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Abstract: Subjectivity has been an inherent issue in the conventional Fugl-Meyer assessment, which
has been the focus of impairment-level recognition in several studies. This study continues our
previous work on the use of EMG to recognize finger movement impairment levels. In contrast to
our previous work, this study provided a better and more reliable recognition result with improved
experimental settings, such as an increased sampling frequency, EMG channels, and extensive patient
data. This study employed two data processing mechanisms, inter-subject cross-validation (ISCV)
and data-scaled inter-subject cross-validation (DS-ISCV), resulting in two evaluation methods. The
machine learning algorithms employed in this study were SVM, random forest (RF), and multi-layer
perceptron (MLP). MLP_ISCV achieved the highest average recall score of 0.73 across impairment
levels in the spherical grasp task. Subsequently, the highest average recall score of 0.72 among
non-majority classes was achieved by SVM_DS-ISCV in the mass extension task. The cross-validation
result shows that the proposed method effectively handled the imbalanced dataset without being
biased toward the majority class. The proposed method demonstrated the potential to assist doctors
in clarifying the subjective assessment of finger movement impairment levels.

Keywords: electromyography; finger movement; Fugl-Meyer assessment; imbalance data;
impairment level; post-stroke patients; recognition

1. Introduction

Stroke is one of the major global health issues, with over 13 million new cases annually
and representing the second leading cause of mortality and disability worldwide. Accord-
ing to the Global Burden of Disease Study (GBD) in 2016, there was an increase in frequency
among younger groups (under 50 years old), depicting the distribution of incidence across
ages. Moreover, the incidence of stroke, along with stroke-related mortality and disability,
increased nearly two-fold from 1990 to 2016 [1]. According to the consequences of disability,
muscle dysfunction is the predominant form of impairment following a stroke. Muscle
dysfunction significantly worsens the risk of arm paralysis after a stroke and is frequently
associated with increased impairment, reduced work capacity, and diminished quality
of life. The accumulation of inactive muscle fibers due to dysfunction leads to abnormal
muscle activation patterns, such as spastic muscle contractions, which may contribute to
further muscle-related disorders [2,3]. Consequently, individuals who have experienced a
stroke affecting their arm may struggle to perform daily activities [4].

In order to restore the function of muscle fiber after a stroke, rehabilitation is necessary
as a routine muscle recovery process [3,5]. Rehabilitation refers to the combined and
coordinated use of medical, social, educational, and occupational measures to retrain
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a person to the highest functional skills level [5]. The rehabilitation process includes
assessing the patient’s impairment condition, followed by further medication, training,
and reassessment. The assessment is intended to observe and evaluate the patient’s actual
condition. Thus, a suitable training and medication program can be specifically arranged
for each patient. In this regard, the assessment process is essential, as it determines the
patient’s actual condition at the beginning of the rehabilitation program and after several
medication and training processes.

Several clinical methods to assess the impairment level of post-stroke patients are
currently being employed worldwide. Regarding the assessment of motorfunction, the
Fugl-Meyer assessment (FMA) is a notable tool, as it provides a detailed assessment
protocol with a scoring system in most human extremities. The Fugl-Meyer scale is a
groundbreaking quantitative evaluative tool to measure sensorimotor stroke recovery. The
motor-domain function of this tool encompasses large and small parts of the upper–lower
extremities, suggesting the most comprehensive measures of motor impairment following
stroke. One of the assessment components the assessment a complex motor function,
such as finger movement, that is composed of a combination of complex muscles [3]. In
the case of finger movement, the Fugl-Meyer assessment of the hand’s upper extremity
(FMA-UE) is typically selected. As shown in Table 1, this questionnaire consists of seven
finger movement tasks, namely Mass Extension (ME), Mass Flexion (MF), Hook Grasp
(HG), Thumb Adduction (TA), Pincer Grasp (PG), Cylinder Grasp (CG), and Spherical
Grasp (SG). Meanwhile, the impairment level consists of three conditions (i.e., full, partial,
and none).

Table 1. Motor-domain function of Fugl-Meyer assessment for finger movement [3].

Movement Full (2) Partial (1) None (0)

Mass Extension Full active extension Some but not active extension No extension
Mass Flexion Full active flexion Some but not active flexion No flexion occurs
Hook Grasp Maintains position against resistance Can hold position but weak Cannot be performed
Thumb Adduction Can hold paper against a tug Can hold paper but not against a tug Cannot be performed
Pincher Grasp Can hold a pencil against a tug Can hold pencil but not against a tug Cannot be performed
Cylinder Grasp Can hold a cylinder against a tug Can hold a cylinder but not against a tug Cannot be performed
Spherical Grasp Can hold a ball against a tug Can hold a ball but not against a tug Cannot be performed

The doctor or physiotherapist has an inherent role in the assessment. Several finger
movements in FMA-UE are object-dependent tasks that require a patient to hold an object
while the doctor tugs it. This mechanism in the Fugl-Meyer assessment is the conventional
method that requires the doctor to observe the impairment level manually through visual
and tug inspection. Nevertheless, the inherent role of a doctor in the conventional method
raises another issue, i.e., inherent subjectivity, which also promotes the subjectivity of
the assessment result. Consequently, this issue influences the accuracy and repeatability
of the assessment score, which is particularly essential for repeated assessments in the
rehabilitation process.

Considering a potential modality to address the subjectivity issue in FMA, electromyo-
graphy (EMG) is a golden standard for objectively assessing muscle and nervous system
function. It is widely used in rehabilitation and gesture recognition studies [6,7]. However,
few studies have examined recognition performance in EMG-related subjective levels.

Our earlier study examined the performance of the EMG-based impairment-level
recognition method in post-stroke patients for finger movement [8]. We reported good
recognition results on several FMA-based finger movement tasks, highlighting the promis-
ing performance of EMG. We also pointed out several crucial areas for improvement in the
experimental settings, as the number of patients was only four, with incomplete impairment
levels collected, consisting of full and partial levels only. Additionally, there were only two
EMG channels, and the employed sampling frequency was too small. The occurrence of
imbalanced dataset conditions could be addressed with a standard resampling method
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with a SMOTE filter algorithm [9]. The employed machine learning methods were Support
Vector Machine (SVM) and Random Forest (RF), with average accuracies of 67.1 and 64.6,
respectively. However, the score could not be generalized due to critical issues in the
experimental settings and accuracy bias due to the imbalanced dataset. Consequently, the
machine learning models were at risk of recognizing the participant personally instead of
the impairment levels. Another highlighted point is the tendency of imbalance of the col-
lected impairment level target, where one patient can only exhibit one or two levels without
certain information prior to assessment. Therefore, an improvement in the experimental
settings is required.

This study focused on improving the recognition of finger movement impairment
levels in the FMA, aiming to reduce the issue of subjectivity. This study also addressed
the subjective assessment issue of FMA and the doctor’s perspective according to the
performance of the machine learning model. The final aim of this study is to assist doctors
in deciding patients’ actual impairment levels in finger movement. Therefore, this study
also introduced the implementation of the constructed method in a desktop application
that can recognize and display the impairment level of each finger movement and output
an assessment video. Thus, a doctor or physiotherapist can double check and evaluate the
impairment level separately.

