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The Finite Frame Property
of Some Extensions of the
Pure Logic of Necessitation

Abstract. We study the finite frame property of some extensions of Fitting, Marek, and

Truszczyński’s pure logic of necessitation N. For any natural numbers m, n, we introduce

the logic N+Am,n by adding the single axiom scheme �nϕ → �mϕ and the rule
¬�ϕ

¬��ϕ

(Ros�) into N. We prove the finite frame property of N+Am,n with respect to Fitting,

Marek, and Truszczyński’s relational semantics. We also prove that for n ≥ 2, the logic

obtained by removing the rule Ros� from N+A0,n is incomplete with respect to that

semantics.
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1. Introduction

Fitting, Marek, and Truszczyński [4] introduced the pure logic of necessita-
tion N with the motivation of analyzing non-monotonic reasoning (See also
[6]). The logic N is a non-normal modal logic whose axioms are propositional
tautologies and whose inference rules are modus ponens (MP) and necessi-
tation (Nec). Namely, the logic N is obtained from classical propositional
logic by simply adding the rule Nec. Fitting, Marek, and Truszczyński also
introduced a natural Kripke-like semantics based on the notion of N-frames
and proved the finite frame property of N with respect to their semantics.1

Recently, the first author discovered a new aspect of the logic N in the
context of provability logic [5]. Let T be a recursively axiomatized consistent
extension of Peano arithmetic. We say that a Σ1 formula PrT (x) of arith-
metic is a provability predicate of T if it defines the set of all theorems of T
in the standard model of arithmetic. Then, by the Σ1-completeness, for any
sentence ϕ, if ϕ is provable in T , then PrT (�ϕ�) is also provable in T . When
we interpret the modal operator � as PrT (x), this property corresponds to
the rule Nec. In [5], it is proved that T -provable principle of � common

1 A different semantics for N from that of Fitting et al. was given and studied by Omori
and Skurt [7], where N is called M+.
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to all provability predicates of T is only Nec, that is, the logic N exactly
coincides with the provability logic of all provability predicates.

In the context of the second incompleteness theorem, it is important to
consider provability predicates satisfying some additional conditions. The
paper [5] also studied provability predicates of T satisfying the condition
D3: T proves PrT (�ϕ�) → PrT (�PrT (�ϕ�)�) for any sentence ϕ. The logic
N4 is obtained from N by adding the axiom scheme �ϕ → ��ϕ. Then, it
was proved that N4 has the finite frame property with respect to transitive
N-frames, and by using this property, it was also proved that N4 is exactly
the provability logic of all provability predicates satisfying D3. See [1] for
details on provability predicates, incompleteness theorems, and provability
logic.

The finite frame property of N4 with respect to transitive N-frames is
an analogue of the well-known fact that the normal modal logic K4 has the
finite frame property with respect to transitive Kripke frames. Of course,
many normal modal logics other than K4 also have finite frame property, but
on the other hand, it is unknown whether the normal modal logic obtained
by adding the axiom scheme Accm,n: �nϕ → �mϕ to the logic K has finite
frame property in general (cf. [2, Problem 12.1], [8, Problem 6], [9] and [10,
Problem 6.12]). In this context, the following natural question arises: does
the logic obtained by adding Accm,n to N instead of K have finite frame
property? The main purpose of the present paper is to give an answer to
this question.

In Section 3, for each m,n ∈ N, the logic NAm,n is introduced by adding
the axiom scheme Accm,n into N. We then introduce the notion of (m,n)-
accessibility of N-frames, and prove that NAm,n is indeed sound with re-
spect to (m,n)-accessible N-frames.

The logic NAm,n is expected to be complete with respect to (m,n)-
accessible N-frames, but interestingly, it is not the case in general. Actually,
in Section 4, we prove that for n ≥ 2, the logic NA0,n is incomplete with
respect to (0, n)-accessible N-frames. Here, we pay attention to the weak

variant Ros�:
¬�ϕ

¬��ϕ
of the Rosser rule Ros:

¬ϕ

¬�ϕ
which was introduced

in [5] to analyze the properties of Rosser provability predicates. We then
introduce the logic N+Am,n by adding the rule Ros� into NAm,n. In the
case of m ≥ 1 or n ≤ 1, the logics NAm,n and N+Am,n coincide, while
in the case of m = 0 and n ≥ 2, the logic N+A0,n is a proper extension
of NA0,n. We prove that N+Am,n is also sound with respect to (m,n)-
accessible N-frames.
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In Sections 5 and 6, we prove that N+Am,n is complete with respect to
(m, n)-accessible N-frames. Moreover, we prove the finite frame property of
N+Am,n, that is, N+Am,n is characterized by the class of all finite (m,n)-
accessible N-frames. Section 5 is mainly devoted to the proof of the n ≥ 1
case, and the proof of the n = 0 case is given in Section 6. As a corollary to
our proof, we obtain the decidability of N+Am,n. Finally, in Section 7, we
discuss future work.

2. Preliminaries

Let PropVar denote the set of all propositional variables. Let L� be the
language of modal propositional logic, which consists of propositional vari-
ables p, q, . . . ∈ PropVar, logical constant ⊥, propositional connectives ¬,∨,
and modal operator � with the following abbreviations:

– � := ¬⊥
– ♦ϕ := ¬�¬ϕ

– (ϕ ∧ ψ) := ¬(¬ϕ ∨ ¬ψ)

– (ϕ → ψ) := (¬ϕ ∨ ψ)

Let MF denote the set of all L�-formulae. For every ϕ ∈ MF, let Sub(ϕ)
denote the set of all the subformulae of ϕ.

Here we introduce the modal logic N, which is originally introduced by
Fitting, Marek, and Truszczyński [4]. The axioms of N are propositional

tautologies in the language L� and the inference rules of N are
ϕ ϕ → ψ

ψ

(MP) and
ϕ

�ϕ
(Nec).

Since N is non-normal, the usual Kripke semantics cannot be used with
N. Fitting, Marek, and Truszczyński introduced a Kripke-like semantics for
N with some modification on the accessibility relations.

Definition 2.1. (N-frames and N-models [4, Section 3])

• (W, {≺ϕ}ϕ∈MF) is an N-frame iff W is a non-empty set and ≺ϕ is a binary
relation on W for every ϕ ∈ MF.

• (F , V ) is an N-model based on F iff F is an N-frame and V is a function
from W × PropVar to {0, 1}.

• Let M = (W, {≺ϕ}ϕ∈MF, V ) be any N-model. We define the satisfaction
relation w �M ψ on W × MF by induction on the construction of ψ as
follows:
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– w �M p iff V (w, p) = 1.
– w �M ⊥.
– w �M ¬ψ iff w �M ψ.
– w �M ψ1 ∨ ψ2 iff (w �M ψ1 or w �M ψ2).
– w �M �ψ iff w′ �M ψ for every w′ ∈ W such that w ≺ψ w′.

• We write (F ,�) to mean an N-model M = (F , V ) with its satisfaction
relation � = �M defined as above, when we do not need to talk about V .

• ψ ∈ MF is valid in an N-model (W, {≺ϕ}ϕ∈MF,�) if w � ψ for every
w ∈ W .

• ψ ∈ MF is valid on an N-frame F if ψ is valid in every N-model (F ,�)
based on F .

Fitting, Marek, and Truszczyński proved that N is sound, complete, and
has the finite frame property with respect to the above semantics:

Theorem 2.2. ([4, Theorems 3.6 and 4.10]) For any ψ ∈ MF, the follow-
ing are equivalent:

1. N � ψ.

2. ψ is valid on every N-frame.

3. ψ is valid on every finite N-frame.

Fitting, Marek, and Truszczyński also showed that we have to look at
only a finite subset of {≺ϕ}ϕ∈MF when we are considering the truth of a
single formula ψ ∈ MF:

Proposition 2.3. ([4, Theorem 4.11]) Let ψ∈MF. Let M=(W, {≺ϕ}ϕ∈MF, V )
and M ′=(W, {≺′

ϕ}ϕ∈MFV ) be N-models such that ≺ϕ=≺′
ϕ for every �ϕ ∈

Sub(ψ), then for every w ∈ W , we have w �M ψ if and only if w �M ′ ψ.

