
Kobe University Repository : Kernel

PDF issue: 2025-05-06

Using deep learning for ultrasound images to
diagnose chronic lateral ankle instability with
high accuracy

(Citation)
Asia-Pacific Journal of Sports Medicine, Arthroscopy, Rehabilitation and
Technology,40:1-6

(Issue Date)
2025-04

(Resource Type)
journal article

(Version)
Version of Record

(Rights)
© 2025 Asia Pacific Knee, Arthroscopy and Sports Medicine Society. Published by
Elsevier (Singapore) Pte Ltd.
This is an open access article under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International license

(URL)
https://hdl.handle.net/20.500.14094/0100492953

Kamachi, Masamune ; Kamada, Kohei ; Kanzaki, Noriyuki ; Yamamoto,
Tetsuya ; Hoshino, Yuichi ; Inui, Atsuyuki ; Nakanishi, Yuta ; Nishida…
Kyohei ; Nagai, Kanto ; Matsushita, Takehiko ; Kuroda, Ryosuke



Original article

Using deep learning for ultrasound images to diagnose chronic lateral ankle 
instability with high accuracy

Masamune Kamachi, Kohei Kamada, Noriyuki Kanzaki * , Tetsuya Yamamoto, Yuichi Hoshino,  
Atsuyuki Inui, Yuta Nakanishi, Kyohei Nishida, Kanto Nagai , Takehiko Matsushita,  
Ryosuke Kuroda
Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan

A R T I C L E  I N F O

Keywords:
Anterior talofibular ligament
Artificial intelligence
Chronic lateral ankle instability
Deep learning
Ultrasound

A B S T R A C T

The purpose of this study is to calculate diagnostic accuracy of chronic lateral ankle instability (CLAI) from a 
confusion matrix using deep learning (DL) on ultrasound images of anterior talofibular ligament (ATFL). The 
study included 30 ankles with no history of ankle sprains (control group), and 30 ankles diagnosed with CLAI 
(injury group). A total of 2000 images were prepared for each group by capturing ultrasound videos visualizing 
the fibers of ATFL under the anterior drawer stress. The images of 20 feet in each group were randomly selected 
and used for training data and the images of remaining 10 feet in each group were used as test data. Transfer 
learning was performed using 3 pretraining DL models, and the accuracy, precision, recall (sensitivity), speci-
ficity, F-measure, and the area under the receiver operating characteristic curve (AUC) were calculated based on 
the confusion matrix. The important features were visualized using occlusion sensitivity, a method for visualizing 
areas that are important for model prediction. DL was able to diagnose CLAI using ultrasound imaging with very 
high accuracy and AUC in three different learning models. In visualization of the region of interest, AI focused on 
the substance of the ATFL and its attachment on the fibula for the diagnosis of CLAI.

1. Introduction

Anterior talofibular ligament (ATFL) is the most commonly injured 
ligament in ankle sprains because of its anatomical position.1 However, 
if not properly diagnosed and treated initially, ATFL injuries can become 
chronic and require surgical treatment as chronic lateral ankle insta-
bility (CLAI). CLAI may occur in about 10–20 % of patients after ankle 
sprains such as ATFL injury.2,3 CLAI is a chronic condition that presents 
with symptoms such as pain, persistent swelling, feelings of ankle 
instability and giving-way, may cause an inability to participate in work 
and sports.4,5 To correctly diagnose ankle instability, a combination of 
physical findings and imaging examinations are used after obtaining the 
patient’s medical history. The traditional physical examination test for 
the evaluation of the ankle instability is the anterior drawer test (ADT), 
which evaluates anterior talus displacement against an anteriorly 
orientated force, and control of ankle plantarflexion to tense the lateral 
ligament. However, due to the poor reliability of the physical diagnosis 

of ankle instability, magnetic resonance imaging (MRI) and stress radi-
ography are commonly performed in combination.6,7 MRI has been 
shown to have high specificity and high sensitivity for ATFL tears, 
especially in the acute phase,8 and has been used to evaluate soft tissue 
conditions such as ATFL tears or thickening in the diagnosis of CLAI, but 
is not optimal for assessing the ankle instability because it is a static 
examination.9 Although stress radiography is a useful test to evaluate 
ankle instability, it is a complicated procedure, and results depend on 
the position of the patient’s foot, the magnitude of the force applied to 
the foot, and the ability of the patient to withstand the force.10

