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Abstract: Suspended sediment (SS) has a wide range of negative effects such as increased water tur-
bidity, altered habitat structures, sedimentation, and effects on hydraulic systems and environmental
engineering projects. Nevertheless, the methods for accurately determining SS sources on a basin-
scale are poorly understood. Herein, we used a simplified neural network analysis (NNA) model
to identify the sources of SS in Japan’s Oromushi River Catchment Basin. Fine soil samples were
collected from different locations of the catchment basin, processed, and separately analysed using
X-ray fluorescence (XRF) and X-ray diffraction (XRD). The sampling stations were grouped according
to the type of soil cover, vegetation type and land-use pattern. The geochemical components of each
group were fed into the same neural network layer, and a series of equations were applied to estimate
the sediment contribution from each group to the downstream side of the river. Samples from the
same sampling locations were also analysed by XRD, and the obtained peak intensity values were
used as the input in the NNA model. SS mainly originated from agricultural fields, with regions
where the ground is covered with volcanic ash identified as the key sources through XRF and XRD
analysis, respectively. Therefore, based on the nature of the surface soil cover and the land use
pattern in the catchment basin, NNA was found to be a reliable data analytical technique. Moreover,
XRD analysis does not incorporate carbon, and also provides detailed information on crystalline
phases. The results obtained in this study, therefore, do not depend on seasonal uncertainty due to
organic matter.

Keywords: X-ray fluorescence analysis; X-ray diffraction analysis; diffraction peak; neural network
analysis; suspended sediment; sediment transportation rate

1. Introduction

Sediment transport refers to the movement of solid particles suspended in moving
water. Sediment transport in a catchment basin is affected by several factors such as
the rainfall, slope, soil type, and landscape management activities including agriculture,
construction, industry, and wasteland management [1,2]. In particular, fine sediment,
such as suspended sediment (SS), plays a crucial role in the hydrological, ecological, and
geomorphological functioning of the river system and is, therefore, essential in a river
ecosystem. In addition, the long-term deposition of sediments along a river network or
at a river basin may have a significant effect on the marine ecosystem [3–8], and this
necessitates an understanding of the sedimentation process in a river basin in order to
implement efficient management strategies to effectively mitigate soil erosion and reduce
sediment delivery to the rivers [9].

For example, sedimentation in alluvial rivers may occur due to an excessive release of
SS through dams, which may lead to siltation in the dams if there are no other dams. Exces-
sive water inflow due to large storms may be associated with high SS concentrations, which
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may be deposited during low inflows due to decreased water energy levels. Similarly, an
excessive input of SS to rivers due to levee and dike erosion may also cause sedimentation
in river channels. As a result, stream habitats may be affected. Navigation and channel
morphology may also be affected, thereby influencing the catchment flood risk [10].

Fine sediment (SS) in a river system may also affect the water quality at the down-
stream end of the river basin. SS may act as an ecological stressor since it may contain
detrimental substances such as agricultural inputs, heavy metals, and pesticides [11]. This
is because SS can absorb contaminants and pollutants including heavy metals and nutri-
ents, which can then be transported in the water along a river network to the downstream
end [12]. Deposition of these pollutants at the river’s downstream end may negatively
affect aquatic and human life. It is, therefore, important to gain a thorough understand-
ing of the dynamics of sediment transport in a watershed in order to ensure the proper
functioning of river systems.

Nutrients, organic contaminants, and heavy metals generated from various sources
(e.g., industrial and densely populated urban areas) can be attached to, and transported
along with, fine sediment particles [11]. Some of these contaminants, e.g., pesticides,
metals, and polycyclic aromatic hydrocarbons, are readily adsorbed by sediment and
resist degradation [13]. Fine soil sedimentation may also affect hydraulic systems and
environmental engineering projects such as dams, hydropower plants, canals, irrigation
networks, wastewater treatment plants, and water intakes, thereby necessitating sediment
management measures for the trouble-free operation of the facilities. Sedimentation may
cause additional problems, e.g., reduced channel conveyance, decreased reservoir storage,
and blockage of power generation facilities such as turbine inlets. Sediments can also have
adverse biological effects on people and habitats for fish and wildlife [14]. High sediment
levels can cover spawning gravels, impair fish feeding and respiration, diminish food
sources, and decrease dissolved oxygen levels [15]. Fine sediment also absorbs the heat
from sunlight, and high concentrations may cause the water temperature to rise, leading to
a decrease in the survival rate of fish adults and embryos [16]. Areas that are impervious
due to sedimentation inhibit groundwater recharge, which results in low summer base
flows in rivers [17]. The clogging of streambed interstices by fine sediment may also reduce
the flushing of dissolved oxygen concentrations, thereby reducing the microhabitats for
aquatic animals [18].

