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A B S T R A C T

Numerical simulations of spherical bubbles contaminated with soluble surfactant were carried out to investigate
the surfactant effects on the drag coefficient, 𝐶𝐷, and the interfacial vorticity, 𝜔, produced at the bubble
interface. The different surface contamination regimes are considered in both the diffusion-dominant case and
advection-dominant case, for different ambient contamination conditions controlled by varying the Marangoni,
Langmuir and Hatta numbers, 𝑀𝑎, 𝐿𝑎 and 𝐻𝑎. The combinations, 𝛱𝑀 = 𝐿𝑎𝑀𝑎 and 𝛱𝐻 = 𝐻𝑎∕𝐿𝑎, of the
dimensionless groups were found to play dominant roles in the surfactant effects on 𝐶𝐷 and 𝜔 in both cases.
Four different regimes for the dependence of the drag force and vorticity distribution as a function of the
above dimensionless group were identified. In the diffusion-dominant case the vorticity is well correlated with
a weighting average for those of clean and fully-contaminated bubbles, and a linear relation between 𝐶𝐷 and
the maximum vorticity holds as in the case with clean bubbles. The characteristics of 𝐶𝐷 in the advection-
dominant case are more complicated, but they have been classified into four regimes in terms of 𝛱𝑀 and 𝛱𝐻 .
A simple correlation of the stagnant-cap angle expressed in terms of 𝛱𝑀 was also obtained. This study thus
revealed the surfactant effects on 𝐶𝐷 and 𝜔 and the drag-vorticity relations in detail at the first time for the
different regimes of surface contamination.
1. Introduction

The drag force acting on a bubble has been one of the main subjects
in the multiphase flow research and there are a large number of
studies on the drag coefficient, 𝐶𝐷 (Clift et al., 1978; Maxworthy et al.,
1996) (see Section 4.1 for its definition). As is well known, 𝐶𝐷 of
clean spherical bubbles at low and high bubble Reynolds numbers are
both inversely proportional to the Reynolds number (Hadamard, 1911;
Rybczynski, 1911; Levich, 1962). Legendre (2007) showed that 𝐶𝐷 of
the Stokes drag for solid sphere, the Hadamard–Rybczynski drag for
clean fluid sphere at low Reynolds number and the Levich drag for
infinite Reynolds number bubbles (Clift et al., 1978) are integrated in
a single expression in terms of the Reynolds number and the maximum
surface vorticity, and he also showed that a deformation effect can also
be introduced in a similar form. Adoua et al. (2009) demonstrated the
role of the surface vorticity in the lift reversal process for bubble in
linear shear flow. The relation between the maximum vorticity and the
drag was utilized in modeling the lift coefficients of clean bubbles rising
in linear shear flows, in particular to describe the reversal of the lift
force (Hayashi et al., 2020, 2021).

∗ Corresponding author.
E-mail address: hayashi@mech.kobe-u.ac.jp (K. Hayashi).

The presence of surfactant (surface-active agent) affects the motion
of a bubble (Levich, 1962; Clift et al., 1978; Dukhin et al., 1995).
Surfactant dissolved in liquid adsorbs to the interface of a bubble and
its interfacial concentration is not uniform due to interfacial advection,
resulting in a gradient of the surface tension, i.e., the Marangoni stress,
which balances with the viscous shear stress at the interface. In the
limiting case of fully-contaminated state the interface of a spherical
bubble is immobile and the rise motion is similar to that of a solid
sphere. Takagi and Matsumoto (2010) pointed out that the surfactant
influences not only the single bubble motion but also the structure of
a bubbly flow. Recently, Atasi et al. (2023) studied the stability of a
bubble chain in carbonated drinks such as champagne, sparkling wine
and beer and obtained a stability map for three dimensionless groups
representing the bubble deformation and the degree of contamination.
The authors demonstrated that the interfacial vorticity plays a crucial
role in the bubble chain stability and was the key parameter to consider
to provide a stability criterion. The interfacial vorticity thus facilitates
understanding the bubble dynamics such as drag and lift effects and is
expected to have a potential to reveal a relation between these forces
and the relevant dimensionless groups for contamination in a simple
https://doi.org/10.1016/j.ijmultiphaseflow.2025.105173
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Fig. 1. Spherical bubble in uniform flow of contaminated liquid. Parameter and non-dimensional number definition.
s

i
r

s

t
r

a

o
b
h
t
w
d

form.
Savic (1953) introduced the stagnant-cap angle, 𝜃𝑐 𝑎𝑝, to express an

intermediately contaminated state of a bubble, where 𝜃𝑐 𝑎𝑝 = 𝜋 for fully
mobile interface while 𝜃𝑐 𝑎𝑝 = 0 for fully immobile interface. For 0 <
𝜃𝑐 𝑎𝑝 < 𝜋, the bubble interface is partly immobile, while the remaining
part is mobile due to the advection of surfactant at the interface
(see Fig. 1). Sadhal and Johnson (1983) analytically investigated the
interfacial velocity profile of a low Reynolds number drop for a given
stagnant-cap angle. They derived the drag force expressed in terms of
the cap angle 𝜃𝑐 𝑎𝑝, which reduces to the result obtained by Harper
(1982) for small immobilized region. Lerner and Harper (1991) applied
he stagnant-cap model to two bubbles under interaction in the Stokes
low regime. Ramírez-Muñoz et al. (2012) carried out numerical simu-
ations of stagnant-cap bubbles of the bubble Reynolds number 𝑅𝑒 (as

defined in Eq. (3) and Fig. 1) ranging from 50 to 200. The normalized
drag coefficient 𝜉 (as defined in Eq. (45)) was empirically correlated

ith the cap angle. The stagnant-cap model has also been utilized in
odeling the mass transfer from a contaminated bubble and particle-

ubble interaction (Takemura and Yabe, 1999; Dani et al., 2006, 2022;
Legendre et al., 2009).

For a bubble at intermediate degree of contamination, knowledge
on the effects of the relevant dimensionless groups for the drag is
required to develop drag coefficient correlations, though the stagnant-
cap model successfully gives the drag and mass transfer coefficients for
a predetermined cap angle as reviewed above. In numerical simulations
carried out by Mclaughlin (1996) insoluble surfactant adsorbing to the
interface of a deformed ellipsoidal bubble was considered. The rise
velocity of the bubble was almost constant until the cap angle becomes
large enough to cause the separation of flow. Cuenot et al. (1997)
arried out numerical simulations of spherical bubbles in contaminated
iquids at a high Péclet number 𝑃 𝑒 (as defined in Fig. 1 and Eq. (7))

by solving both transport equations of the surfactant concentrations in
the liquid and at the interface. The state of contamination was classified
into the following four categories from a point of view of interface state
(IS):

• (IS-a): unretarded velocity profile with no impact of the surface
contamination on the interface mobility,

• (IS-b): uniformly retarded velocity profile with a uniformly dis-
tributed reduction of the surface mobility,

• (IS-c): stagnant cap separating the interface into a mobile inter-
face on the bubble front and an immobile surface at the rear of
the bubble,

• (IS-d): completely stagnant with an interface completely immobi-
lized as observed for a rigid sphere.

At the high Péclet number the bubbles under intermediately contami-
nated conditions tended to take the stagnant-cap state, and their drag
2 
coefficients were confirmed to be strongly related with the stagnant-cap
angle. Takagi et al. (2003) also numerically studied the rise motion of a
contaminated bubble. They showed that surfactant of small desorption
rate affects the bubble rise velocity even at a small bulk concentration.
Numerical simulations of spherical bubbles contaminated with solu-
ble surfactant were conducted by Wang et al. (2002), in which the
urfactant was utilized for controlling the formation and size of wake

behind a bubble. Interface-capturing methods have been coupled with
the surfactant transport equations (James and Lowengrub, 2004; Xu
et al., 2006). Hayashi and Tomiyama (2012) used the level set method
and pointed out that the Hatta number 𝐻 𝑎 (Fig. 1, Eq. (11)) plays an
mportant role in determination of the degree of surfactant effect on the
ise velocity of a Taylor bubble in a vertical pipe. Kurimoto et al. (2013)

used the same numerical method to study the surfactant effect on the
hape and the rise velocity of a Taylor drop. Kentheswaran et al. (2023)

used the level set method (Kentheswaran et al., 2022) to investigate
he effects of surfactant on the drag and the shape of single bubbles
ising through stagnant liquid. The predictions agreed well with the

experimental data of Aoyama et al. (2016) and Chen et al. (2019) for
the clean and fully-contaminated cases, respectively, and they proposed
 shape correlation for bubbles in intermediately contaminated states as

a function of the normalized drag coefficient. Atasi et al. (2018) carried
ut numerical simulations of contaminated bubbles in microchannels
y using the level set method. Batchvarov et al. (2020) developed a
ybrid method of the front-tracking and level set methods to investigate
he dynamics of Taylor bubbles in microchannels. The hybrid method
as also used for simulating the surfactant effects on the interface
ynamics in bubble bursting at a free surface (Constante-Amores et al.,

2021, 2022).
Although various studies have been carried out to understand the

drag and the rise velocity of contaminated bubbles, the surfactant effect
on the vorticity produced at the bubble interface and its impact on the
drag have not been investigated in detail. In addition, to the authors’
best knowledge, there is no comprehensive model of the stagnant-
cap angle as a function of the ambient contamination state. In this
study, effects of soluble surfactant on the vorticity produced at a
spherical bubble in contaminated liquid were numerically investigated
to make a complementary picture of the drag-vorticity relation under
the influence of surfactant. Various combinations of independent di-
mensionless groups were considered to reproduce the different regimes
of surface contamination and the dimensionless groups playing a key
role in the drag and the interfacial vorticity of contaminated spherical
bubbles were found. The dependence of the stagnant-cap angle on the
relevant dimensionless groups was also discussed to develop a cap angle
correlation, which would be of use when applying the stagnant-cap
model.
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2. Governing equations

A spherical bubble of the radius 𝑎 fixed in a uniform flow of an
ncompressible Newtonian liquid at the velocity 𝑈 is considered (Fig. 1;

this problem is equivalent to a spherical bubble rising through stagnant
liquid at 𝑈 .) The continuity and Navier–Stokes equations nondimen-
sionalized with the characteristic velocity and the length scales, 𝑈 and
𝑑 (= 2𝑎), are given by

∇ ⋅ 𝐮 = 0 (1)

𝜕𝐮
𝜕 𝑡 + 𝐮 ⋅ ∇𝐮 = −∇𝑝 + ∇2𝐮

𝑅𝑒
(2)

where 𝐮 is the velocity, 𝑡 the time, 𝑝 the pressure, and 𝑅𝑒 the bubble
eynolds number defined by

𝑅𝑒 =
𝜌𝐿𝑈 𝑑
𝜇𝐿

(3)

Here, 𝜌𝐿 and 𝜇𝐿 are the liquid density and viscosity, respectively. The
elocity component normal to the interface is zero, while the tangential
elocity components of the liquid and the interface are the same. The
omentum balance in the direction tangent to the interface is given by

(

𝐧 ⋅ ∇𝐮 +𝑀 𝑎∇𝑆𝜎
)

⋅ 𝐭 = 0 (4)

where 𝐧 is the unit normal to the interface, 𝐭 the unit tangential to
he interface, ∇𝑆 the surface gradient operator, and 𝜎 the surface
ension, which is nondimensionalized with 𝑅𝐺𝑇 𝛤𝑚𝑎𝑥, where 𝑅𝐺 is the
as constant, 𝑇 the temperature, and 𝛤𝑚𝑎𝑥 the saturation value of the
nterfacial surfactant concentration. The Marangoni number, 𝑀 𝑎, is
efined by

𝑀 𝑎 =
𝑅𝐺𝑇 𝛤𝑚𝑎𝑥

𝜇𝐿𝑈
(5)

