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On collection schemes and Gaifman’s splitting

theorem

Taishi Kurahashi*�and Yoshiaki Minami�

Abstract

We study model theoretic characterizations of various collection schemes
over PA− from the viewpoint of Gaifman’s splitting theorem. Among
other things, we prove that for any n ≥ 0 and M |= PA−, the following
are equivalent:

1. M satisfies the collection scheme for Σn+1 formulas.

2. For any K,N |= PA−, if M ⊆cof K, M ≺∆0 K and M ≺ N , then
M ≺Σn+2 K and supN (M) ≺Σn N .

3. For any N |= PA−, if M ≺ N , then M ≺Σn+2 supN (M) ≺Σn N .

Here, supN (M) is the unique K satisfying M ⊆cof K ⊆end N . We also in-
vestigate strong collection schemes and parameter-free collection schemes
from the similar perspective.

1 Introduction

The language LA of first-order arithmetic consists of constant symbols 0 and 1,
binary function symbols + and ×, and binary relation symbol <. The LA-theory
of the non-negative parts of commutative discretely ordered rings is denoted by
PA− (Kaye [6, Chapter 2]).

Let ~v denote a finite sequence of variables allowing the empty sequence. The
following definition introduces some variations of the collection scheme, which
have appeared in the literature so far.

Definition 1.1. Let Γ be a class of LA-formulas.

� Coll(Γ) is the scheme

∀~z ∀~u
(
∀~x < ~u∃~y ϕ(~x, ~y, ~z)→ ∃~v ∀~x < ~u∃~y < ~v ϕ(~x, ~y, ~z)

)
, ϕ ∈ Γ.

*Email: kurahashi@people.kobe-u.ac.jp
�Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-

8501, Japan.
�Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-
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� Colld(Γ) is the scheme

∀~u
(
∀~z ∀~x < ~u∃~y ϕ(~x, ~y, ~z)→ ∀~z ∃~v ∀~x < ~u∃~y < ~v ϕ(~x, ~y, ~z)

)
, ϕ ∈ Γ.

� Coll−(Γ) is the scheme

∀~u
(
∀~x < ~u∃~y ϕ(~x, ~y)→ ∃~v ∀~x < ~u∃~y < ~v ϕ(~x, ~y)

)
, ϕ ∈ Γ.

� Collw(Γ) is the scheme

∀~z
(
∀~x ∃~y ϕ(~x, ~y, ~z)→ ∀~u∃~v ∀~x < ~u∃~y < ~v ϕ(~x, ~y, ~z)

)
, ϕ ∈ Γ.

� Colldw(Γ) is the scheme

∀~z ∀~x ∃~y ϕ(~x, ~y, ~z)→ ∀~z ∀~u∃~v ∀~x < ~u∃~y < ~v ϕ(~x, ~y, ~z), ϕ ∈ Γ.

� Coll−w(Γ) is the scheme

∀~x ∃~y ϕ(~x, ~y)→ ∀~u∃~v ∀~x < ~u∃~y < ~v ϕ(~x, ~y), ϕ ∈ Γ.

� Colls(Γ) is the scheme

∀~z ∀~u∃~v ∀~x < ~u
(
∃~y ϕ(~x, ~y, ~z)→ ∃~y < ~v ϕ(~x, ~y, ~z)

)
, ϕ ∈ Γ.

� Coll−s (Γ) is the scheme

∀~u∃~v ∀~x < ~u
(
∃~y ϕ(~x, ~y)→ ∃~y < ~v ϕ(~x, ~y)

)
, ϕ ∈ Γ.

In the literature, the collection schemes have been usually considered to-
gether with some induction scheme. For a class Γ of LA-formulas, let IΓ denote
the LA-theory obtained from PA− by adding the scheme of induction for for-
mulas in Γ. Peano arithmetic PA is defined as the union of {IΣn | n ≥ 0}.

The purpose of the present paper is to study model theoretic characteriza-
tions of these collection schemes over PA− from the viewpoint of Gaifman’s
splitting theorem. For each M,N |= PA− with M ⊆ N , let supN (M) be the
unique K |= PA− such that M ⊆cof K ⊆end N . Here, M ⊆cof K and K ⊆end N
stand for ‘K is a cofinal extension of M ’ and ‘N is an end-extension of K’, re-
spectively. Also, let M ≺ K stand for that K is an elementary extension of
M . Gaifman’s splitting theorem [3, Theorem 4] is a basic result concerning
the structure supN (M), which states that if M,N |= PA and M ⊆ N , then
M ≺ supN (M). Relating to this theorem, Kaye [5, Theorem 3.2] proved that
if M,N |= IΣn and M ≺Σn N , then supN (M) ≺Σn N . Here, M ≺Γ N stands
for that N is a Γ-elementary extension of M . It immediately follows from these
results that if M is a model of PA, then for any N |= PA− with M ≺ N , we
have M ≺ supN (M) ≺ N . Kaye also proved that the converse implication of
the last statement also holds, that is, models of PA can be characterized by
considering supN (M) as follows:
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Theorem 1.2 (Kaye [5, Theorem 1.4]). Suppose M |= I∆0. Then, M |= PA
if and only if for any N |= PA−, if M ≺ N , then M ≺ supN (M) ≺ N .

Our main aim is to improve Theorem 1.2 from two points of view. First, we
stratify Theorem 1.2 based on arithmetical hierarchy. This stratification shows
that the various collection schemes are characterized by properties concerning
supN (M). Second, we weaken I∆0 in the statement of Theorem 1.2 to PA−.
This weakening shows that induction axioms are not directly involved in our
characterization results.

Among other things, we actually prove the following equivalences: For any
n ≥ 0 and M |= PA−,

� M |= Colls(Σn+1) if and only if for any N |= PA−, if M ≺ N , then
supN (M) ≺Σn+1 N . (Theorem 3.1)

� M |= Coll(Σn+1) if and only if for any N |= PA−, if M ≺ N , then
M ≺Σn+2

supN (M) ≺Σn
N . (Theorem 4.1)

In addition to these characterization results, we also prove the following
results on ∆0-elementary cofinal extensions: For any n ≥ 0 and M,K |= PA−

with M ≺∆0 K and M ⊆cof K,

� If M |= Coll(Σn+1), then M ≺Σn+2
K. (Theorem 3.4.1)

� If M |= Colls(Σn+1), then K |= Colls(Σn+1). (Theorem 3.4.2)

Our proofs of these results are mostly based on the compactness argument,
which is not so deep, but we believe that our results provide some insight into
the relationship between collection schemes, Gaifman’s splitting theorem, and
cofinal extensions.

The organization of the present paper is as follows. Section 2 is devoted to
preliminaries. We provide a detailed background of our work and introduce some
notions and their basic properties. In Section 3, we prove our characterization
theorem for Colls(Σn+1). We also prove the above mentioned results concerning
∆0-elementary cofinal extensions. In Section 4, we prove our characterization
theorem for Coll(Σn+1). Sections 5 and 6 are devoted to similar investiga-
tions of the parameter-free collection schemes Coll−w(Σn+1) and Coll−(Σn+1),
respectively. Finally, in Section 7, we discuss the equivalence between the prop-
erty cofn concerning supN (M) and the property COFn concerning more general
cofinal extensions.

