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On collection schemes and Gaifman’s splitting
theorem

Taishi Kurahashi*fand Yoshiaki Minami*

Abstract

We study model theoretic characterizations of various collection schemes
over PA™ from the viewpoint of Gaifman’s splitting theorem. Among
other things, we prove that for any n > 0 and M | PA™, the following
are equivalent:

1. M satisfies the collection scheme for ¥, 41 formulas.

2. For any K,N =PA™,if M Ceor K, M <a, K and M < N, then
M <s, ., K and supy (M) <s, N.

3. For any N |=PA™,if M < N, then M <5, ,, supy(M) <=, N.
Here, supN(M) is the unique K satisfying M Ceof K Cena V. We also in-
vestigate strong collection schemes and parameter-free collection schemes
from the similar perspective.

1 Introduction

The language £ 4 of first-order arithmetic consists of constant symbols 0 and 1,
binary function symbols + and X, and binary relation symbol <. The £ 4-theory
of the non-negative parts of commutative discretely ordered rings is denoted by
PA™ (Kaye [6, Chapter 2]).

Let ¥ denote a finite sequence of variables allowing the empty sequence. The
following definition introduces some variations of the collection scheme, which
have appeared in the literature so far.

Definition 1.1. Let I' be a class of £ 4-formulas.

e Coll(T") is the scheme

VIVl (VE < @3 (&, 7, 7) — IVE < @35 < 5o(T,§,7)), ¢eT.
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e Coll(I) is the scheme
Vi (VZVZ < @37 (Z,7,7) - VZIVE < 37 < Tp(Z,7, 7)), el

e Coll™ (T') is the scheme

—»

Vi (VZ < @37 p(Z,§) — I0VE < @3 < Tp(&,7)), ¢€l.
e Coll(T) is the scheme

VZ (VZ 3G (7,7, 2) - VaIVE < @37 < Tp(Z,7,2)), ¢el.
e Colld (') is the scheme

VZVEIG (X, y,2) —» VZVUIOVE < u3y < Up(Z,9,2), @€l

e Coll (T") is the scheme

—»

VEIGp(Z,9) - VuIWVE < 037 < To(Z,7), ¢el.
e Coll,(T") is the scheme

VEZVEIOVE < @ (3G (2,7, 7) — G < Tp(Z,7,7)), ¢el.
e Coll; (T') is the scheme

VaIVE < @ (3 e(Z,§) — I < To(&,7)), ¢el.

In the literature, the collection schemes have been usually considered to-
gether with some induction scheme. For a class I' of £ 4-formulas, let IT" denote
the £ 4-theory obtained from PA™ by adding the scheme of induction for for-
mulas in I'. Peano arithmetic PA is defined as the union of {I¥, | n > 0}.

The purpose of the present paper is to study model theoretic characteriza-
tions of these collection schemes over PA™ from the viewpoint of Gaifman’s
splitting theorem. For each M, N = PA™ with M C N, let supy (M) be the
unique K = PA™ such that M Ciof K Ceng N. Here, M Cof K and K Cepng N
stand for ‘K is a cofinal extension of M’ and ‘N is an end-extension of K’, re-
spectively. Also, let M < K stand for that K is an elementary extension of
M. Gaifman’s splitting theorem [3, Theorem 4] is a basic result concerning
the structure supy (M), which states that if M, N = PA and M C N, then
M < supy(M). Relating to this theorem, Kaye [5, Theorem 3.2] proved that
if M\/,N 1%, and M <y, N, then supy (M) <5, N. Here, M <r N stands
for that N is a I'-elementary extension of M. It immediately follows from these
results that if M is a model of PA, then for any N = PA™ with M < N, we
have M < supy(M) < N. Kaye also proved that the converse implication of
the last statement also holds, that is, models of PA can be characterized by
considering sup (M) as follows:



Theorem 1.2 (Kaye [5, Theorem 1.4]). Suppose M = 1A,. Then, M E PA
if and only if for any N = PA™, if M < N, then M < supy(M) < N.

Our main aim is to improve Theorem 1.2 from two points of view. First, we
stratify Theorem 1.2 based on arithmetical hierarchy. This stratification shows
that the various collection schemes are characterized by properties concerning
supy(M). Second, we weaken IAg in the statement of Theorem 1.2 to PA™.
This weakening shows that induction axioms are not directly involved in our
characterization results.

Among other things, we actually prove the following equivalences: For any
n>0and M =PA™,

e M E Colls(X,+1) if and only if for any N = PA™, if M < N, then
supy (M) <s,,., N. (Theorem 3.1)

n+1

e M = Coll(X, 1) if and only if for any N | PA™, if M < N, then
M =<s,,, supy (M) <s, N. (Theorem 4.1)

In addition to these characterization results, we also prove the following
results on Ag-elementary cofinal extensions: For any n > 0 and M, K = PA™
with M <A, K and M C.of K,

o If M = Coll(¥,,41), then M <5, ., K. (Theorem 3.4.1)

n42

o If M |= Colls(X,,41), then K |= Colls(Z,41). (Theorem 3.4.2)

Our proofs of these results are mostly based on the compactness argument,
which is not so deep, but we believe that our results provide some insight into
the relationship between collection schemes, Gaifman’s splitting theorem, and
cofinal extensions.

The organization of the present paper is as follows. Section 2 is devoted to
preliminaries. We provide a detailed background of our work and introduce some
notions and their basic properties. In Section 3, we prove our characterization
theorem for Colls(X,,11). We also prove the above mentioned results concerning
Ap-elementary cofinal extensions. In Section 4, we prove our characterization
theorem for Coll(%,,4+1). Sections 5 and 6 are devoted to similar investiga-
tions of the parameter-free collection schemes Coll (X,4+1) and Coll™ (3,,41),
respectively. Finally, in Section 7, we discuss the equivalence between the prop-
erty cof,, concerning sup (M) and the property COF,, concerning more general
cofinal extensions.

2 Preliminaries

This section consists of two subsections. The first subsection provides the
sources of the various collection schemes introduced in Definition 1.1. In the
second subsection, we provide a detailed background of our study, introduce
some notions and give their basic properties.