The transport equation of the concentration, 𝐶, of surfactant in the
bulk liquid is given by
𝜕 𝐶
𝜕 𝑡 + ∇ ⋅ 𝐮𝐶 = ∇2𝐶

𝑃 𝑒 (6)

where 𝐶 is nondimensionalized with the bulk concentration, 𝐶0, far
rom a bubble, and 𝑃 𝑒 the Péclet number defined by

𝑃 𝑒 = 𝑈 𝑑
𝐷

(7)

Here, 𝐷 is the diffusion coefficient of surfactant in the liquid. The
urfactant adsorbs to the interface and the interfacial surfactant con-
entration, 𝛤 , normalized by 𝛤𝑚𝑎𝑥 is governed by the following equa-
ion (Stone, 1990; Cuenot et al., 1997):
𝜕 𝛤
𝜕 𝑡 + ∇𝑆 ⋅ 𝐮𝛤 =

∇2
𝑆𝛤

𝑃 𝑒𝑆
+ 𝑆̇𝛤 (8)

where 𝑃 𝑒𝑆 is the interface Péclet number defined by

𝑃 𝑒𝑆 = 𝑈 𝑑
𝐷𝑆

(9)

and 𝐷𝑆 is the diffusion coefficient of surfactant at the interface. The 𝐮 in
he L.H.S. reduces to the interfacial velocity, 𝐮𝑆 , because of the velocity
oundary condition. The adsorption–desorption flux, 𝑆̇𝛤 , of surfactant
s evaluated using the following model for the Langmuir adsorption
sotherm (Frumkin and Levich, 1947; Levich, 1962; Chang and Franses,

1995):
̇𝛤 = 𝐻 𝑎

[

𝐶𝑆 (1 − 𝛤 ) − 𝛤
𝐿𝑎

]

(10)

where 𝐶𝑆 is the dimensionless bulk concentration at the interface. The
atta number, 𝐻 𝑎, for the adsorption flux and the Langmuir number,

𝐿𝑎, are defined by

𝐻 𝑎 =
𝑘𝑎𝐶0𝑑
𝑈

(11)

and

𝐿𝑎 =
𝑘𝑎𝐶0 (12)

𝑘𝑑

3 
respectively, where 𝑘𝑎 is the adsorption rate constant, and 𝑘𝑑 the
desorption rate constant. The 𝑆̇𝛤 balances with the diffusive flux at the
nterface, i.e.

−𝐧 ⋅ ∇𝐶 = 𝑃 𝑒𝐾𝑆̇𝛤 (13)

where 𝐾 is the dimensionless adsorption length defined by

𝐾 =
𝛤𝑚𝑎𝑥
𝐶0𝑑

(14)

The reduction in 𝜎 due to surfactant adsorption is given by the
sotherm:

𝜎 = 𝜎0 + ln(1 − 𝛤 ) (15)

where 𝜎0 is the dimensionless surface tension of surfactant-free inter-
face.

We have thus introduced the dimensionless groups relevant to the
problem. The Langmuir number is the ratio of the surfactant adsorption
rate to the desorption rate. Therefore, when 𝐿𝑎 ≪ 1, the desorption is
dominant and the contamination effect is weak. On the other hand,
when 𝐿𝑎 ≫ 1, the adsorption is dominant and the bubble surface is
expected to be highly contaminated. The Hatta number represents the
atio of the adsorption rate to the advection speed. A small 𝐻 𝑎 means
hat surfactant molecules adsorbing to the interface are immediately
wept toward the rear of the bubble, which may result in a non-uniform
rofile of 𝛤 along the interface (Hayashi and Tomiyama, 2012). The

Marangoni number describes the competition between the magnitude
of the viscous and Marangoni stresses at contaminated interfaces. The
meaning of the dimensionless adsorption length 𝐾 is briefly discussed
n Appendix B.

3. Numerical condition

The numerical method proposed in Hayashi et al. (2022) was used
in this study. Finite difference schemes were applied to discretize the
governing equations as follows. The advection and diffusion terms of
the Navier–Stokes and the surfactant transport equations were dis-
cretized using the Adams–Bashforth and Crank–Nicolson schemes, re-
spectively. The second-order ENO (essentially non-oscillatory) (Shu and
Osher, 1989) and the second-order centered difference schemes were
sed for spatial differentiation of the advection and diffusion terms,
espectively. The fractional-step method (Choi and Moin, 1994) was

used for velocity-pressure coupling. The present method was validated
n our previous paper (Hayashi et al., 2022) by comparing the numer-

ical results of spherical bubbles and drops in contaminated systems
with numerical (Cuenot et al., 1997) and experimental data (Hosokawa
et al., 2017), respectively. See Hayashi et al. (2022) for more details.

It was assumed that the flow about a bubble was axisymmetric and
he bubble shape was imposed to be spherical. The two-dimensional

spherical coordinates, (𝑟, 𝜃), were used. The center of the bubble was
located at the origin of the coordinates, so that the bubble interface was
given by 𝑟 = 𝑎. The computational domain was also spherical, and its
radius was 80𝑎, which is the same as used in Cuenot et al. (1997). The
drag force 𝐹𝐷 and the drag coefficient 𝐶𝐷 were calculated as follows:

𝐹𝐷 = 2𝜋 𝑎2 ∫
𝜋

0

{

𝑝 cos 𝜃 − 2
𝑅𝑒

𝜕 𝑢𝑟
𝜕 𝑟 cos 𝜃 + 1

𝑅𝑒

(

𝜕 𝑢𝜃
𝜕 𝑟 −

𝑢𝜃
𝑟

)

sin 𝜃
}

𝑟=𝑎
sin 𝜃 𝑑 𝜃

(16)

𝐷 =
𝐹𝐷

1
2
𝜌𝐿𝑈 2𝜋 𝑎2

(17)

where 𝑢𝑟 and 𝑢𝜃 are the 𝑟 and 𝜃 components of 𝐮, respectively.
The number of computational cells in the 𝑟 and 𝜃 directions were

0 and 60, respectively. The grid spacing in the 𝜃 direction was uni-
form, while non-uniform spacing was used for the 𝑟 direction so as
to capture the boundary layer in the vicinity of the interface (Cuenot
et al., 1997). Blanco and Magnaudet (1995) reported that two grid
points within the momentum boundary layer are sufficient to accu-
rately predict drag coefficients. Cuenot et al. (1997) used three grid
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points within the concentration boundary layer to resolve the gradient
f the surfactant concentration. The latter condition was employed in
he present study. Grid dependence was tested for clean bubbles and
olid spheres at 𝑅𝑒 = 1 and 100 as limiting cases. The numbers of the
omputational cells were varied as 50, 75, 100, 125 and 60, 80, 100,
20 for the 𝑟 and 𝜃 directions, respectively. The change in the spatial

resolution gave a difference in 𝐶𝐷 at most 0.5%. All the results given
in this study are the steady state solutions. It should be noted that in
the steady state the global mass transfer rate at the bubble interface is
zero (Cuenot et al., 1997) whereas the local interfacial flux is non-zero
s will be shown later (Fig. 4(j)–(l)).

In the present study, the different surface contamination regimes
re considered over a wide range of Langmuir 𝐿𝑎, Marangoni 𝑀 𝑎 and
atta 𝐻 𝑎 numbers in both the diffusion-dominant case and advection-
ominant case, 𝑅𝑒 = 𝑃 𝑒 = 1 and 𝑅𝑒 = 𝑃 𝑒 = 100, respectively, so that
he Schmidt numbers were unity in both cases. The diffusion coefficient
t the interface has often been assumed to be the same as the bulk
iffusion coefficient, i.e., 𝑃 𝑒 = 𝑃 𝑒𝑆 . We also used this assumption in
he present simulations. In the case of 𝑅𝑒 = 100, the following ranges
f 𝐿𝑎, 𝑀 𝑎 and 𝐻 𝑎 were used: 0.001 ≤ 𝐿𝑎 ≤ 10, 0.1 ≤ 𝑀 𝑎 ≤ 10 000, and
.0002 ≤ 𝐻 𝑎 ≤ 10. The ranges of the dimensionless groups used in the
ase of 𝑅𝑒 = 1 were 0.1 ≤ 𝐿𝑎 ≤ 10, 0.1 ≤ 𝑀 𝑎 ≤ 50, and 0.001 ≤ 𝐻 𝑎 ≤ 10.
ypical values of the dimensionless groups for decanoic acid, Triton X-
00 and 1-pentanol are given in Appendix A. In Sections 4.3 and 4.4,

the dimensionless adsorption length 𝐾 = 1 was used. This is the typical
alue for decanoic acid (Cuenot et al., 1997). The choice of 𝐾 was
ound to have no impact on the result by varying its value from 0.1
o 10 (see Appendix B).

In real systems, bubbles are usually spherical for the Reynolds
umbers 𝑅𝑒 considered here but the Péclet number 𝑃 𝑒 would be
arger. Cuenot et al. (1997) used 𝑃 𝑒 = 105 much larger than the present
ne. The diffusion coefficient of surfactant is typically 10−9 m2/s, so
hat the typical value of 𝑃 𝑒 can be 105. The high 𝑃 𝑒 requires very
hin computational mesh in the vicinity of the interface to resolve the
hin concentration boundary layer (Cuenot et al., 1997; Hayashi et al.,

2022). However, Fukuta et al. (2008) carried out numerical simulations
f a spherical bubble at 𝑅𝑒 = 100 and pointed out that a drastic
eduction in 𝑃 𝑒 from 105 to 100 does not have a significant impact
n the drag and lift forces. Takagi et al. (2003) also obtained very
ood agreement between predicted and measured drag coefficients of
pherical bubbles at intermediate surfactant concentrations with the

reduced Péclet number, 𝑃 𝑒 = 𝑃 𝑒𝑆 = 100. Fig. D.21 in Appendix D shows
that considering 𝑃 𝑒 = 100 instead of 𝑃 𝑒 = 105, in other words the bulk
chmidt number, does not impact the result so much in term of the
urface vorticity distribution, in particular for the stagnant-cap (IS-c)
egime specific of the high interfacial Péclet number condition. Hence,
he numerical condition of 𝑃 𝑒 = 100 was selected since it enables us to
educe the numerical cost without losing the important physics in the
ynamics of contaminated bubbles in the actual systems. Indeed, the
bjective here is not to exactly replicate some given experiments, but to
olve the theoretical system of equation and provide accurate solutions
y reproducing the four different regimes of interface contamination in-
roduced above, namely (IS-a), (IS-b), (IS-c) and (IS-d). What discussed
ere is the relation of the surface contamination with the drag force via

the description of the vorticity produced at the bubble interface. The
connection then helps to relate the drag to the dimensionless groups
used for the characterization of the contamination mechanisms.

