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Abstract: Multimodal interaction technology has become a key aspect of remote education
by enriching student engagement and learning results as it utilizes the speech, gesture,
and visual feedback as various sensory channels. This publication reflects on the latest
breakthroughs in multimodal interaction and its usage in remote learning environments,
including a multi-layered discussion that addresses various levels of learning and under-
standing. It showcases the main technologies, such as speech recognition, computer vision,
and haptic feedback, that enable the visitors and learning portals to exchange data fluidly.
In addition, we investigate the function of multimodal learning analytics in order to mea-
sure the cognitive and emotional states of students, targeting personalized feedback and
refining instructional strategies. Though multimodal communication may bring a historical
improvement to the mode of online education, the platform still faces many issues, such as
media synchronization, higher computational demand, physical adaptability, and privacy
concerns. These problems demand further research in the fields of algorithm optimization,
access to technology guidance, and the ethical use of big data. This paper presents a system-
atic review of the application of multimodal interaction in remote education. Through the
analysis of 25 selected research papers, this review explores key technologies, applications,
and challenges in the field. By synthesizing existing findings, this study highlights the role
of multimodal learning analytics, speech recognition, gesture-based interaction, and haptic
feedback in enhancing remote learning.

Keywords: multimodality; education; remote learning technology; human–computer
interaction; learning analytics

1. Introduction
The word “multimodal” defines the blending of more than one human sense modality,

which includes vision, touch, hearing, and taste and smell, as well as communication skills
like perception, cognition, and interaction. The main purpose of multimodal interaction is
to help users better understand the information presented by computing systems [1]. This
is usually achieved by technologies that are based on user senses, such as haptic devices,
virtual reality (VR) systems, and augmented reality (AR) systems.
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In systems of multimodal interaction, users can participate in interactions that are
either uni-directional or bi-directional, which makes it easier to monitor and study user
activities [2]. This technology is considered important for interactions with computers
at the virtual level. As an example, Saffaryazdi et al. [2] studied verbal and non-verbal
user behaviors, while engaging with virtual agents and supplemented emotion recognition
through electroencephalography (EEG) and electrodermal activity (EDA) to improve the
experience for users. Furthermore, some researchers have reported that visual and dynamic
feedback [3] can enhance user engagement in virtual places more easily [4]. Geiger et al. [4]
showed how virtual environments can be enhanced by optimizing visual feedback for virtual
reality environments to improve instruction for skilled digital human–computer models,
while exploiting the models for improved instructional outcomes of grasping actions.

Dynamic feedback systems are an essential feature of multimodal interaction. For
instance, Chollet et al. [3] designed a system that allows users to give virtual speeches to
an audience that can provide feedback as the user speaks through voices, gestures, and
even facial expressions. This improves the skill of public speaking among users. In the
same vein, Kotranza et al. [5] investigated haptic interaction on a virtual agent, enabling
two-way communications by proving that virtual agents not only act on the user’s actions,
but also communicate through haptic response, thereby increasing user engagement.

The main goal of multimodal interaction is to make human–computer communication
more natural, allowing systems to better understand users’ intentions and emotions [6].
This technology is used not only in AR and VR but also in remote education, where it
helps improve learning experiences and results. In recent years, the fast development of
AI, computer vision, and sensors has led to the wide use of multimodal interaction in
education. By combining speech, gestures, and facial expressions, multimodal feedback
can effectively increase learners’ engagement and understanding.

Traditional learning analytics mainly use single data sources, such as clickstreams, log
records, and interaction data from learning management systems (LMS). These sources
show only part of the learning process and do not provide a full understanding [7].

Learning is also shaped by hidden factors, such as cognitive states and emotional
changes, which strongly affect learning outcomes [8]. Standard data collection methods
often miss these behavioral, attentional, and emotional shifts. Multimodal data analysis
can help address this gap.