Along with the recent development of ultrasound technology, ul-
trasound has become a very useful tool in the diagnosis of soft tissue 
injuries, especially in the ankle-foot region, and has even become the 
one of the gold standard examinations. When imaging the ankle, ultra-
sound is able to detect synovial lesions, ligamentous injury, and distin-
guish soft tissue from osseous impingement.8 Furthermore, the dynamic 
assessment is another advantage of ultrasound, and many studies have 
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reported that ultrasound imaging and dynamic assessment of ATFL are 
useful in the diagnosis of CLAI.6,10–15 Although the diagnostic parame-
ters of ATFL for the diagnosis of CLAI have not yet been established, 
several studies demonstrated that the change in ATFL length of manual 
stress ultrasound could be useful for diagnosis of CLAI.6,10,12 On the 
other hand, some studies have found it useful to assess the thickness of 
the ATFL,13–15 there is no certain consensus on the ultrasound diagnosis 
of CLAI. Therefore, this study focuses on the application of deep learning 
(DL) technology to ultrasound images.

Recently, artificial intelligence (AI) has developed remarkably and 
has been rapidly applied in the medical research field. DL using con-
volutional neural networks (CNNs) which is an AI method has been 
adapted to clinical practice, particularly in the diagnostic imaging field, 
with even reaching superhuman performance at certain image inter-
pretation tasks.16 With the help of DL algorithms, such as artificial 
neural networks and CNNs, AI has been able to improve diagnostic ac-
curacy and speed, reduce the amount of human error, reduce the strain 
on medical professionals, and improve care. Regarding research using 
DL in the field of orthopaedics, the accuracy of the AI to detect pa-
thologies were reported as equivalent or even superior to humans in 
several imaging modalities, such as radiography, MRI and ultra-
sound.17–22 Despite the increasing usefulness of ultrasound, as 
mentioned above, there has been no research on the use of DL for 
musculoskeletal ultrasound imaging in the field of ankle-foot. Therefore, 
the purpose of this study is to calculate diagnostic accuracy of CLAI from 
a confusion matrix using DL on ultrasound images of ATFL. The hy-
pothesis of this study is that the application of DL to US images of ATFL 
will enable the diagnosis of CLAI more accurately and easily than con-
ventional methods such as MRI. Furthermore, we investigated the pos-
sibility of obtaining useful information for the diagnosis of CLAI by 
visualizing areas that may be important.

2. Materials and methods

This study was approved by the appropriate review board (No. 
B210049), and informed consent was obtained from all patients 
involved. The study included 30 ankles consisting of the healthy vol-
unteers and the patients (25 persons, 14 males and 11 females) with no 
history of ankle sprains (control group), and 30 ankles consisting of 26 
patients (16 males and 10 females) who were diagnosed with CLAI and 
later underwent arthroscopic lateral ligament repair (injury group). 
Postoperative patients, patients with foot deformities and those with 
general laxity were excluded. The mean age of the control group was 
34.8 ± 10.6 years old (range: 17–47 years old), and the mean age of the 
injury group was 31.9 ± 12.7 years old (range:13–59 years old). CLAI 
was comprehensively diagnosed by a certified ankle-foot surgeon based 
on patient’s history, physical examination, stress radiographs, ultra-
sound images, and MRI. The sample size was determined by power 
analysis based on historical data using G*Power 3.1. There was a sig-
nificant difference of 0.5 cm in length change of ATFL between healthy 
volunteers and patients with CLAI in the previous report.10 A prior 
sample size calculation revealed that a difference of 0.5 cm in length 
change of ATFL would be detectable between two groups with a sample 
size of 25 in each group by using the t-test (effect size = 0.95, with an α 
of 0.05 and a power of 0.95). Therefore, the sample size for this study 
was set at 30 feet in each group.