The estimation and forecasting of the sediment load during the lifecycle of a project is
thus a key design parameter in water resource planning and management [19]. Information
about sedimentation is crucial with regard to flood risk management. Even though sedi-
ment can be transported as bedload sediment or in suspension, it has been demonstrated
that most of this sediment is transported as suspended sediment to the river basin [20].
The river morphology may be altered during sediment transportation, thus influencing
the maximum river discharge. Several numerical models have been applied to clarify the
complexity of flows, sediment transport, and the corresponding morphological changes in
rivers and floodplains, but the methods for accurately determining suspended sediment
sources in large basin scales are poorly understood.

Collins and Walling [21] used various analytical techniques to discriminate the sources
of SS in a catchment basin based on the levels of pyrophosphate-dithionite; oxalate-
extractable, acid-extractable metals; base cations; organic constituents; and environmental
radionuclides [21], but due to the extreme variability of mineral magnetic properties in some
catchments, the sediment sources could not be accurately identified. It was also difficult to
identify the best combination of the fingerprinting properties of the suspended sediments.

Ishida et al. [22] performed a chemical composition analysis to identify the source of
sediment transport, but this method could not accurately determine the sources of SS in a
catchment basin because a linear regression method was used, which cannot account for
the nonlinear effect on sedimentation. Beitia et al. [23] also estimated the export rate of
sediment in a river catchment basin by conducting an X-ray fluorescence analysis combined
with a neural network analysis (NNA), but the sampling locations in that study were not
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uniformly distributed in the application of the NNA for the estimation of sedimentation,
and this could have negatively affected the results obtained. It is, therefore, necessary to
identify a method that will identify sediment sources based on several diagnostic sediment
properties. An NNA is one of the methods that can have a nonlinear effect on the process
and can also handle a large amount of data. This unique advantage of NNAs is a key factor
in the selection of the most appropriate method, and we thus deemed an NNA the most
suitable data analytical method for our present study.

The chemical composition of SS as revealed by atomic absorption spectrometry has
been applied to investigations of the source(s) of SS [24]. Based on the results of that
analysis, it was concluded that sediment generation was influenced mainly by human
activities, and the study demonstrated the high possibility and applicability of chemical
composition information for clarifying SS sources. We thus used an NNA in our present
study to identify the fine sediment sources in Japan’s Oromushi River Catchment Basin
based on the characteristics and the nature of sediment accumulation at the downstream
end of the river. In general, NNAs are powerful analytical tools that have been used
extensively in various fields to analyze data.

We examined the Oromushi River basin in Japan’s Hokkaido prefecture. This location
was selected for the present case study because the Oromushi River is characterized by high
fine sediment concentration and is thus prone to the adverse effects of sedimentation. We
obtained samples from different locations of the catchment basin, identified the geochemical
components in the samples by either the press or glass-bead method, and analyzed the
results by X-ray fluorescence (XRF) and X-ray diffraction (XRD). We used a simple NNA
with a single-layer network to identify the primary sources of SS in the catchment basin
when both XRF and XRD analyses were used.

