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Abstract: Aggression is a common trait in almost all animals and one of the bases of animal sociality. It is closely linked 
to intraspecific conflicts, hunting, and defending offspring, among others. Social insects establish integrated groups and 
show various aggressions that link to colony defense, predation, social rank, reproductive hierarchy and so on. Thus, they 
represent excellent experimental model systems to investigate the mechanisms underlying aggressive behavior. The bio-
genic amines function as neurotransmitters, neuromodulators, and neurohormones in the nervous systems, and have crucial 
roles in the diversification and modulation of behavior in social and solitary insects. Aggressive behaviors are mediated by 
aminergic systems. However, many issues about the roles of biogenic amines in social insects still deserve further study. 
In this scenario, the present review analyzed the roles of biogenic amines on aggressive behavior in social insects. We pro-
vided insights on the biosynthesis of monoamines, we summarized current knowledge on the serotonergic, dopaminergic 
octopaminergic, and tyraminergic control of aggressive behavior in social insects, with a special focus on ants, bees, and 
termites. In the last section, we provided an updated synthesis of the role of biogenic amines in controlling aggressive 
behavior in social insects.

Keywords: Apidae; Apis mellifera; ants; bees; Formicidae; serotonin; dopamine; octopamine; aggression; social behavior; 
termites; wasps

1	 Introduction

Aggressive behavior is a common trait in virtually all animals. 
Animals fight for obtaining resources such as food, territory, 
and mating partners, and for defending themselves and their 
offspring from natural enemies (e.g., predators, parasitoids, 
and parasites) (Aonuma 2020; Benelli 2014, 2015; Killian & 
Allen 2008; Rillich & Stevenson 2019; Rittschof et al. 2015; 
Szczuka et  al. 2013; Tanner & Adler 2009). In an intraspe-
cific fight, the combat sometimes escalates to violence, and the 
retreat of the opponent settles the fight to establish a dominant-
subordinate relationship (Benelli et  al. 2015a, b; Stevenson 
& Schildberger 2013). Many species of animals, not only 
vertebrates but also invertebrates, have been used to under-
stand neurophysiological mechanisms underlying aggressive 
behavior (Rillich & Stevenson 2019; Rittschof et al. 2015).

Social insects are one of the most successful groups of 
insects in terms of diversity and number on the Earth. Ants, 
bees, wasps, and termites establish a colony, caste, dominant 
hierarchy, etc., and show various aggressive behaviors during 
colony establishment, colony defense, social ranking, and pre-
dation, just to cite some examples. Each aggressive behavior 
appears to be controlled by different aminergic systems. For 

example, the serotoninergic system controls defensive aggres-
sion in the ant Odontmachus kuroiwae (Matsumura) (Aonuma 
2020) and the dopaminergic system controls reproductive 
hierarchy in the ant Diacamma sp. (Shimoji et al. 2017).

It has been reported that the action of biogenic amines is 
closely linked to aggressive behavior in insects (e.g., solitary 
insects: Stevenson et al. 2000; social insects: Aonuma 2020), 
like other animals (e.g., crustaceans: Huber & Delago 1998; 
vertebrates: Narvaes & Martins de Almeida 2014; Popova 
2008). Biogenic amines function as neurotransmitters, neu-
romodulators, and neurohormones to play principal roles in 
the diversification and modulation of behavior both in social 
and solitary insects (Evans 1980; Woodring & Hoffmann 
1994; Roeder 2005; Scheiner et  al. 2006). The aminergic 
systems in the brain closely link to a variety of behaviors 
such as motivation (Selcho & Pauls 2019), desensitization 
(Gatellier et al. 2004), individual recognition (Boulay et al. 
2000; Robinson et al. 1999; Vander Meer et al. 2008; Wada-
Katsumata et  al. 2011), learning and memory (Hammer 
& Menzel 1998; Unoki et  al. 2005), rhythmic behavior 
(Libersat & Pflueger 2004) and others.