Studies show that traditional learning analytics rely on limited data, like click data
and system logs, which do not fully capture learning activities [9]. Multimodal learning
analytics, however, combines different data types, such as EEG, EDA, facial expressions,
and speech signals. This approach provides a clearer picture of learners’ cognitive and
emotional states, making personalized learning more effective [10].

Multimodal interaction technology offers a way to overcome the limits of traditional
learning analytics. It makes remote education more flexible and engaging while giving
learners real-time, personalized feedback. As AI, computer vision, and sensor technologies
improve, multimodal interaction will play a larger role in education, offering new ways to
personalize learning and assess students.

Although existing studies have preliminarily explored the application of multimodal
interaction technologies in remote education (e.g., speech recognition, affective computing),
the following research gaps remain unresolved:

• Real-time multimodal data fusion and latency mitigation in authentic classroom
scenarios require more robust solutions;

• There is a lack of systematic research on the cross-cultural and multilingual adaptabil-
ity of multimodal systems;
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• Most empirical validations are conducted in controlled laboratory environments, with
limited large-scale data from real-world educational settings.

This paper adopts the literature review method to review the representative research
papers on educational multimodal interaction published in recent years and identify the
technological advances, applications and challenges in this field.

2. Development and Application of Multimodal Interaction Technology
in Remote Education

Before discussing the technical development of multimodal interaction, it is helpful to
illustrate how such systems are typically structured in remote education settings. Figure 1
presents a general flow of information in a multimodal learning system. It begins with
learner input, followed by data acquisition using sensor devices, and then proceeds to data
processing and analysis. The system responds through adaptive feedback delivered to
learners and instructors.

Figure 1. Flow of multimodal interaction in remote education.

2.1. Development of Multimodal Interaction Technology

This early research on multimodal interaction included the basics of speech and ges-
ture recognition and proceeded to focus on developing real-world applications only for
simple human–computer interactions [11]. However, today, the active use of artificial intel-
ligence, deep learning, and sensor technologies enables bidirectional interaction, which,
in turn, gives rise to real-time data fusion in multiple modalities. For example, the in-
troduction of the technologies of emotion analytics, speech tone detection, and gesture
interpretation brings quality and efficiency improvements in the human–computer interac-
tion area (HCA) [12,13]. Additionally, the emergence of the Mixed Reality (MR) and AR has
brought about the convenient and instant cooperation of visible, perceptual, and auditory
information, and as a result, the qualitative and usability level of interactive systems has
improved [14]. Recent technology emphasizes optimizing end-user experiences at its core,
which particularly relates to facilitating accessibility to users who may have particular
needs. For instance, moving multi-modal interaction (MMI) has generated beneficiaries
in smart devices for the elderly, and it was observed that interaction efficiency was signif-
icantly enhanced [15]. In addition, analyses show that designers of interacting systems
are centering on various user communities and progressively exploring how to customize
holistic platforms to be irrefutably user-friendly [16].



Appl. Sci. 2025, 15, 3937 4 of 17

2.2. Key Technologies in Remote Interaction

Speech- and Text-Based Interaction: Speech-based communicative modes, as well as
natural language processing, are essential elements for a multi-channel interaction systems.
These technologies have been integrated into different digital platforms, thus facilitating
language-based interactions in a more natural and intuitive way [11,17].

Visual- and Gesture-Based Interaction: More recently, computer vision technology
has been used with cameras to sense gestures as well as facial expressions, enabling the
simultaneous recognition of the movements and emotions of the user in real time [13,14].

Haptic- and Motion-Based Interaction: Employing devices with tactile feedback, for
instance, gloves that are sensitive to force and touch-sensitive interfaces, will improve
users’ sense of physical involvement in the interaction. Therefore, these technologies are
extremely important in the field of smart manufacturing, remote collaboration, and online
teaching [18].

Multimodal Data Fusion: Deep learning methods implement different fusion tech-
niques, either early or late, or hybrid fusion models, in order to enrich speech, text, and
visual data to generate multimodal data that in the end will lead to the development of
advanced artificial intelligent systems with more elaborate context adaptations [19,20].