2. Materials and Methods
2.1. Study Area

The Oromushi river catchment basin is located in Hokkaido prefecture, at the end of
the northernmost region of Japan. This catchment basin covers an area of 29.3 km2 and its
downstream end is located at 43◦43′ N and 143◦47′ E. The Oromushi River, a branch of the
Tokoro River flows through this catchment. The Oromushi River has a total length of 9.7 km
and a mean slope gradient of 1/43. This river is characterized by high SS concentrations
(>10,000 mg L−1) during flood events, and a mean runoff concentration time of ~1.5 h [23].
The Oromushi River Catchment Basin is mainly forested, with a few agricultural fields.
Forest cover accounts for ~80.7% of the basin, and agricultural fields account for ~15.8% of
the catchment basin area. Figure 1 shows the geographical location and the characteristics
of our study site.
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resentative soil samples of approx. 15 cm × 15 cm × 5 cm (horizontal square area × depth) 
were taken from the surface layer of selected locations within each of the sampling sta-
tions, and one ~4500 cm3 sample was taken at the bottom of the channel at the downstream 
end of the river. Special care was taken (by thoroughly cleaning sampling tools and using 
double-sealed and labeled plastic bags for storage and transportation) in order to avoid 
contamination of the samples at each sampling site. The samples collected from the same 
group were well mixed to represent the spatial heterogeneity of the soil. Figure 2 shows 
the different types of land use, sampling locations (stations), and the groups in the Oro-
mushi River Catchment basin. 

Figure 1. The study site. (a) A map of Japan’s Hokkaido prefecture with the location of the Oromushi
River Catchment Basin. The yellow and red areas show the Tokoro River Basin with the Oromushi
River as one of its branch rivers. (b) An elevation map of the Oromushi River Catchment Basin. Thick
solid lines: the Oromushi River.
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2.2. Data Collection

The study data were collected as described [22]. The Oromushi River basin was di-
vided into 12 land groups with 18 sampling stations (Figure 2). The groups were defined
using factors in geographical information systems (GIS) such as land use, surface soil type,
and vegetation type. At least one sampling station was located within each group’s bound-
aries except for Groups 7 and 8, which were both served by Station 12. Three representative
soil samples of approx. 15 cm × 15 cm × 5 cm (horizontal square area × depth) were
taken from the surface layer of selected locations within each of the sampling stations,
and one ~4500 cm3 sample was taken at the bottom of the channel at the downstream
end of the river. Special care was taken (by thoroughly cleaning sampling tools and using
double-sealed and labeled plastic bags for storage and transportation) in order to avoid
contamination of the samples at each sampling site. The samples collected from the same
group were well mixed to represent the spatial heterogeneity of the soil. Figure 2 shows the
different types of land use, sampling locations (stations), and the groups in the Oromushi
River Catchment basin.
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Figure 2. The study’s land use and soil sampling stations in the Oromushi River basin.

2.3. The X-Ray Fluorescence Analysis

XRF provides a quantitative analysis of the total elemental composition of samples,
regardless of their crystalline structure. We used a laser scattering particle distribution ana-
lyzer (model LA-950, Horiba, Fukuoka, Japan) to investigate the particle size distribution in
the Oromushi river catchment basin. Therefore, we performed a geochemical composition
analysis for the particle size range 0.1 µm to 2 mm since the largest particles in the Oro-
mushi river catchment basin were found to be <2 mm. Particles with a diameter <63 µm
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were wet-sieved with water, and the soil was dried at 110 ◦C for 24 h. The dried soil was
ground using an alumina mortar and pressed to make a circular-shaped sample with a
3-cm dia. and 1-mm thickness.

A medal-type sample was used to measure geochemical decomposition by an XRF
analyzer (Supermini model, Rigaku, Tokyo, Japan). A fused glass bead of the sample was
used in the XRF analysis to confirm whether the geochemical decomposition was consistent
with and without the glass bead method. We then grouped the stations according to the
type of soil cover, vegetation type, and land-use pattern, and we used the geochemical
decomposition to estimate the total amount of suspended sediment that each group con-
tributed to the downstream side of the Oromushi River Catchment basin by conducting
an NNA.

An NNA is a data analytical method that uses interconnected nodes or neurons in
a layered structure to effectively process large amounts of data. Our NNA model was
comprised of the input layer, middle (hidden) layer, and the output layer that generated the
required output data (suspended sediment contribution of each group to the downstream
end of the river). An NNA usually consists of a multi-layer network, but we applied a single-
layer network because it enabled us to determine the suspended sediment contribution
from each station to the downstream end.