Corollary 2.4. Let ψ∈MF. Let F=(W, {≺ϕ}ϕ∈MF) and F ′=(W, {≺′
ϕ}ϕ∈MF)

be N-frames such that ≺ϕ = ≺′
ϕ for every �ϕ ∈ Sub(ψ). Then ψ is valid

on F if and only if ψ is valid on F ′.

Recently in [5], the three extensions NR, N4, and NR4 of N were in-
troduced, and the finite frame property of these logics was proved.

Definition 2.5.

• The logic NR is obtained from N by adding the inference rule
¬ϕ

¬�ϕ
which

is called the Rosser rule (Ros).

• The logics N4 and NR4 are obtained from N and NR, respectively, by
adding the axiom scheme �ϕ → ��ϕ.
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Definition 2.6. Let ψ ∈ MF and Γ ⊆ MF. Let F = (W, {≺ϕ}ϕ∈MF) be
any N-frame.

• F is ψ-serial iff for every w ∈ W , there exists x ∈ W such that w ≺ψ x.

• F is Γ-serial iff F is ψ-serial for every �ψ ∈ Γ.

• F is serial iff F is MF-serial.

• F is ψ-transitive iff for every x, y, z ∈ W , if x ≺�ψ y and y ≺ψ z, then
x ≺ψ z.

• F is said to be Γ-transitive iff F is ψ-transitive for every ��ψ ∈ Γ.

• F is called transitive iff F is MF-transitive.

Theorem 2.7. (The finite frame property of NR [5, Theorem 3.12]) For
any ψ ∈ MF, the following are equivalent:

1. NR � ψ.

2. ψ is valid on all serial N-frames.

3. ψ is valid on all finite serial N-frames.

4. ψ is valid on all finite Sub(ψ)-serial N-frames.

Theorem 2.8. (The finite frame property of N4 [5, Theorem 3.13]) For
any ψ ∈ MF, the following are equivalent:

1. N4 � ψ.

2. ψ is valid on all transitive N-frames.

3. ψ is valid on all finite transitive N-frames.

4. ψ is valid on all finite Sub(ψ)-transitive N-frames.

Theorem 2.9. (The finite frame property of NR4 [5, Theorem 3.14]) For
any ψ ∈ MF, the following are equivalent:

1. NR4 � ψ.

2. ψ is valid on all transitive and serial N-frames.

3. ψ is valid on all finite transitive and serial N-frames.

4. ψ is valid on all finite Sub(ψ)-transitive and Sub(ψ)-serial N-frames.

By using Theorems 2.7, 2.8, and 2.9, it was proved in [5] that the logics
NR, N4, and NR4 are exactly the provability logics of all Rosser provability
predicates, all provability predicates satisfying the condition D3, and all
Rosser provability predicates satisfying D3, respectively.
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In this paper, we focus on the logic N4 and attempt to generalize The-
orem 2.8. We leave the analysis of logics with the rule Ros to future work
(See Section 7).

3. The logic NAm,n

In this section, we introduce infinitely many natural extensions NAm,n of
N, including N4, and prove the soundness of these logics with respect to
the corresponding N-frames.

Let m,n ∈ N. The logic NAm,n is obtained from N by adding the fol-
lowing axiom scheme Accm,n:

Accm,n : �nϕ → �mϕ

The logic NA2,1 is exactly N4. As a generalization of the notion of transi-
tivity, we introduce that of (m,n)-accessibility.

Definition 3.1. ((m,n)-accessibility) Let F = (W, {≺ϕ}ϕ∈MF) be any N-
frame.

• A path

wk ≺�k−1ϕ wk−1 ≺�k−2ϕ · · · ≺�ϕ w1 ≺ϕ w0

of elements of W is called a ϕ-path of length k from wk to w0.

• Let x, y ∈ W . We write x ≺k
ϕ y to mean that there is a ϕ-path of length

k from x to y. More formally:

x ≺k
ϕ y :⇔

{
x = y if k = 0,
∃w ∈ W, x ≺�k−1ϕ w ≺k−1

ϕ y if k ≥ 1.

• Let ψ ∈ MF. We say F is ψ-(m,n)-accessible iff for any x, y ∈ W , if
x ≺m

ψ y, then x ≺n
ψ y.

• Let Γ ⊆ MF. We say F is Γ-(m,n)-accessible iff F is ψ-(m,n)-accessible
for every ψ ∈ MF such that �mψ ∈ Γ.

• We say F is (m,n)-accessible iff F is MF-(m,n)-accessible.

Note that (2, 1)-accessibility coincides with transitivity. The following
proposition is proved easily.

Proposition 3.2. Let (W, {≺ϕ}ϕ∈MF,�) be any N-model, w ∈ W , ψ ∈
MF, and k ≥ 0, then w � �kψ if and only if w′ � ψ for all w′ ∈ W such
that w ≺k

ψ w′.
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We are ready to prove the soundness of NAm,n with respect to (m,n)-
accessible N-frames.

Theorem 3.3. (Soundness of NAm,n) Let ψ ∈ MF. If NAm,n � ψ, then
ψ is valid on every (m,n)-accessible N-frame.

Proof. Since N is sound with respect to N-frames by Theorem 2.2, it
suffices to show that the axiom Accm,n : �nρ → �mρ is valid on every
(m, n)-accessible N-frame.

Let (W, {≺ϕ}ϕ∈MF,�) be any N-model with an (m,n)-accessible N-
frame and ρ ∈ MF. We take any w ∈ W and show that w � �nρ → �mρ.
Suppose that w � �nρ. Let w′ ∈ W be such that w ≺m

ρ w′, then by the
(m, n)-accessibility, we have w ≺n

ρ w′. This and w � �nρ imply that w′ � ρ
by Proposition 3.2. Therefore, w � �mρ by Proposition 3.2.

4. The rule Ros� and the logic N+Am,n

We would expect the logic NAm,n to be complete with respect to (m,n)-
accessible N-frames, but let us pause here. We pay attention to the following
weak variant Ros� of the Rosser rule Ros:

Ros� :
¬�ϕ

¬��ϕ

For m,n ∈ N, the logic N+Am,n is obtained from NAm,n by adding the
rule Ros�. It is easily shown that the rule Ros� is admissible in logics which

is closed under the rules Nec and
ϕ → ψ

�ϕ → �ψ
(M). Our logic NAm,n is not

necessarily closed under the rule M, but we first show that the rule Ros� is
trivially admissible in many cases.

Proposition 4.1. If m ≥ 1, then NAm,n � ¬�ψ for all ψ ∈ MF.

Proof. Let F = (W, {≺ϕ}ϕ∈MF) be the N-frame defined as follows:

• W = {a}.

• ≺ϕ= ∅ for all ϕ ∈ MF.

Since there is no x ∈ W such that a ≺m
ϕ x for every ϕ ∈ MF, the frame F is

trivially (m,n)-accessible. For every ψ ∈ MF, since there is no x ∈ W such
that a ≺ψ x, we have that �ψ is valid on F . By Theorem 3.3, we conclude
that NAm,n � ¬�ψ.
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Proposition 4.2. Suppose m ≥ 1 or n ≤ 1. Then, the rule Ros� is admis-
sible in NAm,n. Consequently, we have N+Am,n = NAm,n.

Proof. We distinguish the following three cases:

• Case 1: m ≥ 1.
The admissibility of Ros� in NAm,n immediately follows from Proposition
4.1.

• Case 2: m = 0 and n = 0.
Since NA0,0 = N = NA1,1, the admissibility of Ros� in NA0,0 is shown
in Case 1.

• Case 3: m = 0 and n = 1.
Since NA0,1 � ¬�ϕ → ¬��ϕ, the rule Ros� is also trivially admissible
in NA0,1.

Thus, the remaining case is m = 0 and n ≥ 2. The following proposition
shows that in this case, Ros� is an important rule with respect to (0, n)-
accessible N-frames.

Proposition 4.3. Let ψ ∈ MF and n ≥ 2.

