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A B S T R A C T

Microbial production of bicyclic monoterpenes is of great interest because their production primarily utilizes 
non-sustainable resources. Here, we report an engineered Saccharomyces cerevisiae yeast that produces bicyclic 
monoterpenes, including borneol, camphor, and bornyl acetate. The engineered yeast expresses a bornyl pyro-
phosphatase synthase from Salvia officinalis fused with mutated farnesyl pyrophosphate synthase from S. cer-
evisiae and two mevalonate pathway enzymes (an acetoacetyl-CoA thiolase/hydroxymethylglutaryl-CoA [HMG- 
CoA] reductase and an HMG-CoA synthase) from Enterococcus faecalis. The yeast produced up to 23.0 mg/L of 
borneol in shake-flask fermentation. By additionally expressing borneol dehydrogenase from Pseudomonas sp. 
TCU-HL1 or bornyl acetyltransferase from Wurfbainia villosa, the engineered yeast produced 23.5 mg/L of 
camphor and 21.1 mg/L of bornyl acetate, respectively. This is the first report of heterologous production of 
camphor and bornyl acetate.

1. Introduction

Bicyclic monoterpenoids, including borneol, camphor, and bornyl 
acetate, are used in traditional herbal medicine by leveraging their 
biological activities, which include anti-inflammatory, analgesic, anti-
bacterial, antitumor, and anti-anxiety effects, and they are also used in 
fragrances and cosmetics (Ma et al., 2023). These monoterpenes are 
commercially available and can be extracted with high enantiose-
lectivity from natural sources (e.g., Cinnamomum burmanni and Blumea 
balsamifera for borneol [Li et al., 2022], Cinnamomum camphora for 
camphor [Zhou and Yan, 2016], and Amomum villosum, Inula graveolens, 
and Tetraclinis articulata for bornyl acetate [Zhao et al., 2023]). How-
ever, the supply chains of these products are unstable due to limited 
space for plant cultivation and low yield. Although racemic borneol and 
camphor can be chemically synthesized from α-pinene, a major con-
stituent of turpentine oil (Ponomarev and Mettee, 2016), this process 

produces a toxic by-product, isoborneol, which may causez1 serious side 
effects. Furthermore, chemical synthesis of these compounds uses 
harmful catalysts, such as heavy metals (Ponomarev and Mettee, 2016). 
Thus, alternative methods to sustainably produce these monoterpenes 
are needed.

Borneol, camphor, and bornyl acetate are naturally biosynthesized in 
the plants via the isoprenoid pathway, as follows (Fig. 1). Isoprenyl- 
pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) are 
produced via the mevalonate pathway and condensed into geranyl- 
pyrophosphate (GPP) by farnesyl pyrophosphate synthetase, Erg20p. 
GPP is then further circularized to bornyl-pyrophosphate (BPP) by BPP 
synthase (BPPS), and BPP is dephosphorylated into borneol. Borneol 
dehydrogenase (BDH) and bornyl acetyltransferase (BAT) convert the 
resultant borneol into camphor and bornyl acetate, respectively.

BPPSs are found in a diverse array of plants, including B. balsamifera, 
C. burmanni, A. villosum, Lavandula angustifolia, Salvia officinalis, and 
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Lippia dulcis (Despinasse et al., 2017; Wang et al., 2018; Ma et al., 2022). 
BDHs are found in plants (C. camphora [L.] Presl) (Ma et al., 2021) and 
bacteria (Pseudomonas sp. strain TCU-HL1) (Tsang et al., 2016). More 
recently, a plant BAT was identified for the first time in Wurfbainia vil-
losa (homotypic synonym, A. villosum) (Liang et al., 2022). Microbial 
production of borneol by heterologous expression of plant BPPSs has 
also been reported. An engineered Escherichia coli strain reportedly 
produced 87.20 mg/L borneol in shake-flask fermentation (Lei et al., 
2021), whereas an engineered strain of the yeast Saccharomyces cer-
evisiae produced 12.68 mg/L and 148.59 mg/L borneol in a shake flask 
and 5-L bioreactor, respectively (Ma et al., 2022). However, borneol 
productivity remains far below the level needed for practical use, and 
microbial production of camphor or bornyl acetate has not been re-
ported to date. To establish a microbial platform to produce borneol, 
camphor, and bornyl acetate, we metabolically engineered the yeast S. 
cerevisiae, including engineering the heterologous expression of meval-
onate pathway enzymes and a fusion enzyme between BPPS and an 
Erg20p mutant, with and without BDH or BAT.

2. Materials and methods

2.1. Strains, plasmids, synthetic DNAs, and primers

All synthetic gene cassettes examined in the study are listed in 
Supplementary Table 1. All synthetic DNA fragments were purchased 
from GeneArt (Thermo Fisher Scientific, Waltham, MA, USA). The 
following parental plasmids were used for plasmid construction: 
pRS405red (Tominaga et al., 2021) and pATP403red (Tominaga et al., 
2021). Plasmid sequences are shown in Supplementary Note 1. Sche-
matic illustrations of the construction of yeast strains used in this study 
are shown in Supplementary Figs. 1–3.

