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ABSTRACT In knowledge-based dialogue systems, generating responses that are both contextually
relevant and factually accurate requires efficient and precise integration of external knowledge. Pre-trained
language models (LM-based) leverage extensive general knowledge but often struggle with accuracy
in domain-specific or time-sensitive contexts due to their reliance on implicit knowledge. Conversely,
knowledge-based approaches (KB-based) retrieve relevant information from external sources before
response generation, yet they frequently fail to incorporate the retrieved content effectively, leading to
responses that may omit critical information. To address these limitations, we propose DialFill, a novel
response generation framework that reframes dialogue generation as a Dialogue Filling task. DialFill
constructs an intermediate masked response that explicitly integrates the retrieved knowledge, subsequently
predicting the missing components to ensure the final response incorporates all relevant information
seamlessly. We validate DialFill on both unstructured (Wizard-of-Wikipedia) and structured (OpenDialKG)
knowledge benchmarks, demonstrating competitive performance against state-of-the-art methods. In large
language model experiments, DialFill significantly reduces the rate of retrieved content that is ignored,
decreasing the number of ignored knowledge instances from 17.8% to 0.2%. These results highlight
DialFill’s potential to enhance the accuracy, reliability, and adaptability of knowledge-based dialogue
systems, marking a significant advancement in the field.

INDEX TERMS Knowledge-based dialogue systems, external knowledge integration, dialogue filling.

I. INTRODUCTION
Building open-domain dialogue systems that generate
human-like, factually accurate, and contextually relevant
responses remains a central challenge in natural language
processing [1], [2]. Recent advancements in large language
models (LLMs) such as OpenAI’s GPT-4 [3] and Meta’s
Llama3 [4] have demonstrated remarkable capabilities in
generating coherent and fluent dialogue. These models
encode extensive general knowledge within their parame-
ters, enabling them to respond effectively without external
retrieval mechanisms. However, they frequently produce
hallucinations—responses that appear plausible but are
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factually incorrect or irrelevant—due to the static and limited
scope of their training data [5], [6]. This limitation becomes
particularly pronounced in domains requiring up-to-date or
specialized knowledge, where their responses often lack
necessary accuracy or relevance.

Knowledge-based (KB) dialogue systems have emerged as
a promising approach to address these issues. By retrieving
and integrating external knowledge from sources such
as structured knowledge graphs (e.g. OpenDialKG [7])
or unstructured corpora (e.g. Wikipedia [8]), KB-based
systems aim to generate more informative and grounded
responses [8], [9]. Despite their strengths, these systems face
challenges in seamlessly incorporating retrieved knowledge
into dialogue responses. Often, KB-based methods overlook
critical retrieved details or fail to align them effectively
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FIGURE 1. The overall flow of DialFill system.

with dialogue context, resulting in suboptimal coherence and
informativeness [5], [10].

To address these challenges, we propose DialFill, a Dia-
logue Filling (DF-based) framework that extends traditional
KB-based dialogue systems. DialFill reframes response
generation into a three-step process: (i) extracting rele-
vant keywords from retrieved knowledge (e.g. ‘‘Richard
Howard’’); (ii) generating a masked response where only the
extracted keyword remains unmasked (e.g. ‘‘maskmaskmask
Richard Howard mask mask mask’’); and (iii) completing
the masked response to produce a coherent, knowledge-
integrated output (e.g. ‘‘Yes, he did and it won the Richard
Howard’’). This process, as illustrated in Figure 1, ensures the
effective incorporation of external knowledge while seam-
lessly aligning it with the dialogue context. As an extension
of KB-based methods, DialFill builds upon their strengths
while addressing limitations in knowledge utilization by
integrating retrieved information in a structured and context-
aware manner.

We evaluate DialFill on two benchmark datasets: Wizard-
of-Wikipedia, which requires unstructured knowledge inte-
gration, and OpenDialKG, which involves structured knowl-
edge graph grounding [7], [8]. DialFill achieves state-
of-the-art results across various metrics, outperforming
both LM-based and KB-based baselines. Furthermore, our
framework reduces the rate of ignored retrieved knowledge,
demonstrating its effectiveness in leveraging external infor-
mation for dialogue generation.

Our contributions are summarized as follows:

(i) We propose DialFill, a Dialogue Filling framework
that extends KB-based dialogue systems by introducing
masked response generation and completion, facilitat-
ing seamless integration of retrieved knowledge into
responses.

(ii) We propose a unified training approach that combines
Keyword Prediction,Masked Response Generation, and
Dialogue Filling tasks, enhancing the alignment of
retrieved knowledge with dialogue context.

(iii) We conduct extensive experiments on unstructured
(Wizard-of-Wikipedia) and structured (OpenDialKG)
datasets, demonstrating that DialFill outperforms con-
ventional LM-based and KB-based methods, achieving

state-of-the-art performance in response quality and
knowledge integration.

(iv) We introduce an optimized inference mechanism,
including keyword prediction and mask search strate-
gies, that ensures robust and scalable performance
across diverse knowledge formats and dialogue settings.