1. If ψ is not of the form �n−1ϕ for every ϕ ∈ MF, then there is a (0, n)-
accessible N-frame M in which ¬�ψ is not valid.

2. If ¬�nψ is valid in a (0, n)-accessible N-model M = (W, {≺ϕ}ϕ∈MF, V ),
then so is ¬�n+1ψ.

Proof. 1. Assume that ψ is not of the form �n−1ϕ for every ϕ ∈ MF. We
define the N-model M = (W, {≺ϕ}ϕ∈MF, V ) as follows:

• W = {a, b};

• For w1, w2 ∈ W and ϕ ∈ MF, w1 ≺ϕ w2 iff (w1 �= a or ϕ �= ψ);

• V is arbitrary.

The model M is visualized in Figure 1.
Here, a �M �ψ since there is no w ∈ W such that a ≺ψ w. So it suffices

to show that (W, {≺ϕ}ϕ∈MF) is (0, n)-accessible. Let ϕ ∈ MF. It is easy to
see that b ≺n

ϕ b. Also, we have a ≺�n−1ϕ b because ψ �= �n−1ϕ. Thus,

a ≺�n−1ϕ b ≺�n−2ϕ b ≺�n−3ϕ · · · ≺�ϕ b ≺ϕ a.

Therefore, we get a ≺n
ϕ a. We have proved that (W, {≺ϕ}ϕ∈MF) is (0, n)-

accessible.
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Figure 1. The model M

2. We prove the contrapositive. Assume that w∗ �M �n+1ψ for some
w∗ ∈ W . Here, (0, n)-accessibility of (W, {≺ϕ}ϕ∈MF) implies that w∗ ≺n

ϕ w∗

for any ϕ ∈ MF. Then, w∗ ≺n
�ψ w∗ implies that there are w1, w2, . . . , wn−1 ∈

W such that:

w∗ ≺�nψ wn−1 ≺�n−1ψ · · · ≺�2ψ w1 ≺�ψ w∗.

Here, w∗ �M �n+1ψ and w∗ ≺�nψ wn−1 imply that wn−1 �M �nψ. There-
fore, ¬�nψ is also not valid in M .

We obtain the following refinement of Theorem 3.3.

Theorem 4.4. (Soundness of N+Am,n) Let ψ ∈ MF. If N+Am,n � ψ,
then ψ is valid on every (m,n)-accessible N-frame.

Proof. By Theorem 3.3 and Proposition 4.2, it suffices to show the theorem
for the case m = 0 and n ≥ 2. We prove the theorem by induction on the
length of proofs in N+A0,n. By the proof of Theorem 3.3, it suffices to
show that if N+A0,n � ¬�ψ and ¬�ψ is valid on all (0, n)-accessible N-
frames, then ¬��ψ is also valid on all (0, n)-accessible N-frames. This is an
immediate consequence of Proposition 4.3.

We have NA0,n � ¬�n⊥ because �n⊥ → ⊥ is an instance of Acc0,n. By
Theorem 3.3, the formula ¬�n⊥ is valid on all (0, n)-accessible N-frames.
Then, by Proposition 4.3, we obtain that the formula ¬�n+1⊥ is also valid on
all (0, n)-accessible N-frames. On the other hand, the following proposition
shows that ¬�n+1⊥ is not provable in NA0,n for n ≥ 2.

Proposition 4.5. For n ≥ 2, NA0,n � ¬�n+1⊥. Consequently, NA0,n �

N+A0,n.

Proof. It suffices to construct an N-model in which Acc0,n : �nψ → ψ is
valid for every ψ ∈ MF but ¬�n+1⊥ is not. Let M = ({a, b} , {≺ϕ}ϕ∈MF, V )
be the N-model defined as follows:

• V (a, p) = V (b, p) = 1 for any p ∈ PropVar;
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Figure 2. The model M

• b ≺ϕ w for any ϕ ∈ MF and any w ∈ {a, b};

• a �≺ϕ a for any ϕ ∈ MF;

• If ϕ is not of the form �n−1ψ, then a �≺ϕ b;

• a ≺�n−1ϕ b is defined by induction on ϕ:

– a ≺�n−1⊥ b.
– a �≺�n−1p b for any p ∈ PropVar.
– a ≺�n−1¬ψ b iff a �≺�n−1ψ b.
– a ≺�n−1(ψ1∨ψ2) b iff a ≺�n−1ψ1 b and a ≺�n−1ψ2 b.
– a ≺�n−1�ψ b iff a ≺ψ b.

Note that the definition of a ≺ϕ b makes sense because n ≥ 2. The model
M is visualized in Figure 2.

The dashed line in the figure indicates that a ≺�n−1ψ b holds not neces-
sarily for all ψ. The following claim concerns the condition for a ≺�n−1ψ b
to be held.

Claim. For any ψ ∈ MF, a ≺�n−1ψ b if and only if a � ψ.

Proof of the claim. We prove the claim by induction on the construc-
tion of ψ.

• a ≺�n−1⊥ b and a � ⊥.

• a �≺�n−1p b and a � p for any p ∈ PropVar.

• a ≺�n−1¬ψ′ b ⇐⇒ a �≺�n−1ψ′ b

⇐⇒ a � ψ′ (by I.H.)

⇐⇒ a � ¬ψ′.
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• a ≺�n−1(ψ1∨ψ2) b ⇐⇒ a ≺�n−1ψ1 b & a ≺�n−1ψ2 b

⇐⇒ a � ψ1 & a � ψ2 (by I.H.)

⇐⇒ a � ψ1 ∨ ψ2.

• We shall prove a ≺�n−1�ψ′ b ⇔ a � �ψ′ in both directions.

(⇒) Assume that a ≺�n−1�ψ′ b, then a ≺ψ′ b by the definition of ≺�n−1�ψ′ .
Here, a ≺ψ′ b implies that ψ′ should be of the form �n−1ψ′′. Now that
a ≺�n−1ψ′′ b, then a � ψ′′ by the induction hypothesis. Recall that
b ≺ϕ w for any ϕ ∈ MF and any w ∈ {a, b}, then we have a ≺n

ψ′′ a
because the following path exists:

a ≺�n−1ψ′′ b ≺�n−2ψ′′ b ≺�n−2ψ′′ · · · ≺�ψ′′ b ≺ψ′′ a.

This implies that a � �nψ′′, that is, a � �ψ′.
(⇐) Assume that a � �ψ′, then a ≺ψ′ b (and b � ψ′). This implies that

a ≺�n−1�ψ′ b.

Here, a �≺⊥ b implies a �≺�n⊥ b by the definition of ≺�n⊥. Since there is
no w ∈ W such that a ≺�n⊥ w, we obtain a � �n+1⊥. Therefore, ¬�n+1⊥
is not valid in M .

Now it suffices to show that w � �nψ → ψ for every ψ ∈ MF and
w ∈ {a, b}. Take any ψ ∈ MF. We shall first assume that a � ψ and show
that a � �nψ. Here, a � ψ implies that a ≺�n−1ψ b by the claim, then
a ≺�2n−1ψ b by the definition of a ≺ϕ b, so a � �nψ by the claim. Now
we shall show that b � �nψ → ψ. Since b ≺ϕ b holds for any ϕ ∈ MF, we
have b ≺n

ψ b. Hence, b � �nψ trivially implies b � ψ, and so b � �nψ → ψ
holds.

Corollary 4.6. For n ≥ 2, the logic NA0,n is incomplete with respect to
(0, n)-accessible N-frames.

5. The finite frame property of N+Am,n

In the following two sections, we prove the completeness and the finite frame
property of the logics N+Am,n. More precisely, we prove the following main
theorem of the present paper.

Theorem 5.1. For any ψ ∈ MF, the following are equivalent:

1. N+Am,n � ψ.

2. ψ is valid on every (m,n)-accessible N-frame.
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3. ψ is valid on every finite (m,n)-accessible N-frame.

4. ψ is valid on every finite Sub(ψ)-(m,n)-accessible N-frame.