2. Related Research
2.1. Automation of Fugl-Meyer Assessment

Subjectivity and inflexibility are the most crucial issues in the Fugl-Meyer assessment.
Several studies have been conducted to overcome these inherent problems. In 2014, a
study was conducted on 24 patients with various upper-extremity hemiplegia levels after
stroke [10]. Support vector regression (SVR) was employed to predict the FMA score on
shoulder–elbow tasks. Another study proposed an automatic acquisition system for one
task, pincer grasp, from the FMA of the upper extremity of the hand [11]. Several studies
proposed a recognition system that employs complete FMA hand/finger movement tasks
of MF, ME, HG, TA, PG, CG, and SG [12,13]. Lee et al. constructed a grasping object for
each hand-function task [13], while Formstone et al. employed a muscle-related modal-
ity [12]. The studies mentioned above utilized different approaches to address the inherent
subjectivity of the FMA, especially in hand-function tasks due to the complex movement of
the fingers and corresponding muscles. However, most of the studies mentioned above
utilized supervised machine learning as the recognition method, and the learning target
was the doctor’s subjective assessment. Furthermore, the doctor’s final decision was to
perform further rehabilitation procedures following the assessment. Thus, the subjectivity
of the FMA could not be eliminated due to the inherent role of a doctor.

The aforementioned studies imply that the subjectivity issue of the FMA can be mini-
mized by conducting multiple assessments. Given the inherent subjectivity in individual
patient assessments, repetitive assessments minimize uncertainty and reinforce the doctor’s
judgment. Consequently, the repetitive assessment of numerous patients enhances the
reliability of assessment outcomes. Furthermore, integrating sensor technology to capture
context information relating to impairment levels can increase the precision of a doctor’s
assessments. This highlights the possibility of achieving accurate subjective assessments by
gathering extensive training data for a machine learning model.

2.2. Employable Sensors in Finger Movement Impairment-Level Recognition of the
Fugl-Meyer Assessment

Several approaches have been applied to address inherent subjectivity in the FMA. De-
pending on the task of the FMA, appropriate modalities should be utilized. The assessment
of non-hand tasks is simple, as they only comprise a single and long extremity part, such as
an arm. Thus, any sensor has the potential to record the FMA task activity from this part of
the body. Several studies have introduced the idea that the movement activity of non-hand
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FMA tasks could be captured using proprioceptive and camera-based modalities such as
accelerometer, Force Sensing Resisto (FSR), and Kinect sensors [10,12,13].

Nevertheless, employing the same sensors in the hand tasks of the FMA is less appro-
priate, as the corresponding tasks involve the fingers, which are small and short extremities.
Therefore, a specific or customized sensor is needed to capture the movement activity of
the FMA’s hand tasks. For instance, two studies constructed grasping tools embedded with
FSR sensors to capture the activity of the fingers, especially in pincher grasping [11,13]. The
studies indicated that a finger requires a customized sensor to capture its complex move-
ment mechanism due to its small size. However, a customized grasping object embedded
with a sensor is limited in terms of the type of movement and the size of the finger.

Another utilizable sensor in the FMA hand tasks is EMG sensors. EMG enables the
recording of the complex movement of fingers by capturing the electrical activity of muscles
that control the fingers [8,12]. Furthermore, EMG can capture several channels, facilitating
the recording of muscle activities of individual finger movements, regardless of the various
sizes of fingers and the types of movements. Accordingly, EMG has prominent potential
to capture finger activity of the FMA’s hand task, as it addresses the limitation of the
aforementioned customized grasping object embedded with sensors.

2.3. Data Imbalance Nature in an Actual Experiment Involving the Collection of Patient Data

An imbalanced dataset is a common problem, especially in the medicine and rehabili-
tation fields. This condition occurs when one or more groups have an extensive amount of
data while another is limited [14–16]. Several studies have shown the inherent nature of the
dataset imbalance problem in experiments with actual participants or patients. Vijayvargiya
et al. encountered an imbalance between healthy and unhealthy participants in a dataset
used for knee abnormality detection [14]. Choi et al. proposed a abnormal electrocardiogra-
phy (ECG) classification method to address the dataset imbalance problem [15]. Hasni et
al. developed a classification algorithm based on SVM to address the imbalance between
normal and neuropathy–myopathy samples in an EMG dataset [16]. The studies mentioned
above showed that imbalances are evident in datasets when experimenting with normal
and abnormal participants.

The FMA is prone to produce imbalanced datasets. Ideally, a dataset will have bal-
anced data for each impairment level. In actual situations, the number of data depends on
the availability of patients in a rehabilitation facility. This situation highlights the tradeoff
in terms of the number of patients across different impairment levels in data collection
experiments, with some levels having an abundance of patients and others fewer. Addi-
tionally, a patient may exhibit multiple levels of impairment in repetitive tasks, which may
pose a risk of reducing the number of data for minority classes. Furthermore, this condition
limits further evaluation of patient characteristics if information such as age and gender
is imbalanced.

This study addresses the subjectivity issue of the FMA by proposing an improved
method for recognizing finger movement impairment levels. By fulfilling the identified
research gap, the method utilized a higher sampling frequency of EMG data and incorpo-
rated more EMG channels to capture the various muscles involved in finger movement.
An extensive number of patients was recruited to enhance the reliability of the machine
learning model, resulting in improved recognition performance. Additionally, the study
highlighted the challenges of an imbalanced dataset and suggested effective processing
methods for the collected data.

3. Methods

In this section, we propose an improved recognition method to detect the impairment
level of finger movement based on the Fugl-Meyer assessment in a non-ideal condition
of imbalanced datasets. The improved recognition method is intended to benefit the
system’s reliability and reproducibility in addressing the subjectivity issue of the FMA. By
constructing the system under the non-ideal condition of an imbalanced dataset, the system
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adapts to the actual assessment condition in rehabilitation facilities, thereby enabling it to
assist doctors and efficiently minimize the subjective nature of the assessment.

3.1. Participants

Prior to recruiting the participants, several criteria had to be strictly followed. All
participants had to be partially impaired in one arm and be able to maintain a sitting
position either on a chair or in a wheelchair by themselves. According to the assessment of a
rehabilitation doctor, the participants had undergone at least three months of a rehabilitation
program. The participants were all 18 years old or older on the day of the experiment. The
participants were not congenital stroke patients and had no permanent finger injuries. The
participants did not have any cognitive impairments and were capable of understanding the
doctor’s instructions. After fulfilling the inclusion and exclusion criteria, the participants
were selected based on a random sampling process. The participants, who never underwent
a Fugl-Meyer assessment, were requested to participate in the experiment on the day of
their rehabilitation program in the Airlangga University Hospital.

In this study, the participants comprised 28 stroke patients (17 males and 11 females).
All experiment procedures were explained to the participants and their relatives, and
they voluntarily agreed to participate. All participants sat on a chair or wheelchair alone
or with the help of relatives or clinicians. Prior to the experiment, each participant was
explained all of the experimental protocols and learned the FMA-based finger move-
ment, as shown in Table 1. The ethical committee of Airlangga University Hospital,
Surabaya, Indonesia (No. 125/KEP/2023) approved all participant selection criteria and
experimental procedures.

3.2. Instrumentation

This study employed four channels of the EMG sensors of two TSND151 and AMP151
sensors (ATR-Promotion Inc., Kyoto, Japan). The TSND151 is a compact, wireless, multi-
function sensor embedded with inertial measurement unit sensors (IMUs) and an external
terminal 16-bit analog–digital input. Regarding EMG measurement, the external terminal
was connected to the AMP151, an extended amplifier specified for biological signals. The
sampling frequency was set to a maximal setting of 1000 Hz with 1000× signal amplification.
The AMP151 has a common mode rejection ratio exceeding 90 dB, an input impedance of
200 GΩ, and a power supply rejection ratio above 105 dB. A rectangular surface electrode
of 19 × 38 mm in size was utilized. The electrode featured a polymer gel and Al/AgCl
electrode material. Other instruments were used in relation to the FMA task for finger
movement, such as a pen, a piece of paper, a cylinder, and a tennis ball.