II. RELATED WORK
A. LANGUAGE MODEL-BASED DIALOGUE SYSTEMS
Recent advancements in large language models (LMs)
have revolutionized generation-based dialogue systems,
showcasing impressive capabilities in producing human-like
responses. Notable models like OpenAI’s GPT-4 [3] and
Facebook’s Llama3 [4] represent the latest generation of
transformer-based models pre-trained on extensive datasets,
allowing them to generate fluent and contextually relevant
dialogue without relying on explicit retrieval mechanisms.
Similarly,Meta’s BlenderBot [11] andGoogle’s LaMDA [12]
further refined conversational quality by incorporating spe-
cialized pre-training and fine-tuning techniques that enhance
user engagement and response coherence in open-domain
dialogues.

Despite these advancements, a key challenge remains: LMs
often produce responses with factual inaccuracies, a phe-
nomenon known as ‘‘hallucination’’ [5], [6]. To address this,
MixCL [13] uses contrastive learning to explicitly optimize
the implicit knowledge elicitation process of LMs, effectively
reducing hallucination in conversations. While LMs store
extensive implicit knowledge, they also struggle with up-to-
date or domain-specific knowledge integration due to static
training data [14]. This limitation has prompted research
into strategies such as retrieval-based augmentation [15],
which reinforces factual accuracy by integrating external
information, and exploring contrastive learning approaches
to improve generation robustness [16].

B. KNOWLEDGE-BASED DIALOGUE SYSTEMS
Knowledge-based (KB) dialogue systems aim to address
the limitations of purely generation-based approaches by
integrating external knowledge sources to enhance coher-
ence and factual grounding in responses [8], [9]. KB-
based systems typically retrieve knowledge from structured
sources like knowledge graphs (e.g. Freebase, Wikidata) and
unstructured text corpora (e.g. Wikipedia), using information
retrieval (IR) modules to identify contextually relevant
information [5], [14]. Knowledge selection remains a primary
focus in KB research, with recent works proposing advanced
retrieval techniques such as GATE [17], a state-of-the-art
knowledge selection method. GATE organizes knowledge
selection into distinct phases—coupled with, after, and
before generation—highlighting the advantages of selecting
knowledge in advance to ease the burden on downstream
response generation models, particularly large language
models (LLMs).

While KB-based systems excel at grounding responses in
factual content, they also face challenges, including retrieval
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FIGURE 2. Comparison of three types of dialogue systems. (a) LM-based
dialogue systems directly generate response. b) KB-based dialogue
systems retrieves and directly incorporates knowledge into response
generation. c) DF-based dialogue systems retrieves knowledge and fills
masked responses for knowledge integration.

errors, inefficiency, and the integration of knowledge at
multiple granularities [10], [18], [19]. Errors in retrieved
content or the inability to seamlessly incorporate multiple
sources of knowledge can result in responses that are
verbose or lack critical information. Knowledge pre-selection
methods, such as those explored in [20] and [21], address
this issue by preparing relevant knowledge before response
generation, enhancing response coherence and factuality.
Our proposed framework, DialFill, extends this direction by
rethinking response generation as a dynamic infilling task.

C. TEXT INFILLING
Text infilling is a natural language generation technique that
involves predicting missing portions of text within a sentence
or paragraph. This approach has been widely used in data
augmentation, text summarization, and text editing tasks [22].
Pre-trained languagemodels like BERT [23] and T5 [24] have
demonstrated strong performance in text infilling scenarios,
achieving contextual coherence in sentence completion and
gap-filling tasks [25]. However, these models can sometimes
generate generic or repetitive content and are sensitive to the
positioning of masked tokens, which may limit coherence in
complex dialogue contexts [22].
In our work, we adapt text infilling to the novel task

of Dialogue Filling, where the goal is not simply to fill
gaps in text but to dynamically generate responses that
incorporate external knowledge relevant to the context.
Unlike traditional text infilling, Dialogue Filling selects
and integrates knowledge pre-retrieved from structured or
unstructured sources, improving both the coherence and
informativeness of responses. DialFill achieves this by
coupling keyword prediction, masked response generation,
and response completion in a unified multi-task framework,
allowing for efficient and knowledge-base dialogue genera-
tion.

III. PROBLEM FORMULATION
Let x denote the dialogue context, y the target response,
and k the ground-truth knowledge used during training.
As illustrated in Fig. 2, given a knowledge corpus K, the

dialogue agent aims to predict an informative response y
based on the context x, effectively incorporating relevant
knowledge from K. During the inference stage, the agent
retrieves knowledge r from K to assist in generating the
response.

A. LM-BASED METHODS
In the language-based (LM-based) dialogue systems, the
model is trained on a dataset that includes knowledge
annotations during the training phase. However, during the
inference stage, as depicted in Fig. 2 (a), no external
knowledge k is provided as input. Instead, the trained model
generates responses based only on the dialogue context x.

B. KB-BASED METHODS
Traditional knowledge-based (KB-based) dialogue sys-
tems [8] follow a two-step process. As depicted in Fig. 2
(b), relevant knowledge is first retrieved from the knowledge
corpus K. In the second step, this retrieved knowledge is
incorporated directly into the response generation process,
with the response generator using this information to produce
a coherent and contextually relevant response.

C. DF-BASED METHODS
We introduce the Dialogue Filling based (DF-based) dialogue
systems as an extension of the KB-based. As illustrated
in Fig. 2 (c), the relevant knowledge is first retrieved
from K. Next, a masked response is generated, where
only the retrieved knowledge (e.g. ‘Harry Potter’) remains
unmasked, while the rest of the sentence is fully masked
(e.g. ‘mask mask mask Harry Potter mask mask mask’). The
model then completes the masked response by predicting
the missing components, creating a coherent, knowledge-
integrated output.