Here, (1 ⇒ 2) immediately follows from Theorem 4.4, and (2 ⇒ 3) is
obvious. We prove the implication (3 ⇒ 4) in the following Lemma 5.2. The
proof of the implication (4 ⇒ 1) is lengthy, and so we divide it into two
parts. The first part of the proof is the case of n ≥ 1 and is proved in this
section. We prove the second part, which is the case of n = 0, in the next
section. We first prove the implication (3 ⇒ 4).

Lemma 5.2. ((3 ⇒ 4) of Theorem 5.1) For any ψ ∈ MF, if ψ is valid
on all finite (m,n)-accessible N-frames, then ψ is also valid on all finite
Sub(ψ)-(m,n)-accessible N-frames.

Proof. Assume that ψ is valid on all finite (m,n)-accessible N-frames. Let
F = (W, {≺ϕ}ϕ∈MF) be any finite Sub(ψ)-(m,n)-accessible N-frame. We
would like to prove that ψ is valid on F . We define F∗ = (W, {≺∗

ϕ}ϕ∈MF)
as follows:

(i) if �ϕ ∈ Sub(ψ), then x ≺∗
ϕ y iff x ≺ϕ y;

(ii) if ϕ ∈ Sub(ψ), �ϕ /∈ Sub(ψ), and n > m, then x ≺∗
ϕ y;

(iii) if ϕ ∈ Sub(ψ), �ϕ /∈ Sub(ψ), and m > n, then x �≺∗
ϕ y;

(iv) otherwise, x ≺∗
ϕ y iff x = y.

We shall show that F∗ is (m,n)-accessible; then ψ is valid on F∗ by the
assumption. Since ≺ϕ=≺∗

ϕ for every �ϕ ∈ Sub(ψ), by Proposition 2.4, we
conclude that ψ is also valid on F .

Take any ρ ∈ MF and any x0, x1, . . . , xm−1 ∈ W such that:

xm ≺∗
�m−1ρ xm−1 ≺∗

�m−2ρ · · · ≺∗
�ρ x1 ≺∗

ρ x0. (1)

Then we would like to show that xm ≺∗n
ρ x0.

If ρ /∈ Sub(ψ), then (1) and (iv) imply that xm = xm−1 = · · · = x0.
Here, (iv) also implies that xm ≺∗

�iρ xm for any i ≥ 0. Then it follows that
xm ≺∗n

ρ x0 because the following path exists:

xm ≺∗
�n−1ρ xm ≺∗

�n−2ρ · · · ≺∗
�ρ xm ≺∗

ρ xm = x0.

So we may assume that ρ ∈ Sub(ψ). Let k = max
{
i | �iρ ∈ Sub(ψ)

}
. We

distinguish the following two cases.

Case 1: k ≥ m.
Since �mρ ∈ Sub(ψ), (1) and (i) imply that:

xm ≺�m−1ρ xm−1 ≺�m−2ρ · · · ≺�ρ x1 ≺ρ x0.
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Then by the (m,n)-accessibility of F , there are y0, y1, . . . , yn−1 ∈ W such
that:

xm ≺�n−1ρ yn−1 ≺�n−2ρ · · · ≺�ρ y1 ≺ρ y0 = x0. (2)
If k ≥ n, we have �nρ ∈ Sub(ψ), and then (2) and (i) imply that xm ≺∗n

ρ x0.
So we may assume that n > k.

• Since �k+1ρ /∈ Sub(ψ), (iv) implies that

xm ≺∗
�n−1ρ xm ≺∗

�n−2ρ · · · ≺∗
�k+1ρ xm.

• Since �kρ ∈ Sub(ψ), (2) and (i) imply that

yk ≺∗
�k−1ρ yk−1 ≺∗

�k−2ρ · · · ≺∗
�ρ y1 ≺∗

ρ x0.

• Since �k+1ρ /∈ Sub(ψ), �kρ ∈ Sub(ψ), and n > (k ≥ ) m, (ii) implies
that xm ≺∗

�kρ yk.

Therefore, it follows that xm ≺∗n
ρ x0 by combining these three paths.

Case 2: m > k.
If m > n, then (iii) implies that x �≺∗

�kρ y for any x, y ∈ W . This
contradicts xk+1 ≺∗

�kρ xk from (1). Therefore, we have n ≥ m. Now that
n ≥ m > k, then (iv) implies that xm ≺∗

�iρ xm for any i ≥ m. Therefore, it
follows that xm ≺∗n

ρ x0 because the following path exists:

xm ≺∗
�n−1ρ xm ≺∗

�n−2ρ · · · ≺∗
�mρ xm ≺∗

�m−1ρ xm−1 ≺∗
�m−2ρ · · · ≺∗

�ρ x1 ≺∗
ρ x0.

Next, we prove the implication (4 ⇒ 1). To do that, given any ψ ∈ MF
such that N+Am,n � ψ, we need to construct a finite (m,n)-accessible model
that falsifies ψ.

Definition 5.3. Let ψ ∈ MF and X ⊆ MF.

(1) We let ∼ψ := ψ′ if ψ is of the form ¬ψ′, and ∼ψ := ¬ψ otherwise.

(2) Sub(ψ) := Sub(ψ) ∪ {∼ρ | ρ ∈ Sub(ψ)}.

Note that Sub(ψ) is finite.

(3) We say X is N+Am,n-consistent iff N+Am,n � ¬ ∧
X.

(4) We say X is ψ-maximal iff for every ρ ∈ Sub(ψ) either ρ ∈ X or ∼ρ ∈ X.

(5) We define the N-model M∗
m,n(ψ) = (W ∗, {≺∗

ϕ}ϕ∈MF, V ∗) as follows:

• W ∗ :=
{

X ⊆ Sub(ψ) | X is ψ-maximal N+Am,n-consistent
}

;
• For every X,Y ∈ W , X ≺∗

ϕ Y :⇐⇒ �ϕ /∈ X or ϕ ∈ Y ;
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• For every X ∈ W and every p ∈ PropVar, V ∗(X, p) = 1 :⇐⇒ p ∈ X.

As usual, it is shown that every N+Am,n-consistent subset of Sub(ψ) can
be extended to a ψ-maximal N+Am,n-consistent set. See [3] for the usual
arguments proving completeness and finite frame property of normal modal
logics. The following lemma is proved in the same way as in [5, Claim 3.17].

Lemma 5.4. (Truth Lemma) Let ψ ∈ MF and (W ∗, {≺∗
ϕ}ϕ∈MF, V ∗) =

M∗
m,n(ψ). Then for any ρ ∈ Sub(ψ) and any X ∈ W ∗, X �M∗

m,n(ψ) ρ iff
ρ ∈ X.

Now we are ready to prove the implication (4 ⇒ 1) for n ≥ 1.

Lemma 5.5. ((4 ⇒ 1) of Theorem 5.1 (n ≥ 1)) Let n ≥ 1. For any ψ ∈ MF,
if ψ is valid on all finite Sub(ψ)-(m,n)-accessible N-frames, then N+Am,n �
ψ.

Proof. We prove the contrapositive. Assume that N+Am,n � ψ, then we
would like to construct a finite Sub(ψ)-(m,n)-accessible N-frame on which
ψ is not valid.

Let (W ∗, {≺∗
ϕ}ϕ∈MF,�∗) = M∗

m,n(ψ). Then N+Am,n � ψ implies that
{∼ψ} is N+Am,n-consistent. So, we find some Xψ ∈ W ∗ such that ∼ψ ∈
Xψ. Here, ψ /∈ Xψ. Therefore by Truth Lemma, Xψ �

∗ ψ, which implies
that ψ is not valid on F∗ = (W ∗, {≺∗

ϕ}ϕ∈MF).
Now it suffices to show that F∗ is Sub(ψ)-(m,n)-accessible. Take any

�mρ ∈ Sub(ψ) and any x0, x1, . . . , xm−1, xm ∈ W ∗ such that:

xm ≺∗
�m−1ρ xm−1 ≺∗

�m−2ρ · · · ≺∗
�ρ x1 ≺∗

ρ x0. (3)

We would like to show that xm ≺∗n
ρ x0. We distinguish the following two

cases.
Case 1: �nρ ∈ xm.