3.3. Electrode Attachment

In this study, we improved the data collection process by capturing EMG signals
from three extrinsic and one intrinsic muscle activity. In contrast, the previous experiment
only captured two extrinsic forearm muscle activities [8]. The attachment locations of
the electrodes were the extensor digitorum muscle (Channel 1), flexor digitorum muscle
(Channel 2), extensor pollicis brevis muscle (Channel 3), and flexor pollicis brevis muscle
(Channel 4). Channels 1–3 corresponded to extrinsic muscles, and channel 4 corresponded
to intrinsic muscle [17]. The utilization of intrinsic muscle must be considered due to its
potential to provide a prominent EMG signal of a specific hand finger. The muscle of
channel 4 was selected due to its high relative importance in providing an EMG signal of
pinch-related movement [18]. The locations of muscle attachment are shown in Figure 1.

Prior to attaching the electrodes, an alcohol swab was applied to cleanse the skin.
The electrodes were arranged so that the inter-electrode distance of an EMG channel was
approximately 20 mm. Additionally, the electrodes were attached in a parallel orientation
with respect to the muscle. These settings were utilized to obtain a good-quality EMG signal
and minimize the occurrence of cross-talk [19]. The positions of the employed muscles were
not adjacent to each other, avoiding cross-talk interaction between the employed muscles,
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as shown in Figure 1. In this study, the doctor guided the attachment of the electrode to find
the best position concerning the target muscles. Hence, a good-quality EMG signal could
be obtained. The subtle cross-talk interaction of the adjacent muscles with the employed
muscle might have still occurred due to a muscle coordination event. However, given the
anatomical positioning and functional roles of the employed muscles, this condition may
be deemed negligible, as there is unlikely a cross-talk interaction among them [17,18].

Ch. 1

Ch. 3
GND

Ch. 2

Ch. 4

GND

Figure 1. Electrode attachment positions.

3.4. Data Processing Flow

The data were processed to be prepared as machine learning input. The flow en-
compassed several steps: signal filtering, scaling, movement event exporting, and feature
extraction. Following the feature extraction process, two mechanisms were employed to
evaluate the performance of machine learning models. The first mechanism was inter-
subject cross-validation, hereinafter referred to as ISCV, which consisted of a data resam-
pling process to address imbalanced dataset conditions. Subsequently, the data were
directly deployed in machine learning after the feature extraction step. Another mechanism
that was employed is data-scaled inter-subject cross-validation, hereinafter referred to as
DS-ISCV, which added data scaling before the classification process. The signal filtering
process until feature extraction was performed individually for each participant’s data.
Subsequently, the classification processes of both mechanisms were performed using inter-
subject cross-validation. Finally, we observed and analyzed the classification outcomes of
both mechanisms for each FMA-based movement task. The data process flow is shown in
Figure 2.

P1
P2

P28

Signal Filtering

Signal Filtering

Signal Scaling

Signal Scaling

Event Exporting

Event Exporting

Feature Extraction

Feature Extraction
Data 

Scaling

Classification

Classification

Processed Individually

Resampling

Resampling

Inter-subject Cross Validation

Data Scaled Inter-subject Cross Validation

Figure 2. Diagram of data processing flow.

3.4.1. Signal Filtering

Motion artifacts, baseline, and power-line interference are primary noise sources in
EMG signals [20,21]. The frequency of power-line interference is typically 50 Hz, depending
on the location. The range of baseline and motion disturbances was between 0 and 20 Hz.
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Power-line interference also tends to induce harmonic noises that yield high spikes at
multiples of 50 Hz, which are observable in the frequency domain. A typical process used
to address this a signal-filtering technique. In the previous experiment, a Butterworth high-
pass filter was able to generate a clean signal [8]. Nevertheless, conventional digital filters
still leaves undesirable noise within non-muscle-contracting signals such as a relaxed event.

One commonly used digital filtering method is wavelet denoising (WD). In contrast
to Butterworth filters, which produce flat or smooth frequency responses, WD applies
wavelet transform to decompose the signal into frequency components with matched reso-
lutions [22]. Consequently, unlike Butterworth filters, WD offers superior time-frequency
localization, ensuring the retention of precise signal features while minimizing noise. The
process of wavelet denoising involves an initial decomposition of the signal through a
wavelet transform (WT), followed by the application of appropriate thresholds to the detail
coefficients. This step entails setting all coefficients below the associated thresholds to
zero. Subsequently, the denoised signal is reconstructed based on the modified detail
coefficients [23].

Parameter selection for wavelet denoising is essential. Preserving the muscle-contracting
amplitude of the EMG signal is mandatory when eliminating undesirable noises. Addi-
tionally, addressing the non-stationary behavior of EMG signals remains a challenge. Thus,
selecting incorrect parameters may result in poor noise removal or the elimination of essen-
tial amplitudes. A previous study investigated the optimum wavelet function to identify
and denoise EMG signals [24]. According to the study findings, the Daubechies1 (db1
or haar) wavelet with a hard transformation at 0 dB signal-to-noise ratio (SNR) achieved
the best denoising performance. In this study, we combined the Butterworth filter and
wavelet denoising techniques. We employed high-pass and bandstop Butterworth filters
to eliminate the specific frequencies of the noises. Wavelet filters with a db1 function,
hard transformation, and level 1 decomposition were employed to eliminate the remain-
ing noises within the relaxed event signal. Figure 3 illustrates the result after the signal
filtering process.

0 20 40
time(s)

200

100

0

100

200

µV

RAW EMG

0 20 40
time(s)

200

100

0

100

200

µV

Butterworth Filter

0 20 40
time(s)

200

100

0

100

200

µV

Butterworth & Wavelet Filter

0 100 200 300 400 500
Frequency(Hz)

0

5

10

15

20

M
ag

ni
tu

de
 R

es
po

ns
e

Frequency Response

0 100 200 300 400 500
Frequency(Hz)

0.0

0.2

0.4

M
ag

ni
tu

de
 R

es
po

ns
e

Frequency Response

0 100 200 300 400 500
Frequency(Hz)

0.0

0.2

0.4

M
ag

ni
tu

de
 R

es
po

ns
e

Frequency Response

Figure 3. EMG signal-filtering process.

3.4.2. Signal Scaling

An EMG signal represents the combined motor unit action potentials during con-
traction, recorded at a specific electrode location. The surface EMG voltage potential
is greatly influenced by various factors, which differ among individuals and may also
change over time within the same individual. Consequently, the amplitude of an EMG
signal is ineffective for group comparisons or monitoring over extended durations [25].
Subsequently, several studies have shown that a scaling method such as signal normaliza-
tion or standardization can effectively reduce the differences between records within and
across participants [25–27]. Several studies have used the z-score normalization method
to improve the consistency of EMG signals [8,25,28–31]. This study employed the z-score
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method for EMG signal scaling. The z-score method scales the signal instances by removing
and scaling the mean feature to unit variance.

3.4.3. Event Exporting and Feature Extraction

Following the signal-filtering process, the EMG signal still consisted of all events of
FMA movement tasks, including the relaxation period. Separating task-related amplitude
from a relaxed state is essential to avoid undesirable data deployment in the feature
extraction process and machine learning algorithms, such as the relax-related signal. In
the following step, feature extraction was conducted on each exported event separately.
As a result, only EMG signals corresponding to task-related events were extracted. An
illustration of the event-exporting and feature extraction process is depicted in Figure 4.