2.1

Variations of the collection scheme

The classes Ay, %, and II,, of L4-formulas are introduced in the usual way
(cf. [6, Chapter 7]). It is clear that each scheme of Definition 1.1 with I = II,, for
n > 0 is deductively equivalent to the scheme of the same type with I' = %, 4.
For instance, Colls(II,,) is equivalent to Colls(3,,+1). So, this paper deals with
only the collection schemes of Definition 1.1 with I' = X,,.

We begin with a brief review of the sources of the various collection schemes.

Parsons [10] studied the scheme Coll(X,) over theories of arithmetic
having some induction scheme and proved that the theory IX,, proves
Coll(%,,) (cf. [10, Lemmas 2 and 3]). Paris and Kirby [9] introduced the
theory BY,, := IAg + Coll(%,,) and investigated the properties of the
theory from a model theoretic point of view.

For the scheme Colly(X,), the subscript ‘w’ stands for ‘weak’, but it
is easy to see that Coll(X,) and Colly(%,) are equivalent over PA™
(Proposition 2.2). For example, IAj + Colly(3,,) is denoted by BY,, in
Kaye, Paris and Dimitracopoulos’ paper [7, p. 1082].

The main purpose of the paper [7] was to analyze the strength of the
parameter-free versions of the induction and collection schemes. In that
paper, the theory BY, := IAj + Coll,(X,,) was introduced and it is
shown that BY, ; - IX, (cf. [7, Proposition 1.2]). It is not known if
the theories IAg + Coll™ (X,,) and BX are deductively equivalent (cf. [7,
p. 1097] and [2, Problem 2.1]). The theory IAg + Coll™ (%,,) is denoted
by B4(3,) in Cordén-Franco et al. [2], but we do not adopt this notation
to avoid confusion with the notation for strong collection schemes.

Of course the parameter-free version of a scheme is weaker than the orig-
inal one and the scheme having the superscript d is intermediate between
them. That is, Coll(X,) - Coll*(Z,) - Coll™(%,) and Coll,(%,) +
Colld (,)) F Coll, (%,) hold. The superscript d here stands for ‘dis-
tributed’ because Coll?(%,) and Coll? (2,) are respectively obtained
from Coll(X,) and Coll,(X,) by distributing the quantifiers VZ in the
schemes. The scheme Coll! (%,) was considered in [6, Exercise 10.3],
where the theory IAg 4+ Colld (,,) is denoted by BY:-.

The scheme Colly is known as the strong collection scheme because Colls(T")
is stronger than Coll(I") (Proposition 2.1). The theory SY¥, := IAq +
Coll;(X,) was considered in Héjek and Pudldk [4], and interestingly, it
is known that SX¥,; is deductively equivalent to I3, 1 (cf. [4, Theo-
rem 2.23] and [6, Lemma 10.6 and Exercise 10.6]). It is easy to see that
Colls(X,) is equivalent to its parameter-free version (Proposition 2.3).

We list some easily verifiable facts on collection schemes.

Proposition 2.1. For any n > 0, PA™ + Colls(X,) F Coll(%,,).



Proposition 2.2. For anyn > 0, PA™ + Coll(%,) is deductively equivalent to
PA™ + Coll(%,,).

Proposition 2.3. For any n > 0, PA™ + Colls(%,) is deductively equivalent
to PA™ + Coll; (X,,).

Proposition 2.4 (Cf. Kaye [6, Proposition 7.1]). Let n > 0.

1. For any Y41 formula o(Z,7), the formula V§ < Zo(Z, ) is provably
equivalent to some X411 formula over PA™ + Coll(X,,41).

2. For any Il,,11 formula o(Z,¥), the formula 37 < Zo(&, ) is provably
equivalent to some 11,41 formula over PA™ + Coll(X,,41).

It is proved in [7, Proposition 1.2] that BX,  ; - IX, for each n > 0 and is
improved as follows.

Proposition 2.5. For each n > 1, PA™ + Coll (X,,+1) F Colli(%,,).

Proof. By Proposition 2.3, it suffices to prove PA™+Coll (X,41) F Coll; (%,,).
Let (&, ) be any ¥,, formula. By logic, we have

= VE 3G (37 (@, 9) — (T, 7).
Since 37 ¢(Z, §) = ©(Z, 7) is logically equivalent to some 3,1 formula, PA™ +
Coll (X,,4+1) proves

Thus,

PA™ + Coll (S,11) F Vi 30V < @37 < 7 (37 o(&, §) — ¢(Z, 7))
Equivalently,

PA™ + Colly (£, 1) F Vi 36VZ < @ (35¢(F, §) — 37 < (7). O

It is known that the theory PA™ + J, ., Coll(¥,) having the full collec-
tion scheme does not prove IAg (cf. [6, Exercise 7.7]). Furthermore, it can be
shown that PA™ + J, ., Coll(X,,) is II;-conservative over PA™, and so even
PA™ +,c,, Coll(%,,) ¥ IOpen holds. In the study of the collection schemes,
what properties of the collection schemes can be shown without using the in-
duction axioms? The right hand side of the dashed line of Figure 1 suggests the
possibility of analyzing the situations of the collection schemes over the theory
PA™ without induction axioms. In the present paper, we follow this suggestion

and show relationships between several variants of collection schemes over the
theory PA™.



Izn+1 = IAO + CO]IS(ZTI+1) %_) PA™ + COHS(En—i-l)

J A

BY, 1 = IAg+Coll(S,1) —— PA~ + Coll(Z,,1)

{ {
BY,,, = IAg+Coll (Z,11) —> PA™ + Coll (Z,1)
d | {
I, = IAq+ Coll(Z,) ;:) PA~ + Coll,(%,)

Figure 1: The relationships between induction and collection schemes

2.2 Model theoretic viewpoint

Definition 2.6. Let M, K = PA™ be such that M C K and I' be a class of
formulas.

e We say that K is an end-extension of M (denoted by M Cgng K) iff for
any a,b € K, ifbe M and K = a <b, then a € M.

e We say that K is a cofinal extension of M (denoted by M Ceor K) iff for
any a € K, there exists a b € M such that K =a <b.

e We say that K is a I'-elementary extension of M (denoted by M <r K)
iff for any @ € M and any I' formula ¢(Z), we have M |= ¢(a) if and only

if K = o(d).

e We say that K is a I'-elementary cofinal extension of M (denoted by
M <% K) iff M <p K and M Ceof K.

Paris and Kirby [9] established the following model theoretic characterization
of the collection scheme:

Theorem 2.7 (Paris and Kirby [9, Theorem B]). Let M be any model of PA™.