Since N+Am,n � �nρ → �mρ, it is shown that �mρ ∈ xm, and so
xm �∗ �mρ by Truth Lemma. This and (3) imply that for every i ≤ m,
xi �∗ �iρ, and then �iρ ∈ xi by Truth Lemma. Hence for every i ≤ m and
any y ∈ W ∗, we obtain

y ≺∗
�iρ xi (4)

by the definition of ≺∗
�iρ. We distinguish the following three cases.

Case 1.1: m ≥ n.
We have xm ≺∗

�n−1ρ xn−1 by (4). By (3), we obtain that xm ≺∗n
ρ x0

because the following path exists:

xm ≺∗
�n−1ρ xn−1 ≺∗

�n−2ρ · · · ≺∗
�ρ x1 ≺∗

ρ x0.



The Finite Frame Property...

Case 1.2: m = n − 1.
By (4), we have xm ≺∗

�mρ xm. Then (3) implies that xm ≺∗n
ρ x0 since

the following path exists:

xm ≺∗
�n−1ρ xm ≺∗

�m−1ρ · · · ≺∗
�ρ x1 ≺∗

ρ x0.

Case 1.3: n > m + 1.
Suppose, towards a contradiction, that {�iρ} is N+Am,n-inconsistent for

some i with m + 1 ≤ i < n. Then N+Am,n � ¬�iρ, and thus N+Am,n �
¬�nρ by using the rule Ros� for n − i times. This contradicts the fact
�nρ ∈ xm.

We have proved that for each i with m + 1 ≤ i < n, the set {�iρ}
is N+Am,n-consistent. Thus, we obtain ym+1, . . . , yn−1 ∈ W ∗ such that
�iρ ∈ yi for each i. By the definition of ≺∗

�iρ, we have

xm ≺∗
�n−1ρ yn−1 ≺∗

�n−2ρ · · · ≺∗
�m+1ρ ym+1. (5)

Then since ym+1 ≺∗
�mρ xm by (4), it follows that xm ≺∗n

ρ x0 by connecting
the paths (5) and (3).
Case 2: �nρ /∈ xm.

By the definition of ≺∗
�n−1ρ, for any y ∈ W ∗,

xm ≺∗
�n−1ρ y. (6)

We distinguish the following three cases.
Case 2.1: m ≥ n.

(6) and (3) imply that:

xm ≺∗
�n−1ρ xn−1 ≺∗

�n−2ρ · · · ≺∗
�ρ x1 ≺∗

ρ x0.

Case 2.2: m = n − 1.
(6) and (3) imply that:

xm ≺∗
�n−1ρ xm ≺∗

�m−1ρ · · · ≺∗
�ρ x1 ≺∗

ρ x0.

Case 2.3: n > m + 1.
We shall find some ym+1, ym+2, . . . , yn−1 ∈ W ∗ such that:

yn−1 ≺∗
�n−2ρ · · · ≺∗

�m+2ρ ym+2 ≺∗
�m+1ρ ym+1 ≺∗

�mρ xm. (7)

Then it follows that xm ≺∗n
ρ x0 by connecting the two paths (7) and (3)

with xm ≺∗
�n−1ρ yn−1 by (6).

Let k = max
{

j | �jρ ∈ Sub(ψ)
}

. Here, k = max
{
j|�jρ ∈ Sub(ψ)

} ≥
m. We distinguish the following two cases.
Case 2.3.1: k ≥ n.
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Suppose, towards a contradiction, that the set
{¬�iρ

}
is N+Am,n-inconsi

stent for some i with m+1 ≤ i < n. Then, N+Am,n � �iρ. By applying the
rule Nec for n − i times, we obtain N+Am,n � �nρ. Here, k ≥ n implies
that �nρ ∈ Sub(ψ). This contradicts the fact �nρ /∈ xm.

We have shown that
{¬�iρ

}
is N+Am,n-consistent for any i with m+1 ≤

i < n, then there are ym+1, ym+2, . . . , yn−1 ∈ W ∗ such that ¬�iρ ∈ yi for
each i. Since �iρ /∈ yi, we have yi ≺∗

�i−1ρ y for any y ∈ W ∗. Therefore, the
path (7) exists.
Case 2.3.2: n > k ≥ m.

Here, for every i > k, we have �iρ /∈ Sub(ψ), so �iρ /∈ xm. This implies
that xm ≺∗

�i−1ρ y for any y ∈ W ∗. So we have

xm ≺∗
�n−2ρ xm ≺∗

�n−3ρ · · · ≺∗
�k+1ρ xm ≺∗

�kρ y

for any y ∈ W ∗. If k = m, then the path (7) exists by letting y = xm. So,
we may assume k ≥ m + 1. It suffices to show that the rest of the path (7)
exists, that is, it suffices to show that there are ym+1, ym+2, . . . , yk ∈ W ∗

such that:

yk ≺∗
�k−1ρ · · · ≺∗

�m+2ρ ym+2 ≺∗
�m+1ρ ym+1 ≺∗

�mρ xm. (8)

We distinguish the following two cases.
Case 2.3.2.1: �mρ /∈ xm.

Suppose, towards a contradiction, that the set
{¬�iρ

}
is N+Am,n-incon

sistent for some i with m+1 ≤ i ≤ k. We have N+Am,n � �iρ. By applying
Nec for n − i times, we obtain N+Am,n � �nρ. Since N+Am,n � �nρ →
�mρ, we have NAm,n � �mρ. This contradicts �mρ /∈ xm.

We have proved that the set
{¬�iρ

}
is N+Am,n-consistent for any i with

m+1 ≤ i ≤ k, then there are ym+1, ym+2, . . . , yk ∈ W ∗ such that ¬�iρ ∈ yi.
Since �iρ /∈ yi, we have yi ≺∗

�i−1ρ y for any y ∈ W ∗. Therefore, the path
(8) exists.
Case 2.3.2.2: �mρ ∈ xm.

We have that y ≺∗
�mρ xm for any y ∈ W ∗. We define the number h as

follows:

h = min
({

j | j ≥ m + 1 and
{
�jρ

}
is N+Am,n-inconsistent

} ∪ {k + 1})
.

For every i with m+1 ≤ i ≤ h− 1, the set
{
�iρ

}
is N+Am,n-consistent,

and thus there are ym+1, . . . , yh−1 ∈ W ∗ such that �iρ ∈ yi for every i with
m + 1 ≤ i ≤ h − 1. Hence by the definition of ≺∗

�i−1ρ, we obtain

yh−1 ≺∗
�h−2ρ yh−2 ≺∗

�h−3ρ · · · ≺∗
�m+1ρ ym+1 ≺∗

�mρ xm. (9)
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If h = k + 1, we obtain that the path (8) exists.
We may assume that k ≥ h. Then it follows that N+Am,n � ¬�hρ. For

every i ≥ h, we obtain N+Am,n � ¬�iρ by applying Ros� for i − h times.
Then we have �iρ /∈ xm, and thus

xm ≺∗
�k−1ρ xm ≺∗

�k−2ρ · · · ≺∗
�hρ xm ≺∗

�h−1ρ yh−1.

By combining this with the path (9), we obtain that the path (8) exists.
This concludes our proof of the Sub(ψ)-(m,n)-accessibility of F∗.

6. The finite frame property of N+Am,n , continued

This section is a continuation of the proof of our main theorem. In particular,
we prove the remaining case n = 0 of the implication (4 ⇒ 1) of Theorem
5.1. We note that NAm,0 = N+Am,0 by Proposition 4.2. So, we prove that
for any ψ ∈ MF, if NAm,0 � ψ, then there exists a finite Sub(ψ)-(m, 0)-
accessible N-frame on which ψ is not valid. We first prove the case m = 1
since it is easier than the other cases.

Lemma 6.1. ((4 ⇒ 1) of Theorem 5.1 (m = 1, n = 0)) Take any ψ ∈ MF
such that NA1,0 � ψ, then there is a finite Sub(ψ)-(1, 0)-accessible N-model
that falsifies ψ.