2.4. The X-Ray Diffraction Analysis

Unlike XRF, which quantifies elemental compositions, XRD provides a qualitative
analysis by identifying the crystalline phases in the samples, thus clarifying the miner-
alogical composition. In this study, the samples that were collected from the 18 sampling
stations were wet-sieved, dried, and crushed to obtain very fine particles (approx. 5–10 µm)
with a limited size range, as in the XRF analysis described above. The fine particles were
then combusted at 750 ◦C to oxidize the compounds present. The oxidized samples from
the 18 stations were then mounted into the sample holder of the X-ray diffractometer with
an X-ray tube (40 kv/20 mA). The resultant intensities were continuously recorded as the
samples and the detectors were rotated through their respective angles. The data were
collected from 3–80◦ with a stepwise increase of 0.02.

The X-ray intensity was plotted against 2-theta degrees, and a diffraction pattern for
each station was displayed. The position of the diffraction peaks represented the specific
crystalline phases. Since multiple diffraction peaks were obtained for each station, we
selected only high peak intensities for additional analysis. In addition, since the peak
intensities for each station were located at different d-spacings, only the stations’ peak
intensities that frequently occurred in the same d-spacing were considered for further
analysis. In this study, we disregarded the intensity values in the d-spacing whose frequency
was <5. We then categorized the stations into 12 groups based on the type of surface soil
cover, vegetation type and land-use pattern. For each group, we used the average value for
the stations’ peak intensity values as the input in the NNA model and analysis, similar to
the XRF analysis. We assumed that there was no interaction among any of the groups, and
we thus directly connected all of the first-layer components to the second-layer components.
The groups’ average spectrum data were used as the input data, and the downstream
spectrum data were used as the output data.

2.5. Estimation of Suspended Sediment Sources Using a Neural Network Analysis

Neural networks can rapidly perform numerical calculations by “learning” from
existing data and efficiently solving complex signal-processing problems. These networks
were thus ideal for determining the major sources of SS in the Oromushi River Catchment
basin [23]. A simplified NNA model that consisted of only three layers, i.e., the input layer,
the middle (hidden) layer, and the output layer, was used in this study (Figure 3). The
output layer consisted of only one neuron. We also assumed that the groups in our model
were independent, therefore, all of the first-layer components were directly connected to the
corresponding middle-layer components. Even though we used a simplified model without
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the complex networks, applying the sigmoid function enabled us to analyze nonlinear
phenomena such as sediment transport from different soil and vegetation types [23].
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Figure 3. The simplified neural network analysis (NNA) model used in this study.

To minimize the error between the desired output and the expected output, we
used a backpropagation algorithm to train the neural network. A modified sigmoid
function was applied as the activation function, and the connection weights were adjusted
according to the backpropagated error computed between the observed and estimated
results. For example, the middle-layer components were calculated by multiplying the
modified sigmoid function by the product of the respective input layer and the weight
between the input layer and the middle layer. The estimated output was thus obtained as
the product of the modified sigmoid function and the summation from Group 1 to Group 12
of the middle-layer components and the weights between the middle layer and the output.

During this supervised machine learning procedure, the weight was adjusted imme-
diately when the input data were fed, and we ensured that the model was appropriately
fitted by minimizing the errors between the desired and predicted outputs [25,26]. The
series of equations used to estimate the contributions of suspended sediment from different
regions of the catchment basin were as follows:

f ji = mSig
(
Xjiw1i

)
(1)

f jd = mSig

(
m

∑
i=1

f jiw2i

)
(2)

mSig =
2

1 + exp(−x/γ)
− 1 (3)

SSTi =
∑n

j=1 f jiw2i

WT
(4)

WT =
n

∑
j=1

m

∑
i=1

f jiw2i (5)

w1i = w1i + ηδ1i f ji (6)

w2i = w2i + ηδ2Xji (7)