2 Preliminaries

This section consists of two subsections. The first subsection provides the
sources of the various collection schemes introduced in Definition 1.1. In the
second subsection, we provide a detailed background of our study, introduce
some notions and give their basic properties.
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2.1 Variations of the collection scheme

The classes ∆0, Σn, and Πn of LA-formulas are introduced in the usual way
(cf. [6, Chapter 7]). It is clear that each scheme of Definition 1.1 with Γ = Πn for
n ≥ 0 is deductively equivalent to the scheme of the same type with Γ = Σn+1.
For instance, Colls(Πn) is equivalent to Colls(Σn+1). So, this paper deals with
only the collection schemes of Definition 1.1 with Γ = Σn.

We begin with a brief review of the sources of the various collection schemes.

� Parsons [10] studied the scheme Coll(Σn) over theories of arithmetic
having some induction scheme and proved that the theory IΣn proves
Coll(Σn) (cf. [10, Lemmas 2 and 3]). Paris and Kirby [9] introduced the
theory BΣn := I∆0 + Coll(Σn) and investigated the properties of the
theory from a model theoretic point of view.

� For the scheme Collw(Σn), the subscript ‘w’ stands for ‘weak’, but it
is easy to see that Coll(Σn) and Collw(Σn) are equivalent over PA−

(Proposition 2.2). For example, I∆0 + Collw(Σn) is denoted by BΣn in
Kaye, Paris and Dimitracopoulos’ paper [7, p. 1082].

� The main purpose of the paper [7] was to analyze the strength of the
parameter-free versions of the induction and collection schemes. In that
paper, the theory BΣ−n := I∆0 + Coll−w(Σn) was introduced and it is
shown that BΣ−n+1 ` IΣn (cf. [7, Proposition 1.2]). It is not known if

the theories I∆0 +Coll−(Σn) and BΣ−n are deductively equivalent (cf. [7,
p. 1097] and [2, Problem 2.1]). The theory I∆0 + Coll−(Σn) is denoted
by Bs(Σn) in Cordón-Franco et al. [2], but we do not adopt this notation
to avoid confusion with the notation for strong collection schemes.

� Of course the parameter-free version of a scheme is weaker than the orig-
inal one and the scheme having the superscript d is intermediate between
them. That is, Coll(Σn) ` Colld(Σn) ` Coll−(Σn) and Collw(Σn) `
Colldw(Σn) ` Coll−w(Σn) hold. The superscript d here stands for ‘dis-
tributed’ because Colld(Σn) and Colldw(Σn) are respectively obtained
from Coll(Σn) and Collw(Σn) by distributing the quantifiers ∀~z in the
schemes. The scheme Colldw(Σn) was considered in [6, Exercise 10.3],
where the theory I∆0 + Colldw(Σn) is denoted by BΣ−n .

� The scheme Colls is known as the strong collection scheme because Colls(Γ)
is stronger than Coll(Γ) (Proposition 2.1). The theory SΣn := I∆0 +
Colls(Σn) was considered in Hájek and Pudlák [4], and interestingly, it
is known that SΣn+1 is deductively equivalent to IΣn+1 (cf. [4, Theo-
rem 2.23] and [6, Lemma 10.6 and Exercise 10.6]). It is easy to see that
Colls(Σn) is equivalent to its parameter-free version (Proposition 2.3).

We list some easily verifiable facts on collection schemes.

Proposition 2.1. For any n ≥ 0, PA− + Colls(Σn) ` Coll(Σn).
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Proposition 2.2. For any n ≥ 0, PA−+ Coll(Σn) is deductively equivalent to
PA− + Collw(Σn).

Proposition 2.3. For any n ≥ 0, PA− + Colls(Σn) is deductively equivalent
to PA− + Coll−s (Σn).

Proposition 2.4 (Cf. Kaye [6, Proposition 7.1]). Let n ≥ 0.

1. For any Σn+1 formula ϕ(~x, ~y), the formula ∀~y < ~z ϕ(~x, ~y) is provably
equivalent to some Σn+1 formula over PA− + Coll(Σn+1).

2. For any Πn+1 formula ϕ(~x, ~y), the formula ∃~y < ~z ϕ(~x, ~y) is provably
equivalent to some Πn+1 formula over PA− + Coll(Σn+1).

It is proved in [7, Proposition 1.2] that BΣ−n+1 ` IΣn for each n ≥ 0 and is
improved as follows.

Proposition 2.5. For each n ≥ 1, PA− + Coll−w(Σn+1) ` Colls(Σn).

Proof. By Proposition 2.3, it suffices to prove PA−+Coll−w(Σn+1) ` Coll−s (Σn).
Let ϕ(~x, ~y) be any Σn formula. By logic, we have

` ∀~x ∃~y
(
∃~y ϕ(~x, ~y)→ ϕ(~x, ~y)

)
.

Since ∃~y ϕ(~x, ~y)→ ϕ(~x, ~y) is logically equivalent to some Σn+1 formula, PA−+
Coll−w(Σn+1) proves

∀~x ∃~y
(
∃~y ϕ(~x, ~y)→ ϕ(~x, ~y)

)
→ ∀~u∃~v ∀~x < ~u∃~y < ~v

(
∃~y ϕ(~x, ~y)→ ϕ(~x, ~y)

)
.

Thus,

PA− + Coll−w(Σn+1) ` ∀~u∃~v ∀~x < ~u∃~y < ~v
(
∃~y ϕ(~x, ~y)→ ϕ(~x, ~y)

)
.

Equivalently,

PA− + Coll−w(Σn+1) ` ∀~u∃~v ∀~x < ~u
(
∃~y ϕ(~x, ~y)→ ∃~y < ~v ϕ(~x, ~y)

)
.

It is known that the theory PA− +
⋃

n∈ω Coll(Σn) having the full collec-
tion scheme does not prove I∆0 (cf. [6, Exercise 7.7]). Furthermore, it can be
shown that PA− +

⋃
n∈ω Coll(Σn) is Π1-conservative over PA−, and so even

PA− +
⋃

n∈ω Coll(Σn) 0 IOpen holds. In the study of the collection schemes,
what properties of the collection schemes can be shown without using the in-
duction axioms? The right hand side of the dashed line of Figure 1 suggests the
possibility of analyzing the situations of the collection schemes over the theory
PA− without induction axioms. In the present paper, we follow this suggestion
and show relationships between several variants of collection schemes over the
theory PA−.
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IΣn+1

BΣn+1

BΣ−n+1

IΣn

=

=

=

=

I∆0 + Colls(Σn+1)

I∆0 + Coll(Σn+1)

I∆0 + Coll−w(Σn+1)

I∆0 + Colls(Σn)

PA− + Colls(Σn+1)

PA− + Coll(Σn+1)

PA− + Coll−w(Σn+1)

PA− + Colls(Σn)

Figure 1: The relationships between induction and collection schemes

2.2 Model theoretic viewpoint

Definition 2.6. Let M,K |= PA− be such that M ⊆ K and Γ be a class of
formulas.

� We say that K is an end-extension of M (denoted by M ⊆end K) iff for
any a, b ∈ K, if b ∈M and K |= a < b, then a ∈M .

� We say that K is a cofinal extension of M (denoted by M ⊆cof K) iff for
any a ∈ K, there exists a b ∈M such that K |= a < b.

� We say that K is a Γ-elementary extension of M (denoted by M ≺Γ K)
iff for any ~a ∈M and any Γ formula ϕ(~x), we have M |= ϕ(~a) if and only
if K |= ϕ(~a).

� We say that K is a Γ-elementary cofinal extension of M (denoted by
M ≺cof

Γ K) iff M ≺Γ K and M ⊆cof K.