4. Results and discussion

4.1. Drag-vorticity relation for clean bubble and solid sphere

The main objective of this work is to investigate how the vorticity
distribution on the interface of a contaminated bubble impacts its drag
coefficient. Let us first discuss the drag-vorticity relations for clean
spherical bubbles and solid spheres as limiting cases of contaminated
4 
bubbles. The vorticity produced at the bubble interface has been shown
to play an important role in the bubble dynamics (Legendre, 2007;
Stone, 1993; Hidman et al., 2022). The drag force acting on a body
moving steadily in an inviscid incompressible flow is given by the
vortex force, i.e., ∫𝑉 𝜌u×𝝎𝑑 𝑉 (Saffman, 1992), where 𝝎 is the vorticity
vector, and 𝜌 and 𝑉 are the density and the volume of the surrounding
fluid, respectively. The vorticity produced at the interface of the body
is the only vorticity source in the system. Therefore, in particular a
condition of zero interfacial vorticity results in a zero drag force so
hat the magnitude of maximum interfacial vorticity, 𝜔𝑚𝑎𝑥, is a good

marker of the magnitude of the drag force.
Legendre (2007) derived the following drag-vorticity relation for

clean spherical bubbles in viscous liquid by scaling the Hadamard–
ybczynski drag (Hadamard, 1911; Rybczynski, 1911) with the max-

mum interfacial vorticity:

𝐶𝐷 = 16
𝑅𝑒

𝜔𝐵
𝑚𝑎𝑥 (18)

where the vorticity is nondimensionalized with 𝑈 and 𝑎, and the su-
perscript 𝐵 denotes clean bubble. 𝜔𝐵

𝑚𝑎𝑥 → 1 as 𝑅𝑒 → 0 and 𝜔𝐵
𝑚𝑎𝑥 → 3 as

𝑅𝑒 → ∞ (Magnaudet and Mougin, 2007). Hence, Eq. (18) reduces to the
adamard–Rybczynski drag, 𝐶𝐷 = 16∕𝑅𝑒, and to the Levich drag, 𝐶𝐷 =

48∕𝑅𝑒 (Levich, 1962), for 𝑅𝑒 ≪ 1 and 𝑅𝑒 → ∞, respectively. Legendre
(2007) carried out numerical simulations of clean spherical bubbles at
various 𝑅𝑒 and showed that Eq. (18) is valid not only in the limiting
cases, but also for finite 𝑅𝑒 in-between the limiting cases as shown in
Fig. 2(a). As demonstrated in the embedded sub-figure, the predictions
of 𝐶𝐷 agree well with the following correlation proposed by (Mei et al.,
1994):

𝐶𝐷 = 16
𝑅𝑒

(

16 + 3.315
√

𝑅𝑒 + 3𝑅𝑒
16 + 3.315

√

𝑅𝑒 + 𝑅𝑒

)

(19)

and therefore, combining Eqs. (18) and (19) yields (Legendre, 2007)

𝜔𝐵
𝑚𝑎𝑥 =

16 + 3.315
√

𝑅𝑒 + 3𝑅𝑒
16 + 3.315

√

𝑅𝑒 + 𝑅𝑒
(20)

For solid spheres in the Stokes regime, the maximum interfacial
vorticity is given by 𝜔𝑆

𝑚𝑎𝑥 = 3∕2 and Eq. (18) holds (Legendre, 2007),
.e., 𝐶𝐷 = 24∕𝑅𝑒, where the superscript 𝑆 denotes solid sphere. The
𝜔𝑆
𝑚𝑎𝑥 increases as 𝑅𝑒 increases. By making use of the drag correlation
roposed by (Schiller and Naumann, 1933)

𝐶𝐷 = 24
𝑅𝑒

(1 +𝛷(𝑅𝑒)) (21)

we may write

𝜔𝑆
𝑚𝑎𝑥 = 3

2
(1 +𝛷(𝑅𝑒)) (22)

where

𝛷(𝑅𝑒) = 0.15𝑅𝑒0.687 (23)

and a comparison between the correlation and predicted 𝐶𝐷 is shown
in the sub-figure of Fig. 2(a). This expression of 𝜔𝑆

𝑚𝑎𝑥 is valid only with
a weak inertial effect (up to 𝑅𝑒 ∼ 1) and deviates from predictions as
𝜔𝑆
𝑚𝑎𝑥 increases as shown in Fig. 2 although the inertial-effect multiplier,

𝛷(𝑅𝑒), provides a good description of the drag force up to 𝑅𝑒 ∼ 800.
The drag-vorticity relation, Eq. (18), is therefore no longer valid for
solid spheres for 𝑅𝑒 > 1. However, the following linear relation well
xpresses the data:

𝐶𝐷𝑅𝑒 = 11𝜔𝑆
𝑚𝑎𝑥 + 7.5 (24)

Substituting Eq. (21) into 𝐶𝐷 of this relation yields

𝜔𝑆
𝑚𝑎𝑥 = 3

2
+

24𝛷(𝑅𝑒)
11

(25)

The first term in the R.H.S. of Eq. (25) is 𝜔𝑆
𝑚𝑎𝑥 for 𝑅𝑒 → 0 and the

econd term represents the inertial effect on the vorticity. The trend of
𝜔𝑆
𝑚𝑎𝑥 largely different from that of 𝜔𝐵

𝑚𝑎𝑥 is attributed to the fact that the
breakdown of the fore-aft symmetry in the vorticity profile at the solid
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Fig. 2. (a) 𝐶𝐷𝑅𝑒 of clean bubbles and solid spheres. The sub-figure shows drag coefficients of spherical bubbles and solid spheres. The Reynolds number of the present numerical
data of bubbles and solid spheres ranges from 1 to 100. (b) Bubble of 𝑅𝑒 = 1, (c) Solid sphere of 𝑅𝑒 = 1, (d) Bubble of 𝑅𝑒 = 100, (e) Solid sphere of 𝑅𝑒 = 100 (the left and right
panels are 𝜔𝜙 and 𝐮, respectively, and the color map is adjusted for the maximum and minimum values in each case.). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
surface with increasing 𝑅𝑒 is more remarkable than that at the bubble
interface and especially a separation of flow takes place in the solid
sphere cases (Fig. 2(b)–(e)). See Appendix C for a slight modification
of Eq. (24) for small 𝑅𝑒 cases.

4.2. Typical distributions of interfacial vorticity

Typical vorticity distributions corresponding to the different surface
contamination regimes are reported in Fig. 3, where 𝜔𝜙 is the azimuthal
component of interfacial vorticity normalized using 𝑈 and 𝑎, and
defined by

𝜔𝜙 = 1
2
𝜕 𝑢𝜃
𝜕 𝑟 + 𝑢𝜃 (26)

Here, 𝜔𝜙 is nondimensionalized with 𝑎 and 𝑈 . The balance between
the tangential viscous stress and the Marangoni stress (the boundary
condition of Eq. (4)) can be written as
1
2
𝜕 𝑢𝜃
𝜕 𝑟 − 𝑢𝜃 = −𝑀 𝑎 𝜕 𝜎

𝜕 𝜃 (27)

Combining this equation and Eq. (26) and using the isotherm (Eq. (15))
yield (Atasi et al., 2023)

𝜔𝜙 = 2𝑢𝜃 + 𝑀 𝑎
1 − 𝛤

𝜕 𝛤
𝜕 𝜃 (28)

We recover 𝜔𝜙 = 2𝑢𝜃 for a clean interface, and the surface vorticity
increases with the increase in the surface surfactant concentration 𝛤
and its gradient.

As shown by Fig. 3, depending on the bubble surface contam-
ination different vorticity distributions are observed when reported
as a function of 𝜃, the angle measured from the bubble nose. For
the advection-dominant case (𝑅𝑒 = 𝑃 𝑒 = 100), Fig. 3(a) shows 𝜔𝜙
distributions typically observed for the surface contamination. The 𝜔𝜙
distribution at (𝑀 𝑎, 𝐿𝑎, 𝐻 𝑎) = (50, 0.001, 0.002) (the circular symbols) is
close to that of a clean bubble, the (IS-a) fully mobile surface regime,
although a slight increase in the vorticity takes place in the rear part
of the bubble. The maximum vorticity is therefore almost the same
5 
as that of the clean bubble. The slight contamination effect is due
to the small 𝐿𝑎. The vorticity distribution in the liquid phase shown
in Fig. 3(c) (left) is also similar to that of clean bubble (Fig. 2(d)).
Increasing 𝑀 𝑎 and 𝐿𝑎 as illustrated here at 70 and 0.02, respectively,
yields a larger Marangoni stress, resulting in the stagnant-cap (IS-
c) regime with a remarkable peak in 𝜔𝜙 (the triangles). As can be
understood from Eq. (28), the formation of the peak is the result of
a steep 𝛤 gradient (see also Fig. 12(d) and (g)). The vorticity in the
rear of the bubble agrees with that of a solid sphere, while in the
front half of the bubble the 𝜔𝜙 profile is similar to that of the clean
bubble. The negative value of 𝜔𝜙 in the rear is due to a separation
of the flow. In the 𝜔𝜙 distribution at (𝑀 𝑎, 𝐿𝑎, 𝑀 𝑎) = (20, 0.2, 0.001),
also the (IS-c) stagnant cap regime, a peak also appears, while the
region behaving like the solid sphere is wider compared with the
smaller 𝐿𝑎 case. Note that the peak values tend to exceed 𝜔𝑆

𝑚𝑎𝑥. High
𝜔𝜙 regions are observed in the liquid phase around the 𝜔𝜙 peaks
(Fig. 3(d)). The presence of the peaks is the typical signature of the
(IS-c) stagnant-cap state. In the case of (𝑀 𝑎, 𝐿𝑎, 𝐻 𝑎) = (500, 0.12, 6),
the large 𝐻 𝑎 allows the surfactant to accumulate at the interface at a
high concentration level, and the large 𝑀 𝑎 causes a large Marangoni
stress, which makes the interface almost immobile, corresponding to
the fully immobile surface (IS-d) regime. The 𝜔𝜙 distribution is thus
similar to that of the solid sphere; the vorticity distribution in the
liquid phase (Fig. 3(c) (right)) is comparable to that of solid sphere
(Fig. 2(e)).

Fig. 3(b) and (e) show the 𝜔𝜙 distributions for the diffusion-
dominant case (𝑅𝑒 = 𝑃 𝑒 = 1), for which the diffusion of surfactant
plays a dominant role in the vorticity profile. The bubble with weak
contamination (the circular symbols) has the 𝜔𝜙 distribution similar to
that of clean bubble, the (IS-a) fully mobile surface regime. The largely
contaminated bubble shows 𝜔𝜙 (the square symbols) close to 𝜔𝑆

𝜙 and
corresponds to the fully immobile surface (IS-d) regime. However, even
at intermediately contaminated conditions, 𝜔𝜙 (the cross symbols) does
not have spikes in its profile because of the strong diffusion, i.e., thus
corresponding to the uniformly retarded surface mobility (IS-b) regime.
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Fig. 3. Typical 𝜔𝜙 distributions for the different surface contamination regimes. (a) Advection-dominant case (𝑅𝑒 = 𝑃 𝑒 = 100): (𝑀 𝑎, 𝐿𝑎, 𝐻 𝑎) = (50, 0.001, 0.002) resulting in the
(IS-a) surface regime and the drag regime I, (70, 0.02, 0.002) resulting in the (IS-c) surface regime and the drag regime II, (20, 0.2, 0.001) resulting in the (IS-c) surface regime and
the drag regime III, (500, 0.12, 6) resulting in the (IS-d) surface regime and the drag regime IV ; (b) Diffusion-dominant case (𝑅𝑒 = 𝑃 𝑒 = 1): (𝑀 𝑎, 𝐿𝑎, 𝐻 𝑎) = (0.1, 0.1, 0.001) resulting
in the (IS-a) surface regime and the drag regime I, (20, 10, 1) resulting in the (IS-d) surface regime and the drag regime IV, (30, 0.5, 5) resulting in the (IS-b) surface regime and a
drag regime in between I and IV. (c) 𝜔𝜙 distributions in liquid phase at 𝑅𝑒 = 100 (Regime I (left) and Regime IV (right)), (d) Regime II (left) and Regime III (right) at 𝑅𝑒 = 100,
(e) Regime I (left) and IV (right) at 𝑅𝑒 = 1.
Note that due to the surfactant diffusion along the interface the (IS-c)
stagnant cap regime is not observed.

As it will be detailed in the following, a specific impact of the
surface contamination on the vorticity produced at the interface and
thus on the drag force was found in each regime. In particular, four
different Regimes on how the drag/surface vorticity depends on the
surface contamination, namely I, II, III and IV, will be identified:

• Regime I: the drag and the vorticity show linear dependence on
the dimensionless group 𝛱𝑀 (= 𝐿𝑎𝑀 𝑎) which will be defined
later in Eq. (40),

• Regimes II and III: the relationships between the drag/the vortic-
ity and 𝛱𝑀 become more complex, while non-linear relationships
will be found for each regime,

• Regime IV: the large contamination effect leads to an inversely
proportional relationship between the drag/the vorticity and 𝛱𝑀 ,

.
The diffusion-dominant case is simpler than the advection-dominant

case and will be discussed first in Section 4.3. The drag-vorticity
relation in the advection-dominant case will then be presented in
Section 4.4.