2.1. Ultrasound examination

Ultrasound imaging was performed by an ankle-foot expert with 10 
years of musculoskeletal ultrasound imaging experience. A long-axis 
image of the ATFL using an 18M linear probe (Canon APLIO300, TUS- 
A300, Canon Medical Systems, Tochigi, Japan) were obtained accord-
ing to previous reports.6,10,23 The ultrasound settings of gain, dynamic 
range, and frame rate were standardized for all measurements. Specif-
ically, the gain was set to 80 dB, the dynamic range to 70 dB, and the 

frame rate to 60 fps. The transducer was placed over the ATFL according 
to the following steps; the proximal edge of the transducer was adjusted 
on the distal edge of the lateral malleolus of the ankle, and the distal end 
of the transducer was then turned carefully parallel to the sole of foot to 
visualize the fibers of ATFL clearly. Each patient was in a sitting position 
with one’s heel hanging on the stool. To apply anterior stress to the 
ankle joint during ultrasound examination, the reverse anterior drawer 
test24 was performed by pushing the lower leg in with one hand (Fig. 1).

2.2. Data preparation

Ultrasound movies applying anteriorly directed force to the ankle 
joint were captured with the transducer held on the ATFL. A total of 
2000 images with maximum anterior stress were prepared for each 
group by capturing images from the movies. Dynamic ultrasound im-
aging of the ATFL was performed, capturing its progression from a 
relaxed state to maximum anterior drawer stress. From the recorded 
video, a still image (128 pixels × 128 pixels) representing the maximum 
stress condition was extracted. A 35 × 20 mm area, including the lateral 
malleolus, ATFL, and the talus, was cropped and then used for DL. DL 
was performed using the Deeplearning Toolbox of MATLAB (Math-
Works, Natick, MA), and the images of 20 feet in each group were 
randomly selected and used for training data. The images of remaining 
10 feet in each group were used as test data. As a preprocessing step, the 
ImageAugmentor tool in MATLAB was used to increase the variation in 
the original dataset by applying horizontal flipping, rotation 
(− 10◦–10◦), scaling ( × 0.8 to × 1.2), horizontal translation, vertical 
translation, and random sharing to train images and augmented the 
validation images.

2.3. Training and test process of deep learning

Training and test process of deep learning was performed in a 
method based on a previous report.25 Flowchart of the deep leaning 
process was shown in Fig. 2. Transfer learning was performed using 3 
pretraining DL models (Residual Net (ResNet)-50, MobileNet_v2, and 
EfficientNet) that are commonly used in medical imaging. ResNet-50: A 
50-layer deep neural network leveraging residual connections, designed 
for high accuracy and robust performance on large-scale tasks, though it 
requires substantial computational resources. MobileNet_V2: A light-
weight model tailored for mobile and edge devices, employing depth-
wise separable convolutions and inverted residual blocks to maximize 
efficiency, with a slight trade-off in accuracy. EfficientNet: A scalable 
model that optimizes accuracy and efficiency through compound scaling 
of depth, width, and resolution, making it versatile for both mobile and 
server-side applications. These models used different numbers of con-
volutional layers: 50 in ResNet-50, 53 in MobileNet_v2, and 82 in Effi-
cientNet. The accuracy of each DL model was assessed using a confusion 
matrix, a table containing four combinations of predicted and actual 
values for the presence or absence of disease. The values in the matrix 
include true positives, false positives, true negatives, and false negatives 
(Fig. 3). For each learning model, the accuracy (percentage of correct 
answers for all data), precision (percentage of AI correctly judged CLAI 
group), recall (percentage of data correctly judged by AI as CLAI group, 
same as sensitivity), specificity (percentage of data correctly judged by 
AI as control group), and F-measure (the harmonic mean of the accuracy 
and recall), which are widely used in the field of machine learning, were 
calculated based on the confusion matrix.25,26 The important features 
detected by the network were visualized using occlusion sensitivity, a 
method for visualizing areas that are important for model prediction. 
Occlusion sensitivity displays a heat map of regions that are important 
for the AI to judge control or CLAI on test data. Furthermore, the area 
under the receiver operating characteristic curve (AUC) was calculated 
by plotting the true-positive and false-positive rates on the coordinate 
axes. The 95 % confidence intervals (CIs) for accuracy, precision, recall 
(sensitivity), specificity, and AUC were calculated using the bootstrap 
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method.27

