of H1,k(y,J 2; γ) in the small-J region 0 ≤ J ≤ Jk
differs from the one in the large-J region J ≥ Jk+2. We discuss these two cases separately.
Below, we consider k = 3, 4, 5, · · · , 12.

Small J analysis. We evaluate the minimum value of H1,k(y,J 2; γ) within the region
y ∈ [ε, 1] and J ∈ {0, 2, 4, · · · Jk}. H1,k(y,J 2; γ) is dominated by the final term on the
r.h.s. of (5.16) when ε is sufficiently tiny and γ is not so small to satisfy γ & ε4+k. Then,
for such ε and γ, H1,k(y,J 2; γ) will be minimized at (y, J) = (ε, J∗,k):

Bsmall-J
1,k (γ) := min

J∈{0,2,··· ,Jk}
y∈[ε,1]

H1,k(y,J 2; γ) = H1,k(ε,J 2
∗,k; γ) . (D.1)

Assuming that (D.1) is true, we choose γ to optimize the bound. We can then confirm
that eq. (D.1) is indeed valid for such γ. Bsmall-J

1,k (γ) is a monotonically decreasing function
of γ.
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Large J analysis. Next, we consider the J ≥ Jk + 2 case. We first use inequalities
a1(y) > −268y and a2(y) > −2

(
81− 8

√
70
)
y which are valid within the region y ∈ [ε, 1]

to get

H1,k(y,J 2; γ) > −2
(
81− 8

√
70
)

(J 2)2 − 154J 2 + γy−6−kNk(J 2) . (D.2)

The r.h.s. is minimized at y = 1 because Nk(J 2) > 0 for J ≥ Jk + 2. Also, we treat J as
continuous variables for convenience. Then, we have

min
evenJ≥Jk+2

y∈[ε,1]

H1,k(y,J 2; γ) > Blarge-J
1,k (γ) , (D.3a)

Blarge-J
1,k (γ) := min

J≥Jk+2

[
−2
(
81− 8

√
70
)

(J 2)2 − 154J 2 + γNk(J 2)
]
. (D.3b)

The function −2
(
81− 8

√
70
)

(J 2)2− 154J 2 + γNk(J 2) is a polynomial of J 2 of degree k

and its minimum can be evaluated analytically. −2
(
81− 8

√
70
)

(J 2)2−154J 2 +γNk(J 2)
is a monotonically increasing function of γ, as well as Blarge-J

1,k (γ).

Derivation of B1,k(γ). We can then derive B1,k(γ) from eqs. (D.1) and (D.3) via
B1,k(γ) = min

[
Bsmall-J

1,k (γ), Blarge-J
1,k (γ)

]
. Because Bsmall-J

1,k (γ) and Blarge-J
1,k (γ) are monoton-

ically increasing and decreasing functions of γ, respectively, there exists a point γ = γexact
k

for which we have

Bsmall-J
1,k (γexact

k ) = Blarge-J
1,k (γexact

k ) . (D.4)

Consequently, B1,k(γ) is maximized at γ = γexact
k . We solve eq. (D.4) numerically for

given ε. Writing the numerical solution for given ε as γnum
k , we compute B1,k(γnum

k ). As
examples, we do the analysis for ε = 0.01, 0.02, · · · , 0.3 with k = 3, 4, · · · , 12 and we check
numerically that eq. (D.1) is indeed valid for our choice of (ε, γnum

k ).
As in the case for the evaluation of Ak, the numerical computation becomes heavier

for higher-k. Hence, for k > 12 cases, we do not perform the numerical evaluation of Bk
and instead we use the analytic expression derived in appendix D.2.

D.2 Analytic approximation

Now we derive an analytic expression of Bk which is valid at the leading order in small
ε-expansions. For this purpose, we derive an analytic expression of Blarge-J

1,k (γ) which is
valid at the leading order in small ε-expansions. When γ is sufficiently small, the minimum
of −2

(
81− 8

√
70
)

(J 2)2 − 154J 2 + γNk(J 2) is realized at J � 1. In this case, we can
approximate the function around its minimum as

−2
(
81− 8

√
70
)

(J 2)2 − 154J 2 + γNk(J 2) ' −2
(
81− 8

√
70
)

(J 2)2 + 2γ(J 2)k , (D.5)

where the r.h.s. is minimized at J 2 =
(
γk/2

(
81− 8

√
70
)) 1

2−k � 1 for sufficiently small
γ. We then obtain a simple but approximate expression of Blarge-J