1. For n > 1, if M has a proper ¥,-elementary end-extension, then M |
Coll(%,,).

2. For n > 2, if M is a countable model of BY,, then M has a proper
3., -elementary end-extension.

Also, the following sufficient condition for a model of PA™ to satisfy B,
is known.

Theorem 2.8. Let M be any model of PA™.

1. (Wilkie and Paris [11, Theorem 1)) If M has a proper end-extension N =
IA(), then M ): le



2. (Clote [1, Proposition 3]; Paris and Kirby [9, Theorem B]| for n = 1) For
n > 1, if M has a proper ¥, -elementary end-extension N |=1I%,_1, then
MEBY, 1.

The theory IA( plays an essential role in these results. For example, The-
orem 2.8.(1) is no longer true if we weaken the condition ‘N = IAy’ to ‘N |=
PA™’ because every M |= PA™ has a proper end-extension N = PA™ (cf. [6,
Exercise 7.7]), and there exists a model of PA™ in which BX; does not hold.
Since we also want to analyze the properties of collection schemes in models
that do not necessarily satisfy IAg, we should consider phenomena in a differ-
ent fashion from these results. We will therefore focus on cofinal extensions.
Gaifman’s splitting theorem is a basic result for the cofinal extensions of models
of PA.

Definition 2.9. For M, N = PA™ with M C N, let supy(M) := {a € N |
(3be M) N = a < b}.

It is clear that sup, (M) is the unique K = PA™ such that M Ceof K Cena
N for each M, N = PA~ with M C N.

Theorem 2.10 (Gaifman’s splitting theorem [3, Theorem 4]). If M, N = PA
and M C N, then M < supy(M).

Gaifman’s splitting theorem follows from the following theorem:

Theorem 2.11 (Gaifman [3, Theorem 3]). Let M, K = PA~. If M = PA
andM-<°A“’§ K, then M < K.

The proof of Theorem 2.11 presented in the textbook of Kaye [6] actually
proves the following hierarchical refinement.

Theorem 2.12 (Cf. Kaye [6, Theorem 7.7]). Let M, K = PA™.
1. If M = Coll(31) and M <X' K, then M <x, K.

2. Forn>1, if M |= B4y and M <X K, then M <yx, ., K.

n+2

In the proof of the second clause of Theorem 2.12 presented in [6], the
principle of the finite axiom of choice FAC(X,,11) for ¥,,41 formulas is actually
used instead of BY,, 1, but it is known that FAC(X,, 1) is equivalent to BX,, 11
for n > 1 over IAq (cf. H4jek and Pudldk [4]).

These phenomena regarding cofinal extensions are clearly related to collec-
tion axioms, and indeed, these results are presented in the chapter on collection
in Kaye’s book [6, Chapter 7]. Relating to Gaifman’s splitting theorem, Mija-
jlovié proved the following result concerning the relation between sup (M) and
N.

Theorem 2.13 (Mijajlovié [8, Theorem 1.2]). Let M, N = PA and n > 0. If
M <x, N, then supy (M) <5, N.

The proof of Theorem 3.2 of Kaye [5] refines Mijajlovié’s theorem as follows:



Theorem 2.14 (Kaye [5, Theorem 3.2]). Let M,N = I%,, and n > 0. If
M <y, N, then supy(M) <x, N.t

It follows from Theorems 2.11 and 2.13 that for any M, N E PA™,if M |
PA and M < N, then M < supy(M) < N. Kaye proved that the converse of
this statement also holds in the following sense.

Theorem 1.2 (Kaye [5, Theorem 1.4](restated)). For M = 1Ay, the following
are equivalent:

1. M EPA.
2. For any N =PA™, if M < N, then M < supy(M) < N.

Inspired by Theorems 2.12, 2.13, 2.14 and 1.2, we introduce the following
properties on models, which are our main research interests.

Definition 2.15. Let M =PA™ and n > 0.

e We say that M satisfies the condition end,, iff for any N | PA™, if
M < N, then supy (M) <5, N.

e We say that M satisfies the condition cof,, iff for any N = PA™ if M < N,
then M <y, supy(M).

e We say that M satisfies the condition COF,, iff for any K E PA™, if
M <X K, then M <y, K.

It is easy to see that every model satisfying COF,, also satisfies cof,,. Notice
that every model of PA™ trivially satisfies endy. Also, every model satisfies
COF;.

Proposition 2.16. Fvery model of PA™ satisfies COF;.

Proof. Let M, K = PA™ be such that M <X’§ K. Let @ be any elements of
M and ¢(Z, %) be any A¢ formula such that K = 37 p(Z, @). Since M Cof K,
we find some b € M such that K = 3% < bo(Z,d). Since M <A, K, we have
M |= 3% < bo(&,d@), and hence M |= 37 o(Z,d@). Thus M <5, K holds. O

In general, end,, implies cof, ;1.

Proposition 2.17. For any n > 0 and M |= PA™, if M satisfies end,,, then
M also satisfies cof,41.

Proof. Suppose that M satisfies end,,. Let N = PA™ be any model such that
M < N. Let ¢(Z) be any ¥,,11 formula and @ be any tuple of elements of M.
Suppose sup (M) = ¢(@). By the condition end,,, we have supy (M) <5, N,
and so N | ¢(d). Since M < N, we get M = ¢(@). Thus, we have proved
M <5, ., supy(M). O

IFor n = 0, the assumption M, N = IA¢ can of course be weakened to M, N = PA~.



Theorem 2.12 says that every model of Coll(X;) satisfies COF5, and that
for n > 1, every model of B3, ;1 satisfies COF,, 5.

In the present paper, we show that the properties end,,, cof, and COF,,
exactly capture the behavior of several collection schemes over models of PA ™.
Our main results are as follows: For any n > 0 and M =PA™,

e M |= Colly(3,,+1) if and only if M satisfies end;,41. (Theorem 3.1)

e M = Coll(X,,41) if and only if M satisfies end,, and cof,, ;o if and only if
M satisfies end,, and COF,, . (Theorem 4.1)

Furthermore, we will introduce the two conditions cof,, and cof; that are
variants of cof,,, and prove similar results for other collection schemes by using
these conditions. The implications and equivalences obtained in the present
paper are summarized in Figure 2.