IV. PRELIMINARIES
We propose a DF-based dialogue agent for open-domain
knowledge-based dialogue. The model, denoted pθ (y|x),
is based on a transformer-based language model architecture.
It is initially trained on dialogue data, allowing it to generate
informative responses given the input context x and the
knowledge K during inference.

A. TRAINING STAGE
In the training stage, the model generates a response y
given context x, following an explicit knowledge retrieval
step [18], [26]. Amaximum likelihood estimation (MLE) loss
is employed to train the model using paired (x, y) dialogue
data in a teacher-forcing setup [18], [26]:

LLM = − log pθ (y|x) = −
|y|∑
t=1

log pθ (yt |y<t , x). (1)

In addition, our proposed model employs a multi-task
learning approach, combining this MLE loss with other
objectives to improve response quality.
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B. INFERENCE STAGE
During inference, the model generates responses by feeding
in context x and retrieved knowledge r , employing a greedy
decoding strategy to predict the most probable tokens until an
end-of-sequence (eos) token is reached.

V. DIALFILL
In this section, we present DialFill’s training and inference
stages. We outline each subcomponent and provide the rele-
vant mathematical formulations to facilitate understanding of
the model’s learning objectives and operational framework.

A. TRAINING STAGE
The training phase of DialFill includes multiple tasks
designed to predict appropriate keywords, generate masked
responses, and ultimately fill in masked dialogue responses.

1) TASK 1: KEYWORD PREDICTION TASK
The goal of this task is to generate keywords relevant to the
response context. In our method, keywords are entities within
the response. As illustrated in Figure 3-Task 1, We use a
Named Entity Recognition (NER) model1 to extract entities
within the target response, and randomly select one as the
keyword kw. For responses lacking entities, we select a
random token sequence as kw. This task employs an MLE
loss over dialogue context x and ground-truth knowledge k:

LKW = −

|kw|∑
t=1

log pθ (kwt |kw<t , k, x). (2)

2) TASK 2: MASKED RESPONSE PREDICTION TASK
This task aims to create a masked response of appropriate
length based on kw. As illustrated in Figure 3-Task 2, the
selected keyword kw remains unmasked, while the rest of the
corresponding response y is masked. The masked response
mr is then used as a target for training, with an MLE
loss applied using inputs x, ground-truth knowledge k and
keyword kw:

LMR = −

|mr|∑
t=1

log pθ (mrt |mr<t , k, x, kw). (3)

3) TASK 3: DIALOGUE FILLING TASK
The final task predicts the masked portions of the response
to generate a complete, knowledge-integrated response.
As shown in Figure 3-Task 3, the model is trained using the
ground-truth response y as a label, with k , x, kw, and mr as
inputs. The MLE loss for this task is:

LDF = −

|y|∑
t=1

log pθ (yt |y<t , k, x, kw,mr). (4)

1https://spacy.io/api/entityrecognizer/

4) OPTIMIZATION
During training, the final training objective is defined as:

J (θ ) = α1LLM + α2(LKW + LMR + LDF), (5)

where four losses are optimized jointly and α1, α2 denote the
weights of the four losses, respectively.

B. INFERENCE STAGE
The inference stage in DialFill consists of three steps:
Keyword Generation, Masked Response Generation, and
Dialogue Filling.

1) STEP 1: KEYWORD GENERATION
In this step, the model identifies a keyword k relevant to the
dialogue context x and retrieved knowledge r . Here, r refers
to information retrieved by a knowledge retrieval model,
which can be structured or unstructured, depending on the
source and format of the data. The approach for keyword
identification adapts accordingly.
• Structured Knowledge:
For structured knowledge (e.g. knowledge triples), the
system directly uses the target entity in the knowledge
tuple as the keyword kw. For instance, given a tuple
such as (Les Fleurs du mal, written by, Richard Howard),
the keyword k is identified as ‘‘Richard Howard.’’ This
straightforward selection process bypasses additional key-
word prediction methods.

• Unstructured Knowledge:
For unstructured knowledge (e.g. free-form text), themodel
attempts to detect named entities using NER model.
– If named entities are detected, the system selects one

entity at random as the keyword kw.
– If no entities are detected, the model relies on keyword
prediction based on the dialogue context x and retrieved
knowledge r .

In Keyword Prediction (Figure 4-P), the model generates
a keyword kw by analyzing the dialogue context x and
retrieved knowledge r , following Equation 2 from the
training stage, which was used to predict keywords by
maximizing their relevance in the context of the response.

2) STEP 2: MASKED RESPONSE GENERATION
After determining the keyword kw, the model generates a
masked response mr that surrounds kw with a sequence of
mask tokens, setting up the context for dialogue filling.
• Mask Append (Figure 4-A):
If the model has not been explicitly trained to generate
masked responses (i.e., it has not been trained using
Equation 3 for masked response prediction), it cannot
directly predict where to place the mask tokens accurately.
In such cases, the system appends a random number of
mask tokens on each side of the keyword kw, constrained
by the hyperparameters Lmin and Lmax. This approach
approximates the masked response m, albeit without
refined placement.
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FIGURE 3. Overview of the training stage of DialFill. DialFill consists of three tasks: (i) Keyword Prediction Task, where the model(DialFill)
extracts key information relevant to the response; (ii) Masked Response Prediction, where the model(DialFill) generates a partially masked
version of the response based on the extracted keyword; and (iii) Dialogue Filling, where the model(DialFill) completes the masked response
to produce the final coherent response.