The roles of biogenic amines in controlling various 
aggressive behaviors in invertebrate animals have been 
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reported (Kravitz & Huber 2003). Dopamine, serotonin, 
octopamine, and tyramine are major biogenic amines that 
control aggressive behavior. However, the modulatory 
effects of these amines on aggressive behavior appear to be 
different from animal to animal, e.g., dopamine modulates 
intraspecific aggression in crickets (Rillich & Stevenson 
2014), serotonin modulates intraspecific aggression in the 
stalk-eyed flies (Bubak et al. 2014), and octopamine modu-
lates intraspecific aggression in Drosophila (Hoyer et  al. 
2008). In social insects, the effects of biogenic amines on 
aggressive behavior are also different among species, e.g., 
dopamine modulates cast-dependent aggression in honey-
bees (Sasaki & Harada 2020), serotonin modulates defen-
sive aggression in trap-jaw ants (Aonuma 2020), octopamine 
modulates predatory aggression in ants (Yakovlev 2018) and 
tyramine modulates colony defensive aggression in termites 
(Ishikawa et  al. 2016). One possible explanation could be 
that each report addresses various types of aggressive behav-
ior in distinct animal species. It is rather easy to separate 
the types of aggressive behaviors that link to colony defense 
(Nouvian et  al. 2018), predation (Szczuka et  al. 2013), 
social rank (Muscedere et al. 2016), reproductive hierarchy 
(Shimoji et al. 2017), etc., in social insects. This review aims 
to sort out aggressive behaviors to link to the roles of bio-
genic amines and provide an updated synthesis of the role of 
biogenic amines in controlling aggressive behavior in social 
insects.

2	 Biosynthesis of monoamines

Biogenic amines are derived from amino acids by the activa-
tion of enzymes (Fig. 1). Serotonin (5-HT) is derived from 

tryptophan through two catalytic steps. Tryptophan hydrox-
ylase first catalyzes to synthesize 5-hydroxy-L-tryptophan 
(5-HTP) from tryptophan, and then the aromatic L-amino 
acid decarboxylase catalyzes to synthesize serotonin in 
the insect (Neckameyer et al. 2007; Watanabe et al. 2011). 
Tyrosine is the precursor of tyramine, octopamine, and 
dopamine. It was believed that tyramine is the intermediate 
product to synthesize octopamine from tyrosine. However, 
several studies demonstrated that tyramine itself functions 
as a neuromodulator (Farooqui 2012). Octopamine (OA) is 
synthesized from tyrosine through two steps. Tyrosine decar-
boxylase first catalyzes to synthesize tyramine (TA) from 
tyrosine, and then tyramine is hydroxylated to octopamine 
by the catalyzation of tyramine β-hydroxylase (Lehman 
et al. 2006; Roeder et al. 2003). Dopamine (DA) is derived 
from tyrosine via different catalyzation (Sugumaran & Barek 
2016). Tyrosine is first hydroxylated to 3,4-dihydroxyphe-
nylalanine (L-DOPA) that is then converted to dopamine by 
aromatic amino acid decarboxylase (Watanabe et al. 2013; 
Sasaki et al. 2021; Verlinden 2018).

3	 Serotonergic control of aggressive 
behavior

Many studies have focused on the roles of biogenic amines 
in aggressive behavior. Serotonin is one of the key mole-
cules that mediate aggressiveness in invertebrates (Edwards 
& Kravitz 1997). There are some studies demonstrating the 
enhancing effect of serotonin on aggressiveness in ants. 
The elevation of brain serotonin closely links to enhanc-
ing aggressiveness against interspecific and intraspecific 
insects in the red wood ant, Formica rufa (L.) (Kostowski &  

Fig. 1.  Biosynthesis of monoamines in insects. Serotonin is derived from the amino acid tryptophan (Neckameyer et  al. 2007; 
Watanabe et al. 2011). Both octopamine (Lehman et al. 2006; Roeder et al. 2003) and dopamine (Watanabe et al. 2013; Sasaki et al. 
2021; Verlinden 2018) are derived from the amino acid tyrosine.
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Tarchalska 1972; Tarchalska et  al. 1975). The elevation of 
brain serotonin also links to enhancing aggressiveness to 
promote agonistic interaction among queens during colony 
establishment in the desert harvest ant Veromessor pergan-
dei (Mayr) (Muscedere et  al. 2016). In the trap-jaw ant, 
Odontomachus kuroiwae (Matsumura), defensive behavior 
against an unexpected threat (Fig. 2) is enhanced by the 
elevation of the brain serotonin (Aonuma 2020). In another 
social insect, i.e., the honeybee, serotonin is thought to regu-
late defensive behavior. The sting alarm pheromone, isoamyl 
acetate upregulates both serotonin and dopamine in the brain 
of workers, which elevates aggressiveness to enhance defen-
sive behavior (Nouvian et al. 2018).