Paris and Kirby [9] established the following model theoretic characterization
of the collection scheme:

Theorem 2.7 (Paris and Kirby [9, Theorem B]). Let M be any model of PA−.

1. For n ≥ 1, if M has a proper Σn-elementary end-extension, then M |=
Coll(Σn).

2. For n ≥ 2, if M is a countable model of BΣn, then M has a proper
Σn-elementary end-extension.

Also, the following sufficient condition for a model of PA− to satisfy BΣn

is known.

Theorem 2.8. Let M be any model of PA−.

1. (Wilkie and Paris [11, Theorem 1]) If M has a proper end-extension N |=
I∆0, then M |= BΣ1.
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2. (Clote [1, Proposition 3]; Paris and Kirby [9, Theorem B] for n = 1) For
n ≥ 1, if M has a proper Σn-elementary end-extension N |= IΣn−1, then
M |= BΣn+1.

The theory I∆0 plays an essential role in these results. For example, The-
orem 2.8.(1) is no longer true if we weaken the condition ‘N |= I∆0’ to ‘N |=
PA−’ because every M |= PA− has a proper end-extension N |= PA− (cf. [6,
Exercise 7.7]), and there exists a model of PA− in which BΣ1 does not hold.
Since we also want to analyze the properties of collection schemes in models
that do not necessarily satisfy I∆0, we should consider phenomena in a differ-
ent fashion from these results. We will therefore focus on cofinal extensions.
Gaifman’s splitting theorem is a basic result for the cofinal extensions of models
of PA.

Definition 2.9. For M,N |= PA− with M ⊆ N , let supN (M) := {a ∈ N |
(∃b ∈M) N |= a ≤ b}.

It is clear that supN (M) is the unique K |= PA− such that M ⊆cof K ⊆end

N for each M,N |= PA− with M ⊆ N .

Theorem 2.10 (Gaifman’s splitting theorem [3, Theorem 4]). If M,N |= PA
and M ⊆ N , then M ≺ supN (M).

Gaifman’s splitting theorem follows from the following theorem:

Theorem 2.11 (Gaifman [3, Theorem 3]). Let M,K |= PA−. If M |= PA
and M ≺cof

∆0
K, then M ≺ K.

The proof of Theorem 2.11 presented in the textbook of Kaye [6] actually
proves the following hierarchical refinement.

Theorem 2.12 (Cf. Kaye [6, Theorem 7.7]). Let M,K |= PA−.

1. If M |= Coll(Σ1) and M ≺cof
∆0

K, then M ≺Σ2 K.

2. For n ≥ 1, if M |= BΣn+1 and M ≺cof
∆0

K, then M ≺Σn+2
K.

In the proof of the second clause of Theorem 2.12 presented in [6], the
principle of the finite axiom of choice FAC(Σn+1) for Σn+1 formulas is actually
used instead of BΣn+1, but it is known that FAC(Σn+1) is equivalent to BΣn+1

for n ≥ 1 over I∆0 (cf. Hájek and Pudlák [4]).
These phenomena regarding cofinal extensions are clearly related to collec-

tion axioms, and indeed, these results are presented in the chapter on collection
in Kaye’s book [6, Chapter 7]. Relating to Gaifman’s splitting theorem, Mija-
jlović proved the following result concerning the relation between supN (M) and
N .

Theorem 2.13 (Mijajlović [8, Theorem 1.2]). Let M,N |= PA and n ≥ 0. If
M ≺Σn N , then supN (M) ≺Σn N .

The proof of Theorem 3.2 of Kaye [5] refines Mijajlović’s theorem as follows:
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Theorem 2.14 (Kaye [5, Theorem 3.2]). Let M,N |= IΣn and n ≥ 0. If
M ≺Σn N , then supN (M) ≺Σn N .1

It follows from Theorems 2.11 and 2.13 that for any M,N |= PA−, if M |=
PA and M ≺ N , then M ≺ supN (M) ≺ N . Kaye proved that the converse of
this statement also holds in the following sense.

Theorem 1.2 (Kaye [5, Theorem 1.4](restated)). For M |= I∆0, the following
are equivalent:

1. M |= PA.

2. For any N |= PA−, if M ≺ N , then M ≺ supN (M) ≺ N .

Inspired by Theorems 2.12, 2.13, 2.14 and 1.2, we introduce the following
properties on models, which are our main research interests.

Definition 2.15. Let M |= PA− and n ≥ 0.

� We say that M satisfies the condition endn iff for any N |= PA−, if
M ≺ N , then supN (M) ≺Σn N .

� We say thatM satisfies the condition cofn iff for anyN |= PA−, ifM ≺ N ,
then M ≺Σn

supN (M).

� We say that M satisfies the condition COFn iff for any K |= PA−, if
M ≺cof

∆0
K, then M ≺Σn K.

It is easy to see that every model satisfying COFn also satisfies cofn. Notice
that every model of PA− trivially satisfies end0. Also, every model satisfies
COF1.

Proposition 2.16. Every model of PA− satisfies COF1.

Proof. Let M,K |= PA− be such that M ≺cof
∆0

K. Let ~a be any elements of
M and ϕ(~x, ~y) be any ∆0 formula such that K |= ∃~xϕ(~x,~a). Since M ⊆cof K,

we find some ~b ∈ M such that K |= ∃~x < ~bϕ(~x,~a). Since M ≺∆0 K, we have

M |= ∃~x <~bϕ(~x,~a), and hence M |= ∃~xϕ(~x,~a). Thus M ≺Σ1
K holds.

In general, endn implies cofn+1.

Proposition 2.17. For any n ≥ 0 and M |= PA−, if M satisfies endn, then
M also satisfies cofn+1.

Proof. Suppose that M satisfies endn. Let N |= PA− be any model such that
M ≺ N . Let ϕ(~x) be any Σn+1 formula and ~a be any tuple of elements of M .
Suppose supN (M) |= ϕ(~a). By the condition endn, we have supN (M) ≺Σn N ,
and so N |= ϕ(~a). Since M ≺ N , we get M |= ϕ(~a). Thus, we have proved
M ≺Σn+1

supN (M).

1For n = 0, the assumption M,N |= I∆0 can of course be weakened to M,N |= PA−.
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Theorem 2.12 says that every model of Coll(Σ1) satisfies COF2, and that
for n ≥ 1, every model of BΣn+1 satisfies COFn+2.

In the present paper, we show that the properties endn, cofn and COFn

exactly capture the behavior of several collection schemes over models of PA−.
Our main results are as follows: For any n ≥ 0 and M |= PA−,

� M |= Colls(Σn+1) if and only if M satisfies endn+1. (Theorem 3.1)

� M |= Coll(Σn+1) if and only if M satisfies endn and cofn+2 if and only if
M satisfies endn and COFn+2. (Theorem 4.1)

Furthermore, we will introduce the two conditions cof≡n and cof<n that are
variants of cofn, and prove similar results for other collection schemes by using
these conditions. The implications and equivalences obtained in the present
paper are summarized in Figure 2.