Proof. Suppose that NA1,0 � ψ, then {∼ψ} is NA1,0-consistent. So there
is ψ-maximal NA1,0-consistent set wψ such that ∼ψ ∈ wψ. We let M =
({wψ} , {≺ϕ}ϕ∈MF, V ) be an N-model such that

• wψ ≺ϕ wψ iff (�ϕ /∈ wψ or ϕ ∈ wψ);

• V (wψ, p) = 1 iff p ∈ wψ.

The N-model M is clearly finite and Sub(ψ)-(1, 0)-accessible, so it suffices
to show that wψ � ψ.

Claim. For any ρ ∈ Sub(ψ), ρ ∈ wψ if and only if wψ � ρ.

Proof of the claim. We use an induction on the construction of ρ.

• If ρ = p ∈ PropVar, then wψ � p ⇔ V (wψ, p) = 1 ⇔ p ∈ wψ.

• If ρ = �ρ′, then we shall prove the claim in both directions.

(⇒) Suppose that wψ � �ρ′, then wψ ≺ρ′ wψ � ρ′, so ρ′ /∈ wψ by the
induction hypothesis. This and wψ ≺ρ′ wψ imply �ρ′ /∈ wψ by the
definition of ≺ρ′ .
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(⇐) Suppose that wψ � �ρ′, then either wψ �≺ρ′ wψ or wψ ≺ρ′ wψ � ρ′. If
wψ �≺ρ′ wψ, then �ρ′ ∈ wψ by the definition of ≺ρ′ . Otherwise, wψ �
ρ′ implies ρ′ ∈ wψ by the induction hypothesis. This and NA1,0 �
ρ′ → �ρ′ imply �ρ′ ∈ wψ by the maximal consistency of wψ.

• The remaining cases (¬,∨) are trivial by the induction hypothesis.

By the NA1,0-consistency of wψ, ∼ψ ∈ wψ implies ψ /∈ wψ. Therefore,
wψ � ψ by the claim.

However, the proof of (4 ⇒ 1) of Theorem 5.1 for m ≥ 2 and n = 0
is much more complicated. Due to the nature of (m, 0)-accessibility, we
construct a finite (m, 0)-accessible N-model falsifying ψ depending on the
shape of ψ, which is described and analyzed with the notations introduced
in the following definitions.

Definition 6.2. Let ϕ ∈ MF. We define the natural numbers deg*(ϕ) and
degOM(ϕ) by induction on the construction of ϕ as follows:

• deg*(p) = degOM(p) := 0 for p ∈ PropVar;

• deg*(¬ψ) := deg*(ψ), degOM(¬ψ) := 0;

• deg*(ψ1 ∨ ψ2) := max(deg*(ψ1), deg*(ψ2)), degOM(ψ1 ∨ ψ2) := 0;

• deg*(�ψ) :=

{
deg*(�ρ) if ψ = �ρ for some ρ,

deg*(ψ) + 1 otherwise,
degOM(�ψ) := degOM(ψ) + 1.

Here, deg*(ϕ) is a variant of modal degree in which consecutive boxes
make up a single degree regardless of their number, and degOM(ϕ) represents
the number of the outer most boxes. So, degOM(ϕ) > 0 if and only if ϕ is
of the form �ψ. Consider for example ϕ = �(�p ∨ ��q), then deg(ϕ) = 3,
deg*(ϕ) = 2, and degOM(ϕ) = 1.

Definition 6.3. Let ϕ ∈ MF and 0 ≤ d ≤ deg*(ϕ). We let

Subdeg∗(ϕ, d) :=
{
ψ ∈ Sub(ϕ) | deg*(ψ) = d

}
,

Subdeg∗
≤(ϕ, d) :=

⋃
0≤i≤d

Subdeg∗(ϕ, i).

Consider for example ϕ = �(�p ∨ ��q), then Subdeg∗(ϕ, 0) = {p, q},
Subdeg∗(ϕ, 1) = {(�p ∨ ��q),�p,��q, �q}, and Subdeg∗(ϕ, 2) =
{�(�p ∨ ��q)}. Note that Subdeg∗

≤(ϕ, deg*(ϕ)) = Sub(ϕ).



The Finite Frame Property...

Definition 6.4. For any ϕ ∈ MF such that degOM(ϕ) > 0, it is easy to see
that there is a unique ψ ∈ MF such that deg*(ψ) = deg*(ϕ)−1, degOM(ψ) =
0, and ϕ = �degOM(ϕ)ψ. We will call such a ψ the root of ϕ and write it as
Root(ϕ).

In other words, Root(ϕ) is obtained from ϕ with degOM(ϕ) > 0 by
removing all the outer most boxes. We have degOM(Root(ϕ)) = 0 and
deg*(Root(ϕ)) = deg*(ϕ)−1. For example, Root(�(�p∨��q)) = �p∨��q,
and Root(��q) = q.

Definition 6.5. Let ϕ ∈ MF and 1 ≤ d ≤ deg*(ϕ). We say λ ∈ Subdeg∗(ϕ, d)
is a d-lord on ϕ if degOM(λ) > 0 and �λ /∈ Subdeg∗(ϕ, d). We let Lord(ϕ, d)
be the set of all d-lords on ϕ. That is,

Lord(ϕ, d) = {λ ∈ Subdeg∗(ϕ, d) | degOM(λ) > 0,�λ /∈ Subdeg∗(ϕ, d)} .

Consider for example ϕ = �(�p ∨ ��q), then Lord(ϕ, 1) = {�p,��q}
and Lord(ϕ, 2) = {ϕ}.

Definition 6.6. Let λ ∈ MF be such that degOM(λ) > 0. We say ρ is a
liege of λ if degOM(ρ) > 0 and λ = �iρ for some i > 0. We let Liege(λ) be
the set of all lieges of λ.

If ρ is a liege of λ, then deg*(ρ) = deg*(λ), Root(ρ) = Root(λ), and
0 < degOM(ρ) < degOM(λ). We have

Liege(λ) =
{
�i Root(λ) | 0 < i < degOM(λ)

}
.

For example, Liege(�p) = ∅, Liege(��q) = {�q}, and Liege(�3r) =
{��r,�r}.

We shall note a couple of properties on d-lords and their lieges:

• A root is neither a lord nor a liege.

• Let λ be a d-lord, then Subdeg∗(λ, d) = {λ} ∪ Liege(λ).

• For any d-lords λ1 and λ2 on ϕ, Root(λ1) = Root(λ2) if and only if
λ1 = λ2. Therefore, λ1 �= λ2 implies Liege(λ1) ∩ Liege(λ2) = ∅.

Now we shall construct a finite (m, 0)-accessible N-model falsifying ψ by
induction on deg*(ψ); we start with a model with a single world and no
accessibility relations to falsify propositional formulae, then we repeatedly
add only the necessary worlds and relations to falsify formulae with more
modal degree. We introduce a notation for finite N-models so that we can
easily state that a model contains only the desired relations.
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Definition 6.7. For any finite set W and any finite R ⊆ W × MF × W ,
we write 〈W,R〉 to mean the finite N-frame (W, {≺ϕ}ϕ∈MF) where for any
ϕ ∈ MF and w,w′ ∈ W ,

w ≺ϕ w′ ⇐⇒ (w,ϕ,w′) ∈ R.

For the sake of brevity, we write (w ≺ϕ w′) ∈ R to mean (w, ϕ, w′) ∈ R. We
also write 〈W,R, V 〉 to mean a finite N-model in the same manner.

For example, 〈W, ∅〉 is the finite N-frame (W, {≺ϕ}ϕ∈MF) where w �≺∗
ϕ w′

for all ϕ ∈ MF and w,w′ ∈ W .
We are ready to prove our theorem on the existence of falsifying N-

models.

Theorem 6.8. Let m ≥ 2. Take any ϕ ∈ MF, any ψ ∈ Sub(ϕ) such that
NAm,0 � ψ, and any ϕ-maximal NAm,0-consistent set wψ such that ∼ψ ∈
wψ. For each 0 ≤ d ≤ deg*(ψ), there is a finite N-model Mψ,d = 〈Wψ,d, Rψ,

d, Vψ,d〉 such that wψ ∈ Wψ,d and:

(a) wψ � ρ if and only if ρ ∈ wψ for any ρ ∈ Subdeg∗
≤(ψ, d);

(b) 〈Wψ,d, Rψ,d〉 is Sub(ϕ)-(m, 0)-accessible;

(c) if d ≥ 1, then for any (w ≺ρ w′) ∈ Rψ,d, either deg*(ρ) < d or ρ is a
liege of some d-lord on ψ, that is, ρ ∈ ⋃

λ∈Lord(ψ,d) Liege(λ).

