神戸大学附属図書館デジタルアーカイブ
入力補助
English
カテゴリ
学内刊行物
ランキング
アクセスランキング
ダウンロードランキング
https://hdl.handle.net/20.500.14094/0100492453
このアイテムのアクセス数:
79
件
(
2025-06-13
12:02 集計
)
閲覧可能ファイル
ファイル
フォーマット
サイズ
閲覧回数
説明
0100492453 (fulltext)
pdf
2.66 MB
65
メタデータ
ファイル出力
メタデータID
0100492453
アクセス権
open access
出版タイプ
Version of Record
タイトル
A Simple Neural Network for Estimating Fine Sediment Sources Using XRF and XRD
著者
Mutiso, Selline ; Nakayama, Keisuke ; Komai, Katsuaki
著者名
Mutiso, Selline
著者ID
A0044
研究者ID
1000060271649
ORCID
0000-0003-2420-1045
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail.html?systemId=c5a2042377aa64d0520e17560c007669
著者名
Nakayama, Keisuke
中山, 恵介
ナカヤマ, ケイスケ
所属機関名
工学研究科
著者名
Komai, Katsuaki
言語
English (英語)
収録物名
Hydrology
巻(号)
11(11)
ページ
192
出版者
MDPI
刊行日
2024-11
公開日
2024-12-09
抄録
Suspended sediment (SS) has a wide range of negative effects such as increased water turbidity, altered habitat structures, sedimentation, and effects on hydraulic systems and environmental engineering projects. Nevertheless, the methods for accurately determining SS sources on a basin-scale are poorly understood. Herein, we used a simplified neural network analysis (NNA) model to identify the sources of SS in Japan’s Oromushi River Catchment Basin. Fine soil samples were collected from different locations of the catchment basin, processed, and separately analysed using X-ray fluorescence (XRF) and X-ray diffraction (XRD). The sampling stations were grouped according to the type of soil cover, vegetation type and land-use pattern. The geochemical components of each group were fed into the same neural network layer, and a series of equations were applied to estimate the sediment contribution from each group to the downstream side of the river. Samples from the same sampling locations were also analysed by XRD, and the obtained peak intensity values were used as the input in the NNA model. SS mainly originated from agricultural fields, with regions where the ground is covered with volcanic ash identified as the key sources through XRF and XRD analysis, respectively. Therefore, based on the nature of the surface soil cover and the land use pattern in the catchment basin, NNA was found to be a reliable data analytical technique. Moreover, XRD analysis does not incorporate carbon, and also provides detailed information on crystalline phases. The results obtained in this study, therefore, do not depend on seasonal uncertainty due to organic matter.
キーワード
X-ray fluorescence analysis
X-ray diffraction analysis
diffraction peak
neural network analysis
suspended sediment
sediment transportation rate
カテゴリ
工学研究科
学術雑誌論文
権利
© 2024 by the authors. Licensee MDPI, Basel, Switzerland.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license
関連情報
DOI
https://doi.org/10.3390/hydrology11110192
詳細を表示
資源タイプ
journal article
eISSN
2306-5338
OPACで所蔵を検索
CiNiiで学外所蔵を検索
ホームへ戻る