δ1i = f ji
(
1 − f ji

)
δ2w2i (8)

δ2 = f jd

(
1 − f jd

)(
Xjd − f jd

)
(9)
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where n is the total count of the component, m is the total count of the group, fji is the
output for component j (=1 to n) and group i (=1 to m) from the middle layer, Xji, is the
input for component j and group i, w1i is the weight for group i between the input and
middle layers, fjd is the output for component j (=1 to n) at the downstream, w2i is the
weight for group i between the middle and output layers, mSig is the modified sigmoid
function, γ is the coefficient for a modified sigmoid function, SSTi is the transportation rate
from group i to the downstream, and η is the coefficient for a weight.

3. Results

The results of the XRF analysis showed that the main geochemical component was
SiO2, which could be expected given the influence of volcanic ash in the study area
(Figure 4). Our comparisons of the SiO2 concentrations revealed that agricultural fields
(St. 1) were the most similar to the downstream end, rather than the forest regions (St. 9,
St. 10, and St. 15). The carbon (C) content from ignition loss was larger in the forest region
than in the agricultural fields. The difference in the standard deviation of SiO2, Al2O3, CaO,
and Fe2O3 was larger among the stations than the other geochemical components. In the
NNA, geochemical components with lower concentrations were not used, meaning that the
analysis focused on 15 components: Na2O, MgO, Al2O3, SiO2, P2O5, SO3, Cl, K2O, CaO,
TiO2, MnO, Fe2O3, ZnO, SrO, and ZrO2. Therefore, we applied 15 geochemical components
as the total component count with 12 subbasin groups into the NNA analysis. We can
obtain 15 different transportation rates from each subbasin group i to the downstream. To
obtain the same transportation rates from each subbasingroup i to the downstream within
15 different geochemical components, we iterated the NNA calculation 10,000 times to
achieve the steady state for w1i and w2i. The output was each geochemical component
downstream, which was compared to the estimated value using the NNA analysis.

The XRD intensity peaks of some selected stations are shown in Figure 5. The XRD
spectra demonstrated that Stations 1, 2, 6, 9, 10, and 15 were much more closely correlated
to the downstream side compared to the rest of the other stations. This implies that Stations
1, 2, 6, 9, 10, and 15 may have made a significant contribution of SS in the Oromushi River
Catchment basin. However, very many peaks were obtained, and we thus used only the
high peak intensities in each d-spacing group for the subsequent analysis.

For every station, we selected high peak intensities (indicated by the red circles in
Figure 6) for the additional analysis using a simplified neural network model. The stations
were categorized into groups based on the error differences between the stations. The
XRD pattern for each group was used as the input into the neural network model, and the
sigmoid function was used as the activation function. We also subjected samples from the
same sampling stations to an XRF analysis, and the obtained geochemical components were
also separately analyzed using the simplified neural network model. Finally, we selected
14 high peak intensities as the total count of the component with the total count of the group
of 12 into the NNA analysis. Like the XRF, we iterated the NNA calculation 10,000 times to
achieve the steady state for w1i and w2i and to obtain the same transportation rates from
each subbasin group i to the downstream within 14 different high peak intensities obtained
from the XRD analysis. The output was each high peak intensity downstream, which was
compared to the estimated value using the NNA analysis.



Hydrology 2024, 11, 192 8 of 15
Hydrology 2024, 11, 192 9 of 16 
 

 

 
Figure 4. The concentrations of geochemical components obtained by the XRF analysis. (a) 
Downstream, (b) St. 1, (c) St. 2, (d) St. 6, (e) St. 9, (f) St. 10, and (g) St. 15. 

The XRD intensity peaks of some selected stations are shown in Figure 5. The XRD 
spectra demonstrated that Stations 1, 2, 6, 9, 10, and 15 were much more closely correlated 
to the downstream side compared to the rest of the other stations. This implies that 
Stations 1, 2, 6, 9, 10, and 15 may have made a significant contribution of SS in the 
Oromushi River Catchment basin. However, very many peaks were obtained, and we 
thus used only the high peak intensities in each d-spacing group for the subsequent 
analysis. 