Proof. We prove the theorem by induction on deg*(ψ) (we will refer to
this induction as Induction 1).

Suppose first that deg*(ψ) = 0 and take any 0 ≤ d ≤ deg*(ψ), then
d = 0. We let Mψ,0 = 〈{wψ} , ∅, V 〉, where V (wψ, p) = 1 :⇔ p ∈ wψ for
every p ∈ PropVar. This model is clearly finite, and (b) and (c) trivially
hold since Rψ,0 = ∅ and d = 0. For (a), take any ρ ∈ Subdeg∗

≤(ψ, 0),
then d = 0 implies that deg*(ρ) = 0. It easily follows from the ϕ-maximal
NAm,0-consistency of wψ that wψ � ρ if and only if ρ ∈ wψ.

Suppose next that deg*(ψ) > 0 and the theorem holds for any ψ′ ∈
Sub(ϕ) such that 0 ≤ deg*(ψ′) < deg*(ψ). We prove the theorem for ψ by
induction on d (Induction 2).

Suppose that d = 0, then we let Mψ,0 = 〈{wψ} , ∅, V 〉, where V (wψ, p) =
1 :⇔ p ∈ wψ for every p ∈ PropVar. It is verified that Mψ,0 satisfies (a), (b)
and (c) in the same way as above.

Now suppose that d > 0 and the theorem holds for d − 1.
Let

{
λ1, λ2, . . . , λ|Lord(ψ,d)|

}
= Lord(ψ, d). We shall inductively define

finite models Mψ,d,0, Mψ,d,1, . . . , Mψ,d,|Lord(ψ,d)| such that, for each i ≤
| Lord(ψ, d)|, we have Mψ,d,i = 〈Wψ,d,i, Rψ,d,i, Vψ,d,i〉, wψ ∈ Wψ,d,i and:
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(a∗) wψ � ρ if and only if ρ ∈ wψ for any ρ such that either ρ ∈ Subdeg∗
≤

(ψ, d − 1) or ρ ∈ ⋃
1≤x≤i Subdeg∗(λx, d);

(b∗) 〈Wψ,d,i, Rψ,d,i〉 is Sub(ϕ)-(m, 0)-accessible;
(c∗) For any (w ≺ρ w′) ∈ Rψ,d,i, ρ satisfies one of the following:

• deg*(ρ) < d − 1;

• deg*(ρ) = d − 1 and ρ is a liege of some (d − 1)-lord on ψ;

• deg*(ρ) = d − 1 and ρ is a root of one of λ1, . . . , λi;

• deg*(ρ) = d and ρ is a liege of one of λ1, . . . , λi.

Then let Mψ,d := Mψ,d,|Lord(ψ,d)|. Assuming that Mψ,d is defined, we
first check that Mψ,d satisfies (a), (b) and (c). It is clear that (b∗) and
(c∗) imply (b) and (c) respectively by letting i = |Lord(ψ, d)|. For (a), take
any ρ ∈ Subdeg∗

≤(ψ, d). If deg*(ρ) < d, then ρ ∈ Subdeg∗
≤(ψ, d − 1), so

wψ � ρ if and only if ρ ∈ wψ by (a∗). Otherwise, deg*(ρ) = d. We prove the
equivalence (a) for ρ by induction on the construction of ρ.

• Since d > 0, it is impossible that ρ ∈ PropVar.

• If ρ is of the form �ρ′, then degOM(ρ) > 0, so we have

ρ ∈
⋃

1≤x≤|Lord(ψ,d)|
Subdeg∗(λx, d).

Therefore, wψ � ρ if and only if ρ ∈ wψ by (a∗), letting i = |Lord(ψ, d)|.
• The remaining cases (¬,∨) are trivial by the induction hypothesis.

Now we construct Mψ,d,i for 0 ≤ i ≤ |Lord(ψ, d)| by induction on i.
We first construct Mψ,d,0. By the hypothesis of Induction 2 , the model

Mψ,d−1 exists and satisfies (a), (b) and (c). We let Mψ,d,0 := Mψ,d−1. Then
Mψ,d,0 satisfies (a∗), (b∗) and (c∗) because

⋃
1≤x≤0 Subdeg∗(λx, d) = ∅, and

for any (w ≺ρ w′) ∈ Rψ,d−1, either deg*(ρ) < d − 1 or ρ is a liege of some
(d − 1)-lord on ψ.

Now suppose that i > 0 and Mψ,d,i−1 is defined. Let χ := Root(λi), then
deg*(χ) = d − 1, degOM(χ) = 0, and λi = �degOM(λi)χ. For 0 ≤ j < m, we
let

sj := max
({0} ∪ {

1 ≤ k ≤ degOM(λi) | k ≡ j (mod m) & �kχ /∈ wψ

})
.

We first make a claim on sj :

Claim. For any 1 ≤ k ≤ degOM(λi) such that k ≡ j (mod m),

�kχ ∈ wψ ⇐⇒ k > sj .
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Proof of the claim. (⇐) Trivial by the definition of sj . (⇒) Suppose
towards a contradiction that �kχ ∈ wψ but k ≤ sj . Since 1 ≤ k, we have
sj �= 0, and so sj ≡ j ≡ k (mod m), which implies NAm,0 � �kχ → �sjχ.
We have �sjχ /∈ wψ by the definition of sj , so �kχ /∈ wψ by the maximal
consistency of wψ, which is a contradiction.

Now we shall construct Mψ,d,i. We distinguish the following cases:
Case 1: Suppose that s0 = s1 = · · · = sm−1 = 0, then this implies Subdeg∗

(λi, d) =
{
�χ,�2χ, . . . , λi

} ⊆ wψ. We let Mψ,d,i := Mψ,d,i−1. Then, (b∗)
and (c∗) trivially hold since Rψ,d,i = Rψ,d,i−1. For (a∗), by (a∗) of Mψ,d,i−1,
it suffices to show that wψ � ρ if and only if ρ ∈ wψ for every ρ ∈
Subdeg∗(λi, d). Here, Subdeg∗(λi, d) ⊆ wψ implies that we only need to
show that wψ � ρ for every ρ ∈ Subdeg∗(λi, d). Let ρ = �ρ′, then ρ′ is
a liege or the root of λi, so ρ′ cannot be a liege or the root of λx for any
0 ≤ x ≤ i − 1. Here, (w ≺ρ′ w′) /∈ Rψ,d,i = Rψ,d,i−1 by (c∗) of Mψ,d,i−1.
Therefore, wψ � �ρ′.
Case 2: Now suppose that there is at least one j such that sj �= 0, then
�sjχ /∈ wψ implies NAm,0 � �sjχ by the maximal consistency of wψ, which
implies NAm,0 � χ by applying Nec for sj times. This implies that {∼χ}
is NAm,0-consistent, so there is a ϕ-maximal NAm,0-consistent set wχ such
that ∼χ ∈ wχ. Here, deg*(χ) = d − 1 < d = deg*(ψ), so by the hypothesis
of Induction 1, there is a finite N-model Mχ,d−1 = 〈Wχ,d−1, Rχ,d−1, Vχ,d−1〉
satisfying (a), (b) and (c) and wχ ∈ Wχ,d−1.

For each 1 ≤ j < m, we let Mχ,d−1,j = 〈Wχ,d−1,j , Rχ,d−1,j , Vχ,d−1,j〉 be
a copy of Mχ,d−1 which is disjoint from Mψ,d,i−1 and from Mχ,d−1,x for
every 1 ≤ x < j. We also let wχ,j ∈ Wχ,d−1,j be the copy of wχ, then
wχ,j �Mχ,d−1,j

∼χ.
We define a sequence {w∗

l } as follows:

w∗
l :=

{
wψ if l ≡ 0 (mod m),
wχ,j if l ≡ j (mod m).