2.3. Applications of Multimodal Interaction Technology in Enhancing Educational Models

Learning is intrinsically multimodal since we use several sensory channels during
communication and knowledge acquisition (e.g., visual, auditory, somatosensory). It is
well known that integrating complementary perceptual modalities enhances information
processing and learning efficiency [21]. In remote education settings, multimodal feed-
back systems that support peak-referenced speech, gestures, and facial expressions excel
in realizing immersive learning spaces, which helps increase learner engagement and
understanding [6].

Taking into account multimodal interaction, recent studies have examined users in-
teracting with virtual humans and highlighted the increasing significance of this in future
educational environments, such as Saffaryazdi et al. [4] explored visual feedback mecha-
nisms within virtual reality environments to improve the responsiveness and instructional
capacity of digital human models. Moreover, Kotranza et al. [3] explored a virtual feedback
system with peers capable of supplying multimodal feedback in real-time to users for
polishing their public speaking skills.

The evolution of interactive and experience-driven models between teachers and
students has become a key goal in distance education. McGraw Hill Higher Education
presented a report that reflects on the education landscape in 2023; we know that the quality
of education can often be ruined by poor structure; therefore, effective educators should
improve the learning process by introducing active listening and adaptive feedback solu-
tions with the aim of simplifying the active learning process for students [3]. For example,
multimodal interaction technologies allow students to obtain personalized instructional
guidance and real-time emotional feedback [6], creating a more engaging and effective
learning experience.

This evolution dramatically accelerated the use of multimodal technology in the edu-
cational field, making possible a step towards more complete intelligent teaching tools and
systems to promote interactivity and personalization in remote education opportunities.

• Interactive Teaching Tools: Multimodal technology has been integrated into intelli-
gent learning environments like the MMISE system, which makes use of multimodal
input and output modalities that consist of speech, gestures, and facial expressions
to enhance the effectiveness of instruction. This system has turned out to be criti-
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cally important, especially in the context of remote education during the COVID-19
pandemic [11,22].

• Improving Student Engagement: Data for students’ interactions with multimodal
study materials could reveal insights about comprehension and attention allocation by
applying eye-tracking technologies [23]. In addition, the application of digital media
entertainment technologies into remote music education has played an effective role
in helping students improve their learning motivation and engagement [24,25].

• Emotion Recognition and Adaptive Feedback: By leveraging multimodal emotion
recognition technology, we can identify and analyze the emotional fluctuations of
students; this empowers instructors to effectively tailor their teaching strategies in real
time, enhancing learning experiences [16,19].

• Remote Learning State Monitoring System: Multimodal data fusion techniques utilize
speech, video, facial expressions, and gestures through deep learning models to study
users’ attention patterns [26,27]. Furthermore, the real-time decoding of a user’s cog-
nitive attentional states during remote learning is further made possible through the
learning state monitoring system based on EEG and eye-tracking technology [28,29].

• Experimental Teaching Platforms: Platforms such as the “Remote Experimental Teach-
ing Platform for Digital Signal Processing” enhance instructional efficacy by enabling
remote program debugging and data-sharing functionalities [30]. Moreover, VR tech-
nology has been employed to develop interactive remote teaching systems, thereby
improving teacher–student engagement and enhancing learning outcomes in remote
education [31].

• Remote User Attention Assessment Methods: Sensor-based learning analytics ap-
proaches, including smartphone-embedded sensor technologies for the collection
of data on student behavior and learning, have been integrated with embedded
hardware–software systems and backend data processing frameworks to facilitate
real-time dynamic assessments in remote education [31–33].

• Data Fusion and Visualization: Data fusion methodologies employ tools such as
“physiological heat maps” to integrate eye-tracking and physiological data, dynami-
cally visualizing learners’ emotional and cognitive states [34]. Additionally, machine
learning algorithms have been utilized to analyze students’ visual attention trajecto-
ries, enabling the prediction of learning outcomes and the refinement of instructional
design strategies [35].