3. Results

For each model, the diagnostic accuracy was evaluated based on the 
confusion matrix obtained from the test data (Table 1). From the 
confusion matrix, the diagnostic accuracy of ResNet-50 was 0.989 (95 % 
CI: 0.989–0.991), MobileNet_v2 was 0.972 (CI 0.971–0.973), and Effi-
cientNet was 0.980 (CI 0.979–0.981), all networks showed very high 
accuracy. The AUC, which is a plot of the true positive rate and false 
positive rate on the coordinate axis, was 0.998 for ResNet, 0.995 for 
MobileNet_v2, and 0.999 for EfficientNet (Fig. 4). DL was able to di-
agnose CLAI using ultrasound imaging with very high accuracy and AUC 
in three different learning models.

According to occlusion sensitivity, the important feature that the AI 
had detected was visualized using an overlaid heatmap. As a result of 
this study, it was found that AI focused on the substance of the ATFL and 
its attachment on the fibula for the diagnosis of CLAI (Fig. 5).

4. Discussion

The most important finding of this study is that DL was able to di-
agnose CLAI using ultrasound imaging with very high accuracy and AUC 
in three different learning models. Furthermore, in visualization of the 

Fig. 1. (a) The transducer was placed sequentially over the ATFL under the condition of anterior drawer stress by reverse anterior drawer test. (Red arrows: direction 
of force) (b) The positioning of the transducer. (C)long-axis ultrasound image of the ATFL under the condition of anterior drawer stress. (White arrows: ATFL).

Fig. 2. Flowchart of the deep leaning process.

Fig. 3. (a) A confusion matrix, a table containing four combinations of pre-
dicted and Actual values for the presence or absence of disease. (b) Diagnostic 
accuracy from the learning model is calculated from the confusion matrix.

Table 1 
Diagnostic accuracy from the learning model was calculated from the confusion matrix created from testing data. (95 % confidence interval.)

Network Accuracy Precision Recall (Sensitivity) Specificity F-Measure

ResNet-50 0.989 (0.989–0.991) 1.00 0.980 (0.979–0.981) 0.981 (0.980–0.982) 0.990 (0.989–0.991)
MobileNet_v2 0.972 (0.971–0.973) 0.968 (0.967–0.971) 0.975 (0.973–0.977) 0.974 (0.973–0.975) 0.972 (0.971–0.973)
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region of interest, AI focused on the substance of the ATFL and its 
attachment on the fibula for the diagnosis of CLAI.

In recent years, ultrasound imaging has become increasingly 
important in the evaluation of soft tissue injuries because of its dynamic 
diagnostic capability. Ultrasound has been considered particularly use-
ful in the field of ankle and foot, and there have been many studies on 
ultrasound diagnosis of CLAI.6,7,10–15,28,29 In 2016, Radwan et al. re-
ported an accuracy of 87~90.9 %, sensitivity of 84.6–100 %, and 
specificity of 90.9–100 % for ultrasound diagnosis of CLAI in a Sys-
tematic review including six high-quality studies.30 Furthermore, in 