4.3. Diffusion-dominant case (𝑅𝑒 = 𝑃 𝑒 = 𝑃 𝑒𝑆 = 1)

Fig. 4(a) shows the tangential surface velocity 𝑢𝜃 at 𝐿𝑎 = 0.1 and
𝐻 𝑎 = 0.002. The solid line represents 𝑢𝜃 of a clean bubble. The increase
in 𝑀 𝑎, i.e., the increase in the Marangoni effect, deteriorates the
surface mobility, so that the magnitude of 𝑢 decreases. The maximum
𝜃

6 
value of 𝑢𝜃 appears at 𝜃 = 0.471𝜋, which is slightly less than 𝜃 = 𝜋∕2 due
to the presence of small inertial effects at such 𝑅𝑒. The contamination
shifts the angle for the maximum 𝑢𝜃 toward the front side, i.e., 𝜃 =
0.462 π, 0.455 π and 0.446 π for 𝑀 𝑎 = 10, 20 and 40, respectively.
This trend is clearer in more contaminated cases (𝐿𝑎 = 1) as shown
in Fig. 4(b). The magnitude of 𝑢𝜃 at 𝐿𝑎 = 10 shown in Fig. 4(c) are
much smaller than that of the clean bubble; however the values are
still non-zero.

Fig. 4(d) shows the surfactant concentration 𝛤 at 𝐿𝑎 = 0.1. 𝐻 𝑎
is very small in this condition, which means the adsorption rate is
much smaller than the advection velocity and the surfactant tends
to be swept toward the rear of the bubble. However, the surfactant
diffusion is strong since 𝑃 𝑒𝑆 = 1, so that the concentration of surfactant
accumulated on the interface can take non zero values even at the
bubble front 𝜃 = 0, i.e. 𝛤 = 0.07. The effect of 𝑀 𝑎 on 𝛤 is small.
The increase in 𝐿𝑎 allows surfactant molecules to adsorb more to the
interface, so that 𝛤 increases with increasing 𝐿𝑎 as shown in Fig. 4(e).
The effect of 𝑀 𝑎 becomes somewhat visible with larger 𝐿𝑎. However,
further increase in 𝐿𝑎 hinders the effect of 𝑀 𝑎 on 𝛤 since 𝛤 approaches
the saturation value. For the adsorption–desorption equilibrium in the
absence of any fluid flow, the equilibrium concentration of surfactant
on the interface is given by

𝛤𝑒𝑞 =
𝐿𝑎

𝐿𝑎 + 1 (29)

This equation gives 𝛤𝑒𝑞 = 0.091, 0.5 and 0.91 for 𝐿𝑎 = 0.1, 1 and 10,
respectively. These values agree well with the numerical predictions of
𝛤 at 𝜃 = 𝜋∕2, i.e. 𝛤 = 0.0905, 0.50 and 0.89, respectively.
|𝜃=𝜋∕2



K. Hayashi et al.

r

International Journal of Multiphase Flow 187 (2025) 105173 
Fig. 4. Interface profiles of the tangential velocity 𝑢𝜃 , the surfactant concentration 𝛤 , the interfacial vorticity 𝜔𝜙, and the adsorption–desorption flux 𝑆̇𝛤 at 𝐻 𝑎 = 0.002 in the
diffusion-dominant case (𝑅𝑒 = 𝑃 𝑒 = 𝑃 𝑒𝑆 = 1).
m
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The interfacial vorticity 𝜔𝜙 of the contaminated bubbles are in the
ange from 𝜔𝐵

𝜙 to 𝜔𝑆
𝜙 as shown in Fig. 4(g)–(i). The increase in 𝐿𝑎 and

𝑀 𝑎 increases 𝜔𝜙 and the value of 𝜔𝜙 approaches 𝜔𝑆
𝜙 . This dependence

will be derived from Eq. (28) in the following discussion. Fig. 5 shows
the dimensionless combination 𝐶𝐷𝑅𝑒 of contaminated bubbles plotted
against the maximum value of the surface vorticity 𝜔𝑚𝑎𝑥. The increase
in 𝜔𝑚𝑎𝑥 increases 𝐶𝐷𝑅𝑒 and these clearly show a remarkable linear
relation expressed by Eq. (18) (𝐶𝐷𝑅𝑒 = 16𝜔𝑚𝑎𝑥). The contaminated
bubble data become slightly lower than the solid line as 𝜔𝑚𝑎𝑥 increases,
which implies that inertial effects provide a second order correction
to the drag-vorticity relation. Thus, the effects of 𝐿𝑎, 𝑀 𝑎 and 𝐻 𝑎 on
7 
𝐶𝐷 can be accounted for via 𝜔𝑚𝑎𝑥 by expressing 𝜔𝑚𝑎𝑥 in terms of the
relevant dimensionless groups.

The adsorption–desorption flux 𝑆̇𝛤 is shown in Fig. 4(j). As already
entioned, 𝑆̇𝛤 takes non-zero values depending on 𝜃 though the net

lux for the whole interface is zero (Cuenot et al., 1997). The fluxes
exhibit cosinusoidal curves as predicted in the analysis of Levich (1962)
for the Stokes regime; their value is positive (adsorption dominant)
in the front half of the bubble while becomes negative (desorption
dominant) in the rear half. The increases in 𝑀 𝑎 and 𝐿𝑎 decrease the

agnitude of the flux curve as shown in Fig. 4(j)–(l). This is due to the
fact that both 𝑀 𝑎 and 𝐿𝑎 deteriorate the surface mobility, so that 𝑆̇
𝛤
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Fig. 5. 𝐶𝐷𝑅𝑒 of contaminated bubbles plotted against 𝜔𝑚𝑎𝑥 (𝑅𝑒 = 𝑃 𝑒 = 𝑃 𝑒𝑆 = 1).

Fig. 6. Effects of 𝐿𝑎, 𝑀 𝑎 and 𝐻 𝑎 on 𝜔𝑚𝑎𝑥 (𝑅𝑒 = 𝑃 𝑒 = 𝑃 𝑒𝑆 = 1).

approaches zero for immobile interface with 𝛤 = 𝛤𝑒𝑞 . In these cases, the
dimensionless bulk concentration of surfactant at interface is 𝐶𝑆 ∼ 1.

Fig. 6 shows effects of 𝐿𝑎, 𝑀 𝑎 and 𝐻 𝑎 on 𝜔𝑚𝑎𝑥, which increases
with the increase in 𝐿𝑎 and 𝑀 𝑎. On the other hand, 𝐻 𝑎 rarely affects
𝜔𝑚𝑎𝑥 when 𝐻 𝑎∕𝐿𝑎 < 1, where the dimensionless group (Fukuta et al.,
2008)

𝛱𝐻 = 𝐻 𝑎
𝐿𝑎

(

=
𝑘𝑑𝑑
𝑈

)

(30)

can be regarded as the Hatta number for the desorption rate and
appears in the adsorption–desorption flux, Eq. (10):
̇𝛤 = 𝛱𝐻

[

𝐿𝑎𝐶𝑆 (1 − 𝛤 ) − 𝛤
]

(31)

The increase in 𝐻 𝑎 decreases 𝜔𝑚𝑎𝑥, meaning that the increase (de-
crease) in the adsorption rate (interfacial velocity) mitigates the gra-
ient of the interfacial surfactant concentration. In the limiting case of
𝐻 → ∞, the effect of the interfacial advection disappears, resulting in

o Marangoni effect, i.e. 𝜔𝑚𝑎𝑥 = 𝜔𝐵
𝑚𝑎𝑥. Let us first consider the effects

f 𝐿𝑎 and 𝑀 𝑎 on 𝜔 in the small 𝛱 range.
𝑚𝑎𝑥 𝐻

8 
Fig. 7. 𝜕 𝛤∕𝜕 𝜃|𝜃=𝜋∕2 plotted as a function of 𝐿𝑎 (circles) and 𝑀 𝑎 (squares) for 𝐻 𝑎 =
0.002 (𝑅𝑒 = 𝑃 𝑒 = 𝑃 𝑒𝑆 = 1).

For simplicity let us consider the limiting case of 𝑅𝑒 → 0. For a
urfactant free interface, the second term of Eq. (28) disappears and
𝑢𝜃||𝜃=𝜋∕2 = 1∕2. Thus, 𝜔𝑚𝑎𝑥 = 𝜔𝐵

𝑚𝑎𝑥 = 1. The role of 𝐿𝑎 and 𝑀 𝑎 at
eakly contaminated interfaces is then discussed. In the limiting case
f 𝑅𝑒 → 0 for a clean interface, the maximum value of 𝑢𝜃 (and 𝜔𝜙)
ccurs at 𝜃 = 𝜋∕2 (the Hadamard–Rybczynski solution). Furthermore,
or contaminated interfaces, we expect maximum values of 𝑢𝜃 and 𝜔𝜙
t 𝜃 = 𝜋∕2, provided that diffusion is dominant in interfacial surfactant
ransport, yielding a symmetric concentration distribution. The order
f 𝛤 at 𝜃 ∼ 𝜋∕2 can be estimated as

𝛤 |𝜃=𝜋∕2 ∼ 𝛤𝑒𝑞 (32)

Substituting Eq. (32) into Eq. (28) and considering Eq. (29) yield

𝜔𝜙
|

|

|𝜃=𝜋∕2
∼ 2 𝑢𝜃||𝜃=𝜋∕2 + (𝐿𝑎 + 1)𝑀 𝑎 𝜕 𝛤

𝜕 𝜃
|

|

|

|𝜃=𝜋∕2
(33)

Fig. 7 shows 𝜕 𝛤∕𝜕 𝜃|𝜃=𝜋∕2 at small 𝐿𝑎, where 𝑀 𝑎 = 10 and 𝐻 𝑎 = 0.002.
The gradient of 𝛤 at low 𝐿𝑎 is small since the amount of surfactant
dsorbing to the interface is small. It increases with increasing 𝐿𝑎 and
s well scaled by 𝛤𝑒𝑞 . The dependence of 𝛤 gradient on 𝑀 𝑎 at 𝐿𝑎 = 0.1
s also shown in the figure. The effect of 𝑀 𝑎 on the 𝛤 gradient is much
eaker than that of 𝐿𝑎 in the present ranges of 𝐿𝑎 and 𝑀 𝑎. Hence,
𝜕 𝛤
𝜕 𝜃

|

|

|

|𝜃=𝜋∕2
∼

𝑐𝑔𝐿𝑎
𝐿𝑎 + 1 (34)

where 𝑐𝑔 is a coefficient and the 𝑀 𝑎 dependence is neglected. With this
expression, Eq. (33) becomes

𝜔𝜙
|

|

|𝜃=𝜋∕2
∼ 2 𝑢𝜃||𝜃=𝜋∕2 + 𝑐𝑔𝐿𝑎𝑀 𝑎 (35)

Fig. 8 shows that 𝜔𝑚𝑎𝑥 is proportional to 𝐿𝑎𝑀 𝑎 for weak contamination
s predicted by Eq. (35), and this defines Regime I observed at low
ontamination level. The coefficients in the linear fit for the small
𝑎𝑀 𝑎 range can be represented by using 𝜔𝐵

𝑚𝑎𝑥 and 𝜔𝑆
𝑚𝑎𝑥, i.e.,

𝜔𝑚𝑎𝑥 ≈ 𝜔𝐵
𝑚𝑎𝑥 +

(

𝜔𝑆
𝑚𝑎𝑥 − 𝜔𝐵

𝑚𝑎𝑥
)

𝑐𝑤𝐿𝑎𝑀 𝑎 (36)

where 𝑐𝑤 = 1∕7.0. The exceed of vorticity is related to the parameter,
𝐿𝑎𝑀 𝑎, controlling the interface contamination.

At large contamination level, 𝜔𝑚𝑎𝑥 can also be correlated in terms of
𝐿𝑎𝑀 𝑎 as follows. For a fully-contaminated interface, 𝜔𝑚𝑎𝑥 = 𝜔𝑆

𝑚𝑎𝑥 = 3∕2
and 𝑢𝜃 = 0, and therefore,
𝜕 𝛤 |

| =
3(1 − 𝛤 |𝜃=𝜋∕2) (37)
𝜕 𝜃 |

|𝜃=𝜋∕2 2𝑀 𝑎
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Fig. 8. 𝜔𝑚𝑎𝑥 for small 𝛱𝑀 = 𝐿𝑎𝑀 𝑎. The dashed line is a linear fit to the data.
𝑅𝑒 = 𝑃 𝑒 = 𝑃 𝑒𝑆 = 1).

Fig. 9. 𝜔𝑆
𝑚𝑎𝑥 − 𝜔𝑚𝑎𝑥 as a function of 𝛱𝑀 = 𝐿𝑎𝑀 𝑎. The fitting equation is given by

q. (39). (𝑅𝑒 = 𝑃 𝑒 = 𝑃 𝑒𝑆 = 1).

Substituting Eq. (32) into Eq. (37) yields
𝜕 𝛤
𝜕 𝜃

|

|

|

|𝜃=𝜋∕2
∼ 3

2𝑀 𝑎(𝐿𝑎 + 1) (38)

The gradient of 𝛤 becomes small with increasing 𝑀 𝑎 and 𝐿𝑎 but is
still non zero so as to satisfy 𝑀 𝑎(1 −𝛤 )−1𝜕 𝛤∕𝜕 𝜃 → 𝜔𝑆

𝑚𝑎𝑥 for the limiting
case of 𝑀 𝑎, 𝐿𝑎 → ∞. Therefore, the behavior of the gradient of 𝛤 must
change from Eqs. (34) to (38). The factor required for this modification
is (𝐿𝑎𝑀 𝑎)−1. Fig. 9 shows 𝜔𝑆

𝑚𝑎𝑥 − 𝜔𝑚𝑎𝑥 to demonstrate the behavior of
𝑚𝑎𝑥 at large values of 𝐿𝑎𝑀 𝑎 in detail. The data are nearly proportional

o (𝐿𝑎𝑀 𝑎)−1 at large 𝐿𝑎𝑀 𝑎 as expected, and therefore,

𝜔𝑚𝑎𝑥 ≈ 𝜔𝑆
𝑚𝑎𝑥 −

𝜔𝑆
𝑚𝑎𝑥 − 𝜔𝐵

𝑚𝑎𝑥
𝑐𝑤𝐿𝑎𝑀 𝑎 (39)

This defines Regime IV observed at high level of contamination. Here
the deficit of vorticity compared to the fully-contaminated bubble
is expressed in term of 𝐿𝑎𝑀 𝑎. The reason of the difference in the
dependence of 𝜔𝑚𝑎𝑥 on 𝐿𝑎𝑀 𝑎 in these limiting cases can be understood
as follows: a clean interface is free to welcome surfactant, while in a
contaminated situation it requires large values of 𝐿𝑎𝑀 𝑎 to reach the
fully-contaminated condition.
 e

9 
Fig. 10. Comparison between predicted 𝜔𝑚𝑎𝑥 and Eq. (41). The lower and upper
horizontal lines represent 𝜔𝐵

𝑚𝑎𝑥 and 𝜔𝑆
𝑚𝑎𝑥. (𝑅𝑒 = 𝑃 𝑒 = 𝑃 𝑒𝑆 = 1).

It has been revealed that 𝜔𝑚𝑎𝑥 in the limiting cases can be simply
xpressed in terms of the dimensionless group

𝛱𝑀 = 𝐿𝑎𝑀 𝑎
(

=
𝑘𝑎𝐶0
𝑘𝑑

⋅
𝑅𝐺𝑇 𝛤𝑚𝑎𝑥

𝜇𝐿𝑈

)

(40)

and it is interesting that 𝐿𝑎 and 𝑀 𝑎, which appear in the adsorption–
desorption flux and in the momentum balance at the interface, respec-
tively, contribute to the increase in 𝜔𝑚𝑎𝑥 with the same power. The
following weighting average reduces to Eq. (36) when 𝛱𝑀 → 0 and to
Eq. (39) when 𝛱𝑀 → ∞:

𝜔𝑚𝑎𝑥 =
𝜔𝐵
𝑚𝑎𝑥 + 𝜔𝑆

𝑚𝑎𝑥𝑐𝑤𝛱𝑀

1 + 𝑐𝑤𝛱𝑀
(41)

Fig. 10 shows the effects of 𝛱𝑀 on 𝜔𝑚𝑎𝑥 and the data are compared
with Eq. (41). The correlation expresses the effects of the dimensionless
roups well not only for Regimes I and IV, but also for the intermediate
egime (in-between I and IV), provided that 𝛱𝐻 is small, i.e., the
esorption is slower than the interfacial advection.

Let us assume that the effects of 𝐻 𝑎 on 𝜔𝑚𝑎𝑥 can be accounted for
in the following form:

𝜔𝑚𝑎𝑥 =
𝜔𝐵
𝑚𝑎𝑥 + 𝜔𝑆

𝑚𝑎𝑥
𝑐𝑤𝛱𝑀
(1+𝛹 )

1 + 𝑐𝑤𝛱𝑀
(1+𝛹 )

(42)

The values of 𝛹 were evaluated using the numerical predictions and
fitting to the predicted data yielded

𝛹 (𝛱𝐻 , 𝐿𝑎) = (0.03𝐿𝑎 + 0.115)𝛱𝐻 (43)

Fig. 11 shows comparisons of 𝜔𝑚𝑎𝑥 between the predictions and
Eq. (42), in which the effect of 𝛱𝐻 is accounted for. The factor
(𝛱𝐻 , 𝐿𝑎) works to reproduce the effect of 𝐻 𝑎 on the vorticity. Thus,

𝐶𝐷 can be written as

𝐶𝐷 = 16
𝑅𝑒

𝜔𝑚𝑎𝑥

= 16
𝑅𝑒

⎡

⎢

⎢

⎣

𝜔𝐵
𝑚𝑎𝑥 + 𝜔𝑆

𝑚𝑎𝑥
𝑐𝑤𝛱𝑀
1+𝛹

1 + 𝑐𝑤𝛱𝑀
1+𝛹

⎤

⎥

⎥

⎦

(44)

A bubble behaves like a clean bubble when 𝛱𝑀 ≪ 1, while the interface
s immobile when 𝛱𝑀 ≫ 1. As shown in Fig. 4(d)–(f), the Langmuir
umber controls the mean surfactant concentration (the contamination
evel), which is close to 𝛤𝑒𝑞 . The Marangoni number represents the
ase with which the bubble interface is immobilized by the Marangoni
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Fig. 11. Comparison between predicted 𝜔𝑚𝑎𝑥 and Eq. (42) (the dashed lines). The lower
and upper solid lines represent 𝜔𝐵

𝑚𝑎𝑥 and 𝜔𝑆
𝑚𝑎𝑥, respectively. (𝑅𝑒 = 𝑃 𝑒 = 𝑃 𝑒𝑆 = 1).

stress; a low-viscosity liquid requires a large velocity gradient at the
interface to balance with the Marangoni stress proportional to the
actor 𝑅𝐺𝑇 𝛤𝑚𝑎𝑥, in other words, the interface mobility tends to easily
eteriorate in systems with low viscosity or large 𝛤𝑚𝑎𝑥. The interface
mmobilization takes place if the Langmuir number is large enough
ven with small Marangoni number, and vice versa. Thus, 𝛱𝑀 rep-
esents the degree of contamination effect on the drag and vorticity.
he parameter 𝛱𝐻 represents how fast surfactant can desorb from the

nterface while traveling from the bubble nose to rear. When 𝛱𝐻 →
, desorption does not affect the 𝛤 profile, and therefore 𝛱𝐻 does

not play a role in drag and vorticity. For finite values of 𝛱𝐻 , we
need to introduce not only the desorption property (𝛱𝐻 ) but also the
adsorption property (𝐻 𝑎) in the vorticity equation as shown in Eq. (43),
𝛹 (𝛱𝐻 , 𝐿𝑎) = (0.03𝐿𝑎 + 0.115)𝛱𝐻 = 0.03𝐻 𝑎 + 0.115𝛱𝐻 .

The normalized drag coefficient (Cuenot et al., 1997)

𝜉 =
𝐶𝐷 − 𝐶𝐵

𝐷

𝐶𝑆
𝐷 − 𝐶𝐵

𝐷

(45)

is known to be strongly related with the stagnant-cap angle, 𝜃𝑐 𝑎𝑝.
hough the bubbles of 𝑅𝑒 = 𝑃 𝑒 = 1 are not in the stagnant-cap state,
xpressing the drag coefficient in the form of 𝐶𝐷 = 16𝜔𝑚𝑎𝑥∕𝑅𝑒 yields

𝜉 =
𝜔𝑚𝑎𝑥 − 𝜔𝐵

𝑚𝑎𝑥

𝜔𝑆
𝑚𝑎𝑥 − 𝜔𝐵

𝑚𝑎𝑥
(46)

Hence, Eq. (42) can also be written in the normalized drag form as
ollows:

𝜉 = 1
1 + 1+𝛹

𝑐𝑤𝛱𝑀

(47)

For the limiting cases of 𝛱𝑀 → 0 and 𝛱𝑀 → ∞, 𝜉 = 𝑐𝑤𝛱𝑀∕(1 +𝛹 ) and
= 1 − (1 + 𝛹 )∕𝑐𝑤𝛱𝑀 , respectively. Furthermore, when 𝛱𝐻 → 0,

𝜉 =
{

𝑐𝑤𝛱𝑀 (Regime I)
1 − (𝑐𝑤𝛱𝑀 )−1 (Regime IV) (48)

Let us now define Regimes I and IV more precisely as follows: Regime
I is the regime in which 𝜉 is proportional to 𝛱𝑀 , and Regime IV is
the regime in which 𝜉 is inversely proportional to 𝛱𝑀 . Regime I and

egime IV are the asymptotic limits for regular distribution of vorticity
t the interface in the diffusion-dominant situations, for low and high
evel of contamination, respectively.
t

10 
4.4. Advection-dominant case (𝑅𝑒 = 𝑃 𝑒 = 𝑃𝑆 = 100)

The tangential velocities 𝑢𝜃 of contaminated bubbles at 𝐿𝑎 = 0.1 and
 𝑎 = 0.01 are shown in Fig. 12(a). The velocity profile at small 𝜃 agrees

with that of the clean bubble, while a steep decrease in 𝑢𝜃 takes place
at a certain 𝜃 and 𝑢𝜃 ∼ 0 for larger 𝜃. The fore-aft symmetry observed in
the clean bubble case disappears in the contaminated cases. Fig. 12(d)
shows that the surfactant concentration 𝛤 in the small 𝜃 region is very
small and 𝜃 for the steep decrease of 𝑢𝜃 corresponds to that of relatively
large 𝛤 gradient. The bubble surface is in the stagnant cap state (IS-
c), for which Cuenot et al. (1997) gave a description of the formation
of the surfactant and velocity profiles as follows. The diffusion term
in the 𝛤 equation is relatively small compared with the advection
term, so that in the steady state the advection term balances with the
adsorption–desorption flux. Integrating the 𝛤 equation with the zero
flux condition at the nose of the bubble yield 𝛤 𝑢𝜃 = 0. The front side is
surfactant free (𝛤 = 0), resulting in the shear-free condition. Therefore,
the interface can be mobile and the velocity profile close to that of the
clean interface. On the other hand, 𝑢𝜃 must be zero in the rear side
because of the non-zero values of 𝛤 . The size of the clean interface
region decreases with increasing the Marangoni effect (𝑀 𝑎). As shown
in Fig. 12(g), the interfacial vorticity 𝜔𝜙 exhibits a significant peak, the
ngle of which may correspond to the stagnant-cap angle. At large 𝜃,

the contaminated bubbles show negative values of 𝜔𝜙 because of a flow
separation like the solid sphere. Since the peak values of 𝜔𝜙 are larger
than 𝜔𝑆

𝑚𝑎𝑥, it is obvious that 𝐶𝐷 of the contaminated bubbles cannot
be correlated neither with 16𝜔𝑚𝑎𝑥∕𝑅𝑒 nor with (11𝜔𝑚𝑎𝑥 + 7.5)∕𝑅𝑒. The
solid lines in Fig. 12(d), (e) and (f) represent the interfacial surfactant
concentration 𝛤 , which takes values larger than 𝛤𝑒𝑞 in the rear part of
the bubble although 𝑢𝜃 is small. The bulk concentration, 𝐶𝑆 , at interface
is larger than the bulk concentration when 𝛤 > 𝛤𝑒𝑞 (Cuenot et al., 1997;
Hayashi et al., 2022). The peak of 𝜔𝜙 appears around the angle for
𝛤 = 𝛤𝑒𝑞 .

Fig. 12(b) shows 𝑢𝜃 at 𝐿𝑎 = 1. The increase in 𝐿𝑎 (contamination
level) largely decreases 𝑢𝜃 . The interfaces at 𝑀 𝑎 = 20 and 40 are almost
immobile, which can also be confirmed in Fig. 12(h), i.e., 𝜔𝜙 in these
onditions agree well with that of the solid sphere for 𝜃 ≥ 𝜋∕4. The 𝛤

profiles have the intersection at 𝜃 ∼ 0.38𝜋, at which 𝛤 ≈ 𝛤𝑒𝑞 . Further
increase in 𝐿𝑎 up to 10 makes the bubble interface immobile at all the
three values of 𝑀 𝑎 as shown in Fig. 12(c), i.e., 𝑢𝜃 is negligibly small.
The 𝛤 at the intersection of the 𝛤 profiles shown in Fig. 12(f) is close
o 𝛤𝑒𝑞 as well as in Fig. 12(e). The 𝜔𝜙 agrees with that of the solid

sphere; the fully-contaminated spherical bubbles behave like the solid
sphere. A brief discussion on the effects of 𝐻 𝑎 on the 𝛤 profile is given
in Appendix E.

Fig. 12(j)–(l) show the adsorption–desorption flux 𝑆̇𝛤 . As clearly
observed in Fig. 12(j), the profile is quite different from that for 𝑅𝑒 =
𝑃 𝑒 = 𝑃 𝑒𝑆 = 1, i.e., 𝑆̇𝛤 is almost constant in the front part of small 𝜃

hile it begins to decrease at certain 𝜃, at which 𝜔𝜙 steeply increases.
he desorption becomes dominant in the rear part of the bubble, so
hat surfactant molecules are shed from the interface to the bulk and
𝑆 takes values larger than unity (the bulk concentration) as shown in

Fig. 12(m). The magnitude of 𝑆̇𝛤 decreases with increasing 𝐿𝑎 and 𝑀 𝑎,
in particular 𝑆̇𝛤 is close to zero in Fig. 12(l), for which the advection
and diffusion terms are both small because of 𝑢𝜃 ≈ 0 and 𝑃 𝑒 = 100, and
therefore, 𝑆̇𝛤 must be small to balance with those terms.

Fig. 13 reports the non-dimensional group 𝐶𝐷𝑅𝑒 as a function of
he maximum surface vorticity 𝜔𝑚𝑎𝑥 for 𝑅𝑒 = 𝑃 𝑒 = 𝑃 𝑒𝑆 = 100. The
ata widely scatter, and no unique relationship between 𝜔𝑚𝑎𝑥 and 𝐶𝐷𝑅𝑒
s observed. The data are classified in terms of 𝛱𝐻 = 𝐻 𝑎∕𝐿𝑎 values.
𝑚𝑎𝑥 for low 𝛱𝐻 tends to lie on the right-hand side of Eq. (24) for solid

spheres because of the formation of the sharp peaks in 𝜔𝜙. On the other
hand, at large 𝛱𝐻 , most of the data are in-between the clean bubble
(Eq. (18)) and solid particle equations (Eq. (24)). Fig. 14(a) shows
he normalized drag coefficient 𝜉 plotted against 𝜔 . The data of
𝑚𝑎𝑥



K. Hayashi et al.

c
o
a

International Journal of Multiphase Flow 187 (2025) 105173 
Fig. 12. Profiles of tangential velocity 𝑢𝜃 , surfactant concentration 𝛤 , interfacial vorticity 𝜔𝜙, adsorption–desorption flux 𝑆̇𝛤 and bulk concentration at interface 𝐶𝑆 at 𝐻 𝑎 = 0.01
(𝑅𝑒 = 𝑃 𝑒 = 𝑃 𝑒𝑆 = 100).
v

w
t

large 𝛱𝐻 distribute within the range of [𝜔𝐵
𝑚𝑎𝑥, 𝜔𝑆

𝑚𝑎𝑥]. The dashed lines,
𝜉 = [(𝜔𝑚𝑎𝑥 − 𝜔𝐵

𝑚𝑎𝑥)∕16.4]
0.57 and 𝜉 = [(𝜔𝑚𝑎𝑥 − 𝜔𝐵

𝑚𝑎𝑥)∕6.6]
0.57, are fitting

urves for the left-most data points. These curves show the dependence
n 𝜉 with the same power, 0.57. In Fig. 14(b) the 𝜉 data are plotted
gainst the normalized vorticity

𝜁 = 𝜔̄ − 𝜔̄𝐵

𝜔̄𝑆 − 𝜔̄𝐵 (49)

where 𝜔̄ is the mean vorticity defined by 𝜔̄ = ∫𝑆 𝜔𝜙𝑑 𝑆∕ ∫𝑆 𝑑 𝑆 and is
an indicator of the amount of the vorticity increased by the surfactant
11 
effect. It should be noted that assuming the fore-aft symmetry in the
orticity profile of a clean bubble, i.e., 𝜔𝜙 = 𝜔𝐵

𝑚𝑎𝑥 sin 𝜃, yields 𝜔̄𝐵 =
𝜋 𝜔𝐵

𝑚𝑎𝑥∕4 ∝ 𝜔𝐵
𝑚𝑎𝑥. The 𝜔̄ does not exceed unity and the scatter of the

data is mitigated compared with the plots with 𝜔𝑚𝑎𝑥; especially the
data for 𝜉 < 0.25 collapse onto the single curve expressed by 𝜉 =
1.36𝜁1.21. The increase in the drag due to the surfactant effect exhibits a
slightly higher exponent, 1.21, than that in the drag-vorticity relation,
Eq. (18), for a clean bubble. In the latter, the drag increase is related

ith the increase in 𝜔𝑚𝑎𝑥 while keeping the shear-free condition and
he fore-aft symmetry in the vorticity profile, while in the former the
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Fig. 13. 𝐶𝐷𝑅𝑒 plotted against maximum interfacial vorticity (𝑅𝑒 = 𝑃 𝑒 = 𝑃 𝑒𝑆 = 100).

Marangoni stress causes a finite tangential viscous stress at the interface
and the symmetry breaks down. This may be the cause of the different
exponents.

Fig. 15 shows 𝜉 for several values of 𝛱𝐻 . 𝜉 is proportional to
𝛱𝑀 at small 𝜉 as shown by the dashed lines, that is 𝜉 = 𝛼 𝛱𝑀 . The
coefficient, 𝛼, decreases with increasing 𝛱𝐻 due to the smoothing
effect of 𝛱𝐻 . On the other hand, comparison of the data of 𝛱𝐻 = 50
with 𝐿𝑎 = 0.02 (the closed symbols) and 0.12 (the open symbols)
clearly demonstrates that 𝐿𝑎 increases 𝜉. It should however be noted
that 𝛼 becomes independent of 𝐿𝑎 in the limiting case of 𝛱𝐻 → 0,
being similar to the diffusion-dominant case. The regime in which 𝜉
s proportional to 𝛱𝑀 corresponds to the range in which 𝜉 = 1.36𝜁1.21

shown in Fig. 14(b). The data start to deviate from the linear fits as 𝛱𝑀
increases, i.e., the increasing rate mitigates. The nonlinear dependence
is clearer in Fig. 16, where the 𝐶𝐷 data at the intermediate 𝛱𝑀 range
ie on the curve represented by 𝐶𝐷 = 𝑏𝛱0.362

𝑀 , where 𝑏 depends on 𝛱𝐻
nd 𝐿𝑎. Equivalently, 𝜉 = 𝛾 𝛱0.362

𝑀 − 𝑐, where 𝛾 = 𝑏∕(𝐶𝑆
𝐷 − 𝐶𝐵

𝐷 ) and
= 𝐶𝐵

𝐷∕(𝐶
𝑆
𝐷 − 𝐶𝐵

𝐷 ).
The dependence of 𝜉 on 𝛱𝑀 at large 𝛱𝑀 is shown in Fig. 17. For

𝛱𝐻 = 0.5 and 1, the decay of 1 − 𝜉 for 𝛱𝑀 smaller than about 10
s not linear but can be expressed as 1 − 𝜉 = 𝛿∕𝛱2.5

𝑀 by tuning the
alue of 𝛿 (the dashed lines). The 𝜉 is then inversely proportional to
𝑀 at larger 𝛱𝑀 , i.e., 1 − 𝜉 = 𝛽∕𝛱𝑀 , as shown by the solid lines. In

these two conditions 𝐿𝑎 is the same, and therefore, the difference in the
data is attributed to the 𝛱𝐻 effect. For the larger 𝛱𝐻 (20 and 50), the
dependence on 𝛱𝑀 with the power of 2.5 does not appear. The data of

𝐻 = 50 lie below those of 𝛱𝐻 = 20, showing that the increase in 𝐿𝑎
enhances the contamination and its effect is remarkable at large 𝛱𝐻 .

Summarizing the results obtained above for the advection-dominant
case gives the following expression for 𝜉 where the regime I and IV
dentified for the diffusion-dominant case are also observed:

𝜉 =
𝐶𝐷 − 𝐶𝐵

𝐷

𝐶𝑆
𝐷 − 𝐶𝐵

𝐷

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛼 𝛱𝑀 (Regime I)
𝛾 𝛱0.36

𝑀 − 𝑐 (Regime II)
1 − 𝛿∕𝛱2.5

𝑀 (Regime III)
1 − 𝛽∕𝛱𝑀 (Regime IV)

(50)

where 𝛼, 𝛽, 𝛾 and 𝛿 are functions of 𝛱𝐻 and 𝐿𝑎, while the effects of
these dimensionless groups disappear as 𝛱 → 0 and they become
𝐻

12 
constant. Thus, the regimes are characterized by the dependence of
𝜉 on 𝛱𝑀 as in the diffusion-dominant case, and the functional forms
n Regimes I and IV are the same as those in the diffusion-dominant
ase. Fig. 18 shows a schematic representation of the regimes. The top

curve represents 𝜉 for the limiting case of 𝛱𝐻 → 0. The 𝜉 increases
with increasing 𝛱𝑀 and the regime changes from I to IV along the
urve. Regime III appears only in the upper-left region of small 𝛱𝐻 .
he increase in 𝛱𝐻 changes the curve toward the mobile-interface side.
he 𝐿𝑎 has the opposite effect, which however vanishes in the low 𝛱𝐻

imit. Note that the stagnant-cap (IS-c) surface state is also observed for
egime I at small 𝛱𝐻 = 𝐻 𝑎∕𝐿𝑎. This is another reason that justifies

he definition of regimes by considering the dependence of 𝐶𝐷 (or 𝜔)
ather than by considering the velocity profile shape.

By writing the vorticity given in Eq. (22) as 𝜔𝑆 , i.e. 𝜔𝑆 = 3(1 +
(𝑅𝑒))∕2, the expression of 𝜉 in Regimes I and IV can be written as

𝐶𝐷𝑅𝑒
16

=

{

𝜔𝐵
𝑚𝑎𝑥 +

(

𝜔𝑆 − 𝜔𝐵
𝑚𝑎𝑥

)

𝛼 𝛱𝑀 (Regime I)
𝜔𝑆 − 𝜔𝑆−𝜔𝐵

𝑚𝑎𝑥
𝛱𝑀 ∕𝛽 (Regime IV) (51)

These functional forms are similar to those of Eqs. (36) and (39), respec-
tively, for 𝜔𝑚𝑎𝑥, and in these limiting cases the R.H.S. can be employed
as 𝜔 for the expression of 𝐶𝐷𝑅𝑒 = 16𝜔 at 𝑅𝑒 = 𝑃 𝑒 = 100. 𝜉 exhibits the
onlinear behavior at intermediate 𝛱𝑀 corresponding to Regimes II

and III, which makes the dependence of 𝜉 on the relevant dimensionless
groups more complicated compared with those in Regimes I and IV.

4.5. Stagnant-cap angle

For some situations of the advection dominant case (𝑅𝑒 = 𝑃 𝑒 =
𝑃 𝑒𝑆 = 100), 𝜔𝜙 possesses a peak in its profile as shown in Fig. 3(a).

hese cases are therefore representative of the stagnant-cap interface
IS-c) state. The normalized drag coefficient 𝜉 has a unique relation
ith 𝛱𝑀 when 𝛱𝐻 ≪ 1 (Fig. 15) and can be expressed as a function
f the angle 𝜃𝑐 𝑎𝑝 as demonstrated in Fig. 19(a), where 𝜃𝑐 𝑎𝑝 is defined

as the angle for 𝜔𝑚𝑎𝑥 (the peak in the 𝜔𝜙 profile) and the data are for
𝛱𝐻 ≤ 0.1. Cuenot et al. (1997) also pointed out that 𝜉 is correlated

ell with 𝜃𝑐 𝑎𝑝 only. Their numerical data of 𝜉 are in good agreement
ith the present ones as shown in the figure. This fact supports that the

eduction in 𝑃 𝑒 from 105 to 100 does not have a significant impact on
he drag as reported by Takagi et al. (2003) and Fukuta et al. (2008).
lthough the Sadhal–Johnson model (Sadhal and Johnson, 1983) was

derived for the Stokes flow regime, 𝜉 fairly agreed with the numerical
results of Cuenot et al. (1997) for 𝑅𝑒 = 100. For the stagnant-cap model,

is given by (Dani et al., 2022)

𝜉(𝜃𝑐 𝑎𝑝) = 1 − 𝜃𝑐 𝑎𝑝
𝜋

+ 1
2𝜋

(

sin 𝜃𝑐 𝑎𝑝 + sin 2𝜃𝑐 𝑎𝑝 −
sin 3𝜃𝑐 𝑎𝑝

3

)

(52)

where 𝜃𝑐 𝑎𝑝 = 0 represents fully-immobile interface (𝜉(0) = 1) and
𝜃𝑐 𝑎𝑝 = 𝜋 is for clean interface (𝜉(𝜋) = 0). The 𝜉 data are compared with
the Sadhal–Johnson model in Fig. 19(b) (the dashed line). A reasonable
agreement is obtained for Regimes II and III. This result suggests that
the angle for 𝜔𝑚𝑎𝑥 for the stagnant-cap bubbles can be taken as 𝜃𝑐 𝑎𝑝 in
valuation of 𝜉. The dash-dotted line in the figure demonstrates that
q. (52) can be adjusted for the numerical data by replacing the two

factors in the third term as 1∕2𝜋 → 0.228 and sin 𝜃𝑐 𝑎𝑝 → 0.62 sin 𝜃𝑐 𝑎𝑝.
The following simple fitting equation can also represent the numerical
results well as shown by the solid line:

𝜉(𝜃𝑐 𝑎𝑝) = 1

2 exp
(

0.010 𝜃6.19𝑐 𝑎𝑝
)

− 1
(53)

Fig. 19(b) shows 𝜃𝑐 𝑎𝑝 as a function of 𝛱𝑀 . The 𝜃𝑐 𝑎𝑝 is correlated well
in terms of 𝛱𝑀 only as given by the following correlation:

𝜃𝑐 𝑎𝑝 = 𝜋(1 − 0.407𝛱0.314
𝑀 ) (54)

This empirical correlation would be of great interest for estimating the
cap angle. This is the first time to propose a model of 𝜃𝑐 𝑎𝑝 in terms of the
relevant dimensionless groups controlling the contamination effects.
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Fig. 14. Normalized drag coefficient, 𝜉, plotted against interfacial vorticity (𝑅𝑒 = 𝑃 𝑒 = 𝑃 𝑒𝑆 = 100). The left and right dotted lines in (a) represent 𝜔𝑚𝑎𝑥 of clean bubble and solid
particle, respectively. The dashed lines in (a) are 𝜉 = [(𝜔𝑚𝑎𝑥 − 𝜔𝐵

𝑚𝑎𝑥)∕16.4]
0.57 and 𝜉 = [(𝜔𝑚𝑎𝑥 − 𝜔𝐵

𝑚𝑎𝑥)∕(𝜔
𝑆
𝑚𝑎𝑥 − 𝜔𝐵

𝑚𝑎𝑥)]
0.57.
Fig. 15. Normalized drag coefficient 𝜉 and linear regressions for small 𝛱𝑀 range
(𝑅𝑒 = 𝑃 𝑒 = 𝑃 𝑒𝑆 = 100). The closed symbols are for 𝐿𝑎 ≤ 0.05, while the open symbols
are for 𝐿𝑎 = 0.1 (𝛱𝐻 ≠ 50), 0.12 (𝛱𝐻 = 50) or 𝐿𝑎 > 0.05 (𝛱𝐻 < 0.1). The dashed
lines are linear fit, 𝜉 ∝ 𝛱𝑀 , to the data. The slopes, 𝛼, of the lines for 𝐿𝑎 ≤ 0.05 are
𝛼 = 0.50, 0.44, 0.41, 0.33, 0.27, 0.115, 0.059 and 0.032 for 𝛱𝐻 < 0.1, 𝛱𝐻 = 0.2, 0.5,
1, 2, 20, 50, and 100, respectively, and 𝛼 = 0.17 for (𝛱𝐻 , 𝐿𝑎) = (50, 0.12).

5. Conclusion

In the present study, effects on soluble surfactant on the interfacial
vorticity and the drag coefficient of a spherical bubble were numeri-
cally investigated. This study is the first to propose their expressions
in terms of the relevant dimensionless groups and to investigate the
13 
Fig. 16. Drag coefficient plotted against 𝛱𝑀 . The data are for 𝛱𝐻 ≤ 0.05 (𝑅𝑒 = 𝑃 𝑒 =
𝑃 𝑒𝑆 = 100).

drag-vorticity relations in detail. As a result, the following conclusions
were obtained:

1. 𝐶𝐷𝑅𝑒 = 16𝜔𝑚𝑎𝑥 originally proposed for clean bubbles is valid
also for contaminated bubbles in the diffusion-dominant case,
i.e., 𝑅𝑒 = 𝑃 𝑒 = 𝑃 𝑒𝑆 = 1.

2. The key dimensionless group for the degree of contamination in
expressing 𝜔𝑚𝑎𝑥 is 𝛱𝑀 = 𝐿𝑎𝑀 𝑎 as suggested by the boundary
condition and the adsorption–desorption kinetics.

3. Increase in the Hatta number makes the surfactant concen-
tration profile smoother, mitigating the Marangoni effect, and
𝛱𝐻 = 𝐻 𝑎∕𝐿𝑎 also plays an important role in determining the
interfacial vorticity.

4. The characteristics of 𝐶𝐷 and 𝜔𝑚𝑎𝑥 in the advection-dominant
case (𝑅𝑒 = 𝑃 𝑒 = 𝑃 𝑒𝑆 = 100) are more complicated and there is
no unique relation between them, but they can be classified into
four regimes in terms of 𝛱 = 𝐿𝑎𝑀 𝑎 and 𝛱 = 𝐻 𝑎∕𝐿𝑎.
𝑀 𝐻
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Fig. 17. Characteristics of normalized drag coefficient 𝜉 (𝑅𝑒 = 𝑃 𝑒 = 𝑃 𝑒𝑆 = 100). The
alues in the legend represent 𝛱𝐻 . The coefficients, 𝛿, in 𝜉 = 1 −𝛿∕𝛱2.5

𝑀 are 1.5, 6.5, 8.0
or 𝛱𝐻 < 0.001, (𝛱𝐻 , 𝐿𝑎) = (0.5, 1), and (1, 1), respectively, and those in 1 − 𝜉 = 𝛽∕𝛱𝑀
re 0.32, 0.40, 2.44, and 1.65 for (𝛱𝐻 , 𝐿𝑎) = (0.5, 1), (1, 1), (20, 0.05), and (50, 0.08),
espectively.

Fig. 18. Schematic representation of the four regimes observed for the advection-
dominant case (𝑅𝑒 = 𝑃 𝑒 = 𝑃 𝑒𝑆 = 100). The dashed lines represent the regime
boundaries. The upper solid line represents the 𝜉 curve in the low 𝛱𝐻 limit. The
𝛱𝐻 effect moves the curve and the curve connects the mobile (IS-a) interface to the
immobile (IS-d) interface.

5. A simple expression of the stagnant-cap angle 𝜃𝑐 𝑎𝑝 in terms of
𝛱𝑀 = 𝐿𝑎𝑀 𝑎 was obtained for the stagnant-cap (IS-c) state
appearing at small 𝛱𝐻 = 𝐻 𝑎∕𝐿𝑎
14 
Table 1
Summary of drag and vorticity correlations.

Diffusion-dominant case
𝐶𝐷 = 16𝜔𝑚𝑎𝑥∕𝑅𝑒 (Regimes I, IV and in-between)
𝜔𝑚𝑎𝑥 = 𝜔𝐵

𝑚𝑎𝑥+𝜔
𝑆
𝑚𝑎𝑥𝑐𝑤𝛱𝑀 ∕(1+𝛹 )

1+𝑐𝑤𝛱𝑀 ∕(1+𝛹 )
with 𝛹 = (0.03𝐿𝑎 + 0.115)𝛱𝐻 and 𝑐𝑤 = 1∕7.0

𝜉 = 𝐶𝐷−𝐶𝐵
𝐷

𝐶𝑆
𝐷−𝐶

𝐵
𝐷
=
{

1 + 1+𝛹
𝑐𝑤𝛱𝑀

}−1

Advection-dominant casea

𝐶𝐷 =

⎧

⎪

⎨

⎪

⎩

16
𝑅𝑒

(

𝜔𝐵
𝑚𝑎𝑥 +

(

𝜔𝑆 − 𝜔𝐵
𝑚𝑎𝑥

)

𝛼 𝛱𝑀
)

(Regime I)
16
𝑅𝑒

(

𝜔𝑆 − 𝜔𝑆−𝜔𝐵
𝑚𝑎𝑥

𝛱𝑀 ∕𝛽

)

(Regime IV) with 𝜔𝑆 = 3
2

(

1 + 0.15𝑅𝑒0.687)

𝜉 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛼 𝛱𝑀 (Regime I)
𝛾 𝛱0.36

𝑀 − 𝑐 (Regime II)
1 − 𝛿∕𝛱2.5

𝑀 (Regime III)
1 − 𝛽∕𝛱𝑀 (Regime IV)

𝜉(𝜃𝑐 𝑎𝑝) =
{

2 exp
(

0.010 𝜃6.19𝑐 𝑎𝑝
)

− 1
}−1

with 𝜃𝑐 𝑎𝑝 = 𝜋(1 − 0.407𝛱0.314
𝑀 ) (for stagnant-cap

states)

a The coefficients 𝛼 (Fig. 15), 𝛽 (Fig. 17), 𝛿 (Fig. 17), 𝛾 (Fig. 16) depend on 𝛱𝐻 and
𝐿𝑎, and values found in the present study are as follows: 𝛼 for 𝐿𝑎 ≤ 0.05 are 0.50,
.44, 0.41, 0.33, 0.27, 0.115, 0.059 and 0.032 for 𝛱𝐻 < 0.1, 𝛱𝐻 = 0.2, 0.5, 1, 2, 20,
0, and 100, respectively, and 𝛼 = 0.17 for (𝛱𝐻 , 𝐿𝑎) = (50, 0.12); 𝛽 = 0.32, 0.40, 2.44,
nd 1.65 for (𝛱𝐻 , 𝐿𝑎) = (0.5, 1), (1, 1), (20, 0.05), and (50, 0.08); 𝛿 = 1.5, 6.5, 8.0 for
𝐻 < 0.001, (𝛱𝐻 , 𝐿𝑎) = (0.5, 1), and (1, 1); 𝛾 = 0.70∕(𝐶𝑆

𝐷 − 𝐶𝐵
𝐷 ) for 𝛱𝐻 ≪ 1.

Table 1 summarizes the drag and vorticity correlations obtained in the
resent study.

This work is limited to bubbles of spherical shape, so that the
nfluence of the shape deformation on the Marangoni effect should be
urther investigated in the future. Deformation of a bubble increases the
agnitude of the interfacial vorticity since the interface curvature (the

irst term of Eq. (28)) is increased at the bubble equator (Atasi et al.,
2023). As a consequence, for small deformation, both deformation and
contamination effects can be added in the resulting interfacial vorticity
distribution.
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Appendix A. Ranges of dimensionless groups in typical contami-
nated systems

Cuenot et al. (1997) used the physical properties of decanoic acid
for the reference case, while Triton X-100 and 1-pentanol were used
in the experiments and numerical simulations carried out by Takagi
et al. (2003). Varying the bulk concentration of decanoic acid from 1
mmol/m3 to 100 mmol/m3 yields the following ranges of 𝐿𝑎, 𝑀 𝑎, 𝐻 𝑎
and 𝐾 for a 1 mm bubble rising through water at 0.1 m/s: 0.011 ≤ 𝐿𝑎 ≤
1.1, 𝑀 𝑎 = 124, 4 × 10−4 ≤ 𝐻 𝑎 ≤ 4 × 10−2 and 0.2 ≤ 𝐾 ≤ 20. Takagi et al.
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Fig. 19. Relation between stagnant cap angle, 𝜃𝑐 𝑎𝑝, (the angle for 𝜔𝑚𝑎𝑥(the peak of 𝜔𝜙)) and normalized drag coefficient, 𝜉 (a), and 𝜃𝑐 𝑎𝑝 as a function of 𝛱𝑀 (b). The dashed,
solid and dash-dotted lines in (a) are Eqs. (52), (53) and 𝜉(𝜃𝑐 𝑎𝑝) = max

{

0,min
[

1 − 𝜃𝑐 𝑎𝑝∕𝜋 + 0.228 (0.62 sin 𝜃𝑐 𝑎𝑝 + sin 2𝜃𝑐 𝑎𝑝 − (sin 3𝜃𝑐 𝑎𝑝)∕3) , 1]}, respectively. The solid line in (b) is the
fitting equation, 𝜃𝑐 𝑎𝑝∕𝜋 = 1 − 0.407𝛱0.314

𝑀 . 𝑀 𝑎 ranges from 10 to 50, 𝐿𝑎 ranges from 0.02 to 0.1, and 𝛱𝐻 ≤ 0.1 in the plotted data. (𝑅𝑒 = 𝑃 𝑒 = 𝑃 𝑒𝑆 = 100).
u

s

t

c
m
t
d
s
l
s

(2003) used Triton X-100 of 𝐶0 ∼ 1 mmol/m3 in their experiments.
Higher concentrations, e.g., 10 mmol/m3 (Hori et al., 2020), have also
often been used in experiments on bubbles. For the range of 1 ≤ 𝐶0 ≤ 10

mol/m3, 1.5 ≤ 𝐿𝑎 ≤ 15, 𝑀 𝑎 = 70, 5 × 10−4 ≤ 𝐻 𝑎 ≤ 5 × 10−3,
nd 0.34 ≤ 𝐾 ≤ 3.4. Compared with Triton X-100, much higher
oncentrations have been used for 1-pentanol, i.e., 40–690 mmol/m3

n Takagi et al. (2003) and 12,000 mmol/m3 in Aoki et al. (2017).
For the range of 10 ≤ 𝐶0 ≤ 10, 000 mmol/m3, 0.00046 ≤ 𝐿𝑎 ≤ 0.46,
𝑀 𝑎 = 146, 5 × 10−4 ≤ 𝐻 𝑎 ≤ 0.5, and 1.7 ≤ 𝐾 ≤ 1700. The Langmuir
number for 1-pentanol is smaller than that for Triton X-100 although
the bulk concentration is much larger in the former. This is because of
the large desorption rate coefficient.

The bubble of 𝑅𝑒 = 1 corresponds to that of 𝑑 = 0.13 mm and
= 7.8 mm/s in contaminated water. For the same range of 𝐶0 as

n the above discussion for 𝑅𝑒 = 100, the ranges of 𝑀 𝑎, 𝐻 𝑎 and 𝐾 are
s follows. For decanoic acid: 𝑀 𝑎 = 1600, 6 × 10−4 ≤ 𝐻 𝑎 ≤ 6 × 10−2 and
.026 ≤ 𝐾 ≤ 2.6; for Triton X-100: 𝑀 𝑎 = 920, 8 × 10−4 ≤ 𝐻 𝑎 ≤ 8 × 10−3
nd 0.044 ≤ 𝐾 ≤ 0.44; for 1-pentanol: 𝑀 𝑎 = 1880, 8 × 10−4 ≤ 𝐻 𝑎 ≤ 0.8
nd 0.22 ≤ 𝐾 ≤ 220. The 𝑀 𝑎 in the actual system can be very large.
his is one of the reasons why the rise motion of a small bubble is
asily retarded by only a small amount of surfactant. The condition of
𝑒 = 𝑃 𝑒 = 1 is similar to that for the drop motion analyzed by Frumkin
nd Levich (1947); the main assumptions in their analysis are the
tokes motion of the fluids, the sinusoidal profile of the interfacial
elocity, and a slight deviation from the surfactant concentration at the
dsorption–desorption equilibrium. Therefore, the case of 𝑅𝑒 = 𝑃 𝑒 = 1
ay be regarded as an extension of the case dealt with by Frumkin and

evich (1947).

Appendix B. Effects of dimensionless adsorption length, 𝑲

The dimensionless adsorption length, 𝐾, was set to unity in all the
imulations discussed above. The 𝐾 might affect the result through the
oundary condition of the bulk concentration, 𝐶, Eq. (13). The meaning
f 𝐾 can be understood as follows: for the interface of a spherical

bubble fully packed by surfactant, the surfactant mole adsorbed on the
nterface is 𝑛𝑆 = 𝛤𝑚𝑎𝑥4𝜋 𝑎2. By assuming that this amount of surfactant
ame from the shell region surrounding the bubble, the surfactant mole
n this region is 𝑛 = 𝐶 (4𝜋∕3)[(𝑎 + 𝛥)3 − 𝑎3], where 𝛥 is the width of
𝑉 0 g

15 
the shell. Equating 𝑛𝑆 and 𝑛𝑉 yields

𝐾 = 𝛥
𝑑

[

1 + 2𝛥
𝑑
+ 4

3

(𝛥
𝑑

)2]

(B.1)

In a sense of the order of magnitude, 𝐶 varies in [𝑎, 𝑎 + 𝛥]; 𝐾 is thus
one of the factors scaling 𝜕 𝐶∕𝜕 𝑟|𝑟=𝑎.

Numerical simulations were carried out at 𝐾 = 0.1 and 10 to
nderstand the effects of 𝐾 on 𝜔𝜙. Fig. B.20(a) and (b) show 𝜔𝜙 at

𝑅𝑒 = 𝑃 𝑒 = 1 and 𝑅𝑒 = 𝑃 𝑒 = 100, respectively, and the other parameters
are 𝑀 𝑎 = 10, 𝐿𝑎 = 0.1 and 𝐻 𝑎 = 0.01. No differences are observed
in the vorticity profiles at these values of 𝐾. Therefore, 𝐾 does not
ubstantially affect 𝜔𝜙, i.e. the bubble dynamics, in the range of 𝐾

tested.

Appendix C. Drag-vorticity relation for solid spheres

Although Eq. (24) reproduces the trend of 𝐶𝐷𝑅𝑒 for a wide range
of 𝑅𝑒, Eq. (22) gives a better estimation for small 𝑅𝑒, i.e. 𝑅𝑒 ≤ 10,
at which no flow separation takes place at the solid surface. Tuning
he coefficients in Eq. (24) for 𝑅𝑒 ≥ 1 and switching the expressions

depending on 𝑅𝑒 yield

𝐶𝐷𝑅𝑒 = min
[

16𝜔𝑆
𝑚𝑎𝑥, 10.88𝜔𝑚𝑎𝑥 + 8.8] (C.1)

Appendix D. Effect of Péclet number on vorticity profile

Fig. D.21 compares the interfacial vorticity with 𝑃 𝑒 = 100 (shown
in Fig. 12) and that with 𝑃 𝑒 = 105. Note that 𝑃 𝑒𝑆 = 100 in both
ases. For 𝐿𝑎 = 0.10, the vorticity distribution is not affected so
uch even with the significant change in 𝑃 𝑒, that is, in both cases

he stagnant-cap states are formed. With the larger 𝐿𝑎 (𝐿𝑎 = 1), the
ifference between the vorticity distributions with 𝑃 𝑒 = 100 and 105 is
maller. Thus, 𝑃 𝑒 is not of primal importance when it is already much
arger than unity. This fact supports that numerical simulations with
patial resolutions insufficient to resolve thin boundary layers could
ive reasonable results in literature.
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Fig. B.20. Comparisons between 𝜔𝜙 at 𝐾 = 0.1, 1 and 10.
Fig. D.21. Interfacial vorticity predicted with 𝑃 𝑒 = 100 and 10000 (𝑀 𝑎 = 10 and
𝐻 𝑎 = 0.01).

Appendix E. Effects of 𝑯 𝒂 on 𝜞 profile

The effect of 𝐻 𝑎 on 𝛤 at 𝑅𝑒 = 𝑃 𝑒 = 100 is shown in Fig. E.22. The
increase in 𝐻 𝑎 makes the 𝛤 profile smoother, which, in turn, means 𝐻 𝑎
mitigates the Marangoni effect. It should however be noted that the 𝐻 𝑎
ffect on the 𝛤 profile is not remarkable at the small values of 𝐻 𝑎. The
ean concentrations, ∫𝑆 𝛤 𝑑 𝑆∕ ∫𝑆 𝑑 𝑆, are also not so much affected by
 𝑎, i.e., 0.091, 0.091, 0.089 and 0.084 at 𝐻 𝑎 = 0.001, 0.01, 0.1 and 1,

espectively, and are similar to 𝛤𝑒𝑞 (= 0.909).

Data availability

Data will be made available on request.
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