1,k (γ) as

Blarge-J
1,k (γ) '

−2
(
81− 8

√
70
)

(k − 2)
k

2
(
81− 8

√
70
)

γk


2

k−2

. (D.6)
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We can also approximate Bsmall-J
1,k as

Bsmall-J
1,k ' γε−6−kNk(J 2

∗,k) . (D.7)

We approximately solve Bsmall-J
1,k (γ) = Blarge-J

1,k (γ) by using (D.6) and (D.7) to get an
approximate expression of γexact

k : the result is

γexact
k ' γapprox

k :=
2
(
81− 8

√
70
)

k

(
−Nk(J 2

∗,k)
k − 2

)−1+ 2
k

ε4+k− 12
k . (D.8)

This shows γapprox
k � ε4+k when ε is sufficiently tiny, providing an analytic understanding

why eq. (D.1) is indeed valid when choosing γ ∼ γexact
k . Substituting (D.8) into Bsmall-J

1,k (γ)
or Blarge-J

1,k (γ), we obtain an approximate expression of B1,k(γ). Finally, we get (5.19), an
approximate expression of Bk.

E Extention to general spacetime dimensions

In this section, we generalize our analysis to general spacetime dimensions D ≥ 4. We
briefly explain how the important relations which are used to derive our bounds in the main
text can be generalized to D-dimensions. We then derive our bounds (5.24) and (5.28).

As we will explain just below, the appropriate basis of partial wave expansions de-
pends on D. However, this dependence does not change the essential properties of null
constraints and FESRs while their precise expressions depend on D. Therefore, the logic
of our discussions in the main text holds even in higher dimensions D > 4.

Partial wave expansion. The appropriate basis of partial wave expansion depends on
D: it is given by the Gengenbauer polynomial P (D)

J defined in terms of the Hypergeometric
funtion 2F1,

P
(D)
J (z) = 2F1

(
−J, J +D − 3, D − 2

2 ,
1− z

2

)
. (E.1)

For D = 4, this reduces to the Legendre polynomial PJ(z). In terms of this basis, the
partial wave expansion in D-dimensions is written as

ImM(s, t) =
∑

evenJ≥0
n

(D)
J ρ

(D)
J (s)P (D)

J

(
1+ 2t

s

)
, n

(D)
J = (4π)

D
2 (D + 2J − 3)Γ(D + J − 3)
πΓ
(
D−2

2

)
Γ(J + 1)

.

(E.2)

Accordingly, we generalize the notation 〈(· · · )〉s ∼M2
s
given in (3.7) and (3.8) as

〈(· · · )〉(D)
s ∼M2

s
:=
∫ M2

s /ε

M2
s

ds
s

∑
evenJ≥0

n
(D)
J ρ

(D)
J (s) (· · · ) (E.3)

=
∫ 1

ε

dy
y

∑
evenJ≥0

n
(D)
J ρ

(D)
J (yM2

s /ε) (· · · ) , y := s

M2
s /ε

. (E.4)

We impose the unitarity condition in the form of ρ(D)
J ≥ 0.
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Null constraints. Sum rules (3.1) and (3.2) are generalized as∫ ∞
M2

s

ds
s

∑
evenJ≥0

n
(D)
J ρ

(D)
J (s)X(D)

` (t; s, J) = 0 (` = 4, 6, · · · ) , (E.5)

X
(D)
` (t; s, J) := 2s+ t

t(s+ t)
P

(D)
J (1 + 2t

s )
(ts(s+ t))`/2

− Res
x=0

 (2s+ x)(s− x)(s+ 2x)
x(t− x)(s+ x)(s− t)(s+ t+ x)

P
(D)
J (1 + 2x

s )
(xs(x+ s))`/2

 . (E.6)

As a generalization of Nk-constraints in the D = 4 case, we define the null constraints de-
rived from the sum rules 〈∂k−3

t X
(D)
4 (t; s, J)|t=0〉(D) = 0 (k = 3, 4, 5, · · · ) as

〈N (D)
k (J 2

D) s−4−k〉 = 0, where J 2
D := J(J+D−3). We impose the normalization condition

such that N (D)
k (J 2

D)→ 2(J 2
D)k in the large J limit.