FIGURE 4. Overview of the inference stage of DialFill. The stage consists of three steps: (i) Keyword Generation, where relevant keywords
are identified from the retrieved knowledge (E) or predicted based on the dialogue context (P); (ii) Masked Response Generation, which
involves placing mask tokens around the keyword to prepare for response generation, using either a random append method (A) or an
optimized mask search strategy (S); and (iii) Dialogue Filling, where the model completes the masked response to produce a coherent,
knowledge-integrated response.

• Mask Search (Figure 4-S):
For models trained with masked response generation,
the Mask Search Strategy (see Appendix A) is used to
determine the optimal number of mask tokens on each
side of kw. The Mask Search Strategy evaluates the token
generation probabilities to adjust mask length dynamically,
maximizing coherence in the resulting response.
Specifically, the algorithm iteratively increases the length
of the left and right masks, using the model’s probability

predictions to identify the mask lengths that yield the
highest likelihood of a coherent response. This method
optimizes both left and right mask lengths (Lleft and Lright)
to produce a well-formed masked response mr .

3) STEP 3: DIALOGUE FILLING (FIGURE 4-f)
In the final step, the model fills in the masked portions
of mr based on x, r , kw, generating a coherent and
knowledge-integrated response y. This process follows the
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setup from Equation 4, allowing the model to produce a
response y that aligns with the context and incorporates
relevant knowledge.

VI. EXPERIMENTAL SETUP
A. DATASETS
We evaluate our proposed DialFill on two widely used
knowledge-base dialogue datasets: the unstructured knowl-
edge dataset Wizard of Wikipedia (WoW) [8] and the
structured knowledge dataset OpenDialKG [7]. These
datasets encompass diverse conversational scenarios and
knowledge formats, providing a comprehensive basis for
assessing the effectiveness of our approach.

1) WIZARD OF WIKIPEDIA (WoW)
is a dialogue dataset constructed through crowd-sourcing,
where Wikipedia serves as the primary knowledge source.
In WoW, two participants engage as a wizard and an appren-
tice. Thewizard responds by selecting appropriate knowledge
sentences from Wikipedia to inform the conversation. The
test set of WoW is divided into test seen and test unseen
categories, depending on whether the topic appears in the
training set.

2) OpenDialKG
is a dataset comprising open-domain dialogues grounded in
a knowledge graph. Each dialogue turn is associated with
annotated reasoning paths, enabling the use of structured
graph information during conversation. Since OpenDialKG
does not provide an official test split, following previous
work [17], we partition it into seen and unseen categories,
consistent with the methodology used for WoW.

B. EVALUATION METRICS
To comprehensively evaluate our approach, we employ a
suite of metrics that assess both the linguistic quality of the
generated responses and their relevance to the underlying
knowledge. These metrics are categorized into three groups:
Response Quality Metrics, Target Knowledge Relevance
Metrics, and Retrieved Knowledge Relevance Metrics.

1) RESPONSE QUALITY METRICS
Evaluate the linguistic quality and fluency of the generated
responses by comparing them to the ground truth.
• F1 [8]: Calculates the unigram F1 score between the
generated responses and the ground truth, measuring
lexical overlap.

• ROUGE-L (RL) [27]: Measures the longest common sub-
sequence between the generated and reference responses,
capturing structural similarity.

• BLEU-4 (B4) [28]: Evaluates the 4-gram precision of the
generated responses against the ground truth.

• METEOR (MT) [29]: Computes a score based on
unigram matches between the generated responses and the
reference, considering synonyms and stemming.

2) TARGET KNOWLEDGE RELEVANCE METRICS
Assess how well the generated responses align with the
ground-truth knowledge associated with each dialogue turn.
• Knowledge-F1 (KF1) [8]: Calculates the F1 score between
the generated responses and the ground-truth knowledge
sentences, indicating the informativeness of the responses.

• Entity-F1 (EF1): Identifies named entities in both the
generated responses and the ground truth using spaCy,
and computes the F1 score based on matched entities to
evaluate accurate entity usage.

3) RETRIEVED KNOWLEDGE RELEVANCE METRICS
Evaluate the extent to which the retrieved knowledge is
incorporated into the generated responses.
• Retrieved-F1 (RF1) [proposed]: Computes the F1 score
between the knowledge retrieved and the responses gen-
erated, reflecting the integration of retrieved content.

• Zero-Retrieved (ZR) [proposed]: Calculates the propor-
tion of generated responses that have an F1 score of zero
with the retrieved knowledge, indicating the absence of
retrieved knowledge in the responses.
– For WoW: Measures the F1 overlap between the

retrieved knowledge sentences and the generated
responses.

– For OpenDialKG: Since the knowledge is represented as
triples (subject, relation, object), we consider only the
object as the target knowledge for the F1 calculation,
as it is the primary piece of information the dialogue
system should incorporate.