Colldw(Σn+2) Coll−w(Σn+2)

Coll−s (Σn+1) Colls(Σn+1)

Collw(Σn+1) Coll(Σn+1)

Colld(Σn+1) Coll−(Σn+1)

Colldw(Σn+1) Coll−w(Σn+1)

endn+1 & cof≡n+3

endn+1

endn & cofn+2

endn & cof<n+2

endn & cof≡n+2

Prop. 2.5

Prop. 2.1

Prop. 2.3 Thm. 3.1

Prop. 2.2 Thm. 4.1

Thm. 6.4 Thm. 6.4

Thm. 5.4 Thm. 5.4

Figure 2: Implications for models of PA−

As applications of our results, for several theories T , we show that every ∆0-
elementary cofinal extension of a model of T is also a model of T . For example,
as an easy consequence of Proposition 2.16, we have the following corollary:

Corollary 2.18. Let M,K |= PA− be such that M ≺cof
∆0

K.

1. If M |= I∆0, then K |= I∆0.

2. If M |= IΠ−1 , then K |= IΠ−1 .

Proof. By Proposition 2.16, we have M ≺Σ1
K. Then, these clauses follow

from the facts that I∆0 is axiomatized by a set of Π1 sentences and that IΠ−1
is axiomatized by a set of Σ2 sentences (Cf. [7, Proposition 3.1]).
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David Belanger and Tin Lok Wong independently proved the following the-
orem concerning studies in this direction.2

Theorem 2.19 (Belanger and Wong). Let M,K |= PA− be such that M ≺cof
∆0

K.

1. If M |= IΣn+1, then K |= IΣn+1.

2. If M |= BΣn+1 + exp, then K |= BΣn+1 + exp.

We will show that an analogous preservation property also holds for the
theories Coll(Σn+1), Coll−w(Σn+1), BΣ−n+1 and IΣ−n+1 (See Theorem 3.4 and
Corollary 5.5).

3 Strong collection schemes

In this section, from the viewpoint of Gaifman’s splitting theorem, we prove
a theorem on the model theoretic characterization of Colls(Σn+1). As conse-
quences of the result, we refine several already known results such as Theorems
2.12 and 2.13. Also, as an application of the result, we prove that every ∆0-
elementary cofinal extension of a model of PA− + Colls(Σn+1) is also a model
of Colls(Σn+1).

Theorem 3.1. For any M |= PA− and n ≥ 0, the following are equivalent:

1. M satisfies the condition endn+1. That is, for any N |= PA−, if M ≺ N ,
then supN (M) ≺Σn+1 N .

2. M |= Colls(Σn+1).

3. (n ≥ 1): M |= Coll(Σn) and for any N |= PA− + Coll(Σn), if M ≺Σn+1

N , then supN (M) ≺Σn+1 N .

(n = 0): For any N |= PA−, if M ≺Σ1
N , then supN (M) ≺Σ1

N .

4. For any N |= PA−, if M ≺Σn+2 N , then supN (M) ≺Σn+1 N .

Proof. (1 ⇒ 2): Suppose that M satisfies the condition endn+1. It suffices to
show that M |= Coll−s (Σn+1) by Proposition 2.3. Assume, towards a contra-
diction, that M 6|= Coll−s (Σn+1). We then obtain some Σn+1 formula ϕ(~x, ~y)
and ~a ∈M such that

M |= ∀~v ∃~x < ~a
(
∃~y ϕ(~x, ~y) ∧ ∀~y < ~v ¬ϕ(~x, ~y)

)
. (1)

We prepare new constant symbols ~c. For each tuple ~b ∈ M , let T~b be the
LA ∪M ∪ {~c}-theory defined by:

T~b := ElemDiag(M) ∪ {~c < ~a} ∪ {∃~y ϕ(~c, ~y)} ∪ {∀~y <~b¬ϕ(~c, ~y)}.
2This result was informed by Wong through private communication.
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For such ~b, by (1), we find ~e < ~a such that

M |= ∃~y ϕ(~e, ~y) ∧ ∀~y <~b¬ϕ(~e, ~y).

This gives a model of T~b by taking ~e as the interpretation of the constant symbols
~c. Hence, by the compactness theorem, we obtain a model of the theory

ElemDiag(M) ∪ {~c < ~a} ∪ {∃~y ϕ(~c, ~y)} ∪ {∀~y <~b¬ϕ(~c, ~y) | ~b ∈M},

and let N be the restriction of the model to the language LA. Then, M ≺ N ,
and so we obtain that supN (M) ≺Σn+1

N by the condition endn+1. Since
N |= ~cN < ~a, we have ~cN ∈ supN (M). We then obtain supN (M) |= ∃~y ϕ(~cN , ~y)
because N |= ∃~y ϕ(~cN , ~y) and supN (M) ≺Σn+1

N . On the other hand, since

N |= ∀~y < ~b¬ϕ(~cN , ~y) for all ~b ∈ M , we obtain N |= ¬ϕ(~cN ,~k) for all ~k ∈
supN (M) because M ⊆cof supN (M). Hence, supN (M) |= ∀~y ¬ϕ(~cN , ~y) because
supN (M) ≺Σn+1 N again. This is a contradiction.

(2⇒ 3): Suppose that M is a model of Colls(Σn+1). Then, M |= Coll(Σn)
by Proposition 2.1. Let N be any model of PA− with M ≺Σn+1

N . In
the case of n ≥ 1, we further assume N |= Coll(Σn). We would like to
show supN (M) ≺Σn+1

N . By the Tarski–Vaught test (cf. [6, Exercise 7.4]),
it suffices to show that for any Πn formula ϕ(~x, ~y) and any ~a ∈ supN (M), if

N |= ∃~y ϕ(~a, ~y), then N |= ϕ(~a, ~d) for some ~d ∈ supN (M).
Suppose that N |= ∃~y ϕ(~a, ~y) for some Πn formula ϕ(~x, ~y) and ~a ∈ supN (M).

We find some ~b ∈M such that supN (M) |= ~a <~b. Since M |= Colls(Σn+1), we
have

M |= ∀~u∃~v ∀~x < ~u
(
∃~y ϕ(~x, ~y)→ ∃~y < ~v ϕ(~x, ~y)

)
.

So, we find ~c ∈M such that

M |= ∀~x <~b
(
∃~y ϕ(~x, ~y)→ ∃~y < ~cϕ(~x, ~y)

)
.

In the case of n = 0, the formula ∃~y < ~wϕ(~x, ~y) is a ∆0 formula. In the case
of n ≥ 1, the formula ∃~y < ~wϕ(~x, ~y) may be treated as a Πn formula in both
M and N because they are models of PA− + Coll(Σn). So, in either case, the
formula ∀~x < ~z

(
∃~y ϕ(~x, ~y) → ∃~y < ~wϕ(~x, ~y)

)
is equivalent to a Πn+1 formula.

Therefore, it follows from M ≺Σn+1
N that

N |= ∀~x <~b
(
∃~y ϕ(~x, ~y)→ ∃~y < ~cϕ(~x, ~y)

)
.

Since N |= ~a <~b and N |= ∃~y ϕ(~a, ~y), we obtain N |= ∃~y < ~cϕ(~a, ~y). Hence, we

find some ~d < ~c such that N |= ϕ(~a, ~d). Then, ~d ∈ supN (M). This completes
the proof.

(3 ⇒ 4): Suppose that M satisfies the condition stated in Clause 3. In the
case of n = 0, we are done. So, we may assume n ≥ 1. Let N |= PA− be
such that M ≺Σn+2 N . Since M |= Coll(Σn) and the theory PA− + Coll(Σn)
is axiomatized by a set of Πn+2 sentences, we have N |= Coll(Σn). So, we
conclude supN (M) ≺Σn+1

N by Clause 3.
(4⇒ 1): Trivial.
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We immediately obtain the following corollary:

Corollary 3.2. For any M |= I∆0 and n ≥ 0, M |= IΣn if and only if M
satisfies the condition endn.