ﬂ’ 1

Coll! (2,,45) ¢——> Coll, (3, 5) &———> endy;1 & cof ;5

Colld (2,,11) ¢&———=> Coll, (Z,1) ¢

!

Figure 2: Implications for models of PA™

$ end,, & cof .,

Prop. 2.5 l
Prop. 2.3 v | Thm. 3.1
COll (S41) s Coll(5, 1) i y endyiq
Prop. 2.1 |
Prop. 2.2 v |
Colly (V1) "y Coll(S 1) 4 2L 4 end,, & cofro
Thm. 6.4 ) " Thm. 6.4
Colld(£,11) =5 Coll™ (,41) —t > end,, & cof S, ,
Thm. 5.4 v ' Thm. 5.4

As applications of our results, for several theories T', we show that every Ag-
elementary cofinal extension of a model of T is also a model of T'. For example,
as an easy consequence of Proposition 2.16, we have the following corollary:

Corollary 2.18. Let M, K |=PA™ be such that M <Z°(‘: K.
1. If M =1A,, then K =1A,.
2. If M =1II7, then K |=1II7 .

Proof. By Proposition 2.16, we have M <x, K. Then, these clauses follow
from the facts that IA( is axiomatized by a set of II; sentences and that III;
is axiomatized by a set of ¥y sentences (Cf. [7, Proposition 3.1]). O



David Belanger and Tin Lok Wong independently proved the following the-
orem concerning studies in this direction.?

Theorem 2.19 (Belanger and Wong). Let M, K |= PA™ be such that M <%*
K.

1 IfM =184, then K = TS,4,.
2. If M =BX, 41 + exp, then K = BY,, 11 + exp.

We will show that an analogous preservation property also holds for the
theories Coll(¥,,41), Coll, (X,41), BE,; and I¥,; (See Theorem 3.4 and
Corollary 5.5).

3 Strong collection schemes

In this section, from the viewpoint of Gaifman’s splitting theorem, we prove
a theorem on the model theoretic characterization of Colls(X,,+1). As conse-
quences of the result, we refine several already known results such as Theorems
2.12 and 2.13. Also, as an application of the result, we prove that every Ag-
elementary cofinal extension of a model of PA™ + Colls(X,,+1) is also a model
of Colls(X,,41).

Theorem 3.1. For any M =PA™ and n > 0, the following are equivalent:

1. M satisfies the condition end,,+1. That is, for any N = PA™, if M < N,
then supy (M) <x. ., N.

n+1

2. M = Colly(S1).

3. (n>1): M = Coll(X,) and for any N = PA™ + Coll(%,,), if M <x
N, then supy (M) <x,,, N.

n41

(n=0): Forany N =PA™, if M <5, N, then supy (M) <5, N.

n+1

4. For any N EPA™, if M <5 ., N, then supy (M) <s._ ., N.

n+2 n41

Proof. (1 = 2): Suppose that M satisfies the condition end, ;. It suffices to
show that M = Coll; (X,4+1) by Proposition 2.3. Assume, towards a contra-
diction, that M [~ Coll; (£,,11). We then obtain some 3,41 formula o(Z, 7))
and @ € M such that

M = Vi3E < @ (37 o(F, §) AV < T-o(E, 7). (1)

We prepare new constant symbols €. For each tuple be M , let T} be the
L4 UM U {c}-theory defined by:

T; := ElemDiag(M) U {€ < @} U {37¢(C,§)} U {¥F < b—¢(C, 7)}.

2This result was informed by Wong through private communication.
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For such b, by (1), we find & < @ such that

M |= 35 0(E,§) AVT < b-p(@,5).

This gives a model of T7 by taking € as the interpretation of the constant symbols
c. Hence, by the compactness theorem, we obtain a model of the theory

ElemDiag(M) U {¢ < @} U {35 ¢(€,5)} U{v§ < b-p(&9) | b € M},

and let N be the restriction of the model to the language £4. Then, M < N,
and so we obtain that supy (M) <x,,, N by the condition end, ;. Since
N &V < @, we have ¥ € supy (M). We then obtain supy (M) E I35 (&N, 7)
because N = 37 ¢(cV, %) and supy (M) <sx,,, N. On the other hand, since
N = Vi < b—p(@N, ) for all b € M, we obtain N = =@, k) for all k €
sup v (M) because M Ceof sup (M). Hence, supy (M) = Vij—¢(EY, 7) because
supy (M) <x,,, N again. This is a contradiction.

(2 = 3): Suppose that M is a model of Colly(2,,41). Then, M = Coll(%,)
by Proposition 2.1. Let N be any model of PA™ with M <y ., N. In
the case of n > 1, we further assume N | Coll(X,). We would like to
show supy (M) <sx,,, N. By the Tarski-Vaught test (cf. [6, Exercise 7.4]),
it suffices to show that for any II, formula ¢(Z, %) and any @ € supy (M), if
N k=37 (@, ), then N = (@, d) for some d € sup  (M).

Suppose that N |= 37 (@, §) for some II,, formula ¢(Z, §) and @ € sup (M).
We find some b € M such that supy (M) = @ < b. Since M = Colly(S,,41), we
have

M =Vi Ve < ﬁ(ﬂgj’(p(:ﬁ', ) — < @'cp(:?,g}’)).
So, we find ¢ € M such that
M EVZ <b(37e(@,9) — I < Co(, 7).

In the case of n = 0, the formula 37 < @ o(Z,7) is a Ag formula. In the case
of n > 1, the formula 37 < @ (&, ) may be treated as a II,, formula in both
M and N because they are models of PA™ + Coll(X,,). So, in either case, the
formula VZ < Z(Hy”go(f, ¥) — Y < Wp(Z, 17)) is equivalent to a II,,41 formula.
Therefore, it follows from M <y ., N that

n+1
N E=VZE < b (37¢(F,9) — 37 < (&, 7).

Since N = d < band N E 37 ¢(a, 7), we obtain N |= 37 < €p(d, 7). Hence, we
find some d < & such that N = ¢(a@,d). Then, d € supy(M). This completes
the proof.

(3 = 4): Suppose that M satisfies the condition stated in Clause 3. In the
case of n = 0, we are done. So, we may assume n > 1. Let N = PA™ be
such that M <5, ., N. Since M |= Coll(%,,) and the theory PA™ + Coll(%,)
is axiomatized by a set of II, o sentences, we have N | Coll(%,). So, we
conclude supy (M) <sx,,, N by Clause 3.