Event_1 Event_2 ……………………. n_event

Feature 
Extraction

Feature 
Extraction

………………………….

Figure 4. Event-exporting and feature extraction process.

Many features have been introduced for recognition purposes, with time- and frequency-
domain features mainly employed due to their simplicity, low computational costs, and
promising recognition results. In the previous experiment, seven time-domain features
and one frequency-domain feature were employed [8]. The extracted features were mean
absolute value (MAV), variance (VAR), root mean square (RMS), waveform length (WL),
slope sign change (SSC), zero crossing (ZC), Willison amplitude (WAMP), and mean power
frequency (MPF). Many studies have utilized these features to identify the amplitude,
complexity, and frequency characteristics of EMG signals [32–35]. However, in the case of
impairment-level recognition, the amplitude-related features can marginally differ in both
between and within participants. Therefore, emphasizing the complexity-related features
provides distinct information between impairment levels.

Several studies have introduced features that depict the complexity of EMG signals.
Thongpanja et al. and Oo et al. utilized the skewness feature to provide complexity
information from EMG signals [36,37]. Skewness measures the asymmetry of a variable
within a distribution. Zero skewness signifies a symmetric distribution, while positive
skewness indicates a right-skewed distribution and vice-versa [36]. Another promising
feature that provides complexity information for EMG signal is Shannon entropy. This
feature describes a signal’s irregularity, complexity, and unpredictability characteristics [38].

Furthermore, the inherent non-stationary nature of EMG signals potentially provides
vital feedback with respect to the entropy feature [39]. Typically, an increased value of
Shannon entropy of an EMG signal represents good muscle condition, with many muscle
motor units contributing to muscle contraction and a high-amplitude and randomized
EMG signal. On the contrary, an impaired muscle makes it difficult to capture an EMG
signal, resulting in a low value of Shannon entropy. In this regard, this study employed
several features to focus more on the complex characteristics of EMG signals, including
5 time-domain features and 1 frequency-domain feature: waveform length (WL), zero
crossing (ZC), mean absolute value (MAV), skewness, Shannon entropy, and mean power
frequency (MPF).
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3.4.4. Data Resampling and Scaling

Data resampling was performed to address the imbalance issue in the training datasets,
as shown in Figure 5. The famous resampling approaches include oversampling, under-
sampling, and both combinations. Incorrect selection of the resampling method may lead
to invalid classification results. In this study, the actual number and value of the minority
classes were essential, as they correspond to the actual impairment level of the patient.
Several studies have shown the promising performance of undersampling approaches to
maintain the number of minority classes and produce good classification results [40–42].
This study utilized a random oversampling approach, employing Imblearn library in
Python with a sampling strategy to resample all classes except the minority class.

Data scaling was performed for the second mechanism in the following step, as
shown in Figure 5. Data scaling is a standard measure involving the treatment of data
before inputting them to machine learning algorithms. This technique is instrumental in
managing diverse data input scales and improving machine learning models’ performance.
One such data-scaling techniques is z-score scaling, in which z-score normalization or a
standardization term is employed. The z score scales the data instances by removing the
unit mean and dividing it by the unit variance. Several studies have proven the performance
of the z-score method in enhancing classification accuracy and efficiency. Al-Faiz et al.
showed that z-score scaling decreased the number of epochs required for the learning
network [43]. Suma et al. achieved improved accuracy after z-score scaling [44]. Long
et al. reported that classification performance was significantly improved after z-score
scaling [45].

Train = P2-P28

Train = P1-P27

Fold 1

Fold 28

Data 
Resampling Data Scaling Classification

Data 
Resampling Data Scaling Classification

…
…

Train = P2-P28 Data 
Resampling Classification

Train = P1-P27 Data 
Resampling Classification

Inter-Subject Cross Validation

Data-Scaled Inter-Subject Cross Validation

Test  = P1

Test  = P1

Test  = P28

Test  = P28

Figure 5. Inter–subject cross–validation data processing and classification.

3.5. Classification

In the previous experiment, we built machine learning models using the support
vector machine (SVM) and random forest (RF) algorithms [8]. Despite being known as
traditional machine learning methods, these algorithms are capable of recognizing complex
patterns in the field of EMG-related classification [46–49]. The SVM and RF algorithms
are based on support vector and ensemble-type architectures, respectively. In this study,
we employed an additional algorithm, namely multi-layer perceptron (MLP), a neural
network architecture. A machine learning model was built for each FMA movement task
to ensure that the final output of each model was focused on the impairment level of finger
movement. As shown in Figure 5, two mechanisms of data processing flow were applied,
resulting in two classification results of the first (ISCV) and second (DS-ISCV) mechanisms
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for each machine learning model. In the present study, the machine learning models of the
second mechanism are denoted as SVM_scaled, RF_scaled, and MLP_scaled.

A Python library named scikit-learn was employed to implement the machine learning
models. The parameters of each machine learning algorithm were pre-determined. SVM
utilized a poly kernel of degree 3, a regularization parameter of 3, and a gamma parameter
of 1 divided by the number of features. Regarding the random forest algorithm, the
employed number of trees was 700 with a Gini criterion, and the maximum depth of the
tree was 15. Lastly, the MLP parameters comprised a hidden-layer size of 100, a maximum
number of iterations of 200, an alpha parameter of 1 × 10−4, an initial learning rate of
1 × 10−4 with an adaptive method, and a stopping tolerance of 1 × 10−7, with rectification
as the activation function and a stochastic gradient-based optimizer.

3.6. Evaluation

This study evaluated the performance of the employed machine learning models
through the inter-subject cross-validation method. The inter-subject cross-validation pro-
cess was chosen to deal with cases in which a patient can exhibit only one or two im-
pairment levels for a movement task. In this study, the inter-subject cross-validation
procedure encompassed the classification process and the prior data preparation processes,
as shown in Figure 2. The objective of this approach was to correctly classify inter-subject
cross-validation, especially in train–test dataset selection, and evaluate the outcome of the
machine learning models. An illustration of the inter-subject cross-validation approach is
shown in Figure 5. The ISCV mechanism encompasses data resampling and classification,
while DS-ISCV includes the data scaling process after resampling. The first cross-validation
fold encompassed selecting the test data from participant number 1, with the remaining
data used as a training dataset. Subsequently, the last fold utilized test data from participant
number 28, while the remaining data were used as a training dataset.

3.7. Data Collection Experiment

During the experiment, four channels of EMG sensors were attached to the partici-
pant’s forearm and palm on the impaired side, where a cleaning measure with an alcohol
swab was performed prior to attachment in the skin area of the electrode attachment posi-
tion. A doctor sat before the participant to assess and give finger movement instructions,
as shown in Figure 6. Figure 7 shows that the assessed finger movement encompassing MF,
ME, HG, TA, PG, CG, and SG. The participant was instructed to perform an FMA-based
finger movement for 5 s with five repetitions. This repetition approach was intended to
observe the stability of the patient’s finger movement to achieve a reasonable assessment.
Simultaneously, the doctor observed the exhibited finger movement and performed the
assessment accordingly.

Additionally, the patient was instructed to move only the finger part while the doctor
performed a tug of the experimental object. This measure was intended to produce a proper
assessment by the doctor. This study utilized the doctor’s assessment as the ground truth
or true label for the employed machine learning models. The experimental environment is
shown in Figure 6.