C. BASELINES
We compare DialFill with a variety of baseline methods,
each using their own generation strategy and architecture. For
instance, GATE retrieves knowledge but uses a standard GPT-
2-small fine-tuned on the dataset for generation, whereas
KnowledGPT uses a BERT-based retriever plus GPT-2 with
a reinforcement objective. In contrast, DialFill fine-tunes its
own GPT-2 or Llama3 model under a multi-task paradigm
that includes masked response generation. These baselines
are categorized into Language Model (LM)-based Methods
and Knowledge Base (KB)-based Methods.

1) LM-BASED METHODS
• GPT-2 [26]: Fine-tunes GPT-2-small on dialogue data
without utilizing external knowledge.

• BlenderBot [11]: Pre-trains a Transformer with an
encoder-decoder architecture on Reddit data and fine-tunes
it on knowledge-base dialogue data.

• KnowExpert [18]: Adapts GPT-2-small for open-domain
dialogues using a topic-aware adapter that groups
Wikipedia articles via topic modeling and employs a
mixture-of-adapters architecture.

• MSDP [10]: Utilizes a multi-stage prompting approach,
designing task-specific prompts with instructions and in-
context examples, and leverages Megatron-LM [30] to
generate knowledge and responses in a two-stage process.
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• MixCL [13]: Introduces a mixed contrastive learning
objective to optimize the implicit knowledge elicitation
process in LMs, effectively reducing hallucination and
improving factuality in knowledge-base dialogues.

2) KB-BASED METHODS
• DiffKG [31]: it employs Transformer to generate relation
sequences on KG and generates responses based on
retrieved entities.

• NPH [32]: Reduces hallucinations by retrieving relevant
entities through propagation of a crafted query signal over
a knowledge graph to refine knowledge selection.

• TMN [8]: Combines a Transformer with an external mem-
ory network to select knowledge and generate responses.

• DukeNet [33]: Employs a dual learning scheme to model
both knowledge shift and response generation without
relying on pre-trained language models.

• KnowledGPT [20]: Leverages pre-trained language mod-
els in a KB-based approach, using BERT for knowledge
selection and GPT-2 for response generation, optimized
jointly with reinforcement learning.

• KnowBART: Selects knowledge using RoBERTa and
generates responses using BART-Large.

• GATE [17]: Introduces a generator-agnostic knowledge
selection method that identifies contextually relevant
knowledge prior to response generation, enhancing the
informativeness of responses while alleviating the burden
on subsequent generation models. It utilizes GPT-2-small
as the response generator.

D. PROPOSED METHODS
To evaluate the effectiveness of DialFill and analyze the
impact of its components, we design several variants:

1) BASE MODELS
• DialFillL: A version of DialFill that operates without
external knowledge (L indicates Language Model). It is
trained solely on dialogue context using the multi-task
objective in Equation 5, relying on the model’s parameters
during both training and inference.

• DialFillK: A version of DialFill that incorporates external
knowledge (K indicates Knowledge). During training,
it integrates the target knowledge into the multi-task objec-
tive in Equation 5. During inference, it uses GATE [17],
a state-of-the-art knowledge retrieval model, to retrieve
relevant knowledge, which is combined with the dialogue
context for response generation.

2) DF-BASED METHODS
To further investigate the impact of the multi-task learning
design, we introduce three variants that utilize different
inference strategies:
• DialFillL-PSF: A variant of DialFillL that frames response
generation as a three-step process: (i) predicting keywords
(Figure 2-P), (ii) generating mask tokens around these
keywords (Figure 2-S), and (iii) filling themasked response

to produce the final output (Figure 2-F). Since this model
does not use external knowledge, all steps rely on the
dialogue context and learned model parameters.

• DialFillK-PSF: Similar to DialFillL-PSF but incorporates
external knowledge during both training and inference.
It follows the same three-step process, using the knowledge
retrieved from GATE alongside the dialogue context.

• DF-based methods ensure robustness and scalability:
DialFillK-ESF includes a fallback mechanism that defaults
to DialFillK-PSF when no entities are detected or no
relevant knowledge is retrieved. This design ensures robust
performance even in cases of limited or unavailable
external knowledge. As a result, DialFillK-ESF achieves
comparable or slightly better performance than DialFillK-
PSF across most metrics (e.g. F1 = 23.7 vs. 23.5 on WoW
Test Seen), demonstrating its scalability and effectiveness
across varied inference scenarios.

E. IMPLEMENTATION DETAILS
We implement our models using the HuggingFace Trans-
formers library, using GPT-2-Small [26]2 and Llama3-8B-
Instruct [4]3 as the base architectures. Although Llama3
generally achieves stronger results, we also employ GPT-2
for three main reasons: (i) It is more feasible to run on limited
hardware, (ii) Many prior works on WoW and OpenDialKG
rely on GPT-2-Small or models of similar size, ensuring fair
comparisons, (iii) Larger models illustrate the upper bound of
performance under more generous computational resources.

For GPT-2-Small, we fine-tune the model with a batch size
of 4 and a learning rate of 6 × 10−5 on a single NVIDIA
GeForce RTX 2070 GPU. For Llama3-8B-Instruct, we fine-
tune the model using Low-Rank Adaptation (LoRA) [35],
with a batch size of 4 and a learning rate of 4 × 10−4 on a
single NVIDIAGeForce RTXA6000GPU.Hyperparameters
are selected based on preliminary experiments.