Proof. The equivalence for n = 0 is trivial. The equivalence for n ≥ 1 follows
from Theorem 3.1 because I∆0 + Colls(Σn+1) is equivalent to IΣn+1.

The following refinement of Mijajlović’s and Kaye’s theorems (Theorems
2.13 and 2.14) follows from Theorem 3.1.

Corollary 3.3. Let M,N |= PA− and n ≥ 1.

1. If M |= Colls(Σ1) and M ≺Σ1 N , then supN (M) ≺Σ1 N .

2. If M |= Colls(Σn+1), N |= Coll(Σn), and M ≺Σn+1
N , then supN (M) ≺Σn+1

N .

As an application of Theorem 3.1, we prove the following theorem whose first
clause is a refinement of Theorem 2.12 and whose second clause is a refinement
of the first clause of Theorem 2.19.

Theorem 3.4. Let n ≥ 0 and M,K |= PA− be such that M ≺cof
∆0

K.

1. If M |= Coll(Σn+1), then M ≺Σn+2 K.

2. If M |= Colls(Σn+1), then K |= Colls(Σn+1).

Proof. The case of n = 0 for Clause 1 is exactly Clause 1 of Theorem 2.12,
and so we are done. We simultaneously prove the following two statements by
induction on n.

1. If M |= Coll(Σn+2), then M ≺Σn+3 K.

2. If M |= Colls(Σn+1), then K |= Colls(Σn+1).

We assume that these statements hold for all k < n.
Firstly, we prove Clause 2. Suppose M |= Colls(Σn+1). We have M |=

Coll(Σn+1) by Proposition 2.1. By the induction hypothesis for Clause 1, we
obtain M ≺Σn+2

K. Let N |= PA− be any model such that K ≺ N . Then,
we have M ≺Σn+2 N . Since M |= Colls(Σn+1), by Theorem 3.1, we obtain
supN (M) ≺Σn+1 N . Since M ⊆cof K, we get supN (M) = supN (K), and thus
supN (K) ≺Σn+1

N . We have proved that K satisfies the condition endn+1. By
Theorem 3.1 again, we obtain K |= Colls(Σn+1). 3

3The following direct argument of this part, which does not use Theorem 3.1, is due to
Tin Lok Wong: Suppose M |= Colls(Σn+1). Let ~a ∈ K be any elements and ϕ(~x, ~y) be any

Σn+1 formula. Since M ⊆cof K, we find ~b ∈ M such that ~a < ~b. Then, for some ~c ∈ M ,

we have M |= ∀~x < ~b
(
∃~y ϕ(~x, ~y) → ∃~y < ~cϕ(~x, ~y)

)
. This formula is logically equivalent

to some Πn+2 formula, and so it is also true in K because M ≺Σn+2
K by the induction

hypothesis. In particular, K |= ∀~x < ~a
(
∃~y ϕ(~x, ~y) → ∃~y < ~cϕ(~x, ~y)

)
. We have shown that

K |= Coll−s (Σn+1). By Proposition 2.3, we conclude K |= Colls(Σn+1).

12



Secondly, we prove Clause 1. Suppose M |= Coll(Σn+2). Then, M |=
Colls(Σn+1) by Proposition 2.5. We have already proved thatK |= Colls(Σn+1)
in Clause 2. Let ~a ∈ M and ϕ(~x, ~y, ~w) be any Σn+1 formula such that K |=
∃~x ∀~y ϕ(~x, ~y,~a). Since M ⊆cof K, there exist ~b ∈ M such that for all ~c ∈ M ,

we have K |= ∃~x < ~b∀~y < ~cϕ(~x, ~y,~a). Since both M and K are models
of Coll(Σn+1), the above formula can be treated as a Σn+1 formula. By the

induction hypothesis, we have M ≺Σn+2
K. Then, M |= ∃~x <~b∀~y < ~cϕ(~x, ~y,~a)

and hence M |= ∀~v ∃~x < ~b∀~y < ~v ϕ(~x, ~y,~a). By applying Coll(Σn+2), we get

M |= ∃~x <~b∀~y ϕ(~x, ~y,~a). So, we conclude M |= ∃~x ∀~y ϕ(~x, ~y,~a).

4 Collection schemes

It follows from Theorem 3.4 that every model of PA−+Coll(Σn+1) satisfies the
condition COFn+2. Continuing this line of observation, we prove the following
theorem on the model theoretic characterization of Coll(Σn+1).

Theorem 4.1. For any M |= PA− and n ≥ 0, the following are equivalent:

1. M |= Coll(Σn+1).

2. M satisfies the conditions endn and COFn+2.

3. M satisfies the conditions endn and cofn+2.

Proof. (1 ⇒ 2): Suppose M |= Coll(Σn+1). By Theorem 3.4, M satisfies
COFn+2. It suffices to prove that M satisfies endn. The case n = 0 is trivial,
and so we may assume n > 0. By Proposition 2.5, we have M |= Colls(Σn). It
follows from Theorem 3.1 that M satisfies endn.

(2⇒ 3): Trivial.
(3 ⇒ 1): Suppose that M satisfies the conditions endn and cofn+2. We

prove that the contrapositive of each instance of Coll(Σn+1) holds in M . For

any Σn+1 formula ϕ(~x, ~y, ~z) and ~a,~b ∈M , we assume

M |= ∀~v ∃~x < ~a∀~y < ~v ¬ϕ(~x, ~y,~b).

By the compactness argument, we obtain an N |= PA− such that M ≺ N and
supN (M) 6= N . We fix some ~e ∈ N \ supN (M). Since M ≺ N , we have

N |= ∀~v ∃~x < ~a∀~y < ~v ¬ϕ(~x, ~y,~b),

and so we find some ~c ∈ N with ~c < ~a such that for all ~d ∈ N with ~d < ~e,
we have N |= ¬ϕ(~c, ~d,~b). Then, ~c ∈ supN (M). Also, since ~e ∈ N \ supN (M)

and supN (M) ⊆end N , we get that N |= ¬ϕ(~c, ~d,~b) holds for all ~d ∈ supN (M).
Since ¬ϕ is a Πn+1 formula and supN (M) ≺Σn

N holds by the condition endn,

we obtain supN (M) |= ¬ϕ(~c, ~d,~b). Thus, supN (M) |= ∃~x < ~a∀~y ¬ϕ(~x, ~y,~b).
By the condition cofn+2, we have M ≺Σn+2

supN (M). Thus, we conclude

M |= ∃~x < ~a∀~y ¬ϕ(~x, ~y,~b). We have proved that M |= Coll(Σn+1).

13



We immediately obtain the following corollary:

Corollary 4.2. For any n ≥ 0 and M |= PA− satisfying endn, M satisfies
cofn+2 if and only if M satisfies COFn+2.

By combining Corollary 4.2 and Proposition 2.16, we obtain the following
refinement of Proposition 2.17.

Corollary 4.3. For any n ≥ 0 and M |= PA−, if M satisfies endn, then M
also satisfies COFn+1.