It is easy to see that w∗
l+m = w∗

l for any l ≥ 0.
We define the model Mψ,d,i = 〈Wψ,d,i, Rψ,d,i, Vψ,d,i〉 as follows:

• Wψ,d,i := Wψ,d,i−1 ∪ ⋃
1≤j<m Wχ,d−1,j ;

• Rψ,d,i := Rψ,d,i−1 ∪ ⋃
1≤j<m Rχ,d−1,j ∪ ⋃

0≤j<m Rj , where

Rj =
{

w∗
l ≺�sj−l−1χ w∗

l+1 | 0 ≤ l < sj

}
;
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Figure 3. The model Mψ,d,i

• Vψ,d,i(w, p) :=

{
Vψ,d,i−1(w, p) if w ∈ Wψ,d,i−1,

Vχ,d−1,j(w, p) if w ∈ Wχ,d−1,j .

The model Mψ,d,i is visualized in Figure 3. Here, Mψ,d,i is finite and
satisfies (c∗) by the definition of Rψ,d,i. For each 0 ≤ j < m such that
sj > 0, by the definition of Rj , it is clear that the following path Pj exists:

Pj := w∗
0 ≺�sj−1χ w∗

1 ≺�sj−2χ · · · ≺�χ w∗
sj−1 ≺χ w∗

sj
.

Now we prove that Mψ,d,i satisfies (a∗) and (b∗).
(a∗) ofMψ,d,i : Take any ρ ∈ Subdeg∗

≤(ψ, d − 1) ∪ ⋃
1≤x≤i Subdeg∗(λx, d),

then we shall show that wψ � ρ if and only if ρ ∈ wψ. We prove this
equivalence by induction on the construction of ρ. We will only show the case
of ρ = �σ, as the other cases are trivial by using the induction hypothesis.

If σ is not a liege of λi, then by the definition of Rψ,d,i, for every w ∈
Wψ,d,i, (wψ ≺σ w) ∈ Rψ,d,i iff (wψ ≺σ w) ∈ Rψ,d,i−1. This and the definition
of Vψ,d,i imply wψ � �σ iff wψ �Mψ,d,i−1 �σ iff �σ ∈ wψ.

Now we suppose that σ is a liege of λi. Let �kχ = �σ, then 1 ≤ k ≤
degOM(λi), and there is 0 ≤ j < m such that k ≡ j (mod m). Here, �kχ ∈
wψ iff k > sj by the claim. So we shall show that the equivalence

wψ = w∗
0 � �kχ ⇐⇒ k > sj

holds in both directions.
(⇒) If (0 <)k ≤ sj , then the path Pj exists, and k ≡ j ≡ sj (mod m)
implies that:

w∗
0 = w∗

sj−k ≺�k−1χ w∗
sj−k+1 ≺�k−2χ · · · ≺�χ w∗

sj−1 ≺χ w∗
sj

= w∗
j .

If j �= 0, then w∗
j = wχ,j . Since wχ,j �Mχ,d−1,j

∼χ, it is easy to show that
wχ,j � ∼χ, so w∗

0 � �kχ. Otherwise, j = 0 and w∗
j = w∗

0 = wψ. Here,
k ≡ j ≡ 0 (mod m) implies NAm,0 � χ → �kχ, and k ≤ s0 implies
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�kχ /∈ wψ, so χ /∈ wψ by the maximal consistency of wψ. Therefore, wψ � χ
by the induction hypothesis, which implies wψ � �kχ.
(⇐) If k > sj , then k − 1 ≥ sj , so by the definition of Rψ,d,i, there is no
w ∈ Wψ,d,i such that wψ ≺�k−1χ w, which implies wψ � �kχ.
(b∗) of Mψ,d,i :

Take any path of length m:

w0 ≺�m−1ρ w1 ≺�m−2ρ w2 · · · wm−2 ≺�ρ wm−1 ≺ρ wm,

and we shall show that w0 = wm. Let R = {(w0 ≺�m−1ρ w1), . . . , (wm−1 ≺ρ

wm)}.
If either ρ = χ or ρ is a liege of λi, then R ⊆ ⋃

0≤j<m Rj by (c∗) of
Mψ,d,i−1 and (c) of Mχ,d−1. Then it is easy to show that this path is a
sub-path of some Pj , and there is 0 ≤ l < sj such that w0 = w∗

l , w1 =
w∗

l+1, . . . , wm = w∗
l+m and:

w∗
l ≺�sj−l−1χ w∗

l+1 ≺�sj−l−2χ · · · ≺�sj−l−mχ w∗
l+m.

Here, w0 = w∗
l = w∗

l+m = wm.
Otherwise, R ∩ ⋃

0≤j<m Rj = ∅, then by the definition of Mψ,d,i and the
disjointness of the models, either R ⊆ Rψ,d,i−1 or R ⊆ Rχ,d−1,k for some
1 ≤ j < m. Therefore, w0 = wm by (b∗) of Mψ,d,i−1 and (b) of Mχ,d−1

respectively.

Lemma 6.9. ((4 ⇒ 1) of Theorem 5.1 (m ≥ 2, n = 0)) Let m ≥ 2. Take any
ϕ ∈ MF such that NAm,0 � ϕ, then there is a finite Sub(ϕ)-(m, 0)-accessible
N-model that falsifies ϕ.

Proof. Suppose that NAm,0 � ϕ, then {∼ϕ} is NAm,0-consistent. So there
is a ϕ-maximal NAm,0-consistent set wϕ such that ∼ϕ ∈ wϕ. Then by
Theorem 6.8, there is a finite Sub(ϕ)-(m, 0)-accessible model Mϕ,deg*(ϕ) =
〈W,R, V 〉 such that wϕ ∈ W and wϕ � ρ if and only if ρ ∈ wϕ for every ρ ∈
Subdeg∗

≤(ϕ, deg*(ϕ)) = Sub(ϕ). Here, ϕ /∈ wϕ by the ϕ-maximal NAm,0-
consistency, so wϕ � ϕ.

This concludes the proof of (4 ⇒ 1) of Theorem 5.1. We obtain the
following corollary.

Corollary 6.10. For each m,n ∈ N, the logic N+Am,n is decidable.

7. Future work

In this paper, we proved the finite frame property of the the extensions
of N with the axiom scheme Accm,n : �nϕ → �mϕ and the rule Ros�.
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The obvious next work would be to prove the same with multiple axioms
schemata of the form Accm,n. For any X ⊆ N

2, let NAX be the logic
obtained from N by adding the axiom schemata Accm,n for (m,n) ∈ X. We
say that an N-frame F is X-accessible if it is (m,n)-accessible for all (m,n) ∈
X. It follows from Theorem 3.3, the logic NAX is sound with respect to X-
accessible N-frames. Also let NA+

X and NRAX be the logics obtained from
NAX by adding the rules Ros� and Ros, respectively. Then, it is shown
that the logic NRAX is sound with respect to serial X-accessible N-frames.

Problem 7.1. Let X ⊆ N
2.

1. Is NA+
X sound with respect to the class of all X-accessible N-frames?

2. Is either NAX or NA+
X complete with respect to the class of all X-

accessible N-frames?

3. Is NRAX complete with respect to the class of all serial X-accessible
N-frames?

In particular, the proof of Lemma 5.2 ((3 ⇒ 4) of Theorem 5.1) does not
seem to be easily generalized; Some (m1, n1) ∈ X may fall into the case (ii)
while some other (m2, n2) ∈ X may fall into (iii) in the proof of Lemma 5.2.
Some modification on the relation ≺∗

ϕ would be needed to obtain a general
result.

In the context of provability logic, one may wonder the completeness of
N+GL : � (�ϕ → ϕ) → �ϕ, which is not of the form Accm,n and thus not
covered by this paper. Many of the N counterpart of the famous extensions
of K are still left uninvestigated.

We have only investigated the completeness and the finite frame property
of N+Am,n, so it may also be interesting to investigate other good properties
such as compactness and the interpolation property.
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