In Equation 5, we set the loss weights at α1 = 0.4 and
α2 = 0.6. Model checkpoints are selected based on
the performance of the validation set evaluated after each
epoch. Following prior work [36], we set the minimum
and maximum mask lengths, Lmin and Lmax, to 5 and 10,
respectively. We employ GATE as the knowledge retrieval
model for both WoW and OpenDialKG datasets due to its
superior performance in knowledge retrieval. During testing,
we use greedy decoding for response generation.

VII. EXPERIMENTAL RESULTS
A. RESPONSE QUALITY EVALUATION
Table 1 compares LM-based, KB-based, and our DF-based
methods on both the WoW and OpenDialKG datasets.
Overall, DF-based methods consistently achieve higher
response quality than their LM-based and KB-based counter-
parts. We note that, while knowledge-grounded approaches
typically outperform language models that rely solely on

2https://huggingface.co/openai-community/gpt2
3https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
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TABLE 1. The evaluation results of response generation on WoW and OpenDialKG datasets. The baseline model results for WoW are reported from [34].
We highlight the results of DialFill that significantly exceed the previous-best methods in boldface (t-test, p < 0.05). We also highlight the best results of
previous KB-based methods and LM-based methods by underlining them, respectively.

parametric knowledge, certain LM-based methods (e.g.,
MixCL) are still able to surpass some KB-based baselines,
indicating that a strongmodel design and training strategy can
compensate for the lack of explicit retrieval. Nevertheless,
by integrating external knowledge into a multi-step Dialogue
Filling procedure, our approach achieves further gains. This
synergy between retrieval and multi-task generation helps
bridge knowledge gaps and yield more coherent, factually
grounded responses. We make the following observations:

• DF-based methods outperform KB-based methods:
DialFillK-ESF achieves an F1 score of 23.7 on WoW
Test Seen and 26.7 on OpenDialKG Test Seen, surpassing
GATE, the best KB-based baseline, by 0.5 and 1.6 points,
respectively. This demonstrates the effectiveness of Dia-
logue Filling in leveraging retrieved knowledge more
efficiently.

• Knowledge significantly improves DF-based models:
DialFillK-PSF achieves an F1 score of 23.5 on WoW Test
Seen, outperforming DialFillL-PSF, which does not use
external knowledge, by 7.6 points (F1 = 15.9). This large
gap highlights the critical role of external knowledge in
generating accurate and informative responses.

• Enhanced inference boosts performance: DialFillK-ESF
outperforms DialFillK-PSF across most metrics, achieving
an F1 score of 23.7 on WoW Test Seen and 22.0 on

Test Unseen, compared to 23.5 and 21.5 for DialFillK-
PSF. The slight improvement validates the effectiveness
of optimized inference strategies, such as mask generation
and entity-based keyword extraction, in generating more
coherent and contextually relevant responses.

• DF-based methods ensure robustness and scalability:
The fallback mechanism in DialFillK-ESF enables robust
performance even when retrieved knowledge is limited or
unavailable, achieving results comparable to DialFillK-PSF
while maintaining flexibility across varied conditions.

B. RETRIEVED KNOWLEDGE RELEVANCE EVALUATION
Table 2 evaluates retrieved knowledge relevance using RF1
and ZR metrics. DF-based methods outperform KB-based
baselines in RF1, indicating superior integration of retrieved
knowledge. For instance, DialFillK-ESF achieves an RF1
of 51.8 on WoW Test Seen, surpassing GATE (45.9).
On OpenDialKG, DialFillK-ESF improves RF1 by 1.9 points
compared to GATE, confirming its enhanced knowledge
integration capabilities.

Interestingly, DialFillK-PSF achieves slightly better ZR
scores than DialFillK-ESF (e.g. 5.8 vs. 6.2 on OpenDialKG
Test Seen). This is likely because DialFillK-PSF always
incorporates some retrieved knowledge due to its simpler
inference strategy. In contrast, DialFillK-ESF’s enhanced
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TABLE 2. Evaluation results with RF1↑ (higher is better) and ZR↓ (lower
is better) metrics to assess knowledge incorporation in generated
responses.

mechanisms, such as fallback strategies, occasionally pri-
oritize fluency or coherence, leading to slightly higher ZR
but better overall RF1 and response quality. These results
highlight that DialFillK-ESF effectively balances knowledge
integration and response coherence.

C. RESULTS IN LLM
Table 3 shows that our DF-based methods significantly
outperform KB-based baselines in both zero-shot and fine-
tuned settings. As before, each KB-based method relies
on its original generator, while DF-based uses a multi-
task generator. We highlight two variants: DialFill-PAF,
which Predicts keywords from the context, and DialFill-
EAF, which Extracts keywords directly from retrieved
knowledge. In zero-shot mode, DialFill-PAF has not learned
to identify the best knowledge-focused keywords and thus
underperformsDialFill-EAF.After fine-tuning, bothmethods
learn to align keywords with retrieved knowledge, reducing
the performance gap significantly. We make the following
observations:
• DF-based methods achieve superior knowledge incorp-
oration: DialFillK-ESF achieves the lowest ZR values,
with 0.2 on Test Seen and 0.3 on Test Unseen in the
fine-tuning setting, indicating nearly all responses integrate
retrieved knowledge. These values are markedly lower than
both GATE and DialFillK-PSF, showing the effectiveness
of the enhanced inference pipeline in our framework.