Remark 4.4. For models M of I∆0, the implication (3 ⇒ 1) of Theorem 4.1
is immediately proved by using Theorem 2.8 and Corollary 3.2. For, suppose
M |= I∆0 and M satisfies the conditions endn and cofn+2. By Corollary 3.2,
M is a model of IΣn. We can easily find an N |= IΣn such that M ≺ N
and supN (M) 6= N by using the compactness theorem. We have M ≺Σn+2

supN (M) ≺Σn
N by the conditions endn and cofn+2. By Theorem 2.8, we have

supN (M) |= BΣn+1, and hence M |= BΣn+1 because BΣn+1 is axiomatized by
a set of Πn+3 sentences (cf. [6, Exercise 10.2.(a)]).

By refining the argument presented in Remark 4.4, we show that for mod-
els of I∆0 satisfying endn, the condition cofn+2 is equivalent to some weaker
conditions.

Proposition 4.5. Let n ≥ 0. If M |= I∆0 satisfies endn, then the following
are equivalent:

1. M satisfies cofn+2.

2. For any N |= PA−, if M ≺ N , then there exists an N ′ |= PA− such that
N ≺ N ′ and M ≺Σn+2 supN ′(M).

3. There exists an N |= PA− such that M ≺ N , N 6= supN (M) and
M ≺Σn+2

supN (M).

Proof. Let M |= I∆0 satisfy endn. By Corollary 3.2, we have M |= IΣn.
(1⇒ 2): Obvious by letting N ′ = N .
(2 ⇒ 3): Suppose that M satisfies the condition of Clause 2. By the com-

pactness argument, we find some N |= PA− such that M ≺ N and supN (M) 6=
N . By Clause 2, we also find some N ′ |= PA− such that N ≺ N ′ and M ≺Σn+2

supN ′(M). We have M ≺ N ′, N ′ 6= supN ′(M) and M ≺Σn+2 supN ′(M).

(3 ⇒ 1): Let N |= PA− be such that M ≺ N , N 6= supN (M) and
M ≺Σn+2 supN (M). By Theorem 2.14, N is a proper Σn-elementary extension
of supN (M). Since N |= IΣn, by Theorem 2.8, we have supN (M) |= BΣn+1.
As in the argument in Remark 4.4, we get M |= BΣn+1. By Theorem 4.1, M
satisfies the condition cofn+2.

The second condition in Proposition 4.5 originates from Kaye [5].

Problem 4.6. Can the assumption M |= I∆0 in Proposition 4.5 be weakened
to M |= PA−?

14



As a straightforward consequence of Theorems 3.1 and 4.1, we obtain the
following refinement of Theorem 1.2.

Corollary 4.7. For M |= PA−, the following are equivalent:

1. M |=
⋃

n∈ω Coll(Σn).

2. For any N |= PA−, if M ≺ N , then M ≺ supN (M) ≺ N .

3. For any N |= PA−, if M ≺ N , then supN (M) ≺ N .

Proof. (1 ⇒ 2): Suppose M |=
⋃

n∈ω Coll(Σn). By Theorem 4.1, M satisfies
endn and cofn for all n ∈ ω. This means that M satisfies Clause 2.

(2⇒ 3): Trivial.
(3 ⇒ 1): Suppose that M satisfies Clause 3. Then, M satisfies endn for

all n ∈ ω. By Theorem 3.1, M |= Colls(Σn) for all n ∈ ω. Then, M |=⋃
n∈ω Coll(Σn) by Proposition 2.1.

We propose the following problem.

Problem 4.8. Let n ≥ 0 and M,K |= PA− be such that M ≺cof
∆0

K.

1. Does M |= Coll(Σn+1) imply K |= Coll(Σn+1)?

2. If M satisfies cofn+1, then does K satisfy cofn+1?

Belanger and Wong’s Theorem 2.19 provides the affirmative answer to the
first clause of Problem 4.8 in the case of M |= I∆0 + exp. By Theorem 4.1, we
have that M |= Coll(Σ1) if and only if M satisfies cof2. So, Theorem 2.19 also
provides the affirmative answer to the second clause of Problem 4.8 in the case
of M |= I∆0 + exp and n = 1.

5 Weak parameter-free collection schemes

In this subsection, we prove a model theoretic characterization of the weak
parameter-free collection scheme Coll−w(Σn+1). As a consequence, we show
that every ∆0-elementary cofinal extension of a model of one of the theories
PA− + Coll−w(Σn+1), BΣ−n+1 and IΣ−n+1 is also a model of the theory.

Definition 5.1. Let M,K |= PA− be such that M ⊆ K and let n ≥ 0. We
write M ≡Σn

K iff M and K satisfy the same Σn sentences.

We introduce the following weak variations of the conditions endn, cofn and
COFn.

Definition 5.2. Let M |= PA− and n ≥ 0.

� We say that M satisfies the condition end≡n iff for any N |= PA−, if
M ≺ N , then supN (M) ≡Σn

N .
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� We say that M satisfies the condition cof≡n iff for any N |= PA−, if
M ≺ N , then M ≡Σn supN (M).

� We say that M satisfies the condition COF≡n iff for any K |= PA−, if
M ≺cof

∆0
K, then M ≡Σn

K.

For any models M,N |= PA− with M ≺ N , it is easy to see that M ≡Σn

supN (M) if and only if supN (M) ≡Σn N . So, we have the following proposition
and we may focus only on the conditions cof≡n and COF≡n :

Proposition 5.3. For any M |= PA− and n ≥ 0, M satisfies end≡n if and only
if M satisfies cof≡n .

Theorem 4.1 states that the combination of the conditions endn and cofn+1

characterizes Coll(Σn+1). If cofn+1 is weakened to cof≡n+1, then we obtain the

following characterization of Coll−w(Σn+1).

Theorem 5.4. For any M |= PA− and n ≥ 0, the following are equivalent:

1. M |= Colldw(Σn+1).

2. M |= Coll−w(Σn+1).

3. M satisfies the conditions endn and COF≡n+2.

4. M satisfies the conditions endn and cof≡n+2.

Proof. (1⇒ 2): Trivial.
(2 ⇒ 3): Suppose M |= Coll−w(Σn+1). We show that M satisfies endn. If

n = 0, M trivially satisfies end0. If n ≥ 1, by Proposition 2.5, M |= Colls(Σn).
By Theorem 3.1, M satisfies endn.

We prove that M satisfies COF≡n+2. Let K |= PA− be such that M ≺cof
∆0

K,
and we show M ≡Σn+2

K. By Corollary 4.3, we have that M satisfies COFn+1,
and thus M ≺Σn+1

K holds. Then, it suffices to show that K |= ψ implies
M |= ψ for all Σn+2 sentences ψ.

Let ϕ(~x, ~y) be any Σn formula such thatK |= ∃~x ∀~y ϕ(~x, ~y). SinceM ⊆cof K,

there exist ~a ∈ M such that for all ~b ∈ M , K |= ∃~x < ~a ∀~y < ~bϕ(~x, ~y). If
n = 0, this formula is ∆0. If n ≥ 1, since M |= Colls(Σn), we have that
K |= Colls(Σn) by Theorem 3.4. In particular, both M and K are models of
Coll(Σn), and hence that formula above may be regarded as Σn in M and K.

Thus, we have M |= ∃~x < ~a∀~y < ~bϕ(~x, ~y) because M ≺Σn+1
K. Therefore,

∃~u∀~v ∃~x < ~u∀~y < ~v ϕ(~x, ~y) is true in M . By applying Coll−w(Σn+1), we obtain
M |= ∃~x ∀~y ϕ(~x, ~y).