(4 = 1): Trivial. O

11



We immediately obtain the following corollary:

Corollary 3.2. For any M = IAg and n > 0, M = I, if and only if M
satisfies the condition end,,.

Proof. The equivalence for n = 0 is trivial. The equivalence for n > 1 follows
from Theorem 3.1 because IAg + Colly(X,,11) is equivalent to I¥,, ;. O

The following refinement of Mijajlovi¢’s and Kaye’s theorems (Theorems
2.13 and 2.14) follows from Theorem 3.1.

Corollary 3.3. Let M,N =PA™ andn > 1.
1. If M = Colls(X41) and M <x, N, then supy (M) <z, N.

2. If M |= Colls(Xp41), N = Coll(X,), and M <x, ., N, thensupy (M) <x
N.

n+1

As an application of Theorem 3.1, we prove the following theorem whose first
clause is a refinement of Theorem 2.12 and whose second clause is a refinement
of the first clause of Theorem 2.19.

Theorem 3.4. Letn >0 and M, K |=PA™ be such that M -<CA°§ K.

1. If M = Coll(Sy41), then M <y, , K.

n+2
2. If M = Colly(3,,41), then K = Colly(2,,41).

Proof. The case of n = 0 for Clause 1 is exactly Clause 1 of Theorem 2.12,
and so we are done. We simultaneously prove the following two statements by
induction on n.

1. If M |= Coll(S,42), then M <5 ., K.

n+3

2. If M E Colls(X,,41), then K = Colls(X,41).

We assume that these statements hold for all & < n.

Firstly, we prove Clause 2. Suppose M |= Colly(X,+1). We have M |=
Coll(X,,4+1) by Proposition 2.1. By the induction hypothesis for Clause 1, we
obtain M <y, ., K. Let N = PA™ be any model such that K < N. Then,
we have M <x, ., N. Since M |= Colls(X,41), by Theorem 3.1, we obtain
supy(M) <x,,, N. Since M Ceor K, we get supy (M) = supy(K), and thus
supy(K) <x,,, N. We have proved that K satisfies the condition end, ;. By
Theorem 3.1 again, we obtain K = Colls(3,,11). 3

3The following direct argument of this part, which does not use Theorem 3.1, is due to
Tin Lok Wong: Suppose M |= Colls(X,+1). Let @ € K be any elements and ¢(&, §) be any
Yn+1 formula. Since M C.or K, we find b € M such that @ < b. Then, for some ¢ € M,
we have M = VZ < I;(Elg'ga(f, ¥) — ¥ < Co(, g’)) This formula is logically equivalent
to some II, 42 formula, and so it is also true in K because M <Sni2 K by the induction
hypothesis. In particular, K = VZ < &’(33750(5:', ) — Y < Co(Z, ﬂ)) ‘We have shown that
K | Colly (£,41). By Proposition 2.3, we conclude K = Colls(2y,41).

12



Secondly, we prove Clause 1. Suppose M = Coll(X,42). Then, M |
Colls(X,,+1) by Proposition 2.5. We have already proved that K = Colls(2,,41)
in Clause 2. Let @ € M and ¢(Z, ¥, W) be any 3,41 formula such that K |=
VY p(Z,¥,d). Since M Ccor K, there exist b € M such that for all & € M,
we have K |= 3% < bV < @p(&,7,d). Since both M and K are models
of Coll(X,,+1), the above formula can be treated as a ¥, formula. By the
o K. Then, M = 3% < b¥y < (7,7, d)
and hence M = V§3Z < bV§ < T¢(Z,7,d). By applying Coll(X,,4), we get
M = 3% < bV (7, §,@). So, we conclude M = 3BV o(Z, 7, @) O

induction hypothesis, we have M <x

4 Collection schemes

It follows from Theorem 3.4 that every model of PA™ 4+ Coll(%,, 1) satisfies the
condition COF,, ;2. Continuing this line of observation, we prove the following
theorem on the model theoretic characterization of Coll(¥,41).

Theorem 4.1. For any M = PA™ and n > 0, the following are equivalent:
1. M = Coll(2,,41).
2. M satisfies the conditions end,, and COF,,;2.
3. M satisfies the conditions end,, and cof, 4.

Proof. (1 = 2): Suppose M |= Coll(¥,+1). By Theorem 3.4, M satisfies
COF,,42. It suffices to prove that M satisfies end,,. The case n = 0 is trivial,
and so we may assume n > 0. By Proposition 2.5, we have M = Colly(X,). It
follows from Theorem 3.1 that M satisfies end,,.

(2 = 3): Trivial.

(3 = 1): Suppose that M satisfies the conditions end,, and cof,, 1. We
prove that the contrapositive of each instance of Coll(X,,41) holds in M. For
any X1 formula o(Z, ¥, 2) and 6,56 M, we assume

M = V53E < @V < T-¢(Z, 7, b).

By the compactness argument, we obtain an N = PA™ such that M < N and
supy (M) # N. We fix some € € N \ supy(M). Since M < N, we have

-,

N = V3% < @V < 6-p(Z, 7, b),

and so we find some & € N with & < @ such that for all d € N with d < €,
we have N |= —¢(@,d,b). Then, & € supy(M). Also, since & € N \ sup (M)
and supy (M) Cena N, we get that N = —o(,d, b) holds for all d € sup(M).
Since — is a I, 41 formula and sup (M) <5, N holds by the condition end,,
we obtain supy (M) = —¢(¢ d,b). Thus, supy (M) £ 3T < @V§—e(Z,7,b).
By the condition cof,, 2, we have M <y, ., supy(M). Thus, we conclude

-

M | 3% < aVy—p(&,7,b). We have proved that M = Coll(3,,41). O

13



We immediately obtain the following corollary:

Corollary 4.2. For any n > 0 and M |= PA™ satisfying end,,, M satisfies
cof o if and only if M satisfies COF 5.

By combining Corollary 4.2 and Proposition 2.16, we obtain the following
refinement of Proposition 2.17.

Corollary 4.3. For anyn > 0 and M = PA™, if M satisfies end,,, then M
also satisfies COF,11.