One session of finger movement assessment encompassed five repetitions of one finger
movement. A 12 s relaxation or resting period was allowed between movement repetitions.
However, a preferable resting period between repetitions may be set arbitrarily based on the
doctor’s instruction. Subsequently, the participant was allowed a preferable resting period
before moving to another finger movement task. This setting was implemented to avoid
muscle fatigue, which can influence the stability of the measured EMG [32]. Additionally,
an experimenter held a timer to guide the movement repetitions to avoid any mistakes.
The participant’s EMG signal and an experimental video were also recorded throughout
the data collection process. Illustrations of movement repetitions with the corresponding
resting periods are shown in Figure 8.
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Figure 6. Experimental environment.
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Figure 8. One session of finger movement assessment.

4. Results

This section demonstrates the presence of an inherently imbalanced dataset in the
actual patient experiment. Consequently, recall scores between ISCV and DS-ISCV are
compared. Furthermore, the recall score of non-majority classes is evaluated. Finally, de-
tailed cross-validation results of the best machine learning model for each finger movement
task are shown. Each result includes the recall score of the actual target class and the
misclassification rate of the other target classes.

4.1. Movement Event Data

As mentioned in Section 3.7, there were 28 participants, and each participant was
instructed to perform each finger movement task with five repetitions. Ultimately, the
total number of movement events for one task with five repetitions across 28 participants
was 140, and the total number repetitions of the 7 FMA finger movement tasks across
the 28 participants was 980. However, some movement events were removed due to the
participant’s undesirable hand movement, with unstable conditions occurring in the EMG
signal, resulting in a poor EMG waveform shape. The final movement events after data
removal are shown in Table 2.
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Table 2. Summary of Movement Events (F: Full, P: Partial, N: None; ME: Mass Extension, MF:
Mass Flexion, HG: Hook Grasp, TA: Thumb Adduction, PG: Pincer Grasp, CG: Cylinder Grasp, SG:
Spherical Grasp; Black Square: Removed Movement Event.)

ME MF HG TA PG CG SG
Subject F P N F P N F P N F P N F P N F P N F P N

P1 5 5 5 5 5 5 5
P2 5 3 4 3 5 4
P3 5 5 5 5 5 5 5

P4 5 5 3 5 5 5 5
P5 5 5 2 2 1 3 2 2
P6 5 4 1 5 5 5 5 5

P7 5 5 5 5 5 5 5
P8 3 2 5 5 5 5
P9 5 5 5 5 5 5 5

P10 5 5 5 5 5 5 5

P11 5 5 5 5 5 5 5

P12 5 5 5 4 1 2 3 5 5

P13 4 5 5 5 2 3 5 5

P14 5 5 5 5 5 5 5

P15 5 5 5 5 5 5 5

P16 5 5 5 5 5 5 5

P17 4 1 5 5 5 2 3 5 5

P18 5 5 5 5 5 5 5

P19 5 5 5 5 5 5 5

P20 5 5 5 5 5 5 5

P21 5 5 5 5 5 5 5

P22 5 5 5 5 5 5 5

P23 5 5 2 5 5 5 5

P24 5 5 5 5 5 5 5

P25 5 5 5 5 5 5 5

P26 5 5 2 3 5 2 5

P27 5 5 5 5 5 5 5

P28 5 5 5 5 5 5 5

Total 94 11 29 102 9 25 104 9 14 97 25 13 94 25 13 117 7 10 109 10 15

As shown in Table 2, the movement events of participant P8 in ME, P2 in PG, and P5 in
SG were removed entirely. Consequently, the classification of these movements comprised
only 27-fold cross-validation. On the other hand, several participants had fewer than five
events in some movement tasks after data removal. The total number of movement events
in Table 2 shows an imbalanced dataset, where the majority class is the full level in all
movement tasks. The partial level was the minority class in ME, MF, HG, CG, and SG,
whereas the none level was the minority in TA and PG. Furthermore, there is a significant
difference in the number of majority and minority classes, with an average of 92 ± 10 events.

Following the data collection experiment, the EMG data underwent a data processing
step, as shown in Figure 2. Following the feature extraction step with a 500 ms window
size and a 100 ms window step, the processed EMG data were extracted to be prepared
as machine learning input. The numbers of data points for each movement task and
impairment level are shown in Table 3.
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Table 3. Total data points after the feature extraction process across subjects.

Movement
Impairment Level

Full Partial None

ME 4246 491 1288

MF 4601 431 1145

HG 4522 382 640

TA 4083 1001 614

PG 4013 1156 604

CG 5264 320 476

SG 4825 438 689

4.2. Recognition Performance

A well-known metric such as accuracy may provide misleading information in an
imbalanced dataset. The bias of the score toward the majority class accuracy causes this
issue. Thus, this study evaluated recognition performance using an average of recall
metrics to minimize bias due to an imbalanced dataset. The average of recall encompassed
calculating the recall for each impairment level after concatenating the actual and predicted
levels in inter-subject cross-validation, followed by calculating the overall average across
impairment levels. Additionally, the average recall score of minority classes is presented.

In Table 4, gray cells represent the highest recall score for each movement. Four out of
seven movements surpassed a recall of 0.50, namely ME, HG, PG, and SG. Additionally, the
ISCV and DS-ISCV machine learning models performed well depending on the movement,
with the highest recall achieved by SVM for the second mechanism (SVM_DS-ISCV) in MF,
the first mechanism of MLP (MLP_ISCV) in HG, SVM_DS-ISCV in TA, SVM_ISCV in PG,
MLP_ISCV in CG, and MLP_ISCV in SG. However, in ME, SVM_DS-ISCV and MLP_ISCV
shared the same recall score of 0.70. In this case, the average recall score of the minority
classes of the partial and none levels must be observed.

Table 4. Average recall score of inter-subject cross-validation (gray: highest recall score of
each movement).

Movement
ISCV DS-ISCV

SVM RF MLP SVM RF MLP

ME 0.61 0.61 0.70 0.70 0.62 0.64

MF 0.40 0.44 0.40 0.49 0.46 0.44

HG 0.46 0.46 0.50 0.46 0.43 0.49

TA 0.27 0.33 0.25 0.35 0.31 0.29

PG 0.60 0.50 0.45 0.48 0.50 0.50

CG 0.32 0.33 0.40 0.34 0.33 0.33

SG 0.49 0.42 0.73 0.46 0.42 0.56

The average recall scores of non-minority classes presented in Table 5 were calculated
from the partial and none levels. In the ME movement, SVM_DS-ISCV achieved the highest
score, making it the best model for recognizing non-majority classes. However, different
outcomes occurred in HG and TA, with MLP_DS-ISCV achieving the highest recall score
for non-majority classes in both movements. There was a marginal difference in the recall
scores for the overall (Table 4) and non-majority (Table 5) classes in the HG movement due
to the trade-off between the recognition of majority and non-majority classes. In the TA
movement, despite the highest score being achieved by SVM_DS-ISCV (Table 4), for the
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non-majority class, MLP_DS-ISCV achieved the highest score. This was due to the high
recall score for the majority class in TA. Considering the importance of the non-majority
class, this study indicates the best model for each movement task with a dagger (†) symbol
in Table 5.

Table 5. Average recall score of inter-subject cross-validation in non-majority classes (gray: highest
recall score for each movement; †: selected machine learning model).

