神戸大学附属図書館デジタルアーカイブ
入力補助
English
カテゴリ
学内刊行物
ランキング
アクセスランキング
ダウンロードランキング
https://hdl.handle.net/20.500.14094/0100492599
このアイテムのアクセス数:
27
件
(
2025-02-11
23:21 集計
)
閲覧可能ファイル
ファイル
フォーマット
サイズ
閲覧回数
説明
0100492599 (fulltext)
pdf
1.49 MB
22
メタデータ
ファイル出力
メタデータID
0100492599
アクセス権
open access
出版タイプ
Version of Record
タイトル
Evaluation of Finger Movement Impairment Level Recognition Method Based on Fugl-Meyer Assessment Using Surface EMG
著者
P Adhe Rahmatullah Sugiharto Suwito ; Ohnishi, Ayumi ; Prawitri, Yudith Dian ; Rulaningtyas, Riries ; Terada, Tsutomu ; Tsukamoto, Masahiko
著者名
P Adhe Rahmatullah Sugiharto Suwito
著者ID
A2598
研究者ID
1000010869142
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail.html?systemId=3faa8f45bf81359e520e17560c007669
著者名
Ohnishi, Ayumi
大西, 鮎美
オオニシ, アユミ
所属機関名
工学研究科
著者名
Prawitri, Yudith Dian
著者名
Rulaningtyas, Riries
著者ID
A0503
研究者ID
1000070324861
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail.html?systemId=6a0095d28a52693d520e17560c007669
著者名
Terada, Tsutomu
寺田, 努
テラダ, ツトム
所属機関名
工学研究科
著者ID
A0485
研究者ID
1000060273588
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail.html?systemId=dd1749e7d28243a7520e17560c007669
著者名
Tsukamoto, Masahiko
塚本, 昌彦
ツカモト, マサヒコ
所属機関名
工学研究科
言語
English (英語)
収録物名
Applied Sciences
巻(号)
14(23)
ページ
10830
出版者
MDPI
刊行日
2024-12
公開日
2024-12-19
抄録
Subjectivity has been an inherent issue in the conventional Fugl-Meyer assessment, which has been the focus of impairment-level recognition in several studies. This study continues our previous work on the use of EMG to recognize finger movement impairment levels. In contrast to our previous work, this study provided a better and more reliable recognition result with improved experimental settings, such as an increased sampling frequency, EMG channels, and extensive patient data. This study employed two data processing mechanisms, inter-subject cross-validation (ISCV) and data-scaled inter-subject cross-validation (DS-ISCV), resulting in two evaluation methods. The machine learning algorithms employed in this study were SVM, random forest (RF), and multi-layer perceptron (MLP). MLP_ISCV achieved the highest average recall score of 0.73 across impairment levels in the spherical grasp task. Subsequently, the highest average recall score of 0.72 among non-majority classes was achieved by SVM_DS-ISCV in the mass extension task. The cross-validation result shows that the proposed method effectively handled the imbalanced dataset without being biased toward the majority class. The proposed method demonstrated the potential to assist doctors in clarifying the subjective assessment of finger movement impairment levels.
キーワード
electromyography
finger movement
Fugl-Meyer assessment
imbalance data
impairment level
post-stroke patients
recognition
カテゴリ
工学研究科
学術雑誌論文
権利
© 2024 by the authors. Licensee MDPI, Basel, Switzerland.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license
関連情報
DOI
https://doi.org/10.3390/app142310830
詳細を表示
資源タイプ
journal article
eISSN
2076-3417
OPACで所蔵を検索
CiNiiで学外所蔵を検索
ホームへ戻る