神戸大学附属図書館デジタルアーカイブ
入力補助
English
カテゴリ
学内刊行物
ランキング
アクセスランキング
ダウンロードランキング
https://hdl.handle.net/20.500.14094/0100495620
このアイテムのアクセス数:
127
件
(
2025-08-29
05:27 集計
)
閲覧可能ファイル
ファイル
フォーマット
サイズ
閲覧回数
説明
0100495620 (fulltext)
pdf
2.27 MB
45
メタデータ
ファイル出力
メタデータID
0100495620
アクセス権
open access
出版タイプ
Version of Record
タイトル
DialFill: Utilizing Dialogue Filling to Integrate Retrieved Knowledge in Responses
著者
Xue, Qiang ; Takiguchi, Tetsuya ; Ariki, Yasuo
著者名
Xue, Qiang
著者ID
A1279
研究者ID
1000040397815
ORCID
0000-0001-5005-7679
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail.html?systemId=b3ec2a1710d8267b520e17560c007669
著者名
Takiguchi, Tetsuya
滝口, 哲也
タキグチ, テツヤ
所属機関名
都市安全研究センター
著者ID
A0260
研究者ID
1000010135519
KUID
https://kuid-rm-web.ofc.kobe-u.ac.jp/search/detail.html?systemId=09a784b8ffbc912c520e17560c007669
著者名
Ariki, Yasuo
有木, 康雄
アリキ, ヤスオ
所属機関名
都市安全研究センター
言語
English (英語)
収録物名
IEEE Access
巻(号)
13
ページ
61123-61135
出版者
Institute of Electrical and Electronics Engineers (IEEE)
刊行日
2025-03-28
公開日
2025-04-21
抄録
In knowledge-based dialogue systems, generating responses that are both contextually relevant and factually accurate requires efficient and precise integration of external knowledge. Pre-trained language models (LM-based) leverage extensive general knowledge but often struggle with accuracy in domain-specific or time-sensitive contexts due to their reliance on implicit knowledge. Conversely, knowledge-based approaches (KB-based) retrieve relevant information from external sources before response generation, yet they frequently fail to incorporate the retrieved content effectively, leading to responses that may omit critical information. To address these limitations, we propose DialFill, a novel response generation framework that reframes dialogue generation as a Dialogue Filling task. DialFill constructs an intermediate masked response that explicitly integrates the retrieved knowledge, subsequently predicting the missing components to ensure the final response incorporates all relevant information seamlessly. We validate DialFill on both unstructured (Wizard-of-Wikipedia) and structured (OpenDialKG) knowledge benchmarks, demonstrating competitive performance against state-of-the-art methods. In large language model experiments, DialFill significantly reduces the rate of retrieved content that is ignored, decreasing the number of ignored knowledge instances from 17.8% to 0.2%. These results highlight DialFill’s potential to enhance the accuracy, reliability, and adaptability of knowledge-based dialogue systems, marking a significant advancement in the field.
キーワード
Knowledge-based dialogue systems
external knowledge integration
dialogue filling
カテゴリ
都市安全研究センター
学術雑誌論文
権利
© 2025 The Authors.
This work is licensed under a Creative Commons Attribution 4.0 License.
関連情報
DOI
https://doi.org/10.1109/ACCESS.2025.3555650
詳細を表示
資源タイプ
journal article
eISSN
2169-3536
OPACで所蔵を検索
CiNiiで学外所蔵を検索
ホームへ戻る