2.2. Media and reagents

Synthetic complete (SC, 0.67 % yeast nitrogen base without amino 
acids [BD Biosciences, San Jose, CA, USA], 2 % D-glucose [Nacalai 
Tesque, Kyoto, Japan], 0.2 % amino acids complete mix without L- 
methionine, L-leucine, L-histidine, and uracil [Supplementary Table 2]) 
and yeast peptone dextrose (YPD, 1 % yeast extract [Nacalai Tesque], 2 
% Bacto peptone [BD Biosciences], 2 % D-glucose) media were used for 
incubating yeast strains. To obtain solid media, 2 % agarose was added.

2.3. Shake-flask fermentation and monoterpenoid quantification

An overnight culture of yeast in 5 mL of SC (Fig. 2) or YPD 
(Supplementary Fig. 5) medium incubated at 30 ◦C at 150 rpm was 
transferred into 20 mL of YPD medium in a baffled shake flask (initial 
OD600 ~0.1) and incubated at 30 ◦C at 200 rpm. At each time point, the 

OD600 was monitored using a UV-1280 UV–Vis spectrophotometer 
(Shimadzu, Kyoto, Japan), and the cell culture was vigorously mixed 
with an equivalent volume of ethyl acetate by vortexing for 10 min at 
4 ◦C, followed by centrifugation for 10 min at 13,000 g. The levels of 
extracted borneol, camphor, and bornyl acetate in the organic phase 
were measured using a gas chromatography–mass spectrometry (GC- 
MS) system consisting of a GCMS-QP2010 Ultra (Shimadzu) spectrom-
eter equipped with a DB-5MS column (0.25 mm × 30 m, membrane 
thickness of 0.25 μm; Agilent Technologies, Santa Clara, CA, USA) and 
AOC-20i auto-injector (Shimadzu), as described previously (Zhang et al., 
2021) with the following modifications. Mass spectrometry was carried 
out in the SIM/Scan mode and m/z range of 50–200. Calibrations were 
performed using standards at a concentration of up to 50 μM with a 
coefficient of determination >0.99. The major quantifier ion for all three 
analytes was m/z 95. Other qualifier ions were as follows: m/z 67 and 
110 for borneol, m/z 81 and 108 for camphor, and m/z 93 and 136 for 
bornyl acetate. For two-phase fermentation, isopropyl myristate (IPM) 
was added to the medium at a final concentration of 10 % (v/v), and 
cultivation was carried out by vortexing for 10 min at 4 ◦C. Finally, a 
1-mL aliquot of the organic phase was used for analysis.

3. Results and discussion

To generate a yeast strain that produces borneol, the gene encoding 
BPPS without the N-terminal plastid-localization sequence (2–49 resi-
dues) from S. officinalis (SoBPPS, GenBank: AAC26017.1) was codon- 
optimized for yeast (Supplementary Table 1) and fused to the mutated 
ERG20 gene from yeast, which encodes mutant Erg20p with high GPP 
synthesis activity (Erg20pF96W− N127W, Erg20pWW), thereby enabling the 
efficient substrate channeling (Ignea et al., 2014) toward BPP. The 
resulting fusion gene was cloned into the yeast integration vector so that 
the BPPS gene could be expressed from the strong TDH3 promoter. In 
addition, the genes encoding acetoacetyl-CoA thiolase/hydrox-
ymethylglutaryl-CoA (HMG-CoA) reductase and HMG-CoA synthase 
from Enterococcus faecalis (EfMvaE and EfMvaS, respectively), which 
convert acetyl-CoA into mevalonate to produce more terpenoids in both 
E. coli (Tsuruta et al., 2009; Yoon et al., 2009) and the yeast S. cerevisiae 
(Peng et al., 2017), were also cloned into plasmid pATP403red 
(Tominaga et al., 2021). The resulting plasmids were successively in-
tegrated into the chromosome of the yeast strain ScKZ014 derived from 
strain BY4741 (Brachmann et al., 1998), which harbors a 
borneol-responsive transcription activator and reporter plasmid for the 
in vivo sensing of borneol (Supplementary Fig. 1 and Supplementary 
Note 1), thereby generating yeast strain ScKZ045 (Supplementary 
Fig. 2). When this strain was incubated in YPD medium, the concen-
tration of borneol in the medium increased after 24 h and peaked at 72 
h, reaching 13.6 mg/L before gradually decreasing (Fig. 2A and Sup-
plementary Fig. 4). Note that the borneol concentration was >3-fold 

Fig. 1. Biosynthetic pathway of borneol, camphor, and bornyl acetate reconstituted in the yeast S. cerevisiae. Heterologous enzymes are indicated in 
bold type.
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higher than that produced using the strain lacking expression of EfMvaE 
and EfMvaS (Supplementary Fig. 5).