The action of serotonin in mediating aggressive behav-
ior varies among insects. The elevation of brain serotonin 
enhances aggressive behavior in Drosophila melanogaster 
(Meigen) (Diptera: Drosophilidae) (Dierick & Greenspan 
2007) and the stalk-eyed fly Teleopsis dalmanni (Wiedemann) 
(Diptera: Diopsidae) (Bubak et al. 2014; Bubak et al. 2020). 
Similar effects of serotonin on aggressiveness have been 
reported in other animals, for example, serotonin increases 
the aggressiveness of subordinates in crayfish (Edwards & 
Kravitz 1997; Huber et al. 1997; Kravitz 2000), and a tonic 
increase in 5-HT2 receptor escalates aggression in mice (Shih 
et  al. 1999; Takahashi et  al. 2011). In the Japanese rotten 
wood termite, Hodotermopsis sjostedti (Holmgren) (Isoptera: 
Termopsidae), the soldier is more aggressive than the pseu-
dergate, and the brain serotonin level in the soldier is higher 
than that in the pseudergate (Ishikawa et al. 2016). However, 
a pharmacological treatment to increase brain serotonin 
did not increase aggressiveness. It has been demonstrated 
that serotonin suppresses the escape circuit of Periplaneta 
americana (L.) (Blattodea: Blattidae) cockroaches, which is 
closely related to termites (Goldstein & Camhi 1991), sug-
gesting that serotonin might link to modulating aggressive-
ness. On the other hand, serotonin has the opposite effect on 
aggressiveness in some insects. Serotonin has a suppressive 
effect on aggressiveness in crickets, Gryllus bimaculatus  
(De Geer) (Orthoptera: Gryllidae) (Rillich et al. 2019; Rillich 
& Stevenson 2018) and black widow spiders, Latrodectus 
hesperus (Chamberlin & Ivie) (Araneae: Theridiidae) (Schraft 
et  al. 2023). The activating 5-HT2 receptor is thought to 
suppress aggressiveness in D. melanogaster (Johnson et al. 
2009). 5-HT2 is G-protein-coupled receptor (GPCR) that 
accumulates IP3, di-acylglycerol (DAG), and activation of 
protein kinase C (PKC) in vertebrates. Of note, the intracel-
lular action of 5-HT2 in insects is still unclear. In crayfish, 
the protein kinase A (PKA)-cAMP pathway is involved in 
releasing aggression (Momohara et  al. 2016). A dominant 
crayfish is less activated PKA than a subordinate one. To 
date, seven types of serotonin receptors have been identified 
in vertebrates (Nichols & Nichols 2008; Wacker et al. 2013). 
The activation of 5HT1, 5-HT2, 5-HT5, 5-HT6, and 5-HT7, 
which are GPCR, decreases intracellular cAMP (Fredriksson 
et al. 2003). Serotonin receptors in insects have been iden-

tified as functional homology (Tierney 2018), for example, 
5-HT1, 5-HT2, and 5-HT7 (fruit fly and honeybee: Blenau & 
Thamm 2011; cricket: Watanabe & Aonuma 2012; red flour 
beetle: Vleugels et al. 2013). Serotonin modulates neuronal 
activities in the brain. Indeed, the distribution of serotonergic 
neurons in the brain of honeybees and ants has been identi-
fied by immunohistochemistry (e.g., Schürmann & Klemm 
1984; Tsuji et al. 2007) (Fig. 3). Serotonin could also affect 
the activity of corpora allata where juvenile hormone (JH) is 

Fig. 2.  Response to unexpected touch in the trap-jaw ant 
Odontomachus kuroiwae. (A) The ant responds with a dart or 
a turn to unexpected touch on their abdomen. (B) Most ants 
(90%) respond with a dart to unexpected touch to leave the 
potential threat. Less than 10% of ants respond with a defensive 
turn to the stimulus. The ants that show a turn response have 
more serotonin in the brain than the ants that show dart escape. 
Pharmacological treatment demonstrated brain serotonin could 
be the key to modulating defensive aggression. Level -1: dart, 
Level 0: no response, Level 1: turn without opening mandible, 
Level 2: turn with opening mandible (Fig. 2B redrawn using data 
in Aonuma 2020).