Figure 4. The concentrations of geochemical components obtained by the XRF analysis. (a) Down-
stream, (b) St. 1, (c) St. 2, (d) St. 6, (e) St. 9, (f) St. 10, and (g) St. 15.



Hydrology 2024, 11, 192 9 of 15
Hydrology 2024, 11, 192 10 of 16 
 

 

 
Figure 5. The XRD intensity spectra compared to the downstream. (a) St. 1, (b) St. 2, (c) St. 6, (d) St. 
9, (e) St. 10, and (f) St. 15. 

For every station, we selected high peak intensities (indicated by the red circles in 
Figure 6) for the additional analysis using a simplified neural network model. The stations 
were categorized into groups based on the error differences between the stations. The 
XRD pattern for each group was used as the input into the neural network model, and the 
sigmoid function was used as the activation function. We also subjected samples from the 
same sampling stations to an XRF analysis, and the obtained geochemical components 
were also separately analyzed using the simplified neural network model. Finally, we 
selected 14 high peak intensities as the total count of the component with the total count 
of the group of 12 into the NNA analysis. Like the XRF, we iterated the NNA calculation 
10,000 times to achieve the steady state for w1i and w2i and to obtain the same 
transportation rates from each subbasin group i to the downstream within 14 different 
high peak intensities obtained from the XRD analysis. The output was each high peak 
intensity downstream, which was compared to the estimated value using the NNA 
analysis. 

Figure 5. The XRD intensity spectra compared to the downstream. (a) St. 1, (b) St. 2, (c) St. 6, (d) St. 9,
(e) St. 10, and (f) St. 15.



Hydrology 2024, 11, 192 10 of 15Hydrology 2024, 11, 192 11 of 16 
 

 

 
Figure 6. Red circles: the X-ray spectrum peaks. (a) St. 1, (b) St. 2, (c) St. 6, (d) St. 9, (e) St. 10, and (f) 
St. 15. 

From the NNA, we obtained the percentage of SS contribution by each group to the 
downstream side of the Oromushi River Catchment basin using either XRF or XRD 
analyses as shown in Figure 7. The XRF and the XRD analyses showed good agreement 
with a high correlation of the r2 of 0.94 (p-value of 1.69 × 10−9) and the r2 of 0.93 (p-value 
of 2.63 ×  10−8). Both results based on the XRF and XRD showed a high correlation, 
suggesting the reliability of both results is very high. However, there are some differences 
between the XRF and XRD regarding the potential suspended sediment sources 
downstream. 

The major sources of SS to the downstream end of the catchment basin as analyzed 
by XRF are shown in Figure 7a. The XRF analysis indicated that Group 1 was the major 
contributor of SS to the downstream side of the basin, and Group 3 was the next major 
contributor of SS. Group 1 mainly comprises agricultural fields (Figure 7a), which are 
more prone to soil erosion due to the depletion of vegetation cover, especially during the 
crop-sowing period. This may have significantly contributed to the sediment generation 
from this group. 

Figure 6. Red circles: the X-ray spectrum peaks. (a) St. 1, (b) St. 2, (c) St. 6, (d) St. 9, (e) St. 10, and
(f) St. 15.

From the NNA, we obtained the percentage of SS contribution by each group to the
downstream side of the Oromushi River Catchment basin using either XRF or XRD analyses
as shown in Figure 7. The XRF and the XRD analyses showed good agreement with a
high correlation of the r2 of 0.94 (p-value of 1.69 × 10−9) and the r2 of 0.93 (p-value of
2.63 × 10−8). Both results based on the XRF and XRD showed a high correlation, suggesting
the reliability of both results is very high. However, there are some differences between the
XRF and XRD regarding the potential suspended sediment sources downstream.
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The major sources of SS to the downstream end of the catchment basin as analyzed
by XRF are shown in Figure 7a. The XRF analysis indicated that Group 1 was the major
contributor of SS to the downstream side of the basin, and Group 3 was the next major
contributor of SS. Group 1 mainly comprises agricultural fields (Figure 7a), which are
more prone to soil erosion due to the depletion of vegetation cover, especially during the
crop-sowing period. This may have significantly contributed to the sediment generation
from this group.