• LLMs boost DF-based performance across metrics:
DialFillK-ESF achieves the highest F1 (28.3 on Test Seen,
28.0 on Test Unseen) and RF1 (24.0 on Test Seen, 23.6 on
Test Unseen), significantly outperforming GATE (F1 =
27.3, RF1 = 17.3 on Test Seen). These results confirm
the synergy between LLMs and our DF-based framework,
which maximally leverages the generative capacity of large
models.

• DF-based methods ensure robustness even in zero-shot
settings: DialFillK-EAF outperforms all baselines in zero-
shot conditions, achieving an F1 score of 18.7 on Test
Seen compared to GATE’s 12.3. This demonstrates the

robustness of our framework in incorporating knowledge
and generating accurate responses without task-specific
training.

D. ANALYSIS ON KEYWORD PREDICTION AND MASKED
RESPONSE GENERATION
To assess whether the proposed keyword prediction (KW)
and masked response generation (MR) steps are effective,
we evaluate two additional metrics:

KWUR (Keyword Usage Rate): the percentage of final
responses that include the predicted keyword. A high KWUR
indicates that the model successfully preserves and uses the
predicted keyword in its final answer.

MRLR (Masked Response Length Ratio): the average
absolute difference in length between the generated masked
response (Task 2) and the final filled response (Task 3).
A smaller gap suggests stable expansions of the masked
skeleton, indicating that the masked response serves as a
coherent scaffold for the final output.

Table 4 shows KWUR and MRLR for DialFill. We see
that 76–99% of predicted keywords appear in the final
responses, confirming that the model effectively leverages
them. Meanwhile, MRLR values remain around 3–5 words
difference, indicating that the model does not deviate dras-
tically from the masked skeleton, thus maintaining coherent
context around the keyword. Nevertheless, each sub-step
(keyword prediction and masked response generation) can
introduce errors that may propagate into the final response.
This effect is more pronounced in smaller models like GPT-
2, where KWUR can drop to 76% and MRLR can reach
5.40 words. In contrast, larger models such as Llama3
achieve KWUR values as high as 99% and MRLR as low
as 2.74, indicating that they more faithfully adhere to the
intermediate constraints. These findings suggest that while
multi-step generation provides a structured way of integrating
knowledge, larger models can better maintain consistency
with the predicted keywords and masked response skeletons
throughout the Dialogue Filling process.

E. ABLATION STUDIES
Table 5 presents the results of the ablation studies, comparing
the base model with several variants to analyze the impact of
different components. The findings are as follows:

No LLM – Removing the general language modeling
loss leads to noticeable performance drops, particularly in
F1 (down by 0.9 points on OpenDialKG Test Seen). This
indicates that LLM contributes to learning generic language
features that enhance response fluency and coherence.

No LKW – Excluding the keyword prediction task results
in minor declines (e.g. F1 decreases by 0.1 on OpenDialKG
Test Seen). The relatively small impact suggests that keyword
prediction plays a supplementary role in guiding the model to
relevant content without being the primary driver of response
quality.

No LMR – Removing the masked response prediction task
causes moderate drops, especially in KF1 (down by 0.9 on
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TABLE 3. The evaluation results of response generation on OpenDialKG datasets with LLM. We highlight the results of DialFill that significantly exceed
the previous-best methods in boldface (t-test, p < 0.05).

TABLE 4. Analysis of keyword prediction and masked response
generation on OpenDialKG dataset. See section VII-D.

TABLE 5. Ablation study. The base model, DialFill, is compared with
several variants. See Section VII-E.

WoW Test Unseen and 1.1 on OpenDialKG Test Unseen).
This demonstrates that masked response prediction helps
the model structure responses around relevant knowledge,
enhancing factual accuracy.

NoLDF –We observe that removing Dialogue Filling (DF)
task completely collapses the generation (F1=0), since DF

is responsible for synthesizing the final coherent response.
By comparison, removing Keyword Prediction (KW) task or
Masked Response Generation (MR) task causes a smaller
but still noticeable degradation in both F1 and knowledge
metrics. Hence, while DF is critical for ensuring the final text
is well-formed, the KW and MR steps also play important
roles by identifying relevant entities and structuring the
partial response.

No Algorithm 1 (AMS) – Removing the mask search
strategy results in slight declines in F1 and B4 (e.g. F1 drops
by 0.3 on WoW Test Seen) but unexpected improvements in
KF1 on OpenDialKG (+1.1 on Test Seen). This suggests that
whileAMS refines mask placement for coherence, its absence
may lead themodel to focus on entity recall, boostingKF1 but
sacrificing overall response quality.

F. CASE STUDY
We provide qualitative examples in Table 6 to evaluate the
performance of DialFill and baseline methods on the WOW
and OpenDialKG datasets. These examples highlight Dial-
Fill’s ability to incorporate retrieved knowledge effectively
and generate coherent responses.

In Example 1 (WOW dataset), the baselines demonstrate
varying levels of failure. DukeNet andKnowledGPT generate
responses that are irrelevant to the user’s query, with
KnowledGPT suggesting ‘‘playing chess,’’ which is unrelated
to archery. GATE’s response incorporates the correct topic
(archery) but contains an illogical statement (‘‘using a bow to
move a bow’’). In contrast, DialFill produces a relevant and
accurate response that incorporates the retrieved knowledge
(‘‘using a bow to propel arrows’’), directly addressing
the user’s question and maintaining fluency. This example
highlights DialFill’s ability to integrate knowledge while
avoiding errors in expression or factuality.