3. Commonly Utilized Methods
3.1. Learning Indicators and Available Data

Learning analytics collects, analyzes, and reports data about learners and their envi-
ronments. The goal is to better understand and improve education [36]. Since its formal
introduction in 2011, this field has grown rapidly and is now used at different educational
levels [37]. Its potential to improve education is clear, but its use in daily classroom activities
is still slow [38].

In education, learning indicators fall into five main categories: behavior, cognition,
emotion, engagement, and collaboration (Table 1).
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Table 1. Learning dimensions and their descriptions.

Dimension Description Reference

Behavior Learners’ interaction patterns, including digital behaviors such as mouse clicks, scrolling,
and text input, as well as physical actions in the learning environment Martinez-Maldonado et al., 2018 [39]

Cognition Learners’ cognitive processes, including problem-solving ability, knowledge construction,
and memory recall Netekal et al., 2023 [40]

Emotion
Encompasses learners’ emotional states such as anxiety, confidence, or frustration, which
can be detected through physiological signals (e.g., EEG, EDA) or facial
expression analysis

Pardo & Kloos 2011 [9]

Engagement Measures learners’ attention levels and sustained participation, often assessed through
interaction behaviors or physiological data (e.g., heart rate variability) Ido Roll & Wylie 2016 [41]

Collaboration
Describes learners’ interactions in group learning, including distinctions between
individual and collective attention or differences between self-regulated and
collaborative learning emotions

Mu, Cui, & Huang 2020 [42]

3.2. Data Collection Methods

• Digital Interaction Data: Traditional LMS and online learning platforms primarily
collect learner behavioral data through log records (clickstreams), assignment submis-
sions, and quiz performance metrics [9].

• Physical Learning Analytics: Physical learning analytics leverages sensor technologies
and the Internet of Things (IoT) to embed computational capabilities into physical
environments, thereby enabling real-time interaction and data collection [43].

• Sensors and Wearable Devices: By using hard devices such as eye trackers, posture
recognition cameras, and heart rate monitors, researchers can capture learners’ spatial
positioning, postural dynamics, and physical interactions [39]. This approach facili-
tates the seamless integration of learning activities across multiple environments [44],
thereby extending the scope of learning analytics beyond digital interactions to en-
compass real-world learning contexts.

• Physiological Data: The primary objective of multimodal physiological signal research
is to enhance the understanding of emotional and cognitive states by integrating
multiple physiological indicators, including EEG, EDA, and electrocardiography
(ECG) (Table 2).

Table 2. Physiological measurement modalities and applications.

Modality Application Reference

EEG Records brain activity to analyze emotional and
cognitive states Verma & Tiwary (2014) [45]; Lin & Li (2023) [46]

EDA Detects autonomic nervous system activity, reflecting
emotional fluctuations Horvers et al. (2021) [47]

ECG Analyzes heart rate variability to assess
emotional responses Lin & Li (2023) [46]

Other Signals
Includes electromyography (EMG), respiratory patterns,
and photoplethysmography (PPG), which enhance
emotion detection accuracy in specific contexts

Verma & Tiwary (2014) [45]

Wearable Devices
Increasingly used flexible skin-attached sensors and smart
devices for long-term monitoring of multiple
physiological signals

Lee et al. (2019) [48]; Yang et al. (2024) [49]
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3.3. Data Processing

Before using multimodal approaches, data must be integrated and analyzed. This is
mainly carried out through feature-level fusion and decision-level fusion. Feature-level
fusion focuses on tagging and aligning markers. It is well suited for processing experimental
datasets [50,51]. Decision-level fusion is more robust and works better for multimodal
analyses that involve time-based changes [52,53].

Multimodal data corpora play an important role in education research. Task-specific
educational corpora collect data on interaction signals between teachers and students or
among users. These signals include navigational instructions and descriptive language
used during tasks [54,55].