� Aminergic control of insect aggression        929



synthesized in honeybees (Rachinsky 1994). Notably, there 
is not enough evidence demonstrating the action of sero-
tonin on modulating JH production in corpora allata of ants. 
Pharmacological experiments have contributed to investigat-
ing the roles of serotonin in insects so far. However, it has 
not been well identified yet which types of serotonin recep-
tors are activated to modulate aggressive behavior in insects. 
It will be necessary to find and use receptor-specific antago-
nists, which provide us with a better understanding of the 
role of serotonin in aggressive behavior.

4	 Dopaminergic control of aggressive 
behavior

Like serotonin in insects, dopamine has both enhancing 
and reducing effects on aggressiveness in animals (Narvaes 
& Martins de Almeida 2014). However, dopamine mainly 
enhances aggressiveness in insects. Many studies about 
the roles of dopamine on aggressive behavior have been 
performed on solitary insects and demonstrated that dopa-
mine enhances aggressiveness to promote fighting behavior 
in crickets (Rillich & Stevenson 2014) and in Drosophila 
(Alekseyenko et al. 2013).

In social insects, dopamine also enhances aggressive-
ness towards intraspecific and interspecific individuals. 
Formica polyctena (Förster) ants showed higher aggressive-
ness towards prey, enemies, and rivals after a pharmacologi-
cal treatment to increase dopamine (Szczuka et  al. 2013). 
Diacamma sp. ants establish a social hierarchy among work-
ers after agonistic interactions, where the dominant workers 
have more dopamine in the brain than subordinates (Shimoji 
et al. 2017). Similarly, more aggressive workers have more 

dopamine in the brain, and the pharmacological elevation 
of dopamine enhances defensive aggression in the trap-jaw 
ant O. kuroiwae (Aonuma 2020). In the termite H. sjost-
edti, the brain dopamine level in the soldier is higher than 
that in the pseudergate, although dopamine appears not to 
increase aggressiveness (Ishikawa et al. 2016). Interestingly, 
symbiotic Macrosiphoniella yomogicola (Matsumura) 
(Homoptera: Aphidae) aphids provide honeydew contain-
ing dopamine to Lasius japonicus (Santschi) ants to enhance 
their aggressiveness, thus receiving stronger protection by 
them (Kudo et al. 2021). Dopamine production in the brain 
is also closely linked to enhancing aggressiveness in the  
honeybee (Sasaki & Harada 2020). Dopamine receptors 
have been identified in ants and honeybees (Calkins et  al. 
2019), however, it remains unclear which types of receptors 
act to motivate aggressive behavior in social insects.

Dopamine-related aggression sometimes links to repro-
duction. The ant queen’s contact with the workers inhibits 
synthesizing of dopamine in the workers’ brains, which in 
turn suppresses their aggressiveness toward their nest mates 
(Shimoji et al. 2017). The absence of the queen introduces 
the agonistic interaction among the nests to establish the 
reproductive hierarchy, which in turn initiates the develop-
ment of the ovary in the dominant (Penick et al. 2014). In 
the social parasite ant Vollenhovia nipponica (Kinomura 
& Yamauchi), mated queens become more aggressive than 
virgin queens, and mated queens have more dopamine than 
virgins (Ohkawara & Aonuma 2016). In the honeybee, 
brain dopamine action in the workers is modulated by the 
queen mandibular gland pheromone (Beggs et  al. 2007; 
Beggs & Mercer 2009). The increase in brain dopamine pro-
motes ovary development in honeybee workers (Harris & 
Woodring 1995; Sasaki & Nagao 2001). Similar phenomena 

Fig. 3.  Serotonergic neurons in the brain of the ant Camponotus japonicus. (A) X-ray micro-CT scanning image of the head showing 
the brain (yellow arrow). (B) Confocal microscopic image of the distribution of the serotonergic neurons in the brain. The neuronal 
branches of the serotonergic neurons are expanded all over the brain suggesting serotonin modulates neuronal actions at each neu-
ropil in the brain.
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were reported for the workers of paper wasps and bumble-
bees (Sasaki et al. 2021).