Unlike Group 1, Group 3 was mainly forested, but the higher sediment transport
from the region may be attributed to the presence of a quarry. Notably, an XRF analysis
incorporates carbon, which is an unstable component of organic matter, and its composition
varies depending on the season and the chemical reactions of micro-organisms. This
variation in carbon composition may have affected the reliability of the obtained results.
We thus eliminated the carbon content from our samples by conducting an ignition loss test.
The geochemical composition of the samples (without carbon content) was determined
using XRF and analyzed using the NNA. We used the same procedure as that applied
above to analyze the geochemical composition of the samples using NNA.

As shown in Figure 7b, the results indicated that Group 2 was the major source of SS
in the Oromushi River Catchment basin, and Group 1 was the next major source. Group 1
is composed mainly of agricultural fields, and Group 2 is mainly forested with a few
agricultural fields (Figure 2). The soil surface type of Group 1 is lithosols and terrestrial
regosols, whereas Group 2 consisted of three soil types: lithosols, terrestrial regosols, and
rich volcanic soil. The rich volcanic soils in Group 2 (Figure 7b) may thus have contributed
to the increase in sediment transport.

Similarly, the next major contributors of SS were Groups 3, 5, 9, 10, and 12. All of these
groups are considerably covered by rich volcanic soils. All of the remaining groups made
nearly the same SS contributions to the catchment basin. It is thus evident in Figure 7a,b
that carbon plays a significant role in the obtained results. Unlike the XRF analysis, the
XRD analysis gave different results for major sediment sources (Figure 8). In this case,
Group 3, a region whose soil surface cover is volcanic ash, was revealed to be the major
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source of SS in the Oromushi River Catchment Basin. Group 5, the next major source of SS,
surface soil type is rich volcanic soil, and as observed, the surface soil type significantly
affects sediment generation, and consequently, the amount of sediment delivered to the
river. Even though we excluded carbon from our analysis of the geochemical composition
of SS in both the XRF analysis without carbon content and the XRD analysis, there was
some difference in the groups’ contributions of SS to the downstream side of the Oromushi
River Catchment Basin. This may be attributed to the differences in the characteristics of
XRF and XRD.
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4. Discussion

There are several negative effects of sediment transport on disaster prevention and
ecosystem protection in rivers such as changes in the coastline and beach morphology, dam-
age to infrastructure, and cultural heritage sites. As a result, the quantification of a river’s
sediment transport capacity has received much attention from researchers worldwide.
However, the accurate prediction of sediment transport has proved to be a challenging
research topic. Several equations have been used to estimate sediment transport, including
the alongshore transport equation [27–30], but these equations are unreliable for estima-
tions of sediment transport under different conditions, such as during storms [28], and
measured hydrodynamics are therefore necessary to reduce the bias in the obtained results.
Van Rijn demonstrated that the yearly predictions of sediment in rivers varied, and even
the direction of net transport was uncertain [31]. Several sediment transport functions have
also been applied based on various concepts and approaches to increase the accuracy of
sediment transport estimations [32], but due to the discrepancy in the obtained results,
these approaches have yet to become universally accepted. Kitsikoudis et al. [33] used
three machine learning techniques for deriving sediment transport formulae for sand-bed
rivers from field and laboratory flume data (artificial neural networks, symbolic regression
based on genetic programming, and an adaptive-network-based fuzzy inference system),
and they compared the techniques’ efficacy. Their results suggested that the machine
learning techniques are superior to the commonly used sediment transport formulae. We
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thus speculated that the use of NNAs has the potential to identify potential fine sediment
sources downstream accurately.

A simple NNA model comprised of a single-layer network was applied in this study.
The XRF and XRD analyses generated the datasets to identify the fine sediment sources
downstream using the NNA model. The XRF analysis identified 15 geochemical compo-
nents as the major components of SS in the Oromushi River Catchment Basin. The major
components of SS exhibited a similar trend at all 18 stations, with SiO2 as the major SS
component in the catchment basin. Based on the geochemical composition of the soil
samples, it can thus be deduced that SiO2, a by-product of volcanic eruption, was the
dominant component of SS in the region. The surface soil type therefore influenced the
generation and transportation of sediment in the Oromushi River Catchment Basin.