In Example 2 (WOW dataset), baseline methods exhibit
significant factual inaccuracies. GATE misinterprets the
timeline and incorrectly states that the individual was an
undergraduate ‘‘in the 1800s.’’ This type of hallucination
undermines the credibility of the response. DialFill, on the
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TABLE 6. Examples of model outputs on the WOW and OpenDialKG dataset, baselines’ responses of Example 1 are reported from Sun et al. [13]. These
examples show methods failing due to a text error (highlighted with red). DialFill generates a desired response that answers the user’s question and
incorporates retrived knowledge (highlighted with green).

other hand, accurately incorporates the retrieved knowledge
(‘‘He attended the Academy of Contemporary Music in
Guildford as an undergraduate from 2009’’) and delivers a
coherent response. This showcases DialFill’s capability to
ground its responses in relevant and accurate knowledge,
ensuring both contextual alignment and factual correctness.

In Example 3 (OpenDialKG dataset), baseline models fail
to utilize the retrieved knowledge effectively. For instance,
GATE generates a generic response (‘‘Can you tell me
more about them?’’) that neither incorporates the retrieved
knowledge nor answers the user’s query. In contrast, DialFill

correctly incorporates the retrieved knowledge (‘‘Sämtliche
Erzählungen written by John Updike’’) into its response,
producing a relevant and knowledge-rich answer. This exam-
ple demonstrates DialFill’s ability to seamlessly integrate
retrieved knowledge into its dialogue responses, aligningwith
user intent and maintaining coherence.

VIII. CONCLUSION
In this paper, we proposed DialFill, a Dialogue Filling (DF-
based) framework designed to enhance the integration of
external knowledge into dialogue systems. By reframing
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response generation as a three-step process—keyword pre-
diction, masked response generation, and dialogue filling—
DialFill effectively bridges the gap between contextually rel-
evant retrieval and coherent response generation. Extensive
experiments on the Wizard-of-Wikipedia and OpenDialKG
datasets demonstrate that DialFill significantly outperforms
existing LM-based and KB-based methods in terms of
relevance, factuality, and knowledge integration. Human
evaluations and ablation studies further validate DialFill’s
ability to generate knowledge-base and contextually accurate
responses.

While DialFill advances the state of knowledge-base
dialogue systems, it has limitations, such as reliance on the
quality of retrieved knowledge and occasional challenges
in keyword prediction when knowledge is ambiguous.
For future work, we aim to address these challenges by
exploring more robust knowledge retrieval and selection
strategies.

APPENDIX A
MASK SEARCH STRATEGY
This appendix provides a detailed explanation of the Mask
Search Strategy employed in the Masked Response Genera-
tion step during inference (see Section V-B).

A. ALGORITHM

Algorithm 1Mask Search Strategy
Input: Context x, Keyword kw = {kw1, kw2, . . . , kwm}, Maximum

mask length Lmax of each side
Output: Optimal mask lengths: Lleft,Lright
1: Step 1: Optimize Left Mask Length
2: Initialize mask sequence m = {m1,m2, . . . ,mLmax }, where

mi = [mask]
3: Set target token ylabel = kw1
4: for i = 1 to Lmax do
5: Compute score for ylabel given a left mask of length i:
6: score← pθ (ylabel | x,m1, . . . ,mi)
7: end for
8: Lleft ← argmaxi score
9:

10: Step 2: Optimize Right Mask Length
11: Reinitialize mask sequence m = {m1,m2, . . . ,mLmax }

12: Set target token ylabel = [EOS]
13: for j = 1 to Lmax do
14: Construct input sequence s=(x,m1, . . . ,mLleft , kw,m1, . . . ,mj)
15: Compute score for ylabel given s:
16: score← pθ (ylabel | s)
17: end for
18: Lright ← argmaxj score
19: return Lleft,Lright

B. ALGORITHM OVERVIEW
The Mask Search Strategy determines the optimal number
of mask tokens to place on the left and right sides of the
keyword kw in the masked response mr . This approach
dynamically adjusts mask lengths to enhance the model’s
ability to generate coherent and contextually appropriate
responses during the Dialogue Filling step.

1) STEP 1: OPTIMIZING LEFT MASK LENGTH
The algorithm initializes a sequence of mask tokens m =
{m1,m2, . . . ,mLmax}, where eachmi represents a mask token.
The target token ylabel is set to the first token of the keyword
kw1.
For each potential mask length i from 1 to Lmax, the

algorithm computes the probability score of generating ylabel
given the dialogue context x and a left mask of length i.
The left mask length Lleft that maximizes this probability is
selected as the optimal length.

2) STEP 2: OPTIMIZING RIGHT MASK LENGTH
The algorithm then reinitializes the mask sequence for the
right side and sets the target token ylabel to the end-of-
sequence token [EOS]. For each potential right mask length
j from 1 to Lmax, it constructs the input sequence s by
concatenating the context x, the optimized left mask, the
keyword kw, and a right mask of length j.
The probability score of generating ylabel given the

sequence s is computed. The right mask length Lright that
maximizes this probability is selected as the optimal length.

3) OUTCOME
By optimizing Lleft and Lright, the Mask Search Strategy
ensures that the masked response mr facilitates effective
Dialogue Filling. This method dynamically adjusts mask
lengths based on themodel’s predictions, leading to improved
response coherence and contextual relevance.
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