2020, Lee et al. reported an accuracy of 0.96 for CLAI ultrasound in a 
Systematic review including 10 studies with a reference standard of 
operative finding.31 Regarding previous reports which investigated in-
dividual parameters of ultrasound imaging of CLAI, several studies have 
focused on changes in ATFL length with and without stress.6,10,12 Using 
ultrasound images of the ATFL taken at rest and in the maximal anterior 
drawer position, Lee et al. reported that the ratio of ATFL length with 
and without stress (ATFL ratio) is useful for the diagnosis of CLAI.6 Cho 
et al. similarly demonstrated that the change in ATFL length of manual 
stress ultrasound could be used for diagnosis of chronic ankle instability. 

Fig. 4. Area under the curves (AUC) of each learning models based on the receiver operating characteristic (ROC) curve.

Fig. 5. Visualization of the region of interest using occlusion sensitivity. The heatmap shows the areas that are important for the AI to judge control or CLAI on the 
test data.
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On the other hand, Liu compared the healthy and unstable ankle joints 
by ultrasound imaging and found that the anterior talofibular ligament 
of the previously sprained ankle was thicker than those of the uninjured 
ankle,13 and Abdeen et al. also reported the length and the thickness of 
the ATFL were longer and thicker in injured groups compared to 
healthy.15 However, measuring length and thickness of ATFL by ultra-
sound is cumbersome and time consuming, and there is still no consis-
tent consensus on those parameters in the diagnosis of CLAI. As it is 
reported that the reliability of the ATFL delineation and length mea-
surement seems to be highly dependent on the experience and skill of 
the examiner in ultrasound diagnosis,32 it is not easy to perform an 
anterior drawer test while accurately delineating the ATFL with ultra-
sound. In this study, the reverse anterior drawer test24 was used, in 
which the patient’s heel is placed on a stool and the lower leg is pushed 
in to apply an anterior drawer stress. Since this method can apply 
anterior drawer stress relatively easily with one hand, it is suitable with 
ultrasonography, which requires holding the transducer with the other 
hand, and allows even inexperienced examiners to perform the test 
accurately and easily. It is important to accurately delineate the ATFL 
and reproducibly apply adequate anterior drawer stress for the accurate 
diagnosis of CLAI, and these ingenuities of the examination may have 
contributed to the very high diagnostic accuracy in this study.

In order to eliminate the uncertainty factors caused by the ultrasound 
examination, this study attempted to apply DL technology, which 
automatically learns image features.33 With the rapid development of AI 
technology in recent years, DL has been widely applied in medicine, 
especially in the field of diagnostic imaging. Ultrasound has advantages 
such as non-ionizing, low-cost, portable, point-of-care, and real-time 
imaging, and the growing need for efficient and objective acquisition 
and evaluation of ultrasound images has led to a recent trend toward the 
maturation of AI enabled ultrasound diagnostics, which is approaching 
routine clinical applications.34 Research on DL for ultrasound images is 
ongoing in the field of breast surgery.22,35 Han et al. exploited the deep 
learning framework to differentiate the distinctive types of lesions and 
nodules in breast acquired with ultrasound imaging. GoogLeNet con-
volutional neural network was trained to distinguish between benign 
and malignant tumors, showing an area under the curve of over 0.9, an 
accuracy of about 0.9 (90 %), a sensitivity of 0.86, and a specificity of 
0.96.35 In a similar DL study using ultrasound images for the diagnosis of 
malignant breast cancer, the AUC (0.913) was reported to be higher than 
the AUC obtained by sonographers (0.846) in the best learning model.22