Movement
ISCV DS-ISCV

SVM RF MLP SVM RF MLP
ME 0.5 0.49 0.64 0.72 † 0.49 0.57

MF 0.15 0.21 0.18 0.37 † 0.24 0.27

HG 0.25 0.24 0.35 † 0.25 0.19 0.36

TA 0.07 0.12 0.08 0.10 0.10 0.14 †

PG 0.49 † 0.29 0.28 0.26 0.29 0.37

CG 0.03 0.00 0.16 † 0.05 0.00 0.09

SG 0.29 0.18 0.65 † 0.26 0.18 0.42

Figure 9 shows detailed information in concatenated confusion matrices for each move-
ment after inter-subject cross-validation. In general, SVM_DS-ISCV of ME and MLP_ISCV
of SG achieved good recognition performance, with the predicted labels achieving more
than 50% correctness compared with all true labels, as shown in Figure 9a,g respectively.
Subsequently, SVM_DS-ISCV of MF, MLP_ISCV of HG, and SVM_ISCV of PG achieved
more than 50% for two labels, as shown in Figure 9b,c,e respectively. In contrast, the
remainder achieved correct classification of the majority class only. However, the true labels
were the doctor’s manual inspection assessment results. Therefore, the aforementioned
good recognition performance represented the ability of the machine learning model to
produce the same assessment result as the doctor.
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Figure 9. Concatenated Normalized confusion matrices of the best machine learning models for each
movement after inter-subject cross-validation.
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4.3. Portion of Classification Outcome Across Impairment Levels in Inter-Subject Cross-Validation

Figure 9 shows the general information of correct-incorrect classification after con-
catenating the classification outcome across the participants. This subsection presents
the detailed classification outcome of each cross-validation fold, including the misclas-
sification rate across impairment levels. In this study, the misclassification rate of each
cross-validation fold was calculated from the false positive rate, and the classification
outcome of the corresponding impairment level was the recall score. Therefore, the clas-
sification portion can be observed using these metrics as shown in Table 6. The recall
score for the actual level is shown in black, while the false positive rate for other levels
is shown in red for each fold. Each row corresponds to a specific fold in the inter-subject
cross-validation, as illustrated in Figure 5.

Table 6. Portion of Classification Across Impairment Levels in Inter-Subject Cross-Validation (Red:
False Positive Rate Score; Black Square: Removed Movement Event).

Test ME MF HG TA PG CG SG
Data Actual Predicted Level Actual Predicted Level Actual Predicted Level Actual Predicted Level Actual Predicted Level Actual Predicted Level Actual Predicted Level

(Fold) Level F P N Level F P N Level F P N Level F P N Level F P N Level F P N Level F P N

P1 F 0.78 0.19 0.03 F 1.00 0.01 0.00 F 0.92 0.04 0.04 P 0.65 0.28 0.06 F 0.97 0.02 0.02 F 0.92 0.08 0.00 F 0.79 0.12 0.09

P2 F 0.05 0.00 0.95 F 0.13 0.83 0.04 F 0.53 0.12 0.35 F 0.10 0.28 0.61 F 0.82 0.02 0.17 F 0.93 0.07 0.00

P3 F 0.99 0.01 0.00 F 0.70 0.25 0.05 F 0.32 0.68 0.00 F 0.04 0.13 0.83 F 0.17 0.64 0.19 F 0.23 0.77 0.00 F 0.98 0.02 0.00

P4 F 0.71 0.20 0.09 F 0.14 0.84 0.02 F 1.00 0.00 0.00 F 0.00 0.99 0.00 F 0.68 0.32 0.00 F 0.99 0.00 0.01 F 0.69 0.08 0.23

P 0.00 0.00 1.00 P 0.00 1.00 0.00
P5 N 0.10 0.04 0.86 N 0.03 0.88 0.09

N 0.00 0.01 0.99 N 0.00 0.99 0.01
P 0.00 1.00 0.00 P 0.66 0.00 0.34

F 0.19 0.42 0.34
P6 P 0.23 0.77 0.00

P 0.10 0.77 0.34
F 0.13 0.25 0.61 F 0.75 0.19 0.05 P 0.91 0.09 0.00 F 0.69 0.22 0.10 F 0.67 0.33 0.00

P7 N 0.26 0.00 0.74 N 0.02 0.86 0.12 N 0.00 0.17 0.83 N 0.00 1.00 0.00 N 0.00 0.38 0.62 N 0.47 0.52 0.01 N 0.05 0.01 0.94

P8 P 0.03 0.89 0.08 F 0.09 0.00 0.91 F 0.00 0.89 0.11 F 0.97 0.02 0.00 F 0.94 0.00 0.06 F 0.76 0.00 0.24

P9 P 0.22 0.75 0.03 F 1.00 0.00 0.00 F 0.91 0.07 0.02 P 0.66 0.30 0.03 F 0.77 0.21 0.03 F 1.00 0.00 0.00 F 0.74 0.09 0.16
P10 F 0.11 0.89 0.00 F 0.77 0.23 0.00 F 0.67 0.33 0.00 F 0.03 0.97 0.00 F 0.99 0.01 0.00 F 1.00 0.00 0.00 F 0.98 0.03 0.00

P11 F 1.00 0.00 0.00 F 0.68 0.32 0.00 F 0.98 0.01 0.01 F 0.02 0.98 0.00 F 1.00 0.00 0.00 F 1.00 0.00 0.00 F 1.00 0.00 0.00

F 0.92 0.06 0.02 F 1.00 0.00 0.00
P12 F 0.81 0.19 0.00 F 0.98 0.02 0.00 F 0.98 0.00 0.02

P 1.00 0.00 0.02 P 1.00 0.00 0.00
F 0.84 0.05 0.12 F 1.00 0.00 0.00

P 0.69 0.00 0.26
P13 N 0.70 0.04 0.26 N 0.03 0.97 0.00 N 0.88 0.00 0.12 P 0.83 0.07 0.10

N 0.69 0.05 0.31
F 0.91 0.00 0.09 N 1.00 0.00 0.00

P14 F 0.95 0.05 0.00 F 0.97 0.02 0.00 F 1.00 0.00 0.00 F 0.99 0.01 0.00 F 1.00 0.00 0.00 F 0.98 0.02 0.00 F 1.00 0.00 0.00

P15 F 1.00 0.00 0.00 F 1.00 0.00 0.00 F 1.00 0.00 0.00 F 1.00 0.00 0.00 F 0.67 0.14 0.19 F 1.00 0.00 0.00 F 1.00 0.00 0.00

P16 F 0.42 0.58 0.00 F 0.36 0.61 0.03 F 0.98 0.01 0.01 F 0.25 0.75 0.00 F 0.78 0.19 0.03 F 0.19 0.81 0.00 F 0.61 0.39 0.00

F 0.08 0.81 0.23 F 1.00 0.00 0.00
P17

P 0.00 0.34 0.23
F 0.05 0.70 0.25 F 0.46 0.54 0.00 F 0.62 0.38 0.00

P 0.87 0.13 0.00
F 0.76 0.06 0.18 F 0.81 0.02 0.16

P18 N 0.00 0.04 0.96 P 0.32 0.27 0.41 P 0.88 0.11 0.01 P 0.65 0.12 0.23 P 0.08 0.37 0.55 P 0.92 0.06 0.02 P 0.23 0.76 0.01

P19 F 0.19 0.74 0.07 F 1.00 0.00 0.00 F 0.78 0.00 0.22 F 0.99 0.01 0.00 F 1.00 0.00 0.00 F 1.00 0.00 0.00 F 0.95 0.02 0.04
P20 F 0.68 0.32 0.00 F 0.93 0.07 0.00 F 0.97 0.03 0.00 F 0.32 0.61 0.07 F 0.86 0.14 0.00 F 0.96 0.00 0.04 F 0.84 0.16 0.00