To convert borneol into camphor and bornyl acetate, two strains 
were constructed that additionally express borneol dehydrogenase from 
Pseudomonas sp. TCU-HL1 (PsBDH, GenBank: AOE86728.1) and bornyl 
acetyltransferase from W. villosa (WvBAT4) (Liang et al., 2022). To do 
so, codon-optimized PsBDH and WvBAT4 (Supplementary Table 1) were 
additionally cloned into the expression vectors for EfMvaE and EfMvaS 
and integrated into yeast strain ScKZ045, generating strains ScKZ048 
and ScKZ046, respectively (Supplementary Fig. 3). These strains suc-
cessfully produced camphor and bornyl acetate (Fig. 2B and C, and 
Supplementary Fig. 4) and exhibited the same time-course for borneol 
production. The concentrations of camphor and bornyl acetate reached 
12.4 and 5.00 mg/L at 72 h, respectively, and then decreased. Borneol, 
camphor, and bornyl acetate are highly volatile. For instance, >20 % of 
borneol is lost from the medium after 48 h of incubation (Lei et al., 
2021), which may contribute to the observed decrease in monoterpene 
production after 72 h.

To minimize the loss of volatile monoterpenes from the fermentation 
medium, we performed two-phase fermentation by adding IPM to the 
medium (Fig. 2D–F). IPM was added at a final concentration of 10 % (v/ 
v), and cultivation was carried out by vortexing, followed by removal of 
an aliquot from the organic phase for analysis. As expected, the 
maximum concentrations of borneol, camphor, and bornyl acetate 
increased by 1.7-fold (23.0 mg/L at 96 h, Fig. 2D), 1.9-fold (23.5 mg/L at 
120 h, Fig. 2E), and 4.2-fold (21.1 mg/L at 120 h, Fig. 2F), respectively. 
Note that the growth of all yeast strains was enhanced slightly by the 
addition of IMP, possibly because the toxic effects of the monoterpenes 
were reduced by extracting the compounds into the IPM phase (Brennan 
et al., 2012). Approximately 5 mg/L of borneol remained in the medium 
when producing bornyl acetate (Fig. 2F) but not when producing 

camphor (Fig. 2D), indicating that the enzymatic activity of WvBAT4 is 
weaker than that of PsBDH.

4. Conclusions

In this study, we established a microbial platform to produce 
borneol, camphor, and bornyl acetate using the yeast S. cerevisiae. To 
this end, we engineered yeast strains to express the rate-limiting en-
zymes (EfMvaE and EfMvaS) and the fusion enzyme of BPPS and 
Erg20pWW with and without PsBDH or WvBAT4. This study is the first 
report of yeast production of camphor and bornyl acetate. Although the 
concentration of borneol produced was comparable to that of a previ-
ously reported yeast strain (Ma et al., 2022), overlaying IPM onto the 
medium improved borneol production by 1.7-fold, leading to the highest 
borneol titer in a shake flask reported for the yeast S. cerevisiae. 
Nevertheless, the borneol production was 4-fold lower than that re-
ported for E. coli (Lei et al., 2021). Further improvement in production 
could be achieved by combining the modulation of competitive path-
ways (Paddon et al., 2013; Hull et al., 2014; Peng et al., 2017; Broker 
et al., 2018; Zhou et al., 2021; Tominaga et al., 2022; Wei et al., 2024), 
protein engineering to improve the enzymatic activity of BPPSs (Lei 
et al., 2021), amplification of the gene copy number of rate-limiting 
enzymes (Peng et al., 2022), and enzyme compartmentalization 
(Cheah et al., 2023). Evolutionary engineering for the production of 
borneol and camphor can be performed using recently developed 
genetically encoded biosensors that respond to borneol or camphor 
(Ikushima et al., 2015; Ikushima and Boeke, 2017; Tominaga et al., 
2021; D’oelsnitz et al., 2022). Finally, a high-throughput platform could 
be developed to facilitate mutational analysis of various plant BDHs (Lin 
et al., 2023) and investigate their properties, such as product specificity 
(Hofer et al., 2021; Ma et al., 2021; Hu et al., 2022).

Fig. 2. Single- and two-phase shake-flask fermentation of yeasts to produce borneol, camphor, and bornyl acetate. Yeast strains expressing Erg20pWW:: 
SoBPPS, EfMvaE, and EfMvaS (ScKZ045 [A, D]) or in further combination with PsBDH (ScKZ048 [B, E]) or WvBAT4 (ScKZ046 [C, F]). Yeasts were incubated in a 
shake flask without (A, B, C) or with (D, E, F) IPM overlay. Data are shown as the mean, and error bars show the SD of three independent experiments.
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