Shinohara et al. found in a recent study that ultrasound images using the 
DL model predicted triangular fibrocartilage complex injury with high 
accuracy, with the best scores of 0.85 for accuracy on GoogLeNet, 1.00 
for sensitivity on ResNet50 and ResNet101, and 0.78 for specificity on 
GoogLeNet.26 Shinohara et al. also reported high diagnostic accuracy 
using a similar technique of DL in ultrasound imaging of cubital tunnel 
syndrome.25 These reports are an attempt to utilize AI technology to 
improve diagnostic accuracy for diseases for which ultrasound has been 
used as an assistive diagnostic modality, without involving patient in-
vasion. In the present study, very high accuracy and AUC results were 
obtained by using DL for ultrasound images in CLAI, which ultrasound is 
used as an adjunct diagnosis. The combination of ultrasound and AI, 
which enables non-invasive, low-cost, point-of-care for patients, has 
room for further development and may play an important role in the 
future of diagnostic imaging.

Although accuracy is essential in AI-based diagnostic imaging tech-
nology, the basis for model decision making must be understandable to 
humans. In this regard, occlusion sensitivity is a very interesting tech-
nology that can effectively visualize multifocal glass opacities and 
consolidations and visualize important image features in detail.36 This 
visualization tool may provide the necessary information for diagnosis 
by highlighting the basis for predictions made by the DL model. The 
results of this study indicate that AIs focus on the substance of the ATFL 
and its attachment to the fibula in the diagnosis of CLAI. The results are 
very interesting and suggest that AI has the potential to assess the subtle 

post-injury changes at the fibular attachment site and the quality of the 
substance of the ATFL, although we often assess relative talar mobility 
with the anterior drawer test in routine practice of CLAI diagnosis.

In the future, if ATFL ultrasound imaging techniques and settings can 
be standardized, it could enable effective diagnosis of CLAI across 
various patient groups and other facilities. Consistent imaging protocols 
would help ensure that the diagnostic process is applicable and reliable 
in a wider range of clinical environments.

AI-based deep learning offers the ability to recognize image features 
from angles that may not be immediately visible to human clinicians. 
Unlike traditional diagnostic methods that depend on expert analysis, 
deep learning can identify intricate patterns within the data, revealing 
subtle elements that might not be easily quantified. This unique ability 
allows for a deeper understanding of ultrasound images, potentially 
leading to more precise and consistent diagnoses of CLAI. Additionally, 
deep learning models, trained on large and varied datasets, could 
enhance their adaptability to different clinical settings and patient 
populations. Using AI in this manner not only promises to improve 
diagnostic precision but could also highlight previously unrecognized 
aspects of the condition, ultimately advancing patient care.

This study has the following limitations. First, the results were ob-
tained on ultrasound images; generalization of the model’s performance 
to images from other diagnostic instruments was not investigated. Sec-
ond, no comparison of accuracy with other diagnostic devices was 
performed. Third, although many images were examined, the number of 
cases studied was not large. Fourth, this study was conducted with static 
images under the anterior drawer stress, and originally stressed exami-
nations should be examined with video images. We are in the process of 
developing a study applying AI to video. Video has the advantage of 
capturing dynamic information, easily tracking the movement of liga-
ments, and providing a large amount of data. However, it also has the 
disadvantage of requiring more time for analysis due to the large data 
volume and the noise caused by movement, which can affect the accu-
racy of the analysis. On the other hand, images offer the advantage of 
efficient processing, the ability to select noise-free frames, and easier 
image manipulation. However, they lack the ability to provide dynamic 
information. Fifth, the studies all used the same ultrasound equipment 
and all images were obtained by a single examiner. To improve gener-
alizability, it is necessary to validate the accuracy of the measurements 
by adding data obtained from different examiners on different 
equipment.

5. Conclusions

DL was able to diagnose CLAI using ultrasound imaging with very 
high accuracy and AUC in three different learning models. Furthermore, 
in visualization of the region of interest, AI focused on the substance of 
the ATFL and its attachment on the fibula for the diagnosis of CLAI. 
Concerning clinical relevance, this method utilizing DL can be improved 
in the future to provide a more convenient and accurate diagnosis of 
CLAI using ultrasound imaging, which is minimally invasive and low 
cost.
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