P21 F 1.00 0.00 0.00 F 1.00 0.00 0.00 F 1.00 0.00 0.00 F 0.94 0.06 0.00 F 0.84 0.16 0.00 F 1.00 0.00 0.00 F 1.00 0.00 0.00

P22 F 0.97 0.00 0.04 F 0.97 0.03 0.00 F 0.48 0.00 0.52 F 0.94 0.00 0.06 F 0.99 0.01 0.00 F 1.00 0.00 0.00 F 0.60 0.40 0.00

P23 N 0.17 0.00 0.83 N 0.06 0.51 0.44 N 0.50 0.47 0.03 N 0.81 0.03 0.15 N 0.25 0.06 0.69 N 0.42 0.01 0.57 N 0.02 0.03 0.95

P24 F 0.99 0.00 0.00 F 0.97 0.03 0.00 F 0.86 0.12 0.01 F 0.60 0.40 0.00 F 1.00 0.00 0.00 F 1.00 0.00 0.00 F 0.97 0.02 0.01

P25 F 0.93 0.07 0.00 F 1.00 0.00 0.00 F 0.97 0.03 0.00 F 0.99 0.01 0.00 F 0.07 0.93 0.00 F 1.00 0.00 0.00 F 1.00 0.00 0.00

P26 N 0.21 0.27 0.51 N 0.11 0.59 0.30 P 0.15 0.85 0.00 P 0.79 0.21 0.00 P 0.00 1.00 0.00 F 0.93 0.07 0.00 P 0.33 0.58 0.09

P27 F 0.86 0.12 0.02 F 0.94 0.06 0.00 F 0.96 0.00 0.04 F 0.91 0.09 0.00 F 0.76 0.24 0.00 F 0.96 0.03 0.01 F 0.94 0.06 0.00

P28 F 0.00 1.00 0.00 F 0.89 0.09 0.02 F 1.00 0.00 0.00 F 0.96 0.04 0.00 F 1.00 0.00 0.00 F 1.00 0.00 0.00 F 0.98 0.02 0.00

In contrast to Figure 9, which showcased the concatenated confusion matrices after
cross-validation, the classification portion offers detailed insight into discerning the mis-
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classification trends of each movement. Consequently, this allowed for a comprehensive
evaluation of the performance of the best machine-learning models on each movement.
Most movements showed the misclassification that resulted in the recall score below 0.5
occurring between Full and Partial levels in ME, HG, TA, PG, and CG. On the other hand,
misclassification between Partial and None levels occurred in MF, whereas misclassification
between None and Full levels in SG.

4.4. Comparison of Recognition Performance with Previous Experiment

This study presents an improved recognition method for finger movement impairment
levels based on the FMA. In the previous experiment, the F1 score of each impairment level
was utilized as an evaluation metric. The previous experiment only involved the application
a holdout method in the data-splitting process, and the dataset was split into 50% of training
and testing datasets. However, this study included leave-one-out cross-validation, with the
participant data representing the number of observations for data splitting. Accordingly,
despite making this experiment slightly less comparable to the previous experiment, we
employed the F1 score of the best fold of inter-subject cross-validation for comparison.

In the previous study, the impairment level of the none level was not acquired, as
shown in Table 7 [8]. Therefore, only full and partial levels were utilized in this study. MF
achieved the lowest F1 score, whereas TA achieved the highest. In the current study, the
lowest F1 score was that of CG, whereas PG achieved the highest, as shown in Figure 8.
The F1 scores presented in Table 8 have higher values than the recall score in Table 6.
Figure 10 shows that the F1 scores achieved in this study are superior to those achieved in
the previous experiment.

Table 7. F1 scores achieved in the previous experiment (Black Square: Unobtained Level) [8].

Best Impairment Level
Movement

Machine Learning Model Full Partial None

ME SVM 0.60 0.58

MF SVM 0.32 0.54

HG SVM 0.54 0.52

TA SVM 0.98 0.83

PG RF 0.90 0.40

CG RF 0.89 0.60

SG SVM 0.76 0.74

Average 0.71 0.60

Table 8. Highest F1 scores of a selected inter-subject cross validation fold in the present study.

Movement
Best Impairment Level

Machine Learning Model Full Partial None

ME SVM_DS-ISCV 1.00 0.87 0.98

MF SVM_DS-ISCV 1.00 0.94 0.99

HG MLP_ISCV 1.00 0.92 0.91

TA MLP_DS-ISCV 1.00 0.47 0.27

PG SVM_ISCV 1.00 1.00 0.82

CG MLP_ISCV 1.00 0.11 0.72

SG MLP_ISCV 1.00 0.86 0.97

Average 1.00 0.74 0.81
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Figure 10. Box plot of F1 scores achieved in the current and previous study.

5. Discussion

The subjective nature of assessment presents a significant challenge in the context
of the Fugl-Meyer Assessment (FMA). This challenge arises from the reliance on manual
evaluation conducted by a doctor through visual inspection and manual tugging to deter-
mine the level of impairment of the patient. Thus, the current study presents a method for
recognizing finger movement impairment levels in the FMA using EMG. The discussion
delves into the recognition performance of FMA impairment levels within an imbalanced
dataset and an inherently subjective environment. Subsequently, this section discusses
how the inherent subjectivity of conventional assessment leads to misclassification by the
machine learning model.

5.1. Recognition Performance

According to Table 3, the minority class of the partial level appeared in ME, MF,
HG, CG, and SG, while TA and PG accounted for the minority class at the none level.
Theoretically, an imbalanced dataset drives the recognition of the minority class toward
the majority class [50]. Based on the results shown in Figure 9 and Table 6, there was no
sign of majority-class bias in terms of misclassification of the minority class. As shown in
Figure 6, several full levels in ME were misclassified as the minority class of the partial
level. Subsequently, the partial level of P17 in ME was misclassified as the none level
instead of the full level. This finding infers that the proposed method performed well in
addressing the imbalanced condition of the dataset. In contrast, no related research has
specifically evaluated performance in the recognition of finger movement impairment level
under the condition of an imbalanced dataset [8,10–13]. Therefore, the resulting recognition
performance represents the actual condition of the FMA.

In the previous experiment, the data processing method comprised data scaling
only [8]. Since the current study employed an improved recognition method, the the results
are not comparable with those achieved in the previous study. Consequently, the best F1
score of each impairment level from the cross-validation fold was selected to match with the
holdout method of the previous experiment. In addition, this study evaluated recognition
performance in inter-subject cross-validation settings and addressed the imbalanced dataset
issue, which was not explicitly addressed in the aforementioned related research [10–13].
Two related studies that investigated finger movement recognition only employed accuracy
as an evaluation metric [12,13]. Considering the shortcomings of the accuracy metric under
the condition of an imbalanced dataset, this study only compared the F1 scores with the
results of the previous experiment [8].

Compared to the recall metric, which is suitable for imbalanced datasets, several
F1 scores in this study showed higher values due to the contrary nature of precision
relative to the F1 score. Consequently, it might not represent the actual performance
of the employed machine learning model. According to this metric, the experimental
results achieves in this study are superior to those of the previous experiment, as shown
in Figure 10. In the previous experiment, the employed features focused on the statistical
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and amplitude characteristics of EMG signals [8]. In contrast, this study emphasized the
complex characteristics of EMG signals that improve recognition.