In online learning, multimodal corpora help analyze teachers’ use of visuals, gestures,
and language. Studies show that gestures and visual symbols, such as arrows, help explain
instructional content. This improves students’ understanding and memory [56].

Developing these corpora requires well-designed experimental setups. Studies in
human–computer interaction and cross-cultural behavior collect multimodal data, includ-
ing gestures, intonation, and facial expressions. This expands multimodal resources for
education [57,58].

4. Keyword and Correlation Analysis
To investigate the impact of multimodal interaction technology on teaching methods

and instructional quality, this study selected “Multimodal Image Recognition”, “Appli-
cation”, and “Feedback” as core keywords. A total of 25 research articles published in
the past 5–10 years were manually screened to ensure relevance while maintaining broad
coverage across different educational levels, specific disciplines, and target populations.
Although these studies do not necessarily represent the most cutting-edge research in the
field, they provide a representative sample of recent developments in the application of
multimodal interaction technology in education. The selected articles were then analyzed
using the VOSviewer tool to identify key trends, applications, and challenges.

4.1. Word Frequency Analysis

The analysis found 42 high-frequency terms as shown in Figure 2. The main keywords
were “multimodal data”, “model”, “interaction”, “education”, and “field”. These terms
formed several related research clusters. They show key focus areas and reveal major
research trends in multimodal interaction technology for education.

Figure 2. High-frequency research keywords.
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4.2. Correlation Analysis
4.2.1. Multimodal Image Recognition

This keyword is closely associated with concepts such as accuracy, comprehension,
and challenge, indicating that remote teaching environments face difficulties in ensuring the
precision of image recognition and effectively understanding students’ needs. Its correlation
with education and students underscores the direct role of multimodal image recognition in
the learning process, emphasizing the necessity of optimizing student learning experiences
as shown in Figure 3. Its connection to teachers shows that feedback mechanisms help
educators improve their teaching strategies.

The link between feedback and interaction highlights its key role in teaching, especially
in providing personalized guidance to students. Its ties to context and interaction show
the need to consider different instructional settings, such as personalized learning and
adaptable curricula.

Interaction is the core of remote teaching. It requires video, audio, chat functions, and
AI-assisted tools to keep students engage in virtual classrooms. Its connection to models
and systems suggests that structured frameworks and technological models are essential
for effective remote teaching.

Figure 3. Correlation of “Multimodal image recognition”.

4.2.2. Application

Application is a key concept that covers many fields, such as education, interaction,
artificial intelligence, and learning analytics. Its link to interaction shows that interactive
components play an important role in different applications, as shown in Figure 4. Its
connection to users suggests that these technologies mainly support students, educators,
and researchers.

A significant association with learning, cognition, and science suggests that applica-
tions in multimodal learning analytics (MMLA) contribute to improving learning experi-
ences and facilitating personalized education. Additionally, its connection with context and
video reflects the diverse operational settings of these applications, such as remote learning,
which relies on video-based instruction, and mixed reality, which integrates multimodal
perception technologies for immersive educational experiences.
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Figure 4. Correlation of “Application”.

4.2.3. Feedback

The prevalence in many studies highlights its key importance in multimodal tech-
nology practice. Maintaining an efficient provision of education is an ongoing area of
research, especially in student and teacher contexts where debates often revolve around
understanding and challenge, emphasizing feedback in student–teacher interaction and
learner adaptation. The connection between system, model, and feedback suggests that
this study is examining integrating automated and AI-powered systems of feedback, in-
cluding applications in speech communication and automated testing systems, as shown in
Figure 5. Furthermore, the connection between learning, cognition, and feedback suggests
that methods of feedback are now being created in accordance with cognitive science to
better aid in learning outcomes & optimize instructional experience.

Figure 5. Correlation of “Feedback”.