The dopaminergic system closely links to the endocrine 
system in social insects (Sasaki et al. 2021). JH and ecdys-
teroids are the key molecules to determine caste and divi-
sion of labor in social insects (ant, Wilson 1983; honeybee, 
Robinson 1987). In the honeybee, JH affects caste determi-
nation during the larval stage (Robinson & Vargo 1997). It 
promotes foraging behavior in the workers in the honeybee 
and in the ant (Penick et al. 2011). Although JH does not pro-
mote ovarian development during the adult stage in queens 
and egg-laying workers (Robinson & Vargo 1997), it pro-
motes ovarian development during an adult stage, and egg-
laying behavior in primitively eusocial species including 
paper wasps, bumble bees, and fire ants (Shpigler et al. 2014; 
Tibbetts et  al. 2011). Ovarian activity links to establishing 
caste and social status in social insects. JH enhanced the 
brain dopamine levels and JH titer was correlated with the 
ovarian activation in the females of the paper wasp Polistes 
chinensis (Fabricius) (Hymenoptera: Vespidae) (Tsuchida 
et  al. 2020). Therefore, aggressive behavior among nest-
mates closely links to ovarian activities that are regulated by 
JH (Sasaki et  al. 2021). The dopaminergic system appears 
to activate the reproduction in females and to control con-
flicts among nest-mates in the colonies of primitively and 
advanced eusocial species.

Dopamine and octopamine are stress-sensitive amines. 
Physical stressors change the content of dopamine and octo-
pamine in the brain (Chen et  al. 2008). To face predator-
induced stress, the insect increases its defensive aggressive 
behavior associated with an increase in brain dopamine. 
In the honeybee, workers use alarm pheromones to recruit 
nestmates to handle the predators (Nouvian et al. 2016). The 
sting alarm pheromone, isoamyl acetate, upregulates dopa-
mine together with serotonin in the brain, which elevates the 
aggressiveness of workers and, in turn, enhances defensive 
behavior (Nouvian et al. 2018). It is thought that an increase 
in the brain amines would enhance arousal, cognitive pro-
cesses, and sensitivity to stimuli and then activates corpora 
cardiac to release some hormones into the hemolymph in 
insects (Even et al. 2012). For a full understanding of defen-
sive behavior in social insects, it would be important to con-
sider the physiological responses to the stressors in the brain.

5	 Octopaminergic and tyraminergic 
controls of aggressive behavior

Octopamine is another biogenic amine that enhances aggres-
siveness in insects. Tyramine used to be believed as an inter-
mediated product of octopamine, but it is now believed that 
tyramine itself functions as a neuromodulator. The physi-
ological functions of tyramine and octopamine in inverte-
brates are similar to those of adrenalin and noradrenalin in 
vertebrates, respectively (Roeder 2003, 2005). There are 
few reports demonstrating the effects of tyramine on the 

aggressive behavior of insects including ants and bees. It 
was reported that the pharmacological treatment of tyramine 
increases defensive behavior in the termite H. sjostedti, but 
octopamine does not (Ishikawa et al. 2016). In crustaceans, 
tyramine has been demonstrated to associate with aggressive 
behavior (Momohara et al. 2018).