Remark 4.4. For models M of IAg, the implication (3 = 1) of Theorem 4.1
is immediately proved by using Theorem 2.8 and Corollary 3.2. For, suppose
M = IAp and M satisfies the conditions end,, and cof,,+2. By Corollary 3.2,
M is a model of I¥,,. We can easily find an N | I¥,, such that M < N
and supy (M) # N by using the compactness theorem. We have M <y, _,
supy (M) <sx, N by the conditions end,, and cof,, ;2. By Theorem 2.8, we have
supy (M) = BX, 41, and hence M |= BY,, 1 because BY,, 1 is axiomatized by
a set of II,, 43 sentences (cf. [6, Exercise 10.2.(a)]).

By refining the argument presented in Remark 4.4, we show that for mod-
els of IA satisfying end,,, the condition cof, s is equivalent to some weaker
conditions.

Proposition 4.5. Let n > 0. If M = IAq satisfies end,,, then the following
are equivalent:

1. M satisfies cof 2.

2. For any N EPA™, if M < N, then there exists an N’ = PA™ such that
N < N’ and M <x, ., supy.(M).

3. There exists an N = PA™ such that M < N, N # supy(M) and
M <sx, ., supy(M).

Proof. Let M = IA, satisfy end,,. By Corollary 3.2, we have M | I%,,.

(1 = 2): Obvious by letting N’ = N.

(2 = 3): Suppose that M satisfies the condition of Clause 2. By the com-
pactness argument, we find some N = PA™ such that M < N and supy (M) #
N. By Clause 2, we also find some N’ | PA™ such that N < N' and M <y
supy: (M). We have M < N', N' # supy, (M) and M <x, ., supy: (M).

(3 = 1): Let N E PA™ be such that M < N, N # supy(M) and
M <s, ., supy(M). By Theorem 2.14, N is a proper ¥,-elementary extension
of supy (M). Since N = IX,, by Theorem 2.8, we have supy (M) = BX, 4.
As in the argument in Remark 4.4, we get M = BY,, ;. By Theorem 4.1, M
satisfies the condition cof,, 2. O

n+2

The second condition in Proposition 4.5 originates from Kaye [5].

Problem 4.6. Can the assumption M = IAq in Proposition 4.5 be weakened
to M EPA™?

14



As a straightforward consequence of Theorems 3.1 and 4.1, we obtain the
following refinement of Theorem 1.2.

Corollary 4.7. For M = PA™, the following are equivalent:

1. MU, . Coll(S,).

new

2. For any N EPA™, if M < N, then M < supy (M) < N.
3. For any N =PA™, if M < N, then supy(M) < N.

Proof. (1 = 2): Suppose M = (J,,,, Coll(¥,). By Theorem 4.1, M satisfies
end,, and cof,, for all n € w. This means that M satisfies Clause 2.

(2 = 3): Trivial.

(3 = 1): Suppose that M satisfies Clause 3. Then, M satisfies end,, for
all n € w. By Theorem 3.1, M = Colls(%,) for all n € w. Then, M |=
U,ew Coll(%,,) by Proposition 2.1. O

We propose the following problem.

Problem 4.8. Letn >0 and M, K = PA™ be such that M -<Z°(f K.
1. Does M |= Coll(¥,,+1) imply K = Coll(2,,41)?
2. If M satisfies cof,,11, then does K satisfy cof, 117

Belanger and Wong’s Theorem 2.19 provides the affirmative answer to the
first clause of Problem 4.8 in the case of M = IAg + exp. By Theorem 4.1, we
have that M = Coll(%;) if and only if M satisfies cofs. So, Theorem 2.19 also
provides the affirmative answer to the second clause of Problem 4.8 in the case
of M =1Ag +exp and n = 1.

5 Weak parameter-free collection schemes

In this subsection, we prove a model theoretic characterization of the weak
parameter-free collection scheme Coll(X,,11). As a consequence, we show
that every Ag-elementary cofinal extension of a model of one of the theories
PA™ + Coll, (¥,11), BX,,; and I¥ is also a model of the theory.

Definition 5.1. Let M, K = PA™ be such that M C K and let n > 0. We
write M =y K iff M and K satisfy the same 3, sentences.

We introduce the following weak variations of the conditions end,,, cof,, and
COF,,.

Definition 5.2. Let M =PA™ and n > 0.

e We say that M satisfies the condition end, iff for any N = PA™, if
M < N, then supy (M) =5, N.

15



e We say that M satisfies the condition cof, iff for any N | PA™, if
M < N, then M =5 supy(M).

e We say that M satisfies the condition COF iff for any K | PA™, if
M -<Z’[f K, then M =y K.

For any models M, N = PA™ with M < N, it is easy to see that M =y,
sup (M) if and only if sup (M) =x, N. So, we have the following proposition
and we may focus only on the conditions cof;, and COF},:

Proposition 5.3. For any M = PA~ andn >0, M satisfies end,, if and only
if M satisfies cof..

Theorem 4.1 states that the combination of the conditions end,, and cof,, 1
characterizes Coll(X,,41). If cof,, 41 is weakened to cof;, |, then we obtain the
following characterization of Coll (X,41).

Theorem 5.4. For any M |=PA™ and n > 0, the following are equivalent:
1. M = Colld (Z,,41).
2. M = Coll, (3,41).
3. M satisfies the conditions end,, and COF,.
4. M satisfies the conditions end,, and cof,i_g.

Proof. (1 = 2): Trivial.

(2 = 3): Suppose M |= Coll, (3,+1). We show that M satisfies end,,. If
n =0, M trivially satisfies endg. If n > 1, by Proposition 2.5, M = Colly(%,,).
By Theorem 3.1, M satisfies end,,.

We prove that M satisfies COF, 5. Let K = PA™ be such that M %X’(f K,
and we show M =y, ., K. By Corollary 4.3, we have that M satisfies COF,, 1,
and thus M <x ., K holds. Then, it suffices to show that K = ¢ implies
M = 4 for all ¥,,4o sentences 1.

Let (&, i) be any %, formula such that K |= 3ZV§ o(Z, ). Since M Ceor K,
there exist @ € M such that for all b € M, K = 3% < aVj < bo(Z, 7). If
n = 0, this formula is Ag. If n > 1, since M |= Colly(X,), we have that
K | Colly(%,,) by Theorem 3.4. In particular, both M and K are models of
Coll(X,,), and hence that formula above may be regarded as %,, in M and K.
Thus, we have M |= 37 < @V§ < bo(&,7) because M <5,., K. Therefore,
VY IT < AVY < Up(Z, ) is true in M. By applying Coll, (¥,+1), we obtain
M = 3595 6(7, ).