4.3. Multimodal Interaction Across Educational Levels
4.3.1. K-12 Education

In K-12 education, students’ attention levels directly affect learning outcomes. Re-
searchers use eye-tracking technology with speech recognition to track students’ attention
in real time during class. Fixation points, gaze duration, and verbal responses help ed-
ucators adjust teaching strategies based on data. This improves classroom engagement
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and learning effectiveness. Chen et al. [59] showed that eye-tracking technology can mea-
sure students’ reading behaviors and cognitive processes, providing strong support for
educational research.

4.3.2. Higher Education

In higher education and online learning, EEG and speech analysis track students’
cognitive and emotional states in real time. EEG patterns and speech feedback help
assess comprehension and detect emotional changes. Instructors can adjust teaching
speed and offer personalized support to improve online learning. Puffay et al. [60] used
deep neural networks to combine EEG and speech data, showing its potential to enhance
online education.

4.3.3. Vocational Training

Vocational training focuses on practical skills. VR and AR have changed traditional
training by removing time and location limits. These technologies also provide immersive
remote learning.

This method increases training safety and reduces costs. It also helps trainees develop
hands-on skills. In medical training, VR-based surgical simulations let trainees practice
procedures and improve precision before real surgeries. Jaehyun et al. [61] studied how
EEG and VR work together in emotion recognition, showing its potential in education
and vocational training. Multimodal interaction technology is changing education. It
improves learning efficiency and supports personalized instruction in K-12 education,
higher education, and vocational training.

5. Discussion
5.1. Technical Challenges
5.1.1. Data Processing

• Synchronization Issues in Multimodal Data
Multimodal data fusion necessitates the synchronization of data acquired from various
sensors, including speech, gestures, and facial expressions. However, variations in
sampling rates and timestamps among these data sources present significant syn-
chronization challenges. For instance, speech signals typically have a higher sam-
pling rate compared to video frames, requiring precise temporal alignment during
data fusion [62,63]. Additionally, hardware-induced latency and network transmis-
sion delays further impact synchronization accuracy, complicating real-time data
integration [64].

• High Computational Resource Demands and Limited Compatibility with Low-End
Devices
Processing multimodal data requires complex algorithms and deep neural networks,
which demand high computational power. Real-time processing requires strong CPU
and GPU performance, but many remote education devices, like personal computers
and mobile devices, lack these resources. This limits the use of multimodal technology
in low-resource settings. Developing lightweight and efficient algorithms can improve
accessibility [65–67].

• Data Storage and Transmission Overhead
In remote education, multimodal interaction technology produces large amounts of
high-dimensional data. Managing and transmitting these datasets is a major challenge
for educational platforms and cloud computing systems. Remote education depends
on cloud storage and real-time streaming. High bandwidth demands can weaken
system stability, especially in areas with poor network infrastructure [68,69].
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5.1.2. User Experience

• Teachers’ Adaptation to Multimodal Technology
Multimodal technology has changed traditional teaching methods, and thus teachers
have to learn new tools and platforms. Some instructors struggle to leverage these
tools to their full potential because they have not been trained in them. This inhibits
their ability to fully benefit from multimodal systems [70]. Hardware failures and
computer glitches lead to added workloads for instructors and compromised teaching
effectiveness [71,72].

• Students’ Acceptance of Personalized Learning Pathways
Multimodal technology facilitates the development of personalized learning path-
ways by adapting instructional content to students’ individual learning styles and
progress. However, students’ acceptance of such personalized learning approaches
varies. While some learners prefer self-directed learning and customized educational
content, others may be more inclined toward traditional teacher-led instruction [73].
Furthermore, designing personalized learning pathways necessitates a balance be-
tween self-regulated learning and teacher guidance to ensure an optimal and struc-
tured learning experience [64].

• Complexity of Human–Computer Interaction
Multimodal systems support different input modes beyond speech, including touch
interfaces, gestures, and facial recognition. Users must switch between these modes to
interact with the system. Some users face problems with usability. Common issues
include complex interface design, system delays after input, and low recognition accu-
racy [74]. High error rates also reduce user experience. Inaccurate speech recognition
can cause unintended actions, and poor gesture recognition can disrupt classroom
teaching. A major challenge in multimodal instructional systems is maintaining a
good user experience while keeping the system easy to use [27].