Octopamine plays a major role in modulating aggres-
sive behavior in solitary insects, such as crickets (Stevenson 
et al. 2000) and D. melanogaster flies (Dierick 2008; Potter 
& Luo 2008). However, the roles of octopamine in aggres-
sive behavior in social insects are ambiguous. The effects of 
biogenic amines on intra- and interspecific aggression in F. 
polyctena workers have been examined relying on pharma-
cological experiments. It has been reported that serotonin, 
dopamine, and tyramine have enhancing effects on aggres-
sion, while octopamine has no effect on it (Szczuka et  al. 
2013). Similarly, O. kuroiwae workers do not show any 
change in terms of aggressiveness post-administration of 
octopamine (Aonuma 2020) as well as the queen of the ant 
Polyrhachis moesta (Emery) (Koyama et al. 2015). Further 
research reported that octopamine positively modulates 
ant’s aggressive behavior. Indeed, it enhances aggressive-
ness in nest-mate recognition and territorial defense in the 
Australian weaver ant, Oecophylla smaragdina (Fabricius) 
(Kamhi et al. 2015). Japanese wood ants, Formica japonica 
(Motschoulsky), showing higher intraspecific aggression 
have more octopamine in their brain (Aonuma & Watanabe 
2012a). Queen contact increases brain octopamine levels and 
enhances aggressiveness in the worker of the red wood ant, 
Formica aquilonia (Yarrow) (Yakovlev 2018). In the red fire 
ant, Solenopsis invicta (Buren), the absence of the queen 
induces a drastic decrease both in worker aggressiveness 
towards non-nestmates, and a decrease in brain octopamine 
in workers (Vander Meer et al. 2008). Although octopamine 
suppresses aggression in crustaceans (Edwards & Kravitz 
1997), it has an enhancing effect or no effect on aggressive-
ness in social insects. Although octopamine receptors have 
been identified in insects (Evans & Robb 1993), it remains 
unclear which types of receptors act during aggressive 
behavior in social ones.

Octopamine, as well as dopamine, are associated with 
defensive behavior in insects. Being exposed to a predator 
activates a stress response increasing brain octopamine, thus 
inducing defensive behavior in insects (Adamo & Baker 
2011; Adamo et al. 2017). Octopamine increases in the brain 
of stressor-exposed honeybees (Even et al. 2012). However, 
the octopamine level does not change in honeybees and ants 
during defensive behavior, while it increases in bumble bees 
(Abbot 2022). On the other hand, octopamine improved 
nest-mate recognition, which could decrease aggressiveness 
towards nest-mate, but increase non-nestmates (Gene et al. 
1999). Overall, the action of octopamine in social insects dif-
fers significantly, according to the studied species and caste 
(see also Scheiner et al. 2006).

It has been reported that the production of JH is regulated 
by the octopaminergic system in insects, e.g., octopamine 
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stimulates JH production in corpora allata in honey bees 
(Kaatz et al. 1994) and locusts [Locusta migratoria migra-
torioides (Reiche & Fairmaire) (Orthoptera: Acrididae)] 
(Lafon-Cazal & Baehr 1988), but it suppresses JH produc-
tion in cockroaches [Diploptera punctata (Eschscholtz) 
(Blattodea: Blaberidae)] (Thompson et al. 1990) and crick-
ets (G. bimaculatus) (Woodring & Hoffmann 1994). In 
Pogonomyrmex californicus (Dole) harvester ants, JH and 
ecdysteroids act as primary regulators of behavior and ovar-
ian activity (Dolezal et al. 2012). In social wasps [Polistes 
canadensis (L.) (Hymenoptera: Vespidae)], JH is involved 
in regulating the reproductive maturation in queen as well 
as in the behavioral maturation of worker tasks (Giray et al. 
2005). In our opinion, ovarian activity is closely linked with 
aggressive behavior, thus octopaminergic aggression could 
also associate with reproductive behavior.

6	 Conclusions and future research 
directions

Overall, aggressive behavior is one of the most complex 
behaviors to understand the neuronal mechanisms because 
it can be motivated by many kinds of reason and links to 

many other behaviors. In social insects, aggressive behavior 
can occur at early colony establishment, territorial defense, 
predation, social rank, and reproductive hierarchy, among 
others. The motivation of behaviors is controlled by neuro-
chemical systems in the nervous systems, where biogenic 
amines play key roles (Table 1). The major biogenic amines 
that regulate aggressive behavior are serotonin, dopamine, 
and octopamine in social insects as well as solitary insects. 
These amines are multifunctional and link to many kinds of 
behavioral and physiological events. For example, dopamine 
regulates not only aggressive behavior but also arousal level 
in the brain, which in turn initiates a variety of behaviors in 
insects, such as locomotion, grooming, courtship, learning, 
sleep, and others (Andretic et al. 2005; Mustard et al. 2010; 
Scheiner et  al. 2002; Van Swinderen & Andretic 2011). 
Serotonin regulates aggressive behavior, feeding behavior, 
and locomotion, just to mention some (Falibene et al. 2012; 
Yellman et  al. 1997), and octopamine regulates aggressive 
behavior, rhythmic behavior, locomotion, feeding behavior, 
learning behavior, and more (Roeder 1999; Selcho & Pauls 
2019). These pieces of evidence suggested that plural bio-
genic amines regulate aggressive behavior. Indeed, more 
aggressive ants have more serotonin, dopamine and octo-
pamine in the brain, although octopamine did not enhance 