(3 = 4): Trivial.

(4 = 1): Suppose that M satisfies the conditions end,, and cof,,. We prove
that the contrapositive of each instance of Coll% (£,,41) holds in M. For any
Y41 formula o(Z, 7, Z), we assume

M = 3730V 37 < @V < T-p(Z,§, 2).
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Then, we find @ b € M such that M | V53F < aVij < 0-¢(Z,7,b). By the
same argument as in the proof of Theorem 4.1, we obtain that supy (M) =
3% < @Vi—¢(T,7,b) by using the condition end,. So, we have supy (M) =
3Z3EVy (@, 9, Z). Since M =y, ., supy(M) by the condition cof, ,, we
conclude M (= 3Z3FVij —o(&, 7, 7). We have proved that M = Coll% (2, ).
O

It is known that each of PA™ 4 Coll(¥,41) and the extensions I¥X

and BY, ; of PA™ 4 Coll, (¥,41) are axiomatized by some set of Boolean
combinations of 3,2 sentences (cf. [7, Propositions 3.2 and 3.3]). Hence, we
obtain the following corollary.

Corollary 5.5. Let n >0 and M, K |=PA™ be such that M -<‘X’§ K.
1. If M = Coll (X,,41), then K = Coll (X,41)-
2. If M =BX, |, then K = BX, .

3. If M ETIS,,,, then K =15, .

In the case of M = IAg, the following proposition is proved in the similar
way as in the proof of Proposition 4.5 by using Theorem 5.4 and the fact that
BY, ., is axiomatized by some set of Boolean combinations of ¥,, 12 sentences.

Proposition 5.6. Let n > 0. If M = IAq satisfies end,,, then the following
are equivalent:

1. M satisfies cof .

2. For any N =PA™, if M < N, then there exists an N' =PA™ such that
N <N’ and M =5, _, supy.(M).

3. There exists an N = PA™ such that M < N, N # supy(M) and
M =5, ., supy(M).

6 Parameter-free collection schemes

In this section, we prove the model theoretic characterization of the scheme
Coll, (X,,11). As in the previous sections, we introduce several notions.

Definition 6.1. Let M, K = PA™ be such that M C K and n > 0.

o M -<§n+1 K iff for any @ € M and any II,, formula ¢(Z), we have M |=
3% < d(Z) if and only if K = 37 < @ ().

Definition 6.2. Let M =PA™ and n > 0.

o We say that M satisfies the condition endfl_s_1 iff for any N = PA™, if
M < N, then supy (M) <5, N.
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e We say that M satisfies the condition cofy,  iff for any N | PA™, if
M < N, then M <5 supy(M).

e We say that M satisfies the condition COF;,, iff for any K | PA™, if
M <°A‘f§ K, then M <§n+1 K.

It is easy to see that cof, 1 (resp. COF,1) implies cof;, | (resp. COF ),
and cofyy, | (resp. COFy, ) implies cof,,,, (resp. COF,, ;). By the following
proposition, we may focus only on the conditions cof,f+1 and COF,fH.

Proposition 6.3. For any M |=PA™ and n > 0, if M satisfies end,,, then M
also satisfies endyy ;.

Proof. Suppose that M satisfies end,,. Let N = PA™ be any model such that
M < N. Let ¢(Z) be any II,, formula and @ € supy(M). Suppose N |=
3% < @p(F), then we find some b € N such that N = b < @ A o(b). Since
supy (M) Cena N, we have b € supy(M). So, we obtain supy (M) = o(b)
because supy (M) <x, N by end,,. We conclude supy (M) = 37 < do(Z). The
converse direction directly follows from end,,. O

We prove the following characterization theorem.
Theorem 6.4. For any M |=PA™ and n > 0, the following are equivalent:
1. M = CollY(Z,,41).
2. M = Coll” (X,,41).
3. M satisfies the conditions end,, and COF, .
4. M satisfies the conditions end,, and cofy, ,.

Proof. (1 = 2): Trivial.

(2 = 3): Suppose M = Coll™ (X,,41). We have that M satisfies end,, as in
the proof of Theorem 5.4. Let K = PA™ be such that M %CAO(f K. We show
that M <5 ., K. By Corollary 4.3, we have M <5, K.

Let @ € M and (&, §) be any 3, formula such that K | 3% < aVy¢(Z, ).
By the same argument as in the proof of Theorem 5.4, we have that M satisfies
VU 3T < dVy < To(Z, 7). By applying Coll™ (X,,+1), we conclude that M |
X < aVy (%, ).

(3 = 4): Trivial.

(4 = 1): Suppose that M satisfies the conditions end,, and cofy, ,. We prove
that the contrapositive of each instance of Coll®(2,;1) holds in M. For any
d € M and any X, formula ¢(Z, 7, Z), we assume

M = 3ZV03Z < aVy < (T, 7, Z).
So, for some be M, we have

M = V937 < @V < 7 (&, ,b).
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By the same argument as in the proof of Theorem 4.1, we obtain that supy (M) =

3% < aVy—p(Z,¥,b) by using the condition end,,. Then, for some d € M, we

have supy (M) | 32 < d37 < aV§-p(Z,9,7). Since M <5 supy(M)

by the condition cofy,,, we get M = 37 < d3F < aVj-p(Z,§,Z). Thus,

M 3737 < aVy—p(Z,, Z). O
We propose the following problems.

Problem 6.5. Let n > 0 and M, K |=PA™ be such that M <Z°Uf K.
1. Does M |= Coll™ (£,,41) imply K = Coll™ (X,,41)?
2. If M satisfies cof,fﬂ, then does K satisfy cof,f+1 ?
Problem 6.6. Forn >0, does PA™ + Coll (X,,41) prove Coll™ (X,,11)?

Cordén-Franco et al. [2, Proposition 5.6] showed that BX, | ¥ Coll™ (£,41)

if and only if IAg + Coll™ (3,41) is not axiomatized by any set of Boolean
combinations of 3,12 sentences. This equivalence also follows from the proof
of Proposition 5.6. Relating to this problem, we get the following proposition.