5.1.3. Privacy and Ethical Issues

• Privacy Protection
Physiological student data in remote teaching multimodal environments are employed
extensively to determine learning status and adjust teaching practices. However,
the sensitivity of this type of data is extremely high. Today, most remote learning
systems have incomplete security measures to protect physiological data, making them
vulnerable to unauthorized use, illegal access, and potential breaches. The application
of data protection laws, such as GDPR, in education is unclear. This creates legal risks
in data storage, processing, and use. A major challenge is protecting data privacy
while making full use of multimodal data to improve education [75].

• Algorithmic Fairness
Multimodal learning systems are prone to algorithmic biases, which can affect fair-
ness and inclusivity. AI models are trained on historical datasets that may contain
cultural, gender, or linguistic biases. These biases can lead to unfair feedback or
unequal learning experiences for students from different backgrounds. Some speech
recognition systems have difficulty processing non-native speakers’ inputs, which can
negatively impact their learning. Adaptive learning systems may also create inequali-
ties. Personalized recommendation algorithms might assign different difficulty levels
based on existing gaps, reinforcing disparities [76]. Future research should focus on
improving fairness in multimodal AI algorithms to provide equal educational support
for all students.

• Security Concerns
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An increase in remote education will mean that cloud-based systems used to store
and process data are vulnerable to cyber attacks, data theft, or identity theft. The secu-
rity and privacy threats of unauthorized access to student behavioral data, learning
records, physiological information, etc., are serious. Distributed ledger technology
(DLT). The existing encryption techniques and access control mechanisms should
be further optimized to meet the needs and requirements of the increasing rate of
attack on new remote education systems. Technologies such as federated learning,
which allow for decentralized data usage, help reduce the risk of data falling, while
advanced blockchain-based identity authentication provides stronger data security
and integrity [77]. This foundation of sustainability and resilience depends on which
multimodal curricula are designed, and this is where the data security framework
must be laid.

5.2. Limitations of Current Research

Although there have been great advances in multimodal interaction technology for
remote education, there are still several limitations in existing studies, as follows:

• Diversity and Representativeness of Data
Existing multimodal learning datasets are mostly acquired in controlled experimental
environments, while there is no adequately large-scale data available from authentic
classroom settings. This limitation restricts the external validity and generalizability
of research findings. Immadisetty et al. [64] emphasized the importance of captur-
ing diverse datasets in real-world educational settings to advance the relevance of
multimodal learning studies.

• Exploiting the Gap Between Experimental Settings and Practical Utilization
Although randomized experiments are used to measure a wide variety of interven-
tions to improve student learning, these interventions are often implemented in highly
controlled laboratory environments that do not reflect the complexity of real educa-
tional settings. This divergence can lead to experimental results that do not translate
well to the field. Liu et al. [78] emphasized the need to validate multimodal inter-
action systems in real educational scenarios to ensure their real-world effectiveness
and scalability.

• Assessment of Long-Term Learning Outcomes
Much of the existing research focuses on short-term experimental studies, and few
studies have conducted rigorous longitudinal investigations covering the sustained
effect of multimodal interaction technology. Future studies should include long-
term follow-up investigations of its impact on the ongoing cognitive and behavioral
development of learners.

Table 3 compares the limitations of existing studies.
Most studies were conducted in labs or controlled environments. Only a few were

conducted in real classrooms or remote learning settings. Many studies used speech or
gesture as the main interaction methods. Some used sensors like EEG or eye tracking.
These systems often focused on college students. Fewer studies looked at younger learners
or people with special needs.

Many systems did not give real-time feedback. Some had small sample sizes. Others
used short-term tests. Most studies did not include long-term data or results from large
user groups.