(3⇒ 4): Trivial.
(4⇒ 1): Suppose that M satisfies the conditions endn and cof≡n+2. We prove

that the contrapositive of each instance of Colldw(Σn+1) holds in M . For any
Σn+1 formula ϕ(~x, ~y, ~z), we assume

M |= ∃~z ∃~u∀~v ∃~x < ~u∀~y < ~v ¬ϕ(~x, ~y, ~z).
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Then, we find ~a,~b ∈ M such that M |= ∀~v ∃~x < ~a ∀~y < ~v ¬ϕ(~x, ~y,~b). By the
same argument as in the proof of Theorem 4.1, we obtain that supN (M) |=
∃~x < ~a ∀~y ¬ϕ(~x, ~y,~b) by using the condition endn. So, we have supN (M) |=
∃~z ∃~x ∀~y ¬ϕ(~x, ~y, ~z). Since M ≡Σn+2 supN (M) by the condition cof≡n+2, we

conclude M |= ∃~z ∃~x ∀~y ¬ϕ(~x, ~y, ~z). We have proved that M |= Colldw(Σn+1).

It is known that each of PA− + Coll−w(Σn+1) and the extensions IΣ−n+1

and BΣ−n+1 of PA− + Coll−w(Σn+1) are axiomatized by some set of Boolean
combinations of Σn+2 sentences (cf. [7, Propositions 3.2 and 3.3]). Hence, we
obtain the following corollary.

Corollary 5.5. Let n ≥ 0 and M,K |= PA− be such that M ≺cof
∆0

K.

1. If M |= Coll−w(Σn+1), then K |= Coll−w(Σn+1).

2. If M |= BΣ−n+1, then K |= BΣ−n+1.

3. If M |= IΣ−n+1, then K |= IΣ−n+1.

In the case of M |= I∆0, the following proposition is proved in the similar
way as in the proof of Proposition 4.5 by using Theorem 5.4 and the fact that
BΣ−n+1 is axiomatized by some set of Boolean combinations of Σn+2 sentences.

Proposition 5.6. Let n ≥ 0. If M |= I∆0 satisfies endn, then the following
are equivalent:

1. M satisfies cof≡n+2.

2. For any N |= PA−, if M ≺ N , then there exists an N ′ |= PA− such that
N ≺ N ′ and M ≡Σn+2

supN ′(M).

3. There exists an N |= PA− such that M ≺ N , N 6= supN (M) and
M ≡Σn+2

supN (M).

6 Parameter-free collection schemes

In this section, we prove the model theoretic characterization of the scheme
Coll−w(Σn+1). As in the previous sections, we introduce several notions.

Definition 6.1. Let M,K |= PA− be such that M ⊆ K and n ≥ 0.

� M ≺<
Σn+1

K iff for any ~a ∈ M and any Πn formula ϕ(~x), we have M |=
∃~x < ~aϕ(~x) if and only if K |= ∃~x < ~aϕ(~x).

Definition 6.2. Let M |= PA− and n ≥ 0.

� We say that M satisfies the condition end<n+1 iff for any N |= PA−, if
M ≺ N , then supN (M) ≺<

Σn+1
N .
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� We say that M satisfies the condition cof<n+1 iff for any N |= PA−, if
M ≺ N , then M ≺<

Σn+1
supN (M).

� We say that M satisfies the condition COF<
n+1 iff for any K |= PA−, if

M ≺cof
∆0

K, then M ≺<
Σn+1

K.

It is easy to see that cofn+1 (resp. COFn+1) implies cof<n+1 (resp. COF<
n+1),

and cof<n+1 (resp. COF<
n+1) implies cof≡n+1 (resp. COF≡n+1). By the following

proposition, we may focus only on the conditions cof<n+1 and COF<
n+1.

Proposition 6.3. For any M |= PA− and n ≥ 0, if M satisfies endn, then M
also satisfies end<n+1.

Proof. Suppose that M satisfies endn. Let N |= PA− be any model such that
M ≺ N . Let ϕ(~x) be any Πn formula and ~a ∈ supN (M). Suppose N |=
∃~x < ~aϕ(~x), then we find some ~b ∈ N such that N |= ~b < ~a ∧ ϕ(~b). Since

supN (M) ⊆end N , we have ~b ∈ supN (M). So, we obtain supN (M) |= ϕ(~b)
because supN (M) ≺Σn

N by endn. We conclude supN (M) |= ∃~x < ~aϕ(~x). The
converse direction directly follows from endn.

We prove the following characterization theorem.

Theorem 6.4. For any M |= PA− and n ≥ 0, the following are equivalent:

1. M |= Colld(Σn+1).

2. M |= Coll−(Σn+1).

3. M satisfies the conditions endn and COF<
n+2.

4. M satisfies the conditions endn and cof<n+2.

Proof. (1⇒ 2): Trivial.
(2 ⇒ 3): Suppose M |= Coll−(Σn+1). We have that M satisfies endn as in

the proof of Theorem 5.4. Let K |= PA− be such that M ≺cof
∆0

K. We show
that M ≺<

Σn+2
K. By Corollary 4.3, we have M ≺Σn+1 K.

Let ~a ∈M and ϕ(~x, ~y) be any Σn formula such that K |= ∃~x < ~a∀~y ϕ(~x, ~y).
By the same argument as in the proof of Theorem 5.4, we have that M satisfies
∀~v ∃~x < ~a ∀~y < ~v ϕ(~x, ~y). By applying Coll−(Σn+1), we conclude that M |=
∃~x < ~a∀~y ϕ(~x, ~y).

(3⇒ 4): Trivial.
(4⇒ 1): Suppose that M satisfies the conditions endn and cof<n+2. We prove

that the contrapositive of each instance of Colld(Σn+1) holds in M . For any
~a ∈M and any Σn+1 formula ϕ(~x, ~y, ~z), we assume

M |= ∃~z ∀~v ∃~x < ~a∀~y < ~v ¬ϕ(~x, ~y, ~z).

So, for some ~b ∈M , we have

M |= ∀~v ∃~x < ~a∀~y < ~v ¬ϕ(~x, ~y,~b).
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By the same argument as in the proof of Theorem 4.1, we obtain that supN (M) |=
∃~x < ~a∀~y ¬ϕ(~x, ~y,~b) by using the condition endn. Then, for some ~d ∈ M , we

have supN (M) |= ∃~z < ~d∃~x < ~a ∀~y ¬ϕ(~x, ~y, ~z). Since M ≺<
Σn+2

supN (M)

by the condition cof<n+2, we get M |= ∃~z < ~d∃~x < ~a ∀~y ¬ϕ(~x, ~y, ~z). Thus,
M |= ∃~z ∃~x < ~a∀~y ¬ϕ(~x, ~y, ~z).

We propose the following problems.

Problem 6.5. Let n ≥ 0 and M,K |= PA− be such that M ≺cof
∆0

K.

1. Does M |= Coll−(Σn+1) imply K |= Coll−(Σn+1)?

2. If M satisfies cof<n+1, then does K satisfy cof<n+1?

Problem 6.6. For n ≥ 0, does PA− + Coll−w(Σn+1) prove Coll−(Σn+1)?

Cordón-Franco et al. [2, Proposition 5.6] showed that BΣ−n+1 0 Coll−(Σn+1)

if and only if I∆0 + Coll−(Σn+1) is not axiomatized by any set of Boolean
combinations of Σn+2 sentences. This equivalence also follows from the proof
of Proposition 5.6. Relating to this problem, we get the following proposition.