In order to further clarify the regions from which the most geochemical components
emanated, we applied an NNA. The geochemical composition of the sediment components
obtained by XRF was used as the input data in the NNA model. Similarly, the 14 XRD
intensity peaks for all the sampling stations were used as the input data. In both cases,
the optimal condition was obtained with a single hidden layer and the output of only
one neuron. The results of the XRF analysis indicated that regions covered mainly by
agricultural fields were the primary sources of SS in the Oromushi River Catchment Basin.
These results are consistent with those reported by Beitia et al. [23], which indicated that
agricultural fields were the major contributor to SS in the Oromushi River Catchment Basin.

Unlike our present XRF analysis, the XRD analysis indicated that Group 3 was the
major source of SS in the catchment basin, and the second major source was Group 5. As
shown in Figure 8, the soil surface cover of both Group 3 and Group 5 is volcanic ash,
which is composed of fine particles that can easily be eroded into a river. The nature
of the surface soil type may thus have influenced the transportation of sediment in the
Oromushi River Catchment Basin. This can also be observed in Figure 4, where SiO2 is
the major component of the SS. Essentially, unlike an XRF analysis, an XRD analysis does
not incorporate carbon, and it includes detailed information on crystalline phases [34].
Carbon, being an unstable component of organic matter, is likely to be influenced by several
ecological factors, and its composition may vary depending on the season and the chemical
reactions of micro-organisms.

To offset the effect of carbon in the analysis, we conducted an ignition loss test using
the soil samples [35]. The geochemical components of the samples were then determined
by XRF and analysed using the NNA. The results indicated the group contribution of SS to
the downstream side of Oromushi River Catchment Basin without the influence of carbon.
However, despite the results analysed using XRF (without the carbon content) and XRD,
there were still some anomalies in the obtained results (Figure 7a,b). The differences in
the results may be attributed to the difference in the characteristics of XRF and XRD [36].
XRD spectrum data provide more information compared to XRF. For example, XRD can
determine the number of mineral species present in a sample, and it can identify the
phases [34]. In contrast, XRF only gives details of the chemical composition of the samples.
Even though XRF is an excellent data analytical method, XRD proved to be a better method
in the present study since it provides more information about the characteristics of the
samples and does not incorporate carbon in an analysis of soil geochemical components,
thus providing reliable results. In order to determine the contribution of SS from sub-river
basins to the downstream of a river, it is therefore crucial to exclude the contribution
of organic compounds, which can be achieved through an XRD analysis. We propose
that conducting an XRD analysis may be preferable, particularly if the contribution of
non-organic matter to the SS is to be studied.

5. Conclusions

A neural network was employed to determine fine suspended sediment sources in the
Oromushi River catchment basin. The neural network utilized datasets from both X-ray
Fluorescence and X-ray diffraction. The results of our XRF analysis suggested that agricul-
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tural fields were the primary sources of fine suspended sediment in the Oromushi River
Catchment Basin. The XRF analysis determined the major sources of suspended sediment
based on the land use pattern, and the influence of carbon in the suspended sediment
transportation was taken into account. However, our analysis of the XRD spectrum by the
neural network method indicated that Group 3, a region whose soil surface cover is vol-
canic ash, had the highest sediment transport rate, while Groups 10 and 11 had the lowest
transport rates. Volcanic ash is composed of very fine particles that can easily be eroded;
our result thus indicates that the surface soil type contributes significantly to the sediment
transportation rate. Moreover, XRD does not incorporate carbon (an unstable component
of organic matter) in its analysis. The results of the present study’s XRD analysis indicated
that the type of soil surface cover mainly influences sediment transport in a catchment basin.
Compared to other analytical methods, an NNA using XRD was the optimal technique to
clarify the fine sediment transport in the Oromushi River Catchment Basin.
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