5.2. Subjectivity Issue of Fugl-Meyer Assessment

In this study, the doctor’s manual assessment result served as the ground truth when
training the employed machine learning models. Therefore, a high recall score corresponds
to good machine learning model performance in terms of matching the doctor’s assessment
result. However, as mentioned in related research on FMA impairment level recognition,
the conventional FMA is prone to subjectivity issues [8,10–13]. The interaction between
the full and none levels exhibited distinct boundaries, whereas interactions involving the
partial level tended to yield uncertain and subjective assessment results. This ambiguity
arises from the indistinct boundary at the partial level, which behaves like a transitional
phase between the none and full levels, as shown in Table 1.

Interesting findings arose with respect to the portion of classification across impair-
ment levels. According to Table 6, the proposed method mostly showed an interaction
of the misclassification rate between full and partial levels in ME, HG, TA, PG, and CG.
Meanwhile, misclassification between the partial and none levels mostly appeared in MF.
Misclassification cases were rare between the full and none levels, indicating that the system
could easily recognize the clear boundaries between these levels. This finding supports the
rule of thumb according to which uncertainty is rare between the full and none levels.

Furthermore, the result also indicates that the proposed method differs from the doc-
tor’s decisions in areas with a high risk of subjectivity. This difference mainly appeared
because the machine learning model used muscle information to decide upon the impair-
ment level. In addition, differences appeared in the results involving the partial impairment
level, which is associated with a high subjectivity risk. Therefore, the proposed method
may assist doctors or physiotherapists in clarifying the patient’s impairment level under
uncertain assessment conditions, objectifying the FMA assessment.

5.3. Limitations and Future Work

This study addressed the inherent subjectivity of the FMA using the EMG impairment
level recognition method. Various uncontrollable anatomical and physiological factors, such
as age and gender variations, anatomical characteristics influencing electrode attachment,
and the potential presence of atrophy or fibrosis in the muscle unit, pose challenges in
EMG settings. However, aside from muscle information, the FMA requires the dexterity
of the fingers in executing tasks, as shown in Table 1. Consequently, several participants
with different finger dexterity profiles may be recognized as identical due to marginal
differences in EMG signals. Therefore, to comprehensively recognize the impairment level
in finger movement, an additional modality should be considered to capture the finger
movement profile of each participant.

6. Desktop Application

This study also presents a use case of the proposed method in actual assessment
using a desktop application. This study aimed to assist doctors in making more accurate
judgments by employing a an EMG biosignal modality to automatically recognize the
finger movements of the FMA. The implementation of the method proposed in this study
requires the doctor to perform a manual assessment, especially in the object-grasping task.
Simultaneously, the system automatically assesses the impairment level based on EMG
muscle information. Finally, the doctor can double-checked the system’s output before
deciding on the impairment level of the patient.

Figure 11 shows the desktop application’s assessment window with several features.
The movement list feature consists of a list of FMA finger movements, where each item
corresponds to the selected machine learning model. The connect and disconnect buttons
control the connections between sensors and the application. The start and stop record
buttons control impairment level recognition and camera recording processes. The im-
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pairment level is displayed in the impairment level display. A camera display shows and
records finger movements. Lastly, the signal obtained from the sensors is displayed in the
EMG signal display. The assessment window mainly implements the proposed method
to output an impairment level for the FMA finger movements. As shown in Figure 11, a
display shows impairment at the none level, with a red background. This impairment level
was produced through several processes in the proposed method that were adjusted for
real-time assessment inside the application.

Movement List
Start Record 

Button

Stop Record 

Button

Connect 

Sensor Button
Disconnect 

Sensor Button

Camera

Display

EMG

Signal 

Display

Impairment 

Level 

Display

Figure 11. Assessment window of the desktop application.

The first process of the application workflow was to store the EMG signal from four
channels individually in an object with a size of 1000 instances. This process was intended
to fix the number of EMG data to 1000 instances. The stored EMG data were then filtered
using both Butterworth and wavelet filters. Subsequently, the data were extracted with five
time-domain features and one frequency-domain feature, as explained in Section 3.4.3. The
last process was to input the data into the established machine learning model to output the
impairment level. The established machine learning models were connected with the finger
movement item inside the movement list features. Therefore, the model can automatically
select when the user chooses a finger movement item inside the feature.

The assessment window consists of several stages—the early stage, the pre-recognition
stage, and the recognition stage—intended to help the user run the assessment comfortably,
as shown in Figure 12. At this stage, the camera display, the green push button for connect-
ing to sensors, and the combo box for finger movement selection are enabled. Meanwhile,
the other features are automatically disabled. This stage has a function to facilitate the user
adjusting the camera position for the assessment, connecting the application to the EMG
sensors and selecting a finger movement to be assessed. In addition, each item in the list of
finger movements is connected with the selected machine learning model to be utilized in
the recognition stage.

The next stage is the pre-recognition stage. This stage starts after the user clicks
the connect-sensor push button and the connection of the sensor with the application is
successfully established. At this stage, several features that correspond to several functions
are enabled. The first enabled feature is the plot widget, which is used to display the EMG
signal. In this feature, the user may check the displayed EMG signal for each channel.
With this feature, the doctor may also check for an error in the resulting EMG signal
when the patient performs any movement. Therefore, an adjustment in the position of
the electrodes or other necessary action to obtain a proper EMG signal is feasible. In
addition, the selection of the finger movement is still feasible before the recognition stage.
Another enabled feature is the green start-record push button, which is used to start the



Appl. Sci. 2024, 14, 10830 20 of 23

recognition and video recording process. If the user wishes to finish the assessment, the
red disconnect-sensor push button is enabled at this stage.

EARLY STAGE PRE-RECOGNITION
STAGE

CONNECT
SENSOR
BUTTON

START
RECORDING

BUTTON

RECOGNITION
STAGE

STOP
RECORDING

BUTTON

DISCONNECT
SENSOR
BUTONDISCONNECT

SENSOR
BUTTON

Figure 12. User flow of the assessment window with the corresponding trigger button.

Following the command from the start-record push button, the recognition stage is
started. At this stage, the corresponding impairment-level information is also transferred to
the displayed video. Therefore, the video displayed in the recognition stage simultaneously
shows the assessment date and the impairment level. Furthermore, the video recorded
on the PC allows the doctor to review the impairment level of the corresponding finger
movement outside the desktop application.

The user has two options to proceed with the assessment window at this stage. The
first option is to stop the assessment for the current movement and start another movement.
In this option, the user can press the stop-record button and enter the pre-recognition
stage. Subsequently, the user can select different movements from the movement list and
press the green start-record button to start the assessment. The other option is to finish all
assessments. The user can press the red stop-record button and disconnect-sensor buttons.

7. Conclusions

In this study, we proposed a recognition method for finger movement impairment
levels in the FMA, using EMG to address the subjectivity issue under the condition of
an imbalanced dataset. This study also introduces a desktop application that outputs an
assessment video embedded with the system’s impairment-level result. The evaluation
result of inter-subject cross-validation showed that both data processing mechanisms
addressed the imbalanced dataset condition and the subjectivity issue of the FMA. The
recognition results show that the SVM and MLP of both mechanisms outperformed the
RF model in all FMA tasks. Subsequently, the misclassification rate mainly occurred
between the full and partial levels. Despite moderate recall scores in some movement tasks,
this finding highlights the subjectivity issue in conventional assessments. Therefore, the
output of the proposed method shows significant potential to assist doctors in making
proper judgments through the used of EMG-based recognition, especially under uncertain
assessment conditions.
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