Proposition 6.7. For any n ≥ 0, the following are equivalent:

1. BΣ−n+1 0 Coll−(Σn+1).

2. There exist M,N |= IΣn such that M ≺ N , N 6= supN (M), M ≡Σn+2

supN (M) and M 6≺<
Σn+2

supN (M).

Proof. (1 ⇒ 2): Suppose BΣ−n+1 0 Coll−(Σn+1). We obtain a model M |=
I∆0 + Coll−w(Σn+1) with M 6|= Coll−(Σn+1). Then, M is a model of IΣn.
By Theorems 5.4 and 6.4, M satisfies endn and COF≡n+2 but does not satisfy
COF<

n+2. Then, we obtain a model N |= IΣn such that M ≺ N and M 6≺<
Σn+2

supN (M). It follows from the condition COF≡n+2 that M ≡Σn+2
supN (M). Since

M ≺ N and M 6≺<
Σn+2

supN (M), we have N 6= supN (M).

(2 ⇒ 1): Let M,N |= IΣn satisfy the conditions stated in Clause 2. By
Corollary 3.2 and Proposition 5.6, M satisfies endn and cof≡n+2. Hence, by

Theorem 5.4, M |= Coll−w(Σn+1). Since M does not satisfy cof<n+2, by The-

orem 6.4, we obtain M 6|= Coll−(Σn+1). Therefore, we conclude BΣ−n+1 0
Coll−(Σn+1).

We close this section with the following analogue of Propositions 4.5 and
5.6.

Proposition 6.8. Let n ≥ 0. If M |= I∆0 satisfies endn, then the following
are equivalent:

1. M satisfies cof<n+2.

2. For any N |= PA−, if M ≺ N , then there exists an N ′ |= PA− such that
N ≺ N ′ and M ≺<

Σn+2
supN ′(M).
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3. There exists an N |= PA− such that M ≺ N , N 6= supN (M) and
M ≺<

Σn+2
supN (M).

Proof. Let M |= I∆0 satisfy endn. By Corollary 3.2, we have M |= IΣn.
(1 ⇒ 2) and (2 ⇒ 3) are proved in the similar way as in the proof of

Proposition 4.5.
(3⇒ 1): Let N |= PA− be such that M ≺ N , N 6= supN (M) and M ≺Σn+2

supN (M). By Theorem 6.4, it suffices to show M |= Coll−(Σn+1). Let ~a ∈
M and ϕ(~x, ~y) be any Πn formula such that M |= ∀~x < ~a∃~y ϕ(~x, ~y). Since
M ≺<

Σn+2
supN (M), we have supN (M) |= ∀~x < ~a ∃~y ϕ(~x, ~y). As in the proof of

Proposition 4.5, we obtain supN (M) |= BΣn+1, and hence supN (M) |= ∃~v ∀~x <
~a∃~y < ~v ϕ(~x, ~y). If n = 0, this formula is Σ1. If n ≥ 1, it can also be regarded
as Σn+1 because both M and supN (M) are models of Coll(Σn). By Corollary
4.3, we have M ≺Σn+1

supN (M), and hence M |= ∃~v ∀~x < ~a∃~y < ~v ϕ(~x, ~y). We
are done.

7 cofn+1 versus COFn+1

Corollary 4.2 states that if M |= PA− satisfies endn, then cofn+2 and COFn+2

are equivalent for M . So, cof2 and COF2 are equivalent.
Then, we propose the following problem.

Problem 7.1. For n ≥ 0 and M |= PA−, are cofn+3 and COFn+3 equivalent?

In the case of M |= I∆0 +exp, an improvement of Corollary 4.2 follows from
Belanger and Wong’s theorem (Theorem 2.19). In the proof of our improvement,
we use the following lemma.

Lemma 7.2. For any M,K |= PA−, M ≺Σ1 K if and only if there exists an
N |= PA− such that M ≺ N and K ≺∆0

N .

Proof. The implication (⇐) is obvious. To show the implication (⇒), it suffices
to prove the consistency of the theory ElemDiag(M)∪∆0-ElemDiag(K), which
follows from M ≺Σ1 K.

Proposition 7.3. For any n ≥ 0 and M |= I∆0 + exp satisfying endn, M
satisfies cofn+3 if and only if M satisfies COFn+3.

Proof. Suppose M |= I∆0 + exp satisfies endn and cofn+3. By Theorem 4.1,
M |= BΣn+1 + exp. Let K |= PA− be such that M ≺cof

∆0
K. By Proposition

2.16, we have M ≺Σ1 K, and so we get an N |= PA− such that M ≺ N and
K ≺∆0

N by Lemma 7.2. Then, by Theorem 2.19, we obtain K |= BΣn+1,
and hence K satisfies COFn+2 by Theorem 4.1 again. Therefore, K ≺Σn+2

supN (K) = supN (M). Also by cofn+3 for M , we have M ≺Σn+3
supN (M).

By combining them, we obtain M ≺Σn+3
K. We have shown that M satisfies

COFn+3.
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As a consequence, cof3 and COF3 are equivalent in the case of M |= I∆0 +
exp.

Recently, the following interesting theorem is announced by Mengzhou Sun
and Tin Lok Wong.

Theorem 7.4 (Sun and Wong). Let n ≥ 0.

1. For any countable model M |= BΣn+1 + exp +¬IΣn+1, we have that M
does not satisfy cofn+4.

2. There exists a countable model M |= BΣn+1 + exp +¬IΣn+1 that satisfies
COFn+3.

3. There exists a uncountable model M |= BΣn+1 + exp +¬IΣn+1 that satis-
fies COFk for all k ≥ 1.

The following proposition is obtained from the first clause of Theorem 7.4.

Proposition 7.5. For n ≥ 0 and any countable model M |= I∆0 + exp, if M
satisfies cofn+3, then M |= BΣn+1.

Proof. We prove the proposition by induction on n. The case of n = 0 follows
from Theorem 4.1. We suppose that the statement holds for n, and let M be
any countable model of M |= I∆0 + exp satisfying cofn+4. By the induction
hypothesis, M |= BΣn+1+exp. So, by Theorem 7.4, we obtain thatM |= IΣn+1.
By Corollary 3.2, M satisfies endn+1, and so by Theorem 4.1, M |= BΣn+2.

Proposition 7.5 gives us the following affirmative answer to Problem 4.8 in
the case that M is a countable model of I∆0 + exp.

Proposition 7.6. For n ≥ 0 and countable M |= I∆0 + exp, we have that
cofn+4 and COFn+4 are equivalent.

Proof. Suppose that M |= I∆0 + exp is countable and satisfies cofn+4. By
Proposition 7.5, M |= IΣn+1. By Corollary 3.2, M satisfies endn+1. Then, by
Proposition 7.3, M satisfies COFn+4.

The situation of the implications on properties for countable models of I∆0+
exp is visualized in Figure 3. The second clause of Theorem 7.4 together with
the facts that BΣn+1 + exp 0 IΣn+1 and IΣn + exp 0 BΣn+1 shows that no
more arrows can be added to the diagram. Also, the countability of models
cannot be removed in Figure 3 because of the third clause of Theorem 7.4.
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BΣ1 cof2 COF2

IΣ1 end1 cof3 COF3

BΣ2 end1 & cof3

IΣ2 end2 cof4 COF4

BΣ3 end2 & cof4

Figure 3: Implications for countable models of I∆0 + exp
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