The basic properties of N (D)
k do not depend on D: the value of N (D)

k (J 2
D) can be

negative for J = 0, 2, 4, · · · , J (D)
k while it is always nonnegative for J ≥ J

(D)
k + 2. We can

check that this is true at least for D = 4, 5, · · · , 12 with k = 3, 4, · · · , 24, but we expect this
will be generically correct. We can also check that the value of J (D)

k is independent of D at
least for the above mentioned values of (D, k). We introduce an even nonnegative integer
JD∗,k for which the N (D)

k (J 2
D) is minimized. Accordingly, we define J 2

D∗,k := J 2|J=JD∗,k .
Note that we have JD∗,k = J

(D)
k at least for the above mentioned values of (D, k).

Because the basic properties of N (D)
k do not depend onD, we expect that the discussion

of section 3.2 works in general D ≥ 4. Hence, we assume the generalization of (3.6):

〈N (D)
k (J 2

D)〉(D)
s ∼M2

s
≤ 0 . (E.7)

FESRs. The original FESRs (4.4) with the definitions (4.5) of S2n+1(t) are valid in
general D-dimensions. However, if we rewrite them in the form of average 〈(· · · )〉(D),
the expression (· · · ) also depends on D in general. This is because the t-dependence of
P

(D)
J (1 + 2t/s) depends on D. For instance, the FESR (4.10) for f ′ takes the following

form in D-dimensions:

f ′ = ε

M2
s

〈
y
(
−36y3 + 27y2 + 8y − 4

)
+ 2
D − 2 y(18y2 − 8)J 2

D

〉(D)

s ∼M2
s

. (E.8)

Similarly, the FESR (4.15) for α′′ is generalized to

α′′f

2 = −α′f ′ + ε2

M4
s

〈
y
[
a0(y) + a

(D)
1 (y)J 2

D + a
(D)
2 (y)J 2

D(J 2
D − 2)

]〉(D)

s ∼M2
s
, (E.9)

where

a
(D)
1 (y) = 8

(
−480Dy5 + 80(3D + 8)y4 + 324Dy3 − 81(D + 8)y2 − 28Dy − 14(D − 8)

)
(D − 2)Dy ,

(E.10a)

a
(D)
2 (y) = 16

(
80y4 − 81y2 + 14

)
(D − 2)Dy . (E.10b)
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Note that a0(y) is given by (4.16a). By contrast, we can obtain the general expressions of
eqs. (4.17) and (4.18) in D-dimensions by simply replacing 〈(· · · )〉 to 〈(· · · )〉(D):

S2n+1(0) = 〈y2n+2〉(D)
s ∼M2

s
= f

2n+ 4 (n = 0, 1, 2, · · · ) , (E.11a)

f

4 ≤ 〈y
1−k〉(D)

s ∼M2
s
≤ f

4ε1+k (k ≥ 0) . (E.11b)

This is because we have P (D)
J (1) = 1 for general D ≥ 4.

Bounds on f ′/f , α′′/α′, and c2. Now we can obtain bounds on f ′/f , α′′/α′, and
c2(0) in general D dimensions by following the logical steps explained in section 5. We
use the FESRs (E.8), (E.9), and (E.11) in addition to (E.7) and the unitarity condition
ρ

(D)
J ≥ 0. Let us parameterize bounds on f ′/f and α′′/α′ in general D dimensions as (5.22),

analogously to (5.9) and (5.18). Following the steps explained in section 5.1.1, we obtain
an analytic estimate of A(D)

k as

A(D)
k ' 5(k − 1)

(D − 2)k

−N (D)
k (J 2

D∗,k)
2k − 2

 1
k

ε−
6
k , (E.12)

which is a generalization of (5.14). Let us point out that the prefactor depends on D such
that it becomes smaller for larger D. This means that our bounds on f ′/f are improved
for larger D as expected. Technically, the D-dependence of the prefactor of (E.12) comes
from the D-dependence of the coefficient of the J 2

D term in (E.8).
Similarly, an analytic estimate (5.19) of Bk is generalized to

B(D)
k '

4
(
81− 8

√
70
)

D(D − 2)
k − 2
k

−N (D)
k (J 2

D∗,k)
k − 2

 2
k

ε−
12
k . (E.13)

Again, we find that the prefactor depends on D such that it becomes smaller for larger
D. This dependence comes from the D-dependence of the coefficient of the (J 2

D)2 term
in (E.9). Thanks to this dependence, our bounds on α′′/α′ are also improved for larger D.
By using (E.12) and (E.13), we can obtain the results (5.24) and (5.28).
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