Table 1.  Current knowledge about the different roles of monoamines in ant, bee, and termite aggressive displays during predation, 
colony defense, and social ranking.
Amine Aggressive behavior Species References

5HT

Territorial defense/ predation Formica rufa Kostowski & Tarchalska 1972; 
Tarchalska et al. 1975

Territorial defense/ predation Formica polyctena Szczuka et al. 2013
Defense against enemy Odontomachus kuroiwae Aonuma 2020
Social rank/ reproductive hierarchy/  
colony establishment Veromessor pergandei Muscedere et al. 2016

Colony defense Apis mellifera Nouvian et al. 2018

DA

Territorial defense Lasius japonicus Kudo et al. 2021
Territorial defense/ predation/  
defense against enemy Formica polyctena Szczuka et al. 2013

Defense against enemy Odontomachus kuroiwae Aonuma 2020
Colony defense Apis mellifera Nouvian et al. 2018
Caste dependent Vollenhovia nipponica Ohkawara & Aonuma 2016
Social hierarchy/ reproductive hierarchy Diacamma sp. Shimoji et al. 2017
Caste dependent Apis mellifera Sasaki & Harada 2020

TA Colony defense Hodotermopsis sjostedti Ishikawa et al. 2016

OA

Territorial defense/ nest-mate recognition Apis mellifera Gene et al. 1999
Territorial defense/ nest-mate recognition Oecophylla smaragdina Kamhi et al. 2015
Predation Formica japonica Aonuma & Watanabe 2012
Territorial defense/ nest-mate recognition Solenopsis invicta Vander Meer et al. 2008
Predation Formica aquilonia Yakovlev 2018
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defensive aggression (Aonuma 2020; Ohkawara & Aonuma 
2016). Similarly, a soldier termite that is more aggressive 
than pseudergate has more serotonin, dopamine, tyramine 
and octopamine in the brain, although serotonin, dopa-
mine and octopamine did not enhance defensive aggression 
(Ishikawa et al. 2016). To the best of our knowledge, there 
are few studies examining the co-effect of biogenic amines 
on aggressive behavior in social insects. Experiments of 
the combination of pharmacological treatments and behav-
ior observation have been performed to examine the effect 
of single biogenic amines on aggression (Aonuma 2020; 
Rillich & Stevenson 2019).

To better understand the mechanism leading to aggres-
sive behavior in social insects, we now need to investigate 
how plural biogenic amines simultaneously or sequentially 
act in the brain to regulate aggressive behavior. High-
performance liquid chromatography (HPLC) with elec-
trochemical detection (ECD) allows us to investigate the 
contents of biogenic amines and their precursors and metab-
olites at the same time (e.g., Aonuma & Watanabe 2012b; 
Aonuma 2020). The simultaneous measurements of bio-
genic amines, their precursors, and metabolites can allow a 
full understanding of the putative combination of biogenic 
amines regulating various aggressive behaviors. We need to 
identify which biogenic amine or combination of biogenic 
amines routes aggressive behavior. Pharmacological experi-
ments may help us to understand the role of biogenic amines 
(Aonuma 2020; Rillich & Stevenson 2019), and we need to 
examine the effects of the cocktail of agonists of the biogenic 
amines and/or their antagonists to investigate the functional 
roles of the combination of plural biogenic amines. We also 
need to carefully identify which biogenic amine or combi-
nation of them regulates aggression-related behaviors, and 
how subsequent aggressive experience may modulate their 
production. Mathematical models and simulation help us to 
predict the functional roles of biogenic amines (e.g., Yano 
et al. 2013) and robotics tools can be useful to understand 
shed light on insect behavioral displays routed by biogenic 
amines (e.g., Funato et  al. 2011). These approaches could 
boost our knowledge at the interface of neurophysiology 
and the behavior of social insects. A broad combination of 
multidisciplinary approaches involving physiologists, neu-
robiologists, ethologists, and bio-robotics experts is warmly 
encouraged to break through the issue.
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