Because most research was carried out in ideal conditions, the findings might not
match those from real-world classrooms. The systems might work differently when stu-
dents are at home or using their own devices. Some studies did not talk about cost or
technical limitations.
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Table 3. Comparative summary of selected studies on multimodal interaction in remote education.

Study Modality Types
Used Education Level Target Group Environment Limitations

Immadisetty et al.,
2023 [64]

Posture and
gesture
recognition, facial
analysis,
eye-tracking,
verbal recognition

Higher Education General students Controlled
laboratory setting

Limited real-world
classroom
deployment

Faridan et al.,
2023 [79]

Mixed reality
gestural guidance Higher Education Physiotherapy

students

Simulated
classroom
environment

Small sample size

Zhang et al.,
2024 [80]

LLM-empowered
agents simulating
teacher-student
interactions

Higher Education General students Virtual classroom
simulation

Lack of real-world
validation

Hao et al.,
2021 [81]

Pre-trained
language models
for dialogic
instruction
detection

Higher Education Online learners Online educational
platform

Focused on
text-based
interactions only

Li et al., 2020 [82]
Machine learning
for identifying
at-risk students

K-12 Education K-12 students Multimodal online
environments

Data imbalance,
limited offline
factors

5.3. Future Work

• Tailoring Adaptive Learning Journeys
Using emotion recognition and behavioral analysis, the existing multimodal education
systems aim to provide real-time adaptive feedback, but more studies are needed to
fine-tune personalized learning paths with better use of multimodal data. For instance,
Liu et al. [78] developed a personalized multimodal feedback generation network
that integrates multiple modal inputs to produce customized feedback on student
assignments, ultimately improving learning efficiency.

• Flexibility when Deployed in Low-Resource Contexts
Multimodal interaction technology frequently requires high-performance computing
resources, making its deployment in resource-constrained regions difficult. Immadis-
etty et al. [64] highlighted the vital need to develop multimodal education systems
tailored to low-bandwidth, low-computation environments, thus fostering educational
equity and technological access.

• International Adaptability
Additionally, existing multimodal interaction systems are typically designed within
specific cultural and linguistic contexts, which may restrict cross-cultural relevance and
scalability (e.g., in multicultural educational environments). Future research should fo-
cus on developing multimodal systems that are adaptable to diverse cultural contexts,
ensuring broader usability and acceptance across various educational institutions.

6. Conclusions
This research investigates the impact of multimodal interaction technology on remote

education, focusing on its benefits for enriching learning experiences, tailoring instruction,
and integrating affective computing. The results suggest that the fusion of multimodal
data can significantly enhance interaction and teaching efficacy in remote learning settings.
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Nonetheless, challenges persist, including issues with data synchronization, the demand
for computational resources, user adaptability, and concerns regarding privacy and security.
One significant challenge is synchronizing multimodal data from various sources, as differ-
ences in sampling rates and temporal misalignment can compromise real-time accuracy.
In addition, high computational demands often hinder the practical deployment of these
systems on low-resource devices commonly used in educational settings. Moreover, the
complexity of human–computer interaction and the varying acceptance of personalized
learning pathways can pose usability issues. Finally, privacy protection and algorithmic
fairness remain critical concerns, as the extensive use of multimodal data increases the risk
of misuse and discrimination.

While the potential of this technology is substantial, existing research is constrained.
A majority of studies are conducted in controlled laboratory environments, which limits
the availability of large-scale, real-world classroom data and diminishes their relevance
in practical teaching contexts. Furthermore, there is a notable deficiency in assessing the
long-term effects of multimodal interaction technology, highlighting the need for additional
research into its enduring influence on students’ cognitive and behavioral growth.

Future investigations should prioritize the optimization of personalized learning path-
ways, the enhancement of adaptability in resource-limited settings, and the improvement
of cross-cultural applicability to promote the widespread adoption of this technology
in remote education. As advancements in artificial intelligence and sensor technologies
progress, multimodal interaction technology is poised to transform remote education into a
more intelligent and personalized learning experience.
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