Proposition 6.7. For any n > 0, the following are equivalent:
1. BY, ¥ Coll” (X,41).

2. There exist M,N |= IX, such that M < N, N # supy(M), M =5, _,
supy (M) and M %;HQ supy(M).

Proof. (1 = 2): Suppose BY, | ¥ Coll” (X,;1). We obtain a model M =
IAg + Coll (¥,,4+1) with M = Coll” (X,,41). Then, M is a model of I¥,.
By Theorems 5.4 and 6.4, M satisfies end,, and COF; _, but does not satisfy
COF;,,. Then, we obtain a model N = I, such that M < N and M 74§n+2
sup (M). It follows from the condition COF}; , that M =y, ., supy(M). Since
M < N and M %ng sup (M), we have N # sup (M).

(2 = 1): Let M, N = I%, satisfy the conditions stated in Clause 2. By
Corollary 3.2 and Proposition 5.6, M satisfies end,, and cof,,,. Hence, by
Theorem 5.4, M = Coll (X,+1). Since M does not satisfy cofy; o, by The-
orem 6.4, we obtain M [~ Coll” (¥,,41). Therefore, we conclude B, ¥
Coll™ (Z,,41). O

We close this section with the following analogue of Propositions 4.5 and
5.6.

Proposition 6.8. Let n > 0. If M = IAq satisfies end,,, then the following
are equivalent:

1. M satisfies cofyy .
2. For any N EPA™, if M < N, then there exists an N' = PA™ such that
N < N’ and M <5, supy/(M).
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3. There exists an N = PA™ such that M < N, N # supy(M) and
M <§n+2 sup (M).

Proof. Let M = IA, satisfy end,,. By Corollary 3.2, we have M = IY%,,.

(1 = 2) and (2 = 3) are proved in the similar way as in the proof of
Proposition 4.5.

(3= 1): Let N |= PA™ be such that M < N, N # supy (M) and M <y, _,
supy(M). By Theorem 6.4, it suffices to show M = Coll™ (X,,4+1). Let @ €
M and ¢(Z,y) be any I, formula such that M = VZ < @35 p(Z,¥). Since
M <§n+2 sup (M), we have supy (M) |E VZ < @37 o(Z, 7). As in the proof of
Proposition 4.5, we obtain sup (M) | BX, 11, and hence sup (M) | I0VZE <
a3y < vp(&,y). If n =0, this formula is 3. If n > 1, it can also be regarded
as Y41 because both M and supy (M) are models of Coll(%,,). By Corollary
4.3, we have M <y, ,, supy (M), and hence M |= I0VE < dIy < Tp(Z,y). We
are done. O

7 cof,;q versus COF,

Corollary 4.2 states that if M = PA™ satisfies end,,, then cof,, 1o and COF,, 1
are equivalent for M. So, cofy and COF5 are equivalent.
Then, we propose the following problem.

Problem 7.1. Forn >0 and M =PA™, are cof,,+3 and COF, 13 equivalent?

In the case of M |= IAg+exp, an improvement of Corollary 4.2 follows from
Belanger and Wong’s theorem (Theorem 2.19). In the proof of our improvement,
we use the following lemma.

Lemma 7.2. For any M, K |E PA™, M <y, K if and only if there exists an
N |=PA™ such that M < N and K <a, N.

Proof. The implication (<) is obvious. To show the implication (=), it suffices
to prove the consistency of the theory ElemDiag(M) U Ag-ElemDiag(K), which
follows from M <5, K. O

Proposition 7.3. For any n > 0 and M | 1A + exp satisfying end,,, M
satisfies cof 13 if and only if M satisfies COF, 43.

Proof. Suppose M = IAj + exp satisfies end,, and cof, 5. By Theorem 4.1,
M = B, 11 +exp. Let K = PA™ be such that M <‘Z°§ K. By Proposition
2.16, we have M <y, K, and so we get an N |= PA™ such that M < N and
K <A, N by Lemma 7.2. Then, by Theorem 2.19, we obtain K = BY, 1,
and hence K satisfies COF, ;2 by Theorem 4.1 again. Therefore, K <x,,,
supy (K) = supy(M). Also by cof, 3 for M, we have M <y, ., supy(M).
By combining them, we obtain M <s, ., K. We have shown that M satisfies
COF,,43. O
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As a consequence, cofs and COF3 are equivalent in the case of M = IAg +
exp.

Recently, the following interesting theorem is announced by Mengzhou Sun
and Tin Lok Wong.

Theorem 7.4 (Sun and Wong). Let n > 0.

1. For any countable model M = BY, 11 + exp+—IX,11, we have that M
does not satisfy cof,, 4.

2. There exists a countable model M |= BY,, 11 + exp +—1%,,41 that satisfies
COF, 3.

3. There exists a uncountable model M = B, 11 + exp +—I3,1 that satis-
fies COFy for all k > 1.

The following proposition is obtained from the first clause of Theorem 7.4.

Proposition 7.5. For n > 0 and any countable model M |= IAg + exp, if M
satisfies cof 3, then M = BX,,41.

Proof. We prove the proposition by induction on n. The case of n = 0 follows
from Theorem 4.1. We suppose that the statement holds for n, and let M be
any countable model of M | IA( + exp satisfying cof, 4. By the induction
hypothesis, M = BX,,;1+exp. So, by Theorem 7.4, we obtain that M | I3, ;1.
By Corollary 3.2, M satisfies end,, 11, and so by Theorem 4.1, M = BY,,1o. O

Proposition 7.5 gives us the following affirmative answer to Problem 4.8 in
the case that M is a countable model of IAg + exp.

Proposition 7.6. For n > 0 and countable M = IAq + exp, we have that
cof 4 and COF, 14 are equivalent.

Proof. Suppose that M | IAp + exp is countable and satisfies cof, ;4. By
Proposition 7.5, M | I¥, 1. By Corollary 3.2, M satisfies end,,+1. Then, by
Proposition 7.3, M satisfies COF,, 1 4. O

The situation of the implications on properties for countable models of IAy+
exp is visualized in Figure 3. The second clause of Theorem 7.4 together with
the facts that BX, 11 + exp ¥ IX,, 11 and I3, + exp ¥ BX,, 1 shows that no
more arrows can be added to the diagram. Also, the countability of models
cannot be removed in Figure 3 because of the third clause of Theorem 7.4.
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