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Abstract

Anaplastic thyroid cancer is one of the rarest subtypes of thyroid cancer, accounting for only 1–2% of all thyroid cancer
cases. It is also one of the most aggressive: prognosis remains dismal and the disease-specific mortality rate is close to
100%. This rarity has markedly limited the availability of prospective trial results, and no standard chemotherapeutic
option for unresectable or metastatic anaplastic thyroid cancer has yet been established. Nevertheless, combination
therapy with a BRAF inhibitor and MEK inhibitor has shown encouraging efficacy in patients with BRAF V600E-mutated
anaplastic thyroid cancer. Other novel treatments such as immune checkpoint inhibitors have also shown promising
results. Owing to these therapeutic advances, the prognosis of anaplastic thyroid cancer appears to be gradually
improving. However, further development of novel treatments for this rare malignancy requires the development of
substantial infrastructure for international collaborative study.

Keywords: anaplastic thyroid cancer; anticancer treatment; chemotherapy; molecular targeted agent; BRAF V600E; immune
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Introduction
Anaplastic thyroid cancer (ATC) is one of the rarest and
most aggressive subtypes of thyroid cancer (TC) (1).
According to the staging guidelines of the American
Joint Committee of Cancer (AJCC), all patients
diagnosed with ATC are classified as having stage IV
disease (AJCC 8th) (2). Although ATC accounts for only
1–2% of TC (3), historic disease-specificmortality is nearly
100% (1, 4, 5, 6), making it the most frequent cause of
death among all TC patients (7). Indeed, a retrospective
study using a database of the French ENDOCAN-
TUTHYREF network (n = 360) demonstrated a median
overall survival (OS) for ATC patients of 6.8 months.
Furthermore, in patients with a high
neutrophil–lymphocyte ratio – known as a poor
prognostic inflammatory marker of peripheral blood,
which might reflect the tumor immune
microenvironment (TIME) – median OS with stage

IVB/IVC disease was only 2.9 months (8, 9). If permitted
by the patient’s condition, multimodal therapy including
surgery, radiation therapy and chemotherapeutic agents
plays a critical role in the management of ATC and may
improve treatment outcomes for patients (10). Indeed,
neoadjuvant approach with dabrafenib plus trametinib
and pembrolizumab showed promising treatment
outcomes with a median OS of 63 months and 2-year
survival of 74.5% (11). However, this kind of aggressive
multimodal approachmay also carry the risk of adversely
affecting the patient’s quality of life, and a shared
decision-making approach with patients is therefore
essential. Furthermore, palliative chemotherapy has an
important role for patients with ATC. However, very few
randomized-controlled trials (RCTs) for this extremely
rare malignancy have been conducted, and no
standard chemotherapeutic option for unresectable or

Published by Bioscientifica Ltd.
https://etj.bioscientifica.com
© 2025 the author(s)

This work is licensed under a Creative Commons
Attribution 4.0 International License.

Downloaded from Bioscientifica.com at 04/21/2025 12:25:52AM
via Open Access. This work is licensed under a Creative Commons Attribution

4.0 International License.
https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1530/ETJ-24-0287
https://orcid.org/0000-0001-8021-6116
mailto:nkiyota@med.kobe-u.ac.jp
https://etj.bioscientifica.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


metastatic ATC based on RCTs has accordingly been
established. However, combination therapy with a
BRAF inhibitor and MEK inhibitor has shown
encouraging efficacy for BRAF V600E-mutated ATC (12,
13, 14), which accounts for around 40–60% of ATC (15, 16,
17), and this combination has become a standard
treatment option for BRAF V600E-mutated ATC.
Furthermore, other novel treatment options such as
immune checkpoint inhibitors (ICIs) have also shown
promising results (11, 18, 19). Thanks to recent
advances in these novel therapeutic options, the
prognosis of ATC patients appears to be improving year
by year (1). Here, this review focuses on current evidence
and future perspectives of anticancer drug therapy
for ATC.

Anticancer treatment options for ATC

Cytotoxic agents

Although several prospective clinical trials for patients
with ATC have been conducted, the efficacy of cytotoxic
chemotherapy for ATC is limited (Table 1). Agents
investigated to date include cytotoxic agents such as
doxorubicin, taxanes and their combination with
platinum agents (20, 21, 22, 23, 24, 25). Although most
of these agents showed only a modest response of short
duration, paclitaxel and doxorubicin are possible
treatment options for ATC patients without driver gene
alterations such as BRAF V600E, NTRK fusion and RET
fusion (12, 13, 14, 26, 27).

Molecular targeting agents

Vascular endothelial growth factor (VEGF) and its
receptor (VEGF receptor; VEGF-R) play an important
role in tumor growth and metastasis. VEGF-R is known
to be overexpressed in ATC and VEGF-R inhibitors
showed significant tumor growth inhibition in
preclinical models (28). In clinical trials, several
molecular targeting agents have been investigated for
patients with ATC (Table 2) (29, 30, 31, 32, 33, 34).
Among them, lenvatinib showed the most promising
results, with a response rate of 24% in the initial report

of a Japanese phase II trial. This lead to the approval of
lenvatinib for ATC in Japan (32). However, subsequent
phase II trials of lenvatinib for ATC from the United States
and Japan showed disappointing results (33, 34). The
reason why initial excitement over lenvatinib
monotherapy diminished in subsequent clinical trials is
uncertain. However, a French group reported that the
differences in disease aggressiveness and response to
lenvatinib might be related to the mixed pathology of
ATC, including poorly differentiated or differentiated
components (35). Another approach used VEGF-R
inhibitors to enhance the efficacy of
chemoradiotherapy for ATC. NRG/RTOG 0912 was a
double-blinded randomized phase II trial (n = 71) to
analyze the additional effects of pazopanib, a potent
VEGF-R inhibitor, in chemoradiotherapy with
paclitaxel. Although no significant additional effect of
pazopanib was demonstrated, the treatment
combination appeared to be feasible and safe (36).

With regard to the genomic landscape of ATC, previous
reports have frequently described genomic alterations in
TP53, TERT, BRAF, NRAS and PIK3CA among others
(17, 37). Of these, BRAF V600E is a well-known driver
gene alteration, which is found in 40–60% of ATC patients
(15, 16, 17). In the phase II ROAR basket study, dabrafenib
plus trametinib, namely combination therapy with a
BRAF inhibitor and MEK inhibitor, showed very
encouraging efficacy, with an overall response rate
(ORR) of 56%, but with a relatively short median
progression-free survival of 6.7 months and median OS
of 14.5 months for patients with unresectable or
metastatic BRAF V600E-mutated ATC (n = 36) (12).
Furthermore, a Japanese phase II trial of encorafenib
plus binimetinib, another combination therapy with a
BRAF inhibitor and MEK inhibitor, showed promising
efficacy, with an ORR of 55% (differentiated thyroid
cancer (DTC) 47% (n = 17), ATC 80% (n = 5)) (14). These
reproducible results support the further use of BRAF/MEK
inhibitors for BRAF V600E-mutated ATC. The FDA (Food
and Drug Administration) approved dabrafenib plus
trametinib not only for BRAF V600E-mutated ATC
patients but also for BRAF V600E-mutated DTC patients
with no satisfactory treatment options. In addition, the
Japanese PMDA (Pharmaceuticals and Medical Devices
Agency) approved encorafenib plus binimetinib not only

Table 1 Prospective studies of cytotoxic chemotherapy for ATC (20, 21, 22, 24, 25).

Treatment regimen n Response rate PFS

Doxorubicin 41 17% -
Doxorubicin + cisplatin 43 26% -
Docetaxel 7 14% 6 weeks
Weekly paclitaxel 56 21% 1.6 months
Paclitaxel 96h 19 53% -
Paclitaxel + carboplatin 25 16% 3.1 months
Paclitaxel + carboplatin + fosbretabulin 55 20% 3.2 months

n, number of patients; PFS, progression-free survival; ATC, anaplastic thyroid cancer.
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for BRAF V600E-mutated ATC patients but also for BRAF
V600E-mutated DTC patients who were refractory to
previous treatment options. Although the incidence of
NTRK fusion and RET fusion in ATC is very low, ATC
patients harboring NTRK fusion or RET fusion showed
a response to a TRK inhibitor or RET inhibitor (26, 27).
Since BRAF V600E mutation is the most prevalent gene
alteration in ATC, immediate detection of BRAF V600E
mutation is crucial for the management of ATC.
Immunohistochemistry (IHC) of BRAF V600E is reliable,
fast and cheap. A meta-analysis reported a pooled
sensitivity of 96.8% and pooled specificity of 86.3%. A
negative test largely excludes the mutation (38), and IHC
test is useful for confirmation in clinical practice. Another
useful non-tissue-based gene testing is liquid biopsy,
which collects circulating tumor DNA to detect
mutations such as BRAF-V600E. Liquid biopsy is a
faster method than tissue-based mutation assay. A
report from the MD Anderson Cancer Center (MDACC)
showed that BRAF V600E-mutated cell-free DNA was
highly concordant with the mutation detected with
tissue-based assay at over 90% (39). Therefore,
immediate submission to genetic testing to explore
driver gene alterations is essential to identifying
treatment options for this extremely aggressive
malignancy. In fact, all published guidelines
recommend rapid evaluation of patients with ATC at a
high-volume center with expertise in treating ATC
because of its extremely aggressive nature (40, 41, 42).
For example, the Facilitating ATC Treatment (FAST)
program established at MDACC decreased the access
time and the number of successful referrals for ATC
increased. The team also recommended the rapid
identification of BRAF V600E-mutated ATC and the
timely initiation of treatment for ATC (43, 44).

Immune checkpoint inhibitors

ICIs such as anti-programmed death-1 (PD-1) antibodies
(Abs) and anti-programmed death ligand 1 (PD-L1) Abs
have been approved for various malignancies. There
have been a few clinical trial results of ICIs for patient
with advanced TC. The phase Ib KEYNOTE-028 trial
assessed the safety and efficacy of pembrolizumab for
patients with PD-L1-positive advanced DTC.
Pembrolizumab showed a modest response, with an
ORR of 9% (45). Another phase II trial, KEYNOTE-158,
reported the result in a DTC cohort (n = 103). In this
trial, pembrolizumab also showed a modest response,
with an ORR of 7%, and the response did not differ by
PD-L1 positivity (ORR of PD-L1-positive 9%, PD-L1-
negative 6%). However, the median duration of
response was 18.4 months. Therefore, it is essential to
find an optimal biomarker for ICIs (46). On the other
hand, ATC appeared to be more responsive to ICIs than
DTC. Indeed, spartalizumab, one of the anti-PD-1 Abs, was
investigated for its efficacy and safety in a phase I/II trial
in patients with unresectable or metastatic ATC.
Spartalizumab showed encouraging results, with an
ORR of 19% (PD-L1-positive; 29%, PD-L1-negative; 0%),
irrespective of BRAF mutation status (19). One possible
explanation for the better efficacy of anti-PD-1 Abs in ATC
patients is that the TIME of ATC may be suitable for
immune checkpoint inhibition. For example, CXCL13-
positive T lymphocytes were enriched in ATC and
might promote the development of early tertiary
lymphoid structures in TIME, which is reported to play
an important role in antitumor immune response (47, 48).
A second possible explanation for the better efficacy of
ICIs in ATC is that tumor mutational burden (TMB) is
higher in ATC than in poorly differentiated thyroid cancer
(PDTC), given that TMB is a biomarker for the efficacy of

Table 2 Molecular targeting agents for ATC (12, 13, 14, 26, 27, 29, 30, 31, 32, 33, 34, 52).

Treatment regimen n Response rate MST Note

Imatinib 11 25% 45% (6 months)
Pazopanib 15 0% 3.7 months
Sorafenib 20 10% 3.9 months
Lenvatinib 17 24% 10.6 months
Lenvatinib 28 3% 3.2 months
Lenvatinib 42 12% 12% (12 months)
Dabrafenib/trametinib 36 56% 14.5 months BRAF V600E+
Encorafenib/binimetinib
ATC 5 80% (4/5) NR BRAF V600E+
Total 22

Vemurafenib/cobimetinib + atezolizumab
Cohort 1 19 50% 43.2 months BRAF V600E+
Total 43

Larotrectinib
ATC 7 29% (2/7) NE NTRK fusion+
Total 29

Selpercatinib
ATC 2 50% (1/2) NE RET fusion+
Total 19

n, number of patients; MST, median survival time; NR, not reached; NE, not evaluable; ATC, anaplastic thyroid cancer.
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ICIs (37, 49). A third possible explanation for the better
efficacy of ICIs in ATC is that PD-L1 expression in tumor
cells, which is a well-known biomarker for ICIs, is
reportedly positive in 65–81% of ATC patients (19, 50,
51). Another attractive therapeutic approach is the
combination of anti-PD-1 Abs with molecular targeting
agents. In a retrospective analysis from MD Anderson
Cancer Center (MDACC), 12 patients who were refractory
to tyrosine kinase inhibitors (TKIs: lenvatinib, dabrafenib
plus trametinib and trametinib alone) received a
combination of pembrolizumab plus TKIs. Among
them, five patients showed an objective response to the
combination of TKIs with pembrolizumab (18).
Furthermore, another retrospective study from MDACC
(n = 71), which compared the dabrafenib plus trametinib
with pembrolizumab and dabrafenib plus trametinib for
BRAF V600E-mutated ATC, reported that triple
combination therapy showed the most promising
efficacy, with an ORR of 73% and OS of 17 months. In
total, 23 patients received surgical resection after the
triple combination and 11 of 22 patients (50%) with
available pathological results showed a pathological
complete response (11). Another phase II trial by
MDACC of vemurafenib plus cobimetinib with PD-L1
antibody of atezolizumab showed an ORR of 50% and
OS of 43.2months in a cohort of BRAFV600E-mutated ATC
patients (n = 19) (52). A phase II trial of neoadjuvant
pembrolizumab and dabrafenib plus trametinib for
patients with BRAF V600E-mutated ATC is nearing
completion (NCT04675710).

Ongoing clinical trials for novel
treatment strategy for ATC
As mentioned above, anti-PD-1 Abs plus molecular
targeting agents are now being investigated (Table 3).
In addition to combination with BRAF/MEK inhibitors,

combination therapy of anti-PD-1/PD-L1 Abs with VEGF
pathway inhibitors appears promising, given previous
findings of a synergistic effect and significant
improvement in treatment outcomes in randomized-
clinical trials for renal cell carcinoma, hepatocellular
carcinoma and endometrial carcinoma (53, 54, 55).
Although the peer-reviewed results have yet to be
published, a phase II trial of ATLEP investigating the
combination of lenvatinib and pembrolizumab for
anaplastic and PDTC was reported at European Society
of Medical Oncology (ESMO) 2022, and the combination
showed a promising efficacy, with an ORR of 52% for ATC
and 75% for PDTC (56). Other phase II trials of lenvatinib
plus anti-PD-1 Abs for unresectable or metastatic ATC are
now underway (Table 3).

Thanks to the BRAF/MEK inhibitors, the prognosis of
BRAF V600E-mutated ATC has improved. However,
unmet needs remain for ATC patients with BRAF V600E
mutation refractory to BRAF/MEK inhibitors and with
RAS mutation. Regarding resistance against BRAF/MEK
inhibition, pan-RAF inhibitors are now under extensive
investigation. Currently approved BRAF inhibitors are
potent against class I BRAF V600 mutants, which
function as monomers. However, a possible mechanism
of acquired resistance is new genetic alterations that
induce BRAF dimerization. PF-07799933 is a novel pan-
BRAF inhibitor which shows antitumor activity against
BRAF V600- and non-V600-mutant cancers preclinically
and in treatment refractory patients, including TC
patients (57). RAS mutation is a frequent gene
alteration in ATC and other cancer types, including
lung cancer, colorectal cancer and pancreatic cancer.
Its prevalence in ATC is around 20–25% and the
frequency of the isoforms of RAS mutation are 14–18%
in NRAS, 3–6% in HRAS and 4–6% in KRAS (17, 58). The
prognosis of RAS-mutated ATC is extremely poor, and no
effective therapeutic option for this population is

Table 3 Ongoing clinical trials for unresectable or metastatic ATC.

NCT number Patient Treatment Phase n Primary endpoint

NCT06374602 ATC Pembrolizumab + lenvatinib II 20 ORR
NCT04171622 ATC Pembrolizumab + lenvatinib II 25 OS
NCT05696548 ATC Nivolumab + lenvatinib II 51 ORR
NCT05119296 ATC Pembrolizumab II 20 ORR
NCT04238624 BRAF-mutated ATC Cemiplimab + dabrafenib/trametinib II 15 ORR
NCT05102292 BRAF-mutated ATC HLX208, a BRAF inhibitor I/II 25 ORR
NCT03085056 ATC Trametinib + paclitaxel I 13 PFS
NCT04552769 ATC Abemaciclib II 17 ORR
NCT06235216
Cohort A DTC Sacituzumab govitecan II 21 ORR
Cohort B ATC 21

NCT06007924 RAIR-DTC, ATC Avutometinib + defactinib II 30 ORR
NCT04420754 PDTC and ATC AIC100 CAR-T (ICAM-1-directed) I 70 AEs
NCT03449108 OC, TNBC and ATC LN-145 or LN-145-S1 (TIL) II 80 ORR

DTC, differentiated thyroid cancer; RAIR, radioactive iodine refractory; PDTC, poorly differentiated thyroid cancer; OC, ovarian cancer; TNBC, triple negative
breast cancer; TIL, tumor infiltrative lymphocyte; ORR, objective response rate; PFS, progression-free survival; OS, overall survival; AEs, adverse events; ATC,
anaplastic thyroid cancer.
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currently available. Although RAS-activating mutation is
identified as a primary driver of oncogenesis in many
cancer types,RASmutation has long been an undruggable
target. However, sotorasib and adagrasib, which are
KRAS G12C inhibitors, initially showed efficacy in non-
small cell lung cancer with KRAS G12C mutation (59, 60).
These clinically available KRAS G12C inhibitors are
inactive GDP-bound mutant KRAS (so-called KRAS-off
inhibitors) since the development of GTP-competitive
RAS inhibitors were unfeasible due to high GTP-binding
affinity (61). Furthermore, most of the affected tumors
develop resistance to these KRAS-off inhibitors by the
reactivation of RAS pathway. However, RAS-on
inhibitors, which can inhibit all three active GTP-bound
isoforms, are now under investigation in clinical trials
and are expected to overcome RAS-related resistance
mechanisms (Fig. 1). Table 4 shows ongoing clinical
trials RAS/RAF-mutated solid tumors, including TC.

Antibody drug conjugates (ADCs) are composed of three
key elements: a monoclonal antibody which binds to
target antigen; a covalent linker to ensure that the
payload is not prematurely released in the blood but
rather within a tumor cell; and a cytotoxic payload that
induces tumor cell apoptosis (62). ADCs have shown

promise in other cancer types including breast cancer,
gastric cancer and urothelial cancer (63, 64, 65, 66, 67, 68,
69, 70). Recently, ADCs have been under extensive
development for many cancer types including TC (62).
ADC is now an essential treatment strategy and
combination with ICIs has shown a synergistic effect on
immunogenic cell death and improved survival in
urothelial carcinoma (62, 71). Regarding ATC, the TROP-
2 (trophoblast cell-surface antigen 2)-directed ADC
sacituzumab govitecan is now under investigation for
patients with both previously treated DTC and ATC
(NCT06235216). Further supporting the development of
TROP-2-directed ADC in ATC, TROP-2 is expressed in
50–65% of ATC and TROP-2 overexpression is suggested
to be associated with BRAF V600E mutation and
aggressive behavior in papillary TC (72, 73, 74).

Adoptive cell therapies such as chimeric antigen receptor
T cell therapy (CAR-T) utilizes engineered T cells to target
specific antigens such as CD19 or B-cell maturation
antigen (BCMA). This treatment has demonstrated high
efficacy and gained approval for hematological
malignancies (75, 76, 77). However, the application of
adoptive cell therapy – including CAR-T therapy – to
solid malignancies has not met the expectations raised
in hematological malignancies and many challenges in
the development of CAR-T therapy for solid malignancies
remain. Nevertheless, CAR-T therapy is now under
development for patients with DTC who are refractory
to standard treatment and for patients with ATC. For
example, ICAM-1 is a member of the immunoglobulin
superfamily, which is known to play a role in the
mediation of cell–cell interactions. ICAM-1 expression is
highly correlated with adverse prognostic outcomes in TC
patients. Furthermore, ICAM-1-directed CAR-T cells have
shown significant therapeutic efficacy in animal models
bearing ATC patient-specific tumors (78). Another
approach to CAR-T therapy for TC is the targeting of
TSH receptor. TSH receptor is highly expressed on
papillary TC, and a preclinical study of TSH-R-targeted
CAR-T therapy has shown therapeutic efficacy in vivo (79).
AIC100 is an ICAM-1-directed CAR-T cell and a phase I trial
of AIC100 for poorly differentiated TC and ATC is now
underway (NCT05530754).

Figure 1

Signal pathway in RAS/RAF-mutated TC. RTK, receptor tyrosine kinase.

Table 4 Ongoing trials for RAS/RAF-mutated solid tumors, including TC.

NCT number Treatment Mode of action Subject
Study
phase

NCT05907304 Naporafenib plus trametinib Pan RAF inhibitor plus MEK inhibitor RAS Q61X-mutated solid tumor 1
NCT06270082 IK-595 Dual MEK/RAF inhibitor RAS- or RAF-mutated solid tumor 1
NCT05585320 IMM-1-104 MEK1/2 inhibitor RAS-mutated solid tumor 1/2
NCT06299839 PAS-004 MEK1/2 inhibitor RAS/NF1/RAF-mutated solid tumor 1
NCT05379985 RMC-6236 Pan RAS (ON) inhibitor KRAS G12X- and RAS-mutated solid tumor 1
NCT06096974 YL-17231 Pan RAS inhibitor KRAS/HRAS/NRAS-mutated solid tumor 1/2

TC, thyroid cancer.
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Conclusion and future perspectives
ATC is one of the rarest andmost aggressivemalignancies
and its prognosis remains dismal. Nevertheless, many
clinical trials for ATC are ongoing and treatment
outcomes are gradually improving year by year. Most
clinical trials, to date, have been small, however, with
fewer than 100 patients. Further efforts to develop novel
treatments for this malignancy await the development of
substantial infrastructure